

12503 Bel-Red Road, Suite 100 Bellevue, Washington 98005 (425) 450-4075

JOB Prologis Trimlite TI	
SHEET NO. COVER	OF
CALCULATED BY jch	DATE 9/4/2025
CHECKED BY	DATE
SCALE	
JOB NUMBER 25-01.102	

STRUCTURAL CALCULATIONS FOR:

These calculations must be on site and made available by the Permittee for all inspections.

PROLOGIS TRIMLITE T.I. --RIVERFRONT BLDG 1 1601 INDUSTRIAL WAY PUYALLUP, WASINGTON

	Puyallup ermitting Services PERMIT
Building	Planning
Engineering	Public Works
Fire OF V	Traffic

PROPOSED BY:

HAWK BUILDING LLC ryan@hawkbuilding.com (425) 273-1583

DESIGN CRITERIA:

ALLOWABLE SOIL BEARING IS 1500 PSF.

City of Puyallup Building REVIEWED FOR COMPLIANCE BSnowden 09/10/2025

3:41:33 PM

JOB	KWACFICULAT 1	<u></u>	
SHEET NO.	5-1	OF	
CALCULATED BY			
DATE .			

	(425) 450-4075	sc	CALE	
		T T		
100	N RESULT MENET			
Non	O POPPINGUI			
			210.11	
	1 512"		3/0"	
	1 1			
			75 C C C C C C C C C C C C C C C C C C C	+ + + - +
	(NIND)		The Bapy	
		de		
1111	6.204	1425e		
164	7077		7	
	(NIND)			
			13.3 (George	
		CHILLIA		
			+	
	Y WSW			
		·		
				+ + + + + + + + + + + + + + + + + + + +
				+

JOB	RIVERENCE	1
SHEET NO	5-12	OF
CALCULATED BY_	JCH	
DATE	9-2-25	

				(425	(a) 450	0-40	75							SCA	LE_										 	
	6	sti	eci	د (Pin	1 CU	459	*	Pa	40																-
			٥			ľ						R	7.,		3.1	a	7		110	1						_
	04	İ		1														7 -	//\	ر 						_
		- ·	TP	un			-	P,		ω) PC	יע 	2	U	20	W	t									
	U	INI	0	_	//	10 ,	Mp	7/4		Ex	P.	'K	31													
														77	12											
																			~			pt	f			_
				Fp	W	7		h	CF	G. 1.1/	200	(100) (1885)	V /),	100	1	=	13	3, 1	P	KF						
			-				•	<u>v</u>		· •					,		, ,			<u>ک،</u> 						
		714	H				11		11,	n ,		mel	"//	ul						!				-		<u> </u>
			44	- 1	z		4)×	50	ot	12	96	UV	7/1												
							0									#										
				VIIC.					1 1	1 1	1		c •	81	52	ر 4				n						
		W	WY)	7	2	714	12	0	11	13/2	2)		Z ,	20	33	7		#	(IN	TR	Wp				_
			11																							
			/																							
																										<u> </u>

JOB	KIUKFKUNT	_1	
SHEET NO	1-13	OF_	
	-011		

CALCULATED BY JUST

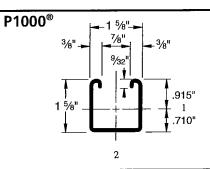
DATE 9-2-25

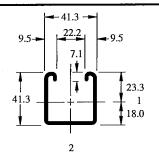
																SCA	LE_												
			(en	CICI	107	¥	PA,	7 (100	XOTO	<u> </u>				,													
											Ia	ادر				l a		1)			1	,	1						
				N	W	┤ .	Z.	20	3%	91	12	D		Z	20	X K	//	ac	16	pr	8								
												-																	
			1																		L				-				
			-	R	QU	IP	Mai	er	١.	2			-	-			;	=	14	12	-								
				C	010	e.	MG1 Ph	0	-	-	10	111	(1)	14	X	1575		Z	10	18									
												ļ		1			J		5	11/						l			
		-		-															0								 		
				1/1 /	K			P	2	14	07	,	١.	<u> </u>	0	7	-1			-									
				100			-	-		-	1			-	1	,													
			ļ	-	-									 												-			
	\vdash			 -	Z		N	K_	M	er	١,	-	(a	7/1	1 ,	1	-	1	S. 1.	01	>	KD	/)						
					K.			 	7					10	_				84										
					0		-	42	_	I		=	(V)	62)'											-			
														-					-							<u> </u>			
		1			n		<u> </u>	FA	7	1	±	14	₽-	7	-2		1/1	2	,	\	57	0 1	20				_		
ļ					7) [<u> </u>	A	L		F	14	01 -	}	-	/	24		<	'	00	y	770	-	ļ		_		
				ļ	ļ	-								-	7		QZ								-		 <u> </u>		
						<u> </u>	<u> </u>																				-		
		ļ												ļ							ļ						<u> </u>		
	ļ													ļ	ļ											!			
						<u> </u>	ļ																						
<u></u>		ļ	ļ																										
								ļ																					
																			-										
																								-					
																					-								
																					L								

