

2709 Jahn Ave NW, Suite H2, Gig Harbor WA 98335

Ph. (253) 853-7780- www.SprinxFire.com

Expires WASHINGTON STATE CERTIFICATE OF COMPETENCY FIRE SPRINKLER SYSTEMS

City of Puyallup
evelopment & Permitting S
ISSUED PERMIT
Building Planni
Engineering Public W

Joseph G. Faulkner 9491-0699-CEG Level 3 Sprinx Fire Protection, Inc. SPRINFP011LS

Signature

lough p partform 08/25/2025

Hydraulic Calculations

SPRINX FIRE PROTECTION INC. 2709 JAHN AVE NW SUITE H2 GIG HARBOR, WA 98335 253-853-7780

Job Name : ETC Building A Area 1

Drawing : FP-3.0

Location : 2902 E PIONEER PUYALLUP, WA 98372

Remote Area : RA#1 Contract : 24-093CM

Data File : ETC Building A Area 1.WXF

1 Date 8/20/2025

HYDRAULIC CALCULATIONS for

JOB NAME East Town Crossing Building A

Location 2902 E PIONEER PUYALLUP, WA 98372

Drawing # FP-3.0 **Contract** # 24-093CM Date 8/20/2025

DESIGN

Remote area # RA#1

Remote area location UNIT 301 - LIVING ROOM Occupancy classification RESIDENTIAL NFPA 13R

0.05 - Gpm/SqFt Density Area of application 256 - SqFt Coverage/sprinkler 256 16'X16' - SqFt

Type of sprinkler calculated VIKING VK468 RESIDENTIAL PENDENT K=4.9

Sprinklers calculated 4 In-rack demand N/A - GPM Hose streams N/A - GPM

Total water required (including hose streams) 53.8947 - GPM @ 32.0799 - Psi

Type of system WET-CPVC

Volume of system (dry or pre-action) N/A - Gal

WATER SUPPLY INFORMATION

Test date 4/16/2024

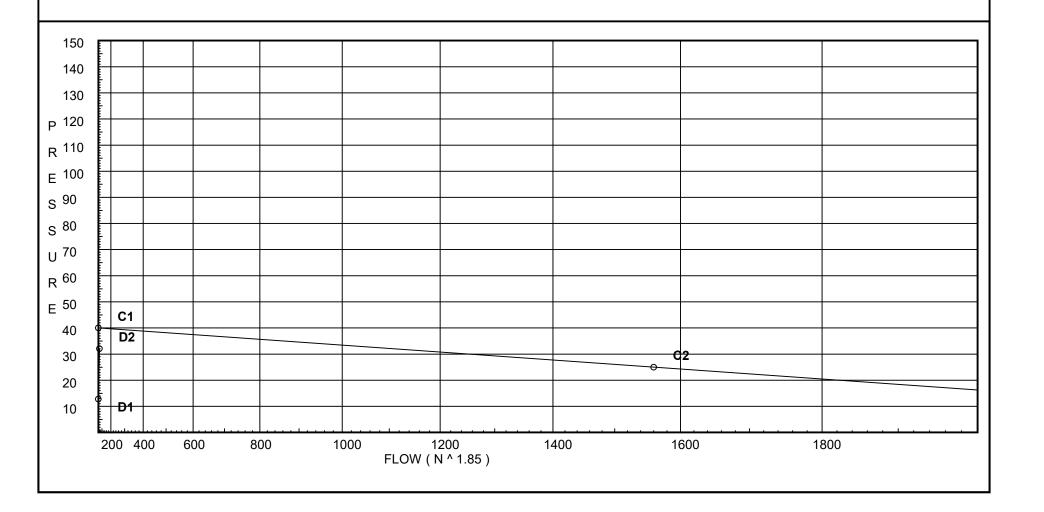
Location 2902 E PIONEER

Source of info CITY OF PUYALLUP WATER DIVISON

CONTRACTOR INFO SPRINX FIRE PROTECTION

Address 2709 JAHN AVE. / SUITE H2 / GIG HARBOR

Phone # 253-853-7780


Name of designer ALEXANDER J PARADIS Authority having jurisdiction CITY OF PUYALLUP

NOTES:

Date 8/20/2025

City Water Supply: C1 - Static Pressure : 40 C2 - Residual Pressure: 25 C2 - Residual Flow : 1560 Demand:

D1 - Elevation : 12.776 D2 - System Flow : 53.895
D2 - System Pressure : 32.080
Hose (Demand) : 53.895
Safety Margin : 53.895

Date 8/20/2025

Fittings Used Summary

	NX FIRE PROTECTION INC. Building A Area 1																		ige 4 ate 8	 	25
	Legend . Name	1/2	3/4	1	11⁄4	1½	2	2½	3	3½	4	5	6	8	10	12	14	16	18	20	24
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90'Ell Harvel-Spears		7	7	8	9	11	12	13	0	0	0	0	0	0	0	0	0	0	0	0
O *	CPVC Tee - Branch	3	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
R *	CPVC Coupling Tee - Run	1	1	1	1	1	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
T	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Ziw	Wilkins 350AST	Fittin	ng gener	ates a F	ixed Los	s Basec	on Flo	W													

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

SPRINX FIRE PROTECTION INC. ETC Building A Area 1

Page Date

5 8/20/2025

CIII	ומס	v 1	NIAI	LYSIS
.5t II	991	7 4	NAI	7.51.5

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	40.0	25	1560.0	39.97	53.89	32.08

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	۸	lotes	
1	106.5	4.9	7.04	13.0	0.05	256	
2 3	107.0		7.05				
3	107.0		7.41				
4	107.0		7.73				
5	107.0		7.92				
5 6 7	107.0		8.16				
7	107.0		8.38				
UP6	107.0		8.99				
UP5	96.75		13.69				
UP4	86.5		18.26				
8	86.5		19.05				
TOR	86.5		20.93				
BOR	80.0		24.47				
BKV	77.0		32.07				
WM1	77.0		32.08				
WM2	77.0		32.08				
TEST	77.0		32.08				
9	105.5	4.9	7.7	13.6	0.05	256	
10	107.0		7.3				
11	106.5	4.9	7.61	13.52	0.05	256	
12	107.0		7.61				
13	106.5	4.9	7.91	13.78	0.05	256	
14	107.0		7.95				
UP2	96.75		14.41				
UP1	86.5		18.98				

SPRINX FIRE PROTECTION INC.

