

These calculations must be on site and made available by the Permittee for all inspections.

CENTERIS VOLTAGE PARK 1023 39th Avenue South East Puyallup, WA 98374

173 Battery Room Expansion Structural Calculations

Project Number 25212 October 10, 2025

INFILL STUD WALLS DESIGN CRITERIA

Design Codes

Design Codes: International Building Code, 2021

ASCE 7-16

AISI Standards

AISI S100-16(2020) w/ S2-20

AISI S202-20

AISI S220-20

AISI S240-20

AISI S400-20

Vertical Loads on Ceiling Framing

Dead Load = 20 psf total

(includes weight of (4) layers of Gyp for 2-hour fire rating, CFS joist weight, plywood wearing surface, and 5psf for MEP)

Live Load = 40 psf

(Access similar to Catwalks or Maintenance spaces)

	2.5 psF	PLYWOOD (3/4" ATTACHED W)	/ #10 SREWS @ 12"o.c.)
Spic/ast:	= 1.0 PS=	8" STUPS, 43-mil min 24" 0	.c. w/ SCREWS@12"O.C
	2.5 PSF	5/8" Gyp (1st layer)	
	2.5 pst	5/8" Cryp (200 layer)	
	2.5 psf	5/8" Gyp (300 layer)	
12pf/29t	= 1/4 psF	HAT-SHAPED FURTING PE	ep. To Joists
	2.5 PSF	5/8" Gyp (4th Layer)	
	5 PSF	MEP	
	\$ 3/4 pst	GIRDERS	
	19.5 ps		
	We 2005 PE	AD LOAD	CEILING HEIGHT, Z= 11'-2"
			STRUCTURE HEIGHT H=

Brienen Structural Engineers, P.S.

Seismic Parameters

Site Class = D (Assumed)

 $S_{DS} = 1.006$

Values per ASCE Hazards Report (See following pages)

Seismic Coefficients from Table 13.5-1 (ASCE 7-16)

Architectural Component	$a_p^{\ a}$	R_p	$\Omega_0^{\ b}$
Interior nonstructural walls and partitions ^c			
Plain (unreinforced) masonry walls	mh	~11/2~	11/2
All other walls and partitions	1	21/2	2
Cantilever elements (unbraced or braced to structural	·····		·····
frame below its center of mass)			
Parapets and cantilever interior nonstructural walls	21/2	21/2	2
Chimneys where laterally braced or supported by	21/2	21/2	2
the structural frame			
Cantilever elements (braced to structural frame above			
its center of mass)			
Parapets	1	21/2	2
Chimneys	1	21/2	2
Exterior nonstructural walls ^c	1^b	21/2	2
Exterior nonstructural wall elements and			
connections ^b			
Wall element	1	21/2	NA
Body of wall panel connections	1	21/2	NA
Fasteners of the connecting system	11/4	1	1
Veneer			
Limited deformability elements and attachments	1	21/2	2
Low-deformability elements and attachments	1	11/2	2
Penthouses (except where framed by an extension of	21/2	31/2	2
the building frame)			
- Ceilings	~~~	~~~	~~~
All	1	21/2	2

^aA lower value for a_p shall not be used unless justified by detailed dynamic analysis. The value for a_p shall not be less than 1. The value of $a_p = 1$ is for rigid components and rigidly attached components. The value of $a_p = 2\frac{1}{2}$ is for flexible components and flexibly attached components.

^bOverstrength where required for nonductile anchorage to concrete and masonry. See Section 12.4.3 for seismic load effects including overstrength.

^cWhere flexible diaphragms provide lateral support for concrete or masonry walls and partitions, the design forces for anchorage to the diaphragms shall be

walls and partitions, the design forces for anchorage to the diaphragm shall be as specified in Section 12.11.2.