JOB	RIVEKEKENOT 1	
SHEET NO.	7-1P OF	
-	(0.1)	

CALCULATED BY ___

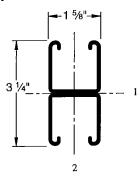
DATE 9-3-25

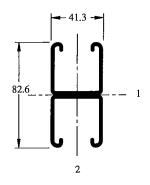

											SCA	LE												_
			—					-																
	rig	1	20	MO	K;	_	\bot															_	_	_
	11		1_						<u> </u>	115				<u></u>	-11.1	_							_	
	1	2	17	5+	21	125)	11	20				~	3	02	my	Ko,	9						_	
	1	\perp			$\overline{\Box}$	2		-	Ī	ļ				-								_	_	_
	11	+		$\perp \perp \mid$		+	_																4	
	3,	1 11 1		1/2/																			_	
1	1	6" Q Pu	1/1	100		^ 4	- 1		n's	1	ļ.,				n	/	-4					\perp		
		74	Ybu	<u> </u>	- 1), 9	216	50	1	10	///	12		=	21	00	•	((\square	\perp	4	_
	1	\perp			\vdash	\perp	\perp	_	-														_	
					\vdash				-														_	_
	trei	7	-	1	<u> -</u>			-	-		-											_	+	_
			1/1		-	_	_				-										44.4		\dashv	_
		= 7	NO	क्षा		 	+-	-	-											30	n		_	_
i - 1	1/1		202	1-		1	4	-											<u> </u>	,		_	\perp	
	1.6	1),	1251	, ,	14		-	-	-					<u> </u>			4	. 2	1	2		<u>'</u>	\dashv	_
u u	131	18X	10%	5×	12	5/1	7)	_						ļ			15	7			16	77 *	1	_
	15,	2	*	01	101	<u> </u> n	3							<u> </u>					B	117	41	<u>.</u> 	+	_
	1	Tx	+	0,	186	5		-														\perp	4	_
	1			1 1				,	V -0 A		.,	, ,,,	len	<i>,</i>									_	
	+++	+1/	7	/	11	3"	1 (V.C.	33) =	17	18											\dashv	_
	1			4	غ <i>ا را</i>	3"	*	4	37	ь												\perp	\dashv	_
	1	٦ .	1 .						1			ŀ				<i>ろ!</i>	1		nı	\mathcal{J}			_	_
	1	allo	V		00	0 * 0	10)() ×	U	02	×	4	જે		#	01	0	_(OF	と		+	+	
	1	_		\sqcup	_	_	t p		l	17		tuc	BH	eun	7									_
	1					_	+							•							_		\dashv	·
	1	+						-		-												+	+	_
+	1	1 5	7	2	_	_	_															_	_	
<u> </u>	DAGA	Ur 1	Ø	1		- 1	_						\dashv					-				_	+	_
	1) '	-	121	n			-	 	-											_		+	_
		ron				+	_			_											_		-	
	11	P (P)		211	1.4	· Alena	ļ.,	401		~1								_					\perp	
^	1/4	PW	* 2	P	J INV	1/1/4	4	117	٥	11	W		2 1	1					_		\dashv	-	\perp	_
	-	ro	1/10	N	=	78	5 _	X	U.	70	•	•	110)			-	\dashv					_	_
	-						1_	1		4								_	\dashv	_	\dashv		_	_