Page 6 Date 8/20/2025 ETC Building A Area 1

	ulig A Al									Date 0/20/2025
Node1 to	Elev1	K	Qa	Nom	Fitting or	I	Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
1 o	106.500	4.90	13.00	1	N	7.0	0.500 7.000	150	7.040 -0.217	
2	107		13.0	1.101			7.500	0.0307	0.230	Vel = 4.38
2 o	107		0.0	1	0	5.0	6.580 5.000	150	7.053 0.0	
3	107		13.0	1.101			11.580	0.0307	0.356	Vel = 4.38
3 o	107		0.0	1	2R	2.0	8.580 2.000	150	7.409 0.0	
4	107		13.0	1.101			10.580	0.0306	0.324	Vel = 4.38
4 o	107		13.60	1.25	R	1.0	4.170 1.000	150	7.733 0.0	
5	107		26.6	1.394			5.170	0.0366	0.189	Vel = 5.59
5 0	107		13.52	1.25	R	1.0	2.080 1.000	150	7.922 0.0	
6	107		40.12	1.394	0.0	0.0	3.080	0.0782	0.241	Vel = 8.43
6 o	107		13.77	2	2R	2.0	7.250 2.000	150	8.163 0.0	V. 1. 5.40
7	107		53.89	2.003	011	00.0	9.250	0.0230	0.213	Vel = 5.49
7 0	107		0.0	2	2N	22.0	4.500 22.000	150	8.376 0.0	Val = . 5.40
UP6	107		53.89	2.003	D	1.0	26.500	0.0231	0.612	Vel = 5.49
UP6 o	107		0.0	2.003	R	1.0	10.250 1.000	150	8.988 4.439	Val = . F. 40
UP5 UP5	96.750 96.750		53.89 -26.35	2.003	0	10.0	11.250 10.250	0.0232 150	0.261 13.688	Vel = 5.49
o UP4	86.500		27.54	2.003	O	10.0	10.230 10.000 20.250	0.0067	4.439 0.135	Vel = 2.80
UP4	86.500		0.0	2.003	2N	22.0	71.580	150	18.262	Vei - 2.00
0					14R	14.0	46.000		0.0	Val - 2.00
8 8	86.500 86.500		27.54 26.35	2.003	O 6R	10.0 6.0	117.580 32.670	0.0067 150	0.784 19.046	Vel = 2.80
0					Ο	10.0	49.000		0.0	Val 5.40
TOR TOR	86.500 86.500		53.89	2.003	3N B	33.0 8.183	81.670 9.500	0.0231 120	1.886 20.932	Vel = 5.49
o BOR	80		53.89	2.203	S	15.003	23.186 32.686	0.0220	2.815 0.718	Vel = 4.54
BOR	80		0.0	6	Т	43.037	75.000	140	24.465	V CI - 4.04
o BKV	77		53.89	6.16	3E Ziw	60.252	103.289 178.289	0.0001	7.581 0.020	* * Fixed Loss = 6.281 Vel = 0.58
BKV	77		0.0	6	T	43.037	55.000	140	32.066	
o WM1	77		53.89	6.16	Ġ	4.304	47.341 102.341	0.0001	0.0 0.011	Vel = 0.58
WM1	77		0.0	8	Т	55.354	35.000	140	32.077	. 5. 0.50
o WM2	77		53.89	8.27			55.354 90.354	0	0.0 0.002	Vel = 0.32
WM2	77		0.0	8			25.000	140	32.079	
o TEST	77		53.89	8.27			25.000	0	0.0 0.001	Vel = 0.32

SPRINX FIRE PROTECTION INC.

ETC Building A Area 1

Page 7 Date 8/20/2025

Node1 Elev1 K Qa **Fitting** Pipe **CFact** Pt Nom to or **Ftngs** Pe Notes Node2 Elev2 Fact Qt Act Eqiv Total Pf/Ft Pf Len 0.0 **TEST** 53.89 32.080 K Factor = 9.519 105.500 4.90 1 Ν 7.0 0.500 150 7.700 13.60 7.000 -0.650to 10 107 13.6 7.500 0.0333 0.250 Vel = 4.581.101 10 107 0.0 1 20 10.0 3.000 150 7.300 10.000 to 0.0 107 13.6 13.000 0.0333 0.433 Vel = 4.584 1.101 0.0 4 13.60 7.733 K Factor = 4.8911 106.500 4.90 13.52 1 0 5.0 1.500 150 7.611 5.000 -0.217to 12 107 13.52 1.101 6.500 0.0331 0.215 Vel = 4.5612 107 0.0 1 0 5.0 4.500 150 7.609 5.000 to 0.0 5 107 13.52 1.101 9.500 0.0329 0.313 Vel = 4.560.0 5 13.52 7.922 K Factor = 4.8013 106.500 4.90 13.78 1 Ν 7.0 0.500 150 7.907 7.000 -0.217to 107 1.101 7.500 0.0343 14 13.78 0.257 Vel = 4.641 14 107 0.0 0 5.0 1.330 150 7.947 5.000 0.0 to 107 13.78 1.101 6.330 0.0341 0.216 6 Vel = 4.640.0 6 13.78 8.163 K Factor = 4.82UP5 26.36 2 2N 22.0 71.580 150 13.688 96.750 14R 14.0 46.000 0.0 to UP2 96.750 26.36 2.003 O 10.0 117.580 0.0061 0.723 Vel = 2.68UP2 96.750 0.0 2 Ν 11.0 10.250 150 14.411 11.000 4.439 to UP1 86.500 26.36 2.003 21.250 0.0061 0.130 Vel = 2.68UP1 86.500 0.0 2 0 10.0 0.670 150 18.980 to 10.000 0.0 8 86.500 26.36 2.003 10.670 0.0062 0.066 Vel = 2.680.0 8 K Factor = 6.04 26.36 19.046