Wall Design Criteria

Ceiling height = 12'-0"
Internal Pressure = 5 psf (ASD)
Maximum Deflection = L/240 (Flexible Finishes)

Bearing Walls have Flexural and Axial Bracing at 96" OC max

Joist and Girder Design Criteria

See earlier page of Design Criteria for Loading Maximum Live Load Deflection = L/360 Maximum Total Deflection = L/240

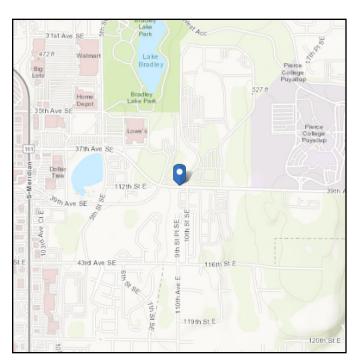
Address:

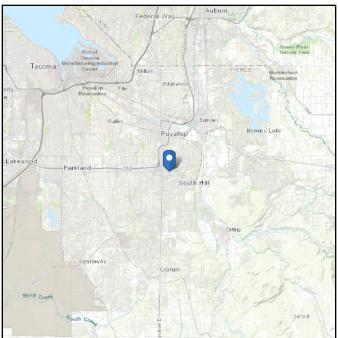
1023 39th Ave SE Puyallup, Washington

98374

ASCE Hazards Report

Standard: ASCE/SEI 7-16 Latit


Risk Category: || Longing Soil Class: D - Default (see Elevated)


Section 11.4.3)

Latitude: 47.154865 **Longitude:** -122.282255

Elevation: 485.5468985460304 ft

(NAVD 88)

Seismic

Site Soil Class: D - Default (see Section 11.4.3)

Results:

S _S :	1.257	S_{D1} :	N/A
S_1 :	0.434	T _L :	6
F _a :	1.2	PGA:	0.5
F _v :	N/A	PGA _M :	0.6
S _{MS} :	1.508	F _{PGA} :	1.2
S _{M1} :	N/A	l _e :	1
S _{DS} :	1.006	C_v :	1.351

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.

Data Accessed: Thu Oct 02 2025

Date Source: <u>USGS Seismic Design Maps</u>

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

B rienen **S** tructural **E** ngineers, P.S.

Seismic Forces

Wall Type: Bearing Wall

Wall Seismic Weight, W

<u>PSF</u>

• Metal Stud Framing

1.5

• (4) Layers 5/8" Gypsum Wall Board (Multiply weight by actual layers of GWB.)

10

• Acoustic Insulation

2

Total = 14 PSF

Wall & Fastener Seismic Force

$$a_p = \boxed{1}$$

$$S_{DS} = \boxed{1.006}$$

$$R_{p} = 2.5$$

$$I_{p} = 1$$

$$F_d = \frac{0.4a_p S_{DS} W I_p}{R_p} \left(1 + 2\frac{z}{h} \right)$$

$$\begin{aligned} F_d &= 0.302W & \text{(LRFD)} & \textit{(Code MIN)} \\ E_{ASD} &= 0.7F_d &= 0.211W & \text{(ASD)} \end{aligned}$$

ASD Force = 2.9 PSF

ANCHOR AND CONNECTOR DESIGN INFORMATION

Track Connection Distances - Based on Connector Capacities

For 5.0 psf (Live Load)

Max	Consid	lered	Height
-----	--------	-------	--------

12.00 ft	Track Demand =	(Ht)/2*5psf =	30.0	plf				
Б	Concrete	MIN SHOTPIN C	APACIT) v =	120lbs/anchor	spacing ≤	36.0	in
ectir	Concrete on Metal Deck	MIN SHOTPIN C	APACIT) v =	215lbs/anchor	spacing ≤	36.0	in
onne Mate	Concrete Concrete on Metal Deck 20 Gauge Steel	MIN SCREW CA	PACITY	v =	164lbs/anchor	spacing ≤	36.0	in
<u>5</u> –	Steel (3/16" Min)	MIN SHOTPIN C	APACIT	`\v =	230lbs/anchor	spacing ≤	36.0	in

For 2.9 psf (Seismic)