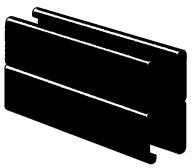


JOB	RIVERFKONOT	1
SHEET NO.	5-5	OF
CALCULATED BY_	JeH	

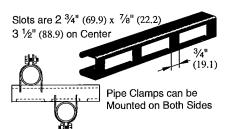
DATE 9-3-25


SCALE_ CHELLE ORS STIFFENCY 20'(10) 302# 302 4 501 M(K) 2x6 OF*2 A = 8,25 in² 5 = 7.56 C = 20.8 2587 0,80° 31 1/50 App RO 2060 TO (R) 206




Wt/100 Ft:189 Lbs (281 kg/100 m) Allowable Moment 5,070 In-Lbs (570 N•m) 12 Gauge Nominal Thickness .105" (2.7mm)

P1001



Wt/100 Ft: 378 Lbs (562 kg/100 m) Allowable Moment 14,360 In-Lbs (1,620 Nem) 12 Gauge Nominal Thickness .105" (2.7mm)

P1000 DS

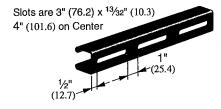
Wt/100 Ft: 173 Lbs (257 kg/100 m)

P1000 H3

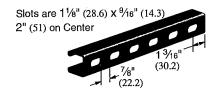
Wt/100 Ft: 175 Lbs (260 kg/100 m)

P1000 HS

Wt/100 Ft:185 Lbs (275 kg/100 m)


P1000 KO

Wt/100 Ft: 190 Lbs (283 kg/100 m)


P1000 SL

Wt/100 Ft: 185 Lbs (275 kg/100 m)

P1000 T

Wt/100 Ft: 185 Lbs (275 kg/100 m)

Channel Nuts (Refer to Hardware Section for Details)

P1024 P1012S P1023S

P3006-1024 P3006-1420 P3007 P3008 P3009 P3010

P3016-0632 P3016-0832 P3016-1024 P3016-1420

Channel Finishes: PL, GR, HG, PG; Standard Lengths: 10' & 20'

UNISTRUT

BEAM LOADING - P1000

	Max Allowable	Defl. at Uniform	Uniform L	oading at D	eflection
Span	Uniform Load	Load	Span/180	Span/240	Span/360
in	Lbs	In	Lbs	Lbs	Lbs
24	1,690	0.06	1,690	1,690	1,690
36	1,130	0.13	1,130	1,130	900
48	850	0.22	850	760	500
60	680	0.35	650	480	320
72	560	0.50	450	340	220
84	480	0.68	330	250	160
96	420	0.89	250	190	130
108	380	1.14	200	150	100
120	340	1.40	160	120	80
144	280	2.00	110	80	60
168	240	2.72	80	60	40
192	210	3.55	60	50	NR
216	190	4.58	50	40	NR
240	170	5.62	40	NR —	NR

	Max Allowable	Defl. at Uniform	Uniform L	oading at [eflection
Span	Uniform Load	Load		Span/240	Span/360
In	Lbs	ln	Lbs	Lbs	Lbs
24	3,500 *	0.02	3,500 *	3,500 *	3,500 *
36	3,190	0.07	3,190	3,190	3,190
48	2,390	0.13	2,390	2,390	2,390
60	1,910	0.20	1,910	1,910	1,620
72	1,600	0.28	1,600	1,600	1,130
84	1,370	0.39	1,370	1,240	830
96	1,200	0.51	1,200	950	630
108	1,060	0.64	1,000	750	500
120	960	0.79	810	610	410
144	800	1.14	560	420	280
168	680	1.53	410	310	210
192	600	2.02	320	240	160
216	530	2.54	250	190	130
240	480	3.16	200	150	100

BEAM LOADING - P1001

COLUMN LOADING - P1000

Unbraced	Maximum Allowable Load	Maximum	Column L	oad Appli	ied at C.G.
Height	at Slot Face	K = 0.65	K = 0.80	K =1.0	K = 1.2
In	Lbs	Lbs	Lbs	Lbs	Lbs
24	3,550	10,740	9,890	8,770	7,740
36	3,190	8,910	7,740	6,390	5,310
48	2,770	7,260	6,010	4,690	3,800
60	2,380	5,910	4,690	3,630	2,960
72	2,080	4,840	3,800	2,960	2,400
84	1,860	4,040	3,200	2,480	1,980
96	1,670	3,480	2,750	2,110	1,660
108	1,510	3,050	2,400	1,810	**
120	1,380	2,700	2,110	**	**
144	1,150	2,180	1,660	**	**
1					