2709 Jahn Ave NW, Suite H2, Gig Harbor WA 98335

Ph. (253) 853-7780- www.SprinxFire.com

Expires DEC 31, 25

WASHINGTON STATE CERTIFICATE OF COMPETENCY FIRE SPRINKLER SYSTEMS

Joseph G. Faulkner 9491-0699-CEG Level 3 Sprinx Fire Protection, Inc. SPRINFP011LS

Signature

08|25|2025

Hydraulic Calculations

SPRINX FIRE PROTECTION INC. 2709 JAHN AVE NW SUITE H2 GIG HARBOR, WA 98335 253-853-7780

Job Name : ETC Building A Area 2

Drawing : FP-3.0

Location : 2902 E PIONEER PUYALLUP, WA 98372

Remote Area : RA#2 Contract : 24-093CM

Data File : ETC Building A Area 2.WXF

Date 8/20/2025

HYDRAULIC CALCULATIONS for

JOB NAME East Town Crossing Building A

Location 2902 E PIONEER PUYALLUP, WA 98372

Drawing # FP-3.0 **Contract #** 24-093CM **Date** 8/20/2025

DESIGN

Remote area # RA#2

Remote area location UNIT 301 - BEDROOM
Occupancy classification RESIDENTIAL NFPA 13R

Density 0.05 - Gpm/SqFt **Area of application** 324 - SqFt **Coverage/sprinkler** 324 18'X18 - SqFt

Coverage/sprinkler 324 18 X 18 - SqFt

Type of sprinkler calculated VIKING VK468 RESIDENTIAL PENDENT K=4.9

Sprinklers calculated 1 In-rack demand N/A - GPM Hose streams N/A - GPM

Total water required (including hose streams) 17.0024 - GPM @ 33.7653 - Psi

Type of system WET-CPVC

Volume of system (dry or pre-action) N/A - Gal

WATER SUPPLY INFORMATION

Test date 4/16/2024

Location 2902 E PIONEER

Source of info CITY OF PUYALLUP WATER DIVISON

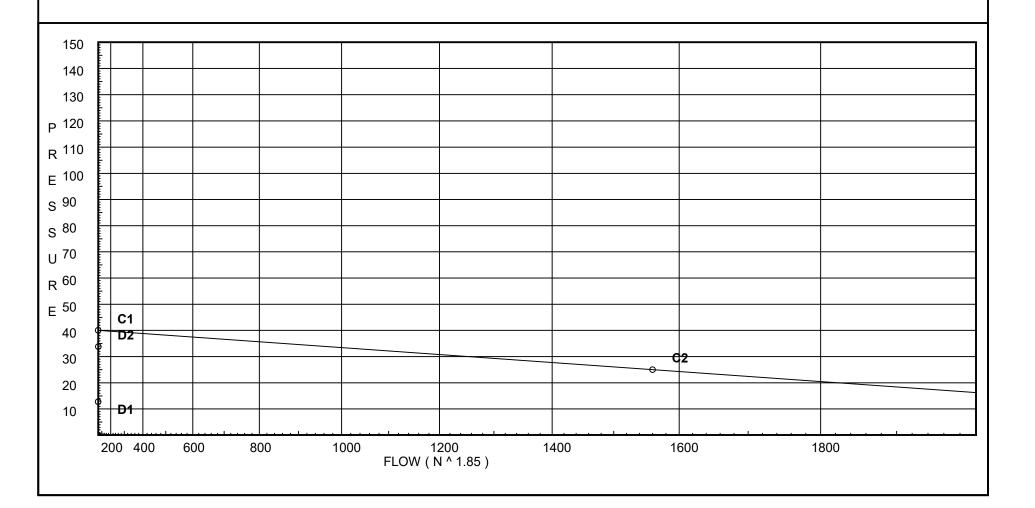
CONTRACTOR INFO SPRINX FIRE PROTECTION

Address 2709 JAHN AVE. / SUITE H2 / GIG HARBOR

Phone # 253-853-7780

Name of designer ALEXANDER J PARADIS

Authority having jurisdiction CITY OF PUYALLUP


NOTES:

Page 2 Date

8/20/2025

City Water Supply: C1 - Static Pressure : 40 C2 - Residual Pressure: 25 C2 - Residual Flow : 1560 Demand:

D1 - Elevation : 12.776 D2 - System Flow : 17.002
D2 - System Pressure : 33.765
Hose (Demand) : 17.002
Safety Margin : 17.002

SPRINX FIRE PROTECTION INC. ETC Building A Area 2

Page 3

Date 8/20/2025

Fittings Used Summary

SPRINX FIRE PROTECTION INC.