Max Considered Height

12.00 ft	Track Demand =	(Ht)/2*5psf =	17.4	plf				
Б	Concrete	MIN SHOTPIN C	APACIT	۱v =	90lbs/anchor	spacing ≤	36.0	in
ectir eria	Concrete Concrete on Metal Deck 20 Gauge Steel	MIN SHOTPIN C	APACIT	۱v =	90lbs/anchor	spacing ≤	36.0	in
onne Mate	20 Gauge Steel	MIN SCREW CA	PACITY	v =	164lbs/anchor	spacing ≤	36.0	in
ŏ¯	Steel (3/16" Min)	MIN SHOTPIN C	APACIT'	۱v =	230lbs/anchor	spacing ≤	36.0	in

TABLE 2—ALLOWABLE LOADS FOR FASTENERS DRIVEN INTO STEEL^{1,2,3,4}

FASTENER	SHANK DIAMETER (INCH)					ALL	.OWABLI	E LOADS	(lbf)				
Steel Thick	ness (inch):	1/	¹ / ₈ ³ / ₁₆				/ ₄ 3/ ₈		1/	'2	3/4		
Load Di	irection:	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear
X-S13 THP	0.145	140 ¹⁰	300	300 ¹⁰	450	300 ¹⁰	450	300 ¹⁰	450				
X-S16P8TH	0.145			225 ¹⁰	420	225 ¹⁰	430	225 ¹⁰	430	225 ¹⁰	430		
X-EGN14 X-S 14 B3 X-S 14 G3	0.118	140	230	220	245	225	290	280 ⁶	330 ⁶	280 ⁶	330 ⁶	280 ⁶	330 ⁶
X-EGN14 ⁵ X-S 14 B3 ⁵ X-S 14 G3 ⁵	0.118			220	295	260	355	280 ⁶	385 ⁶	280 ⁶	385 ⁶	280 ⁶	385 ⁶
X-GHP## X-P ## G3 X-P ## B3	0.118	125 ¹⁰	230	170 ¹⁰	245	20010	230	250 ¹⁰	255				
X-P 17 G2 ⁷ X-P 20 G2 ⁷	0.118			140 ¹⁰	220	1808	200 ⁸	225 ⁶	220 ⁶				
X-P 14 G2 ⁷	0.118					2158	2908	150 ⁹	195 ⁹	130 ⁹	150 ⁹	130 ⁹	150 ⁹

For **SI:** 1 inch = 25.4 mm, 1 ksi = 6.89 MPa, 1 lbf = 4.4 N.

X-GHP/X-P B3 EMBED CAPACITY TO STEEL

¹Unless otherwise noted, fasteners must be driven to where the full length of the point of the fastener penetrates through the steel-base material.

²Unless otherwise noted, steel base material must have minimum yield and tensile strengths (*F_y* and *F_u*) equal to 36 ksi and 58 ksi, respectively.

³Unless otherwise noted, allowable loads are applicable to static loads and seismic loads in accordance with Section 4.1.

⁴Fastener spacing must be a minimum of 1.0 inch and edge distance must be a minimum of 0.50 inch.

 $^{^{5}}$ Steel base material must have minimum yield and tensile strengths (F_{y} and F_{u}) equal to 50 ksi and 65 ksi, respectively.

⁶Fastener point penetration through the steel is not necessary, provided a minimum embedment of 0.320 inch is achieved.

⁷Tabulated loads for this fastener apply to static load conditions only. For seismic loading, allowable loads must be limited in accordance with Section 4.1.5, Item 3.

⁸Full fastener point penetration through the steel is not necessary, provided a minimum point penetration of 0.08 inch is achieved.

⁹Fastener point penetration through the steel is not necessary, provided a minimum embedment of 0.25 inch is achieved.

¹⁰For steel-to-steel connections designed in accordance with Section 4.1.4, the tabulated allowable load may be increased by a factor of 1.25, and the design strength may be taken as the tabulated allowable load multiplied by a factor of 2.0.