ELEMENTS OF SECTION P1000/P1001

Parameter	P1000	P1001
Area of Section	0.555 ln²	1.111 ln²
Axis 1-1		
Moment of Inertia (I)	0.185 ln⁴	0.928 In⁴
Section Modulus (S)	0.202 ln ³	0.571 In ³
Radius of Gyration (r)	0.577 In	0.914 In
Axis 2-2		
Moment of Inertia (I)	0.236 In⁴	0.471 In⁴
Section Modulus (S)	0.290 ln ³	0.580 In³
Radius of Gyration (r)	0.651 ln	0.651 In

COLUMN LOADING - P1001

linhyoood	Maximum Allowable Load	Mavimum	Column I	oad Annli	ed at C.G.
Height	at Slot Face		K = 0.80	<u>vau жүүн</u> К =1.0	K = 1.2
in	Lbs	Lbs	Lbs	Lbs	Lbs
24	6,430	24,280	23,610	22,700	21,820
36	6,290	22,810	21,820	20,650	19,670
48	6,160	21,410	20,300	18,670	16,160
60	6,000	20,210	18,670	15,520	12,390
72	5,620	18,970	16,160	12,390	8,950
84	5,170	16,950	13,630	9,470	6,580
96	4,690	14,890	11,190	7,250	5,040
108	4,170	12,850	8,950	5,730	3,980
120	3,690	10,900	7,250	4,640	**
144	2,930	7,630	5,040	**	**

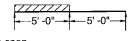
Notes:

- * Load limited by spot weld shear.
- ** KL/r > 200

NR = Not Recommended.

- 1. Above loads include the weight of the member. This weight must be deducted to arrive at the net allowable load the beam will support.
- 2. Long span beams should be supported in such a manner as to prevent rotation and twist.
- 3. Allowable uniformly distributed loads are listed for various simple spans, that is, a beam on two supports. If load is concentrated at the center of the span, multiply load from the table by 0.5 and corresponding deflection by 0.8.
- 4. See page 61 for lateral bracing reduction charts.
- 5. For Pierced Channel, Beam Load Values in the tables are multiplied by the following factor:

"DS" Series	70%	"T" Series	85%
"KO" Series	95%	"H3" Series	90%
"SL" Series	85%	"HS" Series	90%


CONVERSION FACTORS FOR BEAMS WITH VARIOUS STATIC LOADING CONDITIONS

All Beam Load tables are for single-span (simple) beams supported at the ends. These can be used in the majority of the cases. However, there are times when it is necessary to know what happens with other loading and support conditions. Some common arrangements are shown below. Simply multiply the values from the Beam Load tables by factors given below

Load and Support Condi	tion	Load Factor	Deflection Factor
Simple Beam, Uniform Load		1.00	1.00
Simple Beam, Concentrated Load at Center	 	.50	.80
Simple Beam, Two Equal Concentrated Loadcs at 1/4 pts	+ + + + + + + + + + + + + + + + + + + +	1.00	1.10
4. Beam Fixed at Both Ends, Uniform Load		1.50	.30
5. Beam Fixed at Both Ends, Concentrated Load at Center	+	1.00	.40
6. Cantilever Beam, Uniform Load		.25	2.40
7. Cantilever Beam, Concentrated Load at End		.12	3.20
8. Continuous Beam, Two Equal Spans, Uniform Load on One Span	SPAN SPAN SPAN	1.30	.92
9. Continuous Beam, Two Equal Spans, Uniform Load on Both Ends		1.00	.42
10. Continuous Beam, Two Equal Spans, Concentrated Load at Center of One Span		.62	.71
11. Continuous Beam, Two Equal Spans, Concentrated Load at Center of Each Span	+ + + + + + + + + + + + + + + + + + + +	.67	.48

EXAMPLE I:

Determine load and deflection of a P 1000 beam continuous over one support and loaded uniformly on one span.

SOLUTION:

- A. From load table for P1000 on page 26 load for a 5'-0" span is 680# and deflection is .35".
- B. Multiply by factors from Table above. Load = 680# x 1.30 = 884# Deflection = .35" x .92 = .32"

EXAMPLE II

Determine load and deflection of a P 5500 cantilever beam with a concentrated load on the end.