ETC B																		ate 8	8/20/20	25	
Fitting L Abbrev	egend Name	1/2	3/4	1	11⁄4	1½	2	2½	3	3½	4	5	6	8	10	12	14	16	18	20	24
_		_	_	_	_		_	_										_		_	_
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90'Ell Harvel-Spears		7	7	8	9	11	12	13	0	0	0	0	0	0	0	0	0	0	0	0
O *	CPVC Tee - Branch	3	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
R *	CPVC Coupling Tee - Run	1	1	1	1	1	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
T	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Ziw	Wilkins 350AST	Fittir	na aener	ates a F	ixed Los	s Based	d on Flo	w													

Page 4

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

SPRINX FIRE PROTECTION INC. ETC Building A Area 2

Page Date 5 8/20/2025

	LYSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	40.0	25	1560.0	39.996	17.0	33.765

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node	ı	Votes	
16	106.5	4.9	12.04	17.0	0.05	324	
17	107.0		12.2				
3	107.0		12.78				
4	107.0		13.32				
5	107.0		13.4				
6	107.0		13.45				
7	107.0		13.47				
UP6	107.0		13.55				
UP5	96.75		18.02				
UP4	86.5		22.47				
8	86.5		22.57				
TOR	86.5		22.79				
BOR	80.0		25.69				
BKV	77.0		33.76				
WM1	77.0		33.76				
WM2	77.0		33.77				
TEST	77.0		33.77				
UP2	96.75		18.1				
UP1	86.5		22.56				

SPRINX FIRE PROTECTION INC.

Page 6 Date 8/2 ETC Building A Area 2 8/20/2025

ETC Buil	iding A Area 2								Date 8/20/2025
Node1	Elev1 K	Qa	Nom	Fitting)	Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2 Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
16	106.500 4.90	17.00	1	N	7.0	0.500	150	12.040	
to 17	107	17.0	1.101	.,	1.0	7.000 7.500	0.0504	-0.217 0.378	Vel = 5.73
17 to	107	0.0	1	0	5.0	6.580 5.000	150	12.201 0.0	VG. 0.70
3	107	17.0	1.101			11.580	0.0504	0.584	Vel = 5.73
3 to	107	0.0	1	2R	2.0	8.580 2.000	150	12.785 0.0	
4	107	17.0	1.101			10.580	0.0504	0.533	Vel = 5.73
4 to	107	0.0	1.25	R	1.0	4.170 1.000	150	13.318 0.0	
5	107	17.0	1.394		1.0	5.170	0.0159	0.082	Vel = 3.57
5 to	107	0.0	1.25	R	1.0	2.080 1.000	150	13.400	Val = 2.57
6	107 107	17.0 0.0	1.394 2	2R	2.0	3.080 7.250	0.0162 150	0.050 13.450	Vel = 3.57
to 7	107	17.0	2.003	ZIX	2.0	2.000 9.250	0.0027	0.0 0.025	Vel = 1.73
7 to	107	0.0	2	2N	22.0	4.500 22.000	150	13.475 0.0	10.
UP6	107	17.0	2.003			26.500	0.0027	0.072	Vel = 1.73
UP6 to	107	0.0	2	R	1.0	10.250 1.000	150	13.547 4.439	
UP5	96.750	17.0	2.003			11.250	0.0028	0.031	Vel = 1.73
UP5 to	96.750	-8.31	2	0	10.0	10.250 10.000	150	18.017 4.439	
UP4	86.500	8.69	2.003	ON 1	00.0	20.250	0.0008	0.017	Vel = 0.88
UP4 to 8	86.500 86.500	0.0 8.69	2.003	2N 14R O	22.0 14.0 10.0	71.580 46.000 117.580	150 0.0008	22.473 0.0 0.092	Vel = 0.88
8	86.500	8.31	2.003	6R	6.0	32.670	150	22.565	V EI = 0.00
to	00.000	0.01		0	10.0	49.000	100	0.0	
TOR	86.500	17.0	2.003		33.0	81.670	0.0027	0.224	Vel = 1.73
TOR to	86.500	0.0	2	B S	8.183 15.003	9.500 23.186	120	22.789 2.815	V I 440
BOR BOR	80	17.0	2.203 6	T	43.037	32.686 75.000	0.0026 140	0.085 25.689	Vel = 1.43
to		0.0 17.0	6.16	3E	60.252 0.0	103.289	0	8.073	* * Fixed Loss = 6.773 Vel = 0.18
BKV BKV	77 77	0.0	6	Ziw T	43.037	178.289 55.000	140	0.002 33.764	V CI - U. 10
to WM1	77	17.0	6.16	Ġ	4.304	47.341 102.341	0	0.0 0.001	Vel = 0.18
WM1 to	77	0.0	8	Т	55.354	35.000 55.354	140	33.765 0.0	. 5. 5.10
WM2	77	17.0	8.27			90.354	0	0.0	Vel = 0.10
WM2 to	77	0.0	8			25.000	140	33.765 0.0	
TEST	77	17.0	8.27			25.000	0	0.0	Vel = 0.10

Final Calculations: Hazen-Williams

SPRINX FIRE PROTECTION INC. ETC Building A Area 2

Page 7 Date 8/20/2025

Node1 to	Elev1	К	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	*****	Notes	*****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf			
			0.0									
TEST			17.00						33.765	K Factor =	= 2.93	
UP5	96.750		8.31	2	2N	22.0	71.580	150	18.017			
to					14R	14.0	46.000		0.0			
UP2	96.750		8.31	2.003	0	10.0	117.580	0.0007	0.086	Vel = 0.8	5	
UP2	96.750		0.0	2	N	11.0	10.250	150	18.103			
to							11.000		4.439			
UP1	86.500		8.31	2.003			21.250	0.0008	0.016	Vel = 0.8	5	
UP1	86.500		0.0	2	0	10.0	0.670	150	22.558			
to							10.000		0.0			
8	86.500		8.31	2.003			10.670	0.0007	0.007	Vel = 0.8	5	
			0.0									
8			8.31						22.565	K Factor =	1.75	
			-				•					