TABLE 3—ALLOWABLE LOADS FOR FASTENERS DRIVEN INTO NORMALWEIGHT CONCRETE^{1,2,3}

FASTENER	SHANK DIAMETER (inch)	MINIMUM EMBEDMENT DEPTH (inches)			ALLOWABLE	LOADS (lbf))	
Concrete Con	npressive Stre	ength:	2,000	0 psi	4,000) psi	6,00	0 psi
Load	Direction:		Tension	Shear	Tension	Shear	Tension	Shear
		3/4	45	75	65	105	95	195
X-C ## (Black Collated Strip or	0.138	1	85	150	160	200	105	270
Guidance Washer)	0.100	11/4	130	210	270	290	165	325
		11/2	175	260	270	360		
X-C ##		3/4	45	75	60	105		
(White Collated Strip or	0.138	1	85	150	90	200		
Guidance Washer)		11/4	130	210	130	290		
X-C22 P8TH (Black Collated Strip or Guidance Washer)	0.138	3/4	55	130	90	170	100	200
X-C22 P8TH (White Collated Strip or Guidance Washer)	0.138	3/4	55	130	90	170		
X-GN	0.118	3/4	95	120	95	120		
(except for X-GN 39)	0.110	1	115	220	115	220		
X-GN39 X-C 39 G2	0.101	5/8	50	80	50	80		
X-C 39 G2 X-C 39 G3	0.101	1	60	100	60	100		
X-GHP## X-P 17 G2, X-P 20 G2	0.118	5/8			50	120	50	90
X-P ## G3 X-P ## B3	0.116	3/4	80	120	٠.			
X-C ## G2 (except for X-C 39 G2) X-C 36 B3	0.108	3/4	110	190	110	190	110	190
X-C ## G3 (except for X-C 39 G3) X-C ## B3 (except for X-C 36 B3)	0.118	3/4	110	190	110	190	110	190

For **SI:** 1 inch = 25.4 mm, 1 psi = 6.89 kPa, 1 lbf = 4.4 N.

³The fasteners listed in the table above may be used for static load conditions and for the seismic load conditions described in Section 4.1.5, as applicable. The tabulated allowable loads apply to static load conditions. For seismic load conditions, the allowable loads must be limited in accordance with Section 4.1.5, Items 2 and 4, as applicable.

3(5/8") = 1 7/8" < 2 1/2" OK

X-GHP/X-P B3 EMBED CAPACITY TO CONCRETE

¹Fasteners must not be driven until the concrete has reached the designated minimum compressive strength, or the minimum compressive strength specified in the applicable code, whichever is greater.

*Concrete thickness must be a minimum of 3 times the embedment depth of the fastener. Fastener spacing must be a minimum of 4 inches and edge distance must be a minimum of 3 inches.

X-U EMBED CAPACITY

TO STEEL

TABLE 1—FASTENER DESCRIPTION AND APPLICATIONS

FASTENER ¹	FASTENER DESCRIPTION	SHANK TYPE	SHANK DIAMETER [inch (mm)]	HEAD DIAMETER [inch (mm)]	MAXIMUM POINT LENGTH [inch (mm)]	MINIMUM EFFECTIVE SHANK LENGTH [inch (mm)]	FASTENER COATING	APPLICABLE BASE MATERIAL	APPLICABLE LOAD TABLES
								Steel	2, 7
	Universal	Knurled,			0.433	Soo	See ASTM B633.	Concrete	3, 4
X-U ##	Powder Actuated Fastener	straight	0.157 (4.0)	0.323 (8.2)	(11.0)	Footnote 2	SC1, Type III	Concfilled deck	5
								CMU	6
X-U 15	Powder Actuated Fastener	Knurled, stepped	0.145 (3.7)	0.323 (8.2)	0.413 (10.5)	0.61 (15.5)	ASTM B633, SC1, Type III	Steel	2
								Concrete	3
X-P ##	Powder Actuated Fastener	Smooth straight	0.157 (4.0)	0.323 (8.2)	0.524 (13.3)	See Footnote 3	ASTM B633, SC1, Type III	Concfilled deck	5
								CMU	6

For SI: 1 inch = 25.4 mm.