SOLUTION:

- A. From load table P5500 on page 57 load for a 3'-0" span is 2180# and deflection is .09".
- B. Multiply by factors from Table above. Load = 2180# x .12 = 262# Deflection = .09" x 3.20 = .29"

UNISTRUT

Lateral Bracing Load Reduction Charts

	Lateral Bracing Factors									
Sp	an				Sin	gle Channe	el			
Ft. (m)	In. <i>(cm)</i>	P1000	P1100	P2000	P3000	P3300	P4000	P4100	P5000	P5500
2 0.61	24 61.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.99
3 0.91	36 <i>91.4</i>	0.94	0.89	0.88	0.96	1.00	0.94	0.98	0.85	0.89
4 1.22	48 121.9	0.88	0.78	0.75	0.91	1.00	0.88	0.94	0.70	0.77
5 1.52	60 152.4	0.82	0.68	0.61	0.88	0.98	0.83	0.91	0.55	0.67
6 1.83	72 182.9	0.78	0.59	0.48	0.84	0.97	0.79	0.89	0.44	0.58
7 2.13	84 <i>213.4</i>	0.75	0.52	0.41	0.82	0.96	0.75	0.86	0.38	0.51
8 2.44	96 <i>243.8</i>	0.71	0.47	0.35	0.79	0.94	0.72	0.84	0.33	0.46
9 2.74	108 <i>274.3</i>	0.69	0.43	0.32	0.77	0.93	0.69	0.82	0.30	0.42
10 3,05	120 <i>304.8</i>	0.66	0.40	0,29	0.75	0.92	0.66	0.80	0.28	0.40
12 3.66	144 <i>365</i> .8	0.61	0.36	0.25	0.70	0.89	0.60	0.76	0.24	0.36
14 4.27	168 <i>426.7</i>	0.55	0.32	0.23	0.66	0.86	0.55	0.73	0.22	0.32
16 4.88	192 487.7	0.51	0.30	0.21	0.62	0.84	0.50	0.69	0.21	0.30
18 5.49	216 <i>548.6</i>	0.47	0.28	0.19	0.58	0.81	0.47	0.65	0.19	0.28
20 6.10	240 <i>609.6</i>	0.44	0.26	0.18	0.54	0.78	0.43	0.61	0.18	0.26
					aral Pranin	a Fastara				

			<u> </u>	Lat	<u>eral Bracin</u>					
-	an					ıble Chann			D =00/	B#504
Ft. (m)	In. <i>(cm)</i>	P1001	P1101	P2001	P3001	P3301	P4001	P4101	P5001	P5501
2	24	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.61	61.0									
3	36	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.91	91.4									
4	48	1.00	0.98	0.98	1.00	1.00	0.98	1.00	0.97	0.98
1.22	121.9									
5	60	0.97	0.93	0.92	0.98	1.00	0.93	0.96	0.90	0.93
1.52	152.4									
6	72	0.93	0.87	0.85	0.95	0.97	0.88	0.92	0.83	0.87
1.83	182.9									
7	84	0.89	0.82	0.78	0.92	0.95	0.83	0.89	0.76	0.81
2.13	213.7				_					
8	96	0.85	0.76	0.71	0.88	0.92	0.79	0.85	0.68	0.76
2.434	243.8									0.70
9	108	0.81	0.70	0.64	0.85	0.90	0.74	0.81	0.61	0.70
2.74	274.3									0.04
10	120	0.78	0.65	0.57	0.82	0.87	0.69	0.78	0.54	0.64
3.05	304.8							0.74	0.40	0.50
12	144	0.70	0.54	0.45	0.76	0.82	0.60	0.71	0.43	0.53
3.66	365.8		0.45	0.00	0.70	0.70	0.51	0.64	0.35	0.45
14	168	0.63	0.45	0.38	0.70	0.78	0.51	0.64	0.35	0.40
4.28	426.7			0.00	0.04	0.70	0.44	0.57	0.30	0.39
16	192	0.56	0.39	0.32	0.64	0.73	0.44	0.57	0.50	0.08
4.88	487.7	0.40	0.04	0.00	0.50	0.68	0.39	0.50	0.27	0.34
18	216	0.49	0.34	0.28	0.58	บ.ชช	0.39	0.50	0.21	0.04
5.49	548.6		0.04	0.05	0.50	0.00	0.35	0.45	0.24	0.30
20	240	0.44	0.31	0.25	0.52	0.63	0.35	0.45	0.24	0.50
6.10	609.6	1								