2709 Jahn Ave NW, Suite H2, Gig Harbor WA 98335

Ph. (253) 853-7780- www.SprinxFire.com

Hydraulic Calculations

Expires WASHINGTON STATE CERTIFICATE OF COMPETENCY FIRE SPRINKLER SYSTEMS

Joseph G. Faulkner 9491-0699-CEG Level 3 Sprinx Fire Protection, Inc. SPRINFP011LS₁

Joseph D. Januffre 08/25/2 Signature Dat

SPRINX FIRE PROTECTION INC. 2709 JAHN AVE NW SUITE H2 GIG HARBOR, WA 98335 253-853-7780

Job Name : ETC Building A Area 3

Drawing : FP-3.0

Location : 2902 E PIONEER PUYALLUP, WA 98372

Remote Area : RA#3 Contract : 24-093CM

Data File : ETC Building A Area 3.WXF

Date 8/20/2025

HYDRAULIC CALCULATIONS for

JOB NAME East Town Crossing Building A

Location 2902 E PIONEER PUYALLUP, WA 98372

Drawing # FP-3.0 **Contract #** 24-093CM **Date** 8/20/2025

DESIGN

Remote area # RA#3

Remote area location STAIRWELL

Occupancy classification LIGHT HAZARD

Density 0.10 - Gpm/SqFt **Area of application** 273 - SqFt **Coverage/sprinkler** 4 HEADS - SqFt

Type of sprinkler calculated VIKING VK178 QR CHROME DRY HORIZONTAL SIDEWALL

Sprinklers calculated 4 In-rack demand N/A - GPM Hose streams N/A - GPM

Total water required (including hose streams) 62.99 - GPM @ 33.4712 - Psi

Type of system WET-CPVC

Volume of system (dry or pre-action) N/A - Gal

WATER SUPPLY INFORMATION

Test date 4/16/2024

Location 2902 E PIONEER

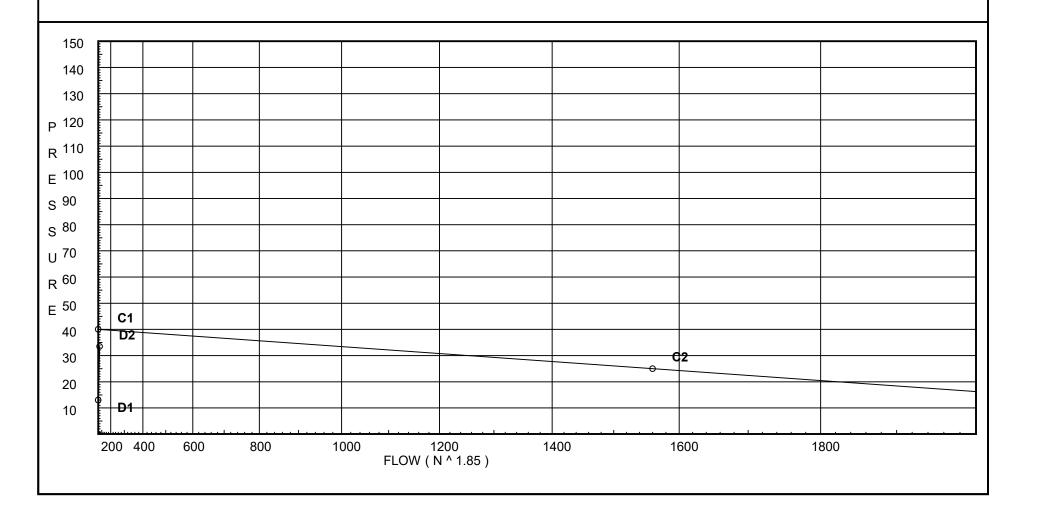
Source of info CITY OF PUYALLUP WATER DIVISON

CONTRACTOR INFO SPRINX FIRE PROTECTION

Address 2709 JAHN AVE. / SUITE H2 / GIG HARBOR

Phone # 253-853-7780

Name of designer ALEXANDER J PARADIS
Authority having jurisdiction CITY OF PUYALLUP


NOTES:

Page 2 Date

8/20/2025

City Water Supply: C1 - Static Pressure : 40 C2 - Residual Pressure: 25 C2 - Residual Flow : 1560 Demand:

D1 - Elevation : 12.993 D2 - System Flow : 62.99
D2 - System Pressure : 33.471
Hose (Demand) : 62.99
Safety Margin : 62.99

Date 8/20/2025

```
14.8 31.2 46.8 43.6 63 63 63
20 \leftarrow 21 \leftarrow 22 \leftarrow 23 \leftarrow UP3\leftarrow UP2\leftarrow UP1\leftarrow 8 \leftarrow TOR\leftarrow BOR\rightarrow BKV\leftarrow WM1\leftarrow WM2\rightarrow TEST

14.8 46.8 43.6 63 63 63

16.4 30 \leftarrow 22

15.7 40 \leftarrow 23

16.2 19.4

3.3

UP5\rightarrow UP2
```

Fittings Used Summary

SPRINX FIRE PROTECTION INC.

	uilding A Area 3																		ate 8	3/20/20:	25
Fitting Le		1/2	3/4	1	11/4	1½	2	2½	3	3½	4	5	6	8	10	12	14	16	18	20	24
<u>- 1.5.5.511</u>		,,,	,		.,,-	.,,				0,2	•										
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
N *	CPVC 90'Ell Harvel-Spears		7	7	8	9	11	12	13	0	0	0	0	0	0	0	0	0	0	0	0
O *	CPVC Tee - Branch	3	3	5	6	8	10	12	15	0	0	0	0	0	0	0	0	0	0	0	0
R *	CPVC Coupling Tee - Run	1	1	1	1	1	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
T	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Ziw	Wilkins 350AST	Fittin	ng gener	ates a F	ixed Los	s Basec	on Flo	W													