TABLE 2—ALLOWABLE LOADS FOR FASTENERS DRIVEN INTO STEEL^{1,2,6}

FASTENER DESCRIPTION	FASTENER	SHANK DIAMETER (inch)		ALLOWABLE LOADS (lbf)								
Steel T	hickness (in	ch):	3/16 1/4 3/8			1,	l ₂	>	³ / ₄			
Loa	d Direction:		Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear
Universal	X-U	0.157	500 ⁷	720	775 ⁷	720	935	720	900	720	350 ⁴	375 ⁴
Knurled Shank	χ-0	0.137	300	720	773	720	933	720	300	720	275³	350 ³
Universal Knurled Shank	X-U 15	0.145	155	400	230	395	420	450	365 ⁵	500 ⁵	365 ⁵	400 ⁵

For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N; 1 ksi = 6.9 MPa.

For steel-to-steel connections designed in accordance with Section 4.1.6 for static loads only, the tabulated allowable to the increased by a factor of 1.25, and the design strength maybe taken as the tabulated allowable load multiplied by a factor of 2.0.

^{1##} denotes numbers used in fastener designation to represent nominal fastener length in mm, e.g. X-U 27 has a nominal shank length of 27 mm.

²For fastener length of 16 mm, the minimum effective shank length is 14.8 mm (0.58 inch). For longer fasteners, the minimum effective shank length can be calculated in terms of the designated length as (##-0.5) in mm and (##-0.5)/25.4 in inches.

³The minimum effective shank length can be calculated in terms of the designated length as (##-1) in mm and (##-1)/25.4 in inches.

¹Allowable load capacities are based on base steel with a minimum yield strength (F_y) of 36 ksi and a minimum tensile strength (F_u) of 58 ksi.

²The fasteners must be driven to where the point of the fastener penetrates through the steel base material, unless otherwise noted

³Based upon a minimum point penetration of ³/₈ inch.

⁴Based upon a minimum point penetration of ¹/₂ inch.

⁵Based upon a minimum point penetration of ¹⁵/₃₂ inch.

⁶Allowable loads are applicable to static and seismic loads in accordance with Section 4.1.

Page 6 01 1

TABLE 3—ALLOWABLE LOADS FOR FASTENERS DRIVEN INTO NORMAL-WEIGHT CONCRETE^{1,2,4}

FASTENER DESCRIPTION	FASTENER	SHANK DIAMETER (inch)	MINIMUM EMBEDMENT DEPTH (inches)			AL	LOWABLE	LOADS (II	bf)		
Cond	rete Compre	ssive Stren	gth:	2500) psi	400	00 psi	6000) psi	8000	psi
	Load Dir	ection:		Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear
			3/4	100	125	100	125	105	205	-	_
Universal	X-U	0.157	1	165	190	170	225	110 ³	280³	-	-
Knurled Shank	λ-0	0.157	11/4	240	310	280	310	180	425	-	-
			1 ¹ / ₂	275	420	325	420	1	-	-	_
			³ / ₄ ⁵	100	155	100	175	105	205	135	205
Cmooth Chank	X-P	0.157	1 ⁵	165	220	180	225	150	300	150	215
Smooth Shank	Λ-P	P 0.157	11/45	240	310	280	310	180	425	-	_
			1 ¹ / ₂ ⁵	310	420	-	_	-	-	-	_

For SI: 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 psi = 6895 Pa.

minimum compressive strength.

²Unless otherwise noted, concrete thickness must be a minimum of 3 times the embedment depth of the fastener.

This allowable load value for the X-U fastener also applies to normal weight hollow core concrete slabs with r_c of

⁴The fasteners listed in the table above may be used for static load conditions and for the seismic load conditions described in Section 4.1.6, as applicable. The tabulated allowable loads apply to static load conditions. For seismic load conditions, the allowable loads must be limited in accordance with Section 4.1.6, Items 2 and 3, as applicable.

⁵Applies to fastening of cold-formed steel up to 54 mil thick using the X-P 22, X-P 27, X-P 34 and X-P 40 fasteners, respectively, for the ³/₄, 1, 1¹/₄ and 1¹/₂ inch

3(3/4") =2 1/4" < 2 1/2" OK

X-U/X-P EMBED CAPACITY TO CONCRETE

TABLE 4—ALLOWABLE LOADS FOR FASTENERS DRIVEN INTO NORMAL-WEIGHT CONCRETE USING DX-KWIK^{1,2,3,4}

FASTENER DESCRIPTION	FASTENER	SHANK DIAMETER (inch)	MINIMUM EMBEDMENT (inches)		ALLOWABLE	E LOADS (lbf)		
	Concrete Com	pressive Strer	ngth:	4,000 psi 6,000 psi				
	Load	Direction:		Tension Shear Tension Shea				
Universal Knurled Shank	X-U 47 P8 w/ DX-KWIK	0.157	11/2	395	405	360	570	

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.4 N, 1 psi = 6895 Pa.