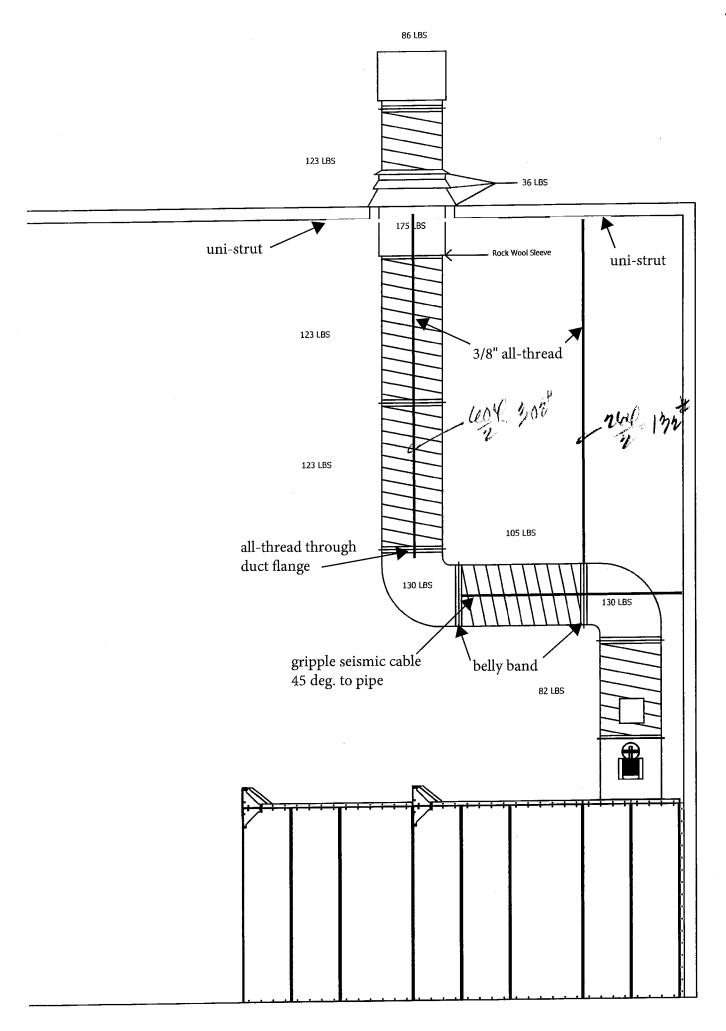
|%_||

9/10 OSHPD

1601 Industrial Pkwy, Puyallup, WA 98371, USA

Latitude, Longitude: 47.2067695, -122.3098274

UniFirst Uniform Services - Tacoma


Olympic Eagle Distributing

Map data ©2025

Date	9/2/2025, 3:10:35 PM
Design Code Reference Document	ASCE7-16
Risk Category	II
Site Class	D

Туре	Value	Description
S _S	1.283	MCE _R ground motion. (for 0.2 second period)
S ₁	0.441	MCE _R ground motion. (for 1.0s period)
S _{MS}	1.283	Site-modified spectral acceleration value
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value
S _{DS}	0.855	Numeric seismic design value at 0.2 second SA
S _{D1}	null Sec Section 11.4.8 0.597	Numeric seismic design value at 1.0 second SA

i		
Type	Value	Description
SDC	null -See Section 11.4.8	Seismic design category
Fa	1	Site amplification factor at 0.2 second
F _v	null -See Section 11.4.8	Site amplification factor at 1.0 second
PGA	0.5	MCE _G peak ground acceleration
F _{PGA}	1.1	Site amplification factor at PGA
PGA _M	0.55	Site modified peak ground acceleration
TL	6	Long-period transition period in seconds
SsRT	1.283	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	1.404	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	1.5	Factored deterministic acceleration value. (0.2 second)
S1RT	0.441	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.491	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	0.6	Factored deterministic acceleration value. (1.0 second)
PGAd	0.5	Factored deterministic acceleration value. (Peak Ground Acceleration)
PGAUH	0.543	Uniform-hazard (2% probability of exceedance in 50 years) Peak Ground Acceleration
-		