Page 4

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

SPRINX FIRE PROTECTION INC. ETC Building A Area 3

Page Date 5

8/20/2025

CIII	א ומכ	^ ^ ^ ^ ^	I VCIC
SUF	-PLI	ANA	LYSIS

Node at Source	Static Pressure	Residual Pressure	Flow	Available Pressure	Total Demand	Required Pressure
TEST	40.0	25	1560.0	39.96	62.99	33.471

NODE ANALYSIS

Node Tag	Elevation	Node Type	Pressure at Node	Discharge at Node		Notes	
20	107.0	5.6	7.0	14.82	0.1	140	
21	107.0		9.46				
22	107.0		9.52				
23	107.0		9.63				
UP3	107.0		10.1				
UP2	96.75		14.74				
UP1	86.5		19.51				
8	86.5		19.68				
TOR	86.5		22.19				
BOR	80.0		25.97				
BKV	77.0		33.45				
WM1	77.0		33.47				
WM2	77.0		33.47				
TEST	77.0		33.47				
30	107.0	5.6	8.52	16.35	0.1	140	
40	107.0	5.6	7.83	15.67	0.1	140	
50	107.0	5.6	8.32	16.15	0.1	140	
7	107.0		10.22				
UP6	107.0		10.29				
UP5	96.75		14.76				
UP4	86.5		19.27				

SPRINX FIRE PROTECTION INC.

Page 6 Date 8/2 ETC Building A Area 3 8/20/2025

= I C Bull	aing A Ai	rea 3								Date 8/20/2025
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes *****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
20	107	5.60	14.82	1	5N 4R	35.0 4.0	24.000 39.000	150	7.000 0.0	
to 21	107		14.82	1.101	4K	4.0	63.000	0.0391	2.461	Vel = 4.99
21	107		0.0	1.25	R	1.0	4.170	150	9.461	
to 22	107		14.82	1.394			1.000 5.170	0.0124	0.0 0.064	Vel = 3.12
22	107		16.35	2	3R	3.0	9.330	150	9.525	V G1 0.12
io							3.000		0.0	
23	107 107		31.17	2.003	ONI	22.0	12.330 4.500	0.0084	0.103	Vel = 3.17
23 o	107		15.67	2	2N	22.0	4.500 22.000	150	9.628 0.0	
UP3	107		46.84	2.003			26.500	0.0178	0.472	Vel = 4.77
UP3 to	107		0.0	2	R	1.0	10.250 1.000	150	10.100 4.439	
UP2	96.750		46.84	2.003			11.250	0.0179	4.439 0.201	Vel = 4.77
UP2	96.750		-3.28	2	N	11.0	10.250	150	14.740	
o UP1	86.500		43.56	2.003			11.000 21.250	0.0156	4.439 0.331	Vel = 4.44
UP1	86.500		0.0	2.003	0	10.0	0.670	150	19.510	VCI - 4.44
0					Ū	10.0	10.000		0.0	
8	86.500		43.56	2.003			10.670	0.0156	0.166	Vel = 4.44
8 o	86.500		19.43	2	6R O	6.0 10.0	32.670 49.000	150	19.676 0.0	
TOR	86.500		62.99	2.003		33.0	81.670	0.0308	2.518	Vel = 6.41
TOR	86.500		0.0	2	В	8.183	9.500	120	22.194	
to BOR	80		62.99	2.203	S	15.003	23.186 32.686	0.0293	2.815 0.957	Vel = 5.30
BOR	80		0.0	6	Т	43.037	75.000	140	25.966	
0 BK//	77		62.00	6 16	3E Ziw	60.252 0.0	103.289 178.289	0.0002	7.459	* * Fixed Loss = 6.16 Vel = 0.68
BKV BKV	77 77		62.99 0.0	6.16 6	T	43.037	55.000	0.0002 140	0.027 33.452	Vei - 0.00
0	,,				Ġ	4.304	47.341	140	0.0	
WM1	77		62.99	6.16			102.341	0.0001	0.015	Vel = 0.68
WM1 o	77		0.0	8	Т	55.354	35.000 55.354	140	33.467 0.0	
WM2	77		62.99	8.27			90.354	0	0.003	Vel = 0.38
WM2	77		0.0	8			25.000	140	33.470 0.0	
TEST	77		62.99	8.27			25.000	0	0.001	Vel = 0.38
			0.0							
TEST	407	<i>F</i> 00	62.99		N.I.	7.0	44.000	450	33.471	K Factor = 10.89
30 o	107	5.60	16.35	1	N	7.0	14.330 7.000	150	8.525 0.0	
22	107		16.35	1.101			21.330	0.0469	1.000	Vel = 5.51
22			0.0						0.505	K Factor - F 20
22 40	107	5.60	16.35 15.67	1	4N	28.0	7.500	150	9.525 7.830	K Factor = 5.30
40 :0		5.00			R	1.0	34.000	150	0.0	
23	107		15.67	1.101	0	5.0	41.500	0.0433	1.798	Vel = 5.28

SPRINX FIRE PROTECTION INC.