¹Unless otherwise noted, values apply to normal weight cast-in-place concrete. Fasteners must not be driven until the concrete has reached the designated

This allowable load value for the X-U tastener also applies to normal weight hollow core concrete slabs with r_c of 6600 psi and minimum dimensions shown in Figure 7, when installed in accordance with Section 4.2.4.

¹X-U Fastener is installed using the DX-KWIK drilled pilot hole installation procedure described in Section 4.2.5.

²Pilot holes must not be drilled until the concrete has reached the designated minimum compressive strength.

³Concrete thickness must be a minimum of 3 times the embedment depth of the fastener.

⁴The fasteners listed in the table above may be used for static load conditions and for the seismic load conditions described in Section 4.1.6, as applicable. The tabulated allowable loads apply to static load conditions. For seismic load conditions, the allowable loads must be limited in accordance with Section 4.1.6, Items 2 and 3, as applicable.

Screw Capacities

Table Notes

- 1. Capacities based on AISI S100 Section E4.
- When connecting materials of different steel thicknesses or tensile strengths, use the lowest values. Tabulated values assume two sheets of equal thickness are connected.
- 3. Capacities are based on Allowable Strength Design (ASD) and include safety factor of 3.0.
- 4. Where multiple fasteners are used, screws are assumed to have a center-to-center spacing of at least 3 times the nominal diameter (d).
- Screws are assumed to have a center-of-screw to edge-of-steel dimension of at least 1.5 times the nominal diameter (d) of the screw.

- 6. Pull-out capacity is based on the lesser of pull-out capacity in sheet closest to screw tip or tension strength of screw.
- 7. Pull-over capacity is based on the lesser of pull-over capacity for sheet closest to screw header or tension strength of screw.
- 8. Values are for pure shear or tension loads. See AISI Section E4.5 for combined shear and pull-over.
- 9. Screw Shear (Pss), tension (Pts), diameter, and head diameter are from CFSEI Tech Note (F701-12).
- 10. Screw shear strength is the average value, and tension strength is the lowest value listed in CFSEI Tech Note (F701-12).
- 11. Higher values for screw strength (Pss, Pts), may be obtained by specifying screws from a specific manufacturer.

	Allowable Screw Connection Capacity (lbs)																		
					#6 Screw	}		#8 Screw			#10 Screw		#12 Screw			}	1/4" Screw		
Thicknes	s Design	Fy Yield	_ Fu	(Pss = 64	13 lbs, Pts	= 419 lbs)	(Pss= 127	78 lbs, Pts	= 586 lbs)	(Pss= 1644 lbs, Pts = 1158 lbs)		(Pss= 2330 lbs, Pts = 2325 lbs)		ss= 3048 lbs, Pts = 3201 lbs)					
(Mils)	Thickness	(ksi)	Tensile (ksi)	0.138"	dia, 0.272	"Head	0.164" dia, 0.272" Head			0.190" dia, 0.340" Head		0.216" dia, 0.340" Head			0.250" dia, 0.409" Head				
				Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	Shear	Pull-Out	Pull-Over	
18	0.0188	33	33	44	24	84	48	29	84	52	33	105	55	38	105	3 60	44	127	
27	0.0283	33	33	82	37	127	89	43	127	96	50	159	102	57	159	3 110	66	191	
30	0.0312	33	33	95	40	140	103	48	140	111	55	175	118	63	175	3 127	73	211	
33	0.0346	33	45	151	61	140	164	72	195	177	84	265	188	95	265	203	110	318	
43	0.0451	33	45	214	79	140	244	94	195	263	109	345	280	124	345	302	144	415	
- 54	0.0566	-33	45	214	100	140	344	118	195	370	137	386	394	156	433	424	180	521	
68	0.0713	33	45	214	125	140	426	149	195	523	173	386	557	196	545	1 600	227	656	
97	0.4047	33	4.5	044	440	140	426	405	405	E 40	040	386	777	280	775	21 016	204	000	
118	0.1017	33	45 45	214	140	440	400	195	195	540 540	240	200	777	2.40	775	1,010	324	1.067	
	0.1242		45	214	140	140	420	190	195	540	301	380	777	342	775	1,010	390	7.50	
54	0.0566	50	65	214	140	140	426	171	195	534	198	386	569	225	625	613	261	752	
68	0.0713	50	65	214	140	140	426	195	195	548	249	386	777	284	775	3 866	328	948	
97	0.1017	50	65	214	140	140	426	195	195	548	356	386	777	405	775	3 1,016	468	1,067	
118	0.1242	50	65	214	140	140	426	195	195	548	386	386	777	494	775	3 1,016	572	1,067	