Page Date 7 8/20/2025 ETC Building A Area 3

	5									
Node1 to	Elev1	K	Qa	Nom	Fitting or		Pipe Ftngs	CFact	Pt Pe	****** Notes ****
Node2	Elev2	Fact	Qt	Act	Eqiv	Len	Total	Pf/Ft	Pf	
			0.0							
23			15.67						9.628	K Factor = 5.05
50	107	5.60	16.15	1	4N	28.0	7.500	150	8.320	
to					R	1.0	34.000		0.0	
7	107		16.15	1.101	0	5.0	41.500	0.0458	1.902	Vel = 5.44
7	107		0.0	2	2N	22.0	4.500	150	10.222	
to							22.000		0.0	
UP6	107		16.15	2.003			26.500	0.0025	0.066	Vel = 1.64
UP6	107		0.0	2	R	1.0	10.250	150	10.288	
to							1.000		4.439	
UP5	96.750		16.15	2.003			11.250	0.0025	0.028	Vel = 1.64
UP5	96.750		3.28	2	0	10.0	10.250	150	14.755	
to							10.000		4.439	
UP4	86.500		19.43	2.003			20.250	0.0035	0.071	Vel = 1.98
UP4	86.500		0.0	2	2N	22.0	71.580	150	19.265	
to					14R	14.0	46.000		0.0	
8	86.500		19.43	2.003	0	10.0	117.580	0.0035	0.411	Vel = 1.98
			0.0							
8			19.43						19.676	K Factor = 4.38
UP5	96.750		-3.27	2	2N	22.0	71.580	150	14.755	
to	3000		J	_	14R	14.0	46.000		0.0	
UP2	96.750		-3.27	2.003		10.0	117.580	-0.0001	-0.015	Vel = 0.33
			0.0							
UP2			-3.27						14.740	K Factor = -0.85

MEMORANDUM

TO: BRIAN JOHNSON, WATER SYSTEM

SPECIALIST

FROM: KERRI SIDEBOTTOM, P.E.

DATE: APRIL 16, 2024

SUBJECT: EAST TOWN CROSSING ADDITIONAL

FIRE FLOW AVAILABILITY

CITY OF PUYALLUP, PIERCE COUNTY,

WASHINGTON G&O #21415.19

Per your request, I have analyzed the available fire flow at the proposed East Town Crossing development, in the central part of the City's water service area. Fire flow at this location was previously analyzed in a memo from Gray & Osborne, dated February 14, 2024. The Developer has proposed a Revised Water Piping Plan for the site, which has been analyzed in this memo. The setup of the hydraulic model and the assumptions used to determine the static pressure and available fire flow are noted as follows.

- The available fire flows and pressures are measured at 14 nodes, corresponding to the proposed hydrants within the development, as shown in the attached figure.
- Water system demands are based on projected 2038 demands and reservoirs are depleted of fire suppression and equalizing storage, as established in the 2019 Water System Plan (WSP), approved by the Department of Health (DOH). The City's water model was updated in 2021 to reflect additional system improvements since the WSP was developed.
- All pump stations are idle, and the Salmon Springs source is operating at 1,100 gallons per minute (gpm).

The development is located in Zone 1, which is supplied by Maplewood Springs and the 15th Avenue SE Reservoirs. The system was modeled as-is, with the proposed piping indicated on the attached figure. The model was run for two different scenarios, all of which include new 8-inch piping. The new piping for Scenario 1 includes the Phase 1 piping shown on the attached figure in pink. Scenario 2 includes additional piping for Phase 2 of the development is shown in orange on the attached figure.

The available pressure under 2038 peak hour demands at the hydrants is included in Table 1.

TABLE 1
Peak Hour Pressure

Node	Hydrant	Elevation, feet	Peak Hour Pressure, psi
J2238	J	71	41
J2240	L	72	41
J2242	M	72	40
J2244	N	76	39
J2246	Н	76	39
J2248	I	76	41
J2250	F	73	40
J2252	D	69	42
J2254	С	67	43
J2256	В	66	43
J2258	A	66	43
J2260	Е	72	41
J2274	G	75	39
J2276	K	71	41

The peak hour pressures within the development are essentially the same under either of the proposed scenarios, and the looping does not appreciably impact the pressures.

SCENARIO 1

Scenario 1 includes the piping planned for Phase 1, shown in pink on the attached figure. The piping includes 8-inch mains, mostly dead-ends, extending from the existing 8-inch main running from north to south through the site, as well as a connection to the 16-inch main on Shaw Road, to the west. Part of the existing 8-inch main will be replaced during construction of the development.

Available fire flow was modeled at 12 of the proposed hydrants in the development; Hydrants A through L. The hydrants are located on 8-inch pipes throughout the development, many of which are dead-ends. The results of this modeling are included in Table 2. The modeled fire flow is available at any hydrant individually, but not simultaneously.

TABLE 2

Modeled Fire Flow Availability, Scenario 1

		Available Fire	Residual Pressure at	Minimum System Pressure at Available
Node	Hydrant		Available Fire Flow, psi	Fire Flow, psi
J2238	J	$2,140^{(1)}$	25	25
J2240	L	$1,560^{(1)}$	23	23
J2246	Н	$1,560^{(1)}$	22	22
J2248	I	$2,580^{(1)}$	23	23
J2250	F	$1,560^{(1)}$	25	25
J2252	D	$2,170^{(1)}$	28	28
J2254	C	$1,920^{(1)}$	29	28
J2256	В	$2,230^{(1)}$	26	26
J2258	A	$1,560^{(1)}$	28	28
J2260	Е	1,560 ⁽¹⁾	23	23
J2274	G	1,560 ⁽¹⁾	25	25
J2276	K	1,560 ⁽¹⁾	27	27

⁽¹⁾ Limited by maximum system-wide velocity of 10 feet per second.

Fire flow to all of the hydrants is limited by the 10-fps maximum velocity through the existing and proposed 8-inch pipes in this scenario.

SCENARIO 2

Scenario 2 includes the piping indicated for Phases 1 and 2, shown in pink and orange on the attached figure. The piping includes 8-inch pipes extending from the existing 8-inch main running from north to south through the site, a connection to the existing 16-inch main on Shaw Road to the west, and improved looping as compared with Scenario 1.

Available fire flow was measured at the 14 proposed hydrants in the development; Hydrants A through N. The hydrants are located on 8-inch pipes throughout the development. The results of this modeling are included in Table. The modeled fire flow is available at any hydrant individually, but not simultaneously.

TABLE 3

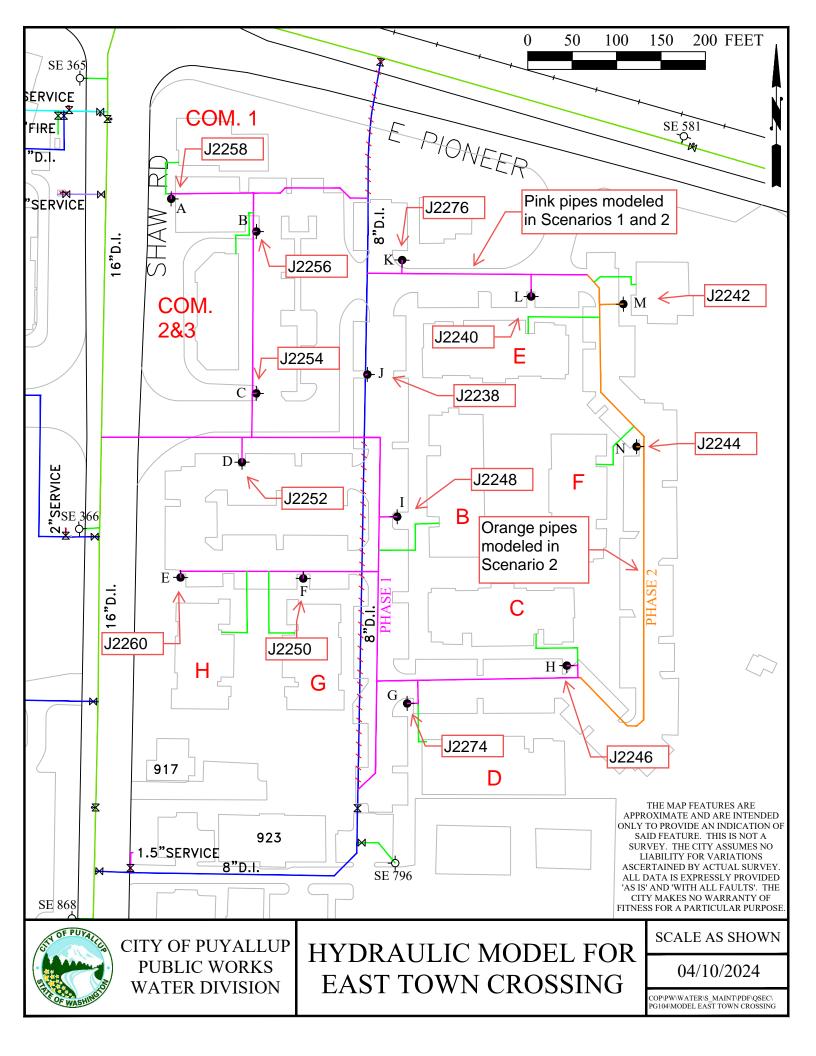
Modeled Fire Flow Availability, Scenario 2

		Available Fire	Residual Pressure at Available Fire	Minimum System Pressure at Available Fire
Node	Hydrant	Flow, gpm	Flow, psi	Flow, psi
J2238	J	2,430 ⁽¹⁾	25	25
J2240	L	$2,340^{(1)}$	21	21
J2242	M	$2,320^{(2)}$	20	20
J2244	N	$2,120^{(2)}$	20	20
J2246	Н	2,330 ⁽¹⁾	20	20
J2248	I	$2,540^{(1)}$	24	24
J2250	F	1,560 ⁽¹⁾	26	26
J2252	D	$2,230^{(1)}$	28	28
J2254	С	1,980 ⁽¹⁾	29	28
J2256	В	$2,340^{(1)}$	26	26
J2258	A	$1,560^{(1)}$	38	38
J2260	Е	1,560 ⁽¹⁾	23	23
J2274	G	1,980 ⁽¹⁾	25	25
J2276	K	$2,040^{(1)}$	25	25

⁽¹⁾ Limited by maximum system-wide velocity of 10 fps.

Fire flow to the hydrants is limited by the 10-fps maximum velocity through the existing and proposed 8-inch pipes.

It should be noted that the dead-end 8-inch mains within the proposed site can only provide 1,560 gpm, due to the City's 10-fps velocity limitation considered for the fire flow analysis. Therefore, if 1,500 gpm is required at the hydrant, located on a dead-end main, there is essentially no additional flow available for the sprinkler system supplied by the same dead-end main. This impacts Hydrants A, E, and F in both scenarios, and additionally Hydrants G and H in Scenario 1 only.


The Department of Health and City Standards for water distribution systems are to meet the peak hourly demand of the system while providing a minimum pressure of 30 psi, system-wide. Under peak daily demand with a fire flow, the system is designed to maintain a minimum pressure of 20 psi, system-wide. Although the peak hourly demand pressure may currently be higher than these standards, the Developer must recognize that

⁽²⁾ Limited by minimum system-wide pressure of 20 psi at all service locations.

the City may not provide pressure higher than 30 psi in the future. The flows and pressures determined in this memo are based on the approximate hydrant elevation at ground level. The Developer may design their sprinkler system for whatever pressure they wish, however they must recognize and be responsible for conditions when the pressure may be less than currently exists.

KS/sr