SHEET METAL SCREW (SMS) ALLOWABLE STRENGTHS (CONTINUED)

TABLE 3 - NON-PRYING CONDITION

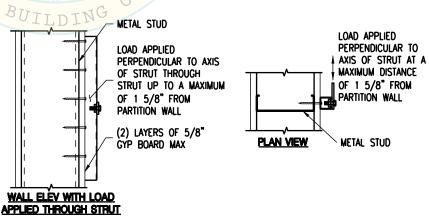
SHEET METAL SCREW ALLOWABLE STRENGTHS FOR STEEL TO STEEL CONNECTIONS WITH TWO LAYERS OF 5/8" GYP BOARD BETWEEN STEEL SURFACES.

				F.A	STENER	SIZE					
		NO.	14	NO.	. 12	NO.	. 10	NO	. 8	NO	. 6
F _y	MIL	0.25	0 IN	0.21	6 IN	0.19	90 IN	0.16	4 IN	0.13	8 IN
(KŚI)	(STEEL GA)	SHEAR	TENSION								
		(LB)	(LB)								
50	97 (12)	166	275	130	205						
	68 (14)	166	275	130	205	100	159				
	54 (16)	166	261	130	205	100	159	80	118		
33	43 (18)	166	144	130	124	100	109	80	94	50	79
	33 (20)					70	84	50	72	40	61

1. SEE GENERAL NOTES ON ST1.06 FOR MORE INFORMATION.

2. ALLOWABLE STRENGTH VALUES DO NOT ACCOUNT FOR EFFECTS FROM PRYING. RDP IN RESPONSIBLE CHARGE TO PROVIDE ADEQUATE BLOCKING/RESTRAINT TO PREVENT PRYING ACTION. WHERE PRYING OCCURS, THE VALUES AND CONSTRAINTS OF TABLE 4 SHALL BE USED.

TABLE 4 - PRYING CONDITION (SEE DETAILS BELOW - STRUT CAN BE HORIZONTAL OR VERTICAL)


SHEET METAL SCREW ALLOWABLE STRENGTHS FOR STEEL TO STEEL CONNECTIONS WITH ONE OR TWO
LAYERS OF 5/8" GYP BOARD BETWEEN STEEL SURFACES AND MAXIMUM PRYING MOMENT ARM OF 1 5/8"

THIENS OF	<u> </u>	ים טוואטנ	THEFT S				VIIAIOIAI I IV	TINO WIC	MICIAL VI	IVI OI I	3/0.
				F/	STENER		7				
F _v	MIL	NO.	14	NO.	. 12	NO	. 10	NO	. 8	NO	. 6
(KŚI)	(STEEL GA)	0.25	O IN	0.21	16 IN	0.19	90 IN 🔎	0.16	64 IN	0.13	8 IN
` - /	(SHEAR	TENSION	SHEAR	TENSION	SHEAR	TENSION	SHEAR	TENSION	SHEAR	TENSION
		(LB)	(EB) -	O(DB) 1	1(LB)	(LB)	(LB)	<u>(LB)</u>	(LB)	(LB)	(LB)
50	97 (12)	40	275	30	205			CT			
	68 (14 <mark>)</mark>	40	B 27.5[V	. 30R	205	<u>r 1</u> 25 ₀	159	7.			
	54 (16)	40	261	30	205	25	159	<mark>2</mark> 0	118		
33	43 (18)	40	D A44 E	: 030/1	11/240	1 2 5	109	<mark>7 2</mark> 0	94	10	79
	33 (20)	5			7	15	84	15	72	10	61

NOTES:

. SEE GENERAL NOTES ON ST1.06 FOR MORE INFORMATION.

2. THE ALLOWABLE STRENGTH VALUES LISTED IN TABLE 4 ARE BASED UPON A LIMITED TEST ASSEMBLY WHERE THE ORIGIN AND DIRECTION OF THE LOAD RESULTS IN PRYING UPON THE FASTENER. THE MAGNITUDE OF THIS PRYING EFFECT SHALL BE LIMITED TO A MOMENT ARM OF 1 5/8" FROM THE FASTENER.

SECTION TITLE:		
STANDARD PARTITION WALL DETAILS		
SHEET TITLE:		OPD NO.:
SHEET METAL SCREW ALLOWABLE		1
STRENGTHS (CONTINUED)		ST1.08
		1 011.00
		1

Page 17

c) The metal-critical joint may fail in one of two ways. Failure occurs when the resistance of the screw head to embedment is greater than the resistance of the metal to lateral and/or withdrawal load, and the screw tears away from the metal framing. Failure also occurs when thin metal in a metal-to-plywood joint crushes or tears away from the screw.

Tables 1 and 2 present ultimate lateral loads for wood- and sheet-metal-screw connections in ply-wood-and-metal joints. Loaded end distance in these tests was one inch. Plywood face grain was parallel to the load since this direction yields the lowest lateral loads when the joint is plywood-critical. All wood-screw specimens were tested with a 3/16-in.-thick steel side plate, and values should be modified if thinner steel is used.

DIVIDE BY 5 SAFETY
FACTOR FOR ALLOWABLE
LOADS

TABLE 1

SCREWS: METAL-TO-PLYWOOD CONNECTIONS(a)

Depth of		U	b			
Threaded Penetration	V	lood Screv	vs	Shee	rews	
(in.)	#8	#10	#12	#8	#10	#12
1/2	415	(500)	590	465	(565)	670
5/8	_	-	_	~500····	(600)	···/05
3/4	_	_	_	590	(655)	715

- (a) Plywood was C-D grade with exterior glue (all plies Group 1), face grain parallel to load. Side plate was 3/16"-thick steel.
- (b) Values in parentheses are estimates based on other tests.

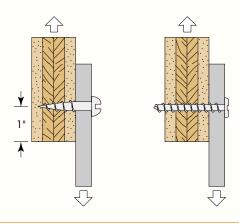
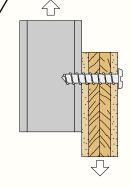


TABLE 2


SHEET METAL SCREWS: PLYWOOD-TO-METAL CONNECTIONS(a)

	Dharrand		Ultimate Lateral Load (lbf) ^(b)							
	Plywood Thickness		Screv	v Size		1/4"-20 Self				
Framing	(in.)	#8	#10	#12	#14	Tapping Screw				
0.000 :	1/4	330	360	390	410	590				
0.080-in.	1/2	630	850*	860	920	970				
Aluminum	3/4	910*	930*	1250	1330	1440				
0.078-in.	1/4	360	380	400	410	650				
Galvanized	1/2	700*	890*	900	920	970				
Steel (14 gage)	3/4	700*	950*	1300*	1390*	1500				

- (a) Plywood was A-C EXT (all plies Group 1), face grain parallel to load.
- (b) Loads denoted by an asterisk(*) were limited by screw-to-framing strength; others were limited by plywood strength.

IF ALLOWABLE IS A FOS = 5, THEN

#8 #10 #12
140 190 260 LBS

BEARING CFS WALL DESIGNS

Page 1 of 2

BEARING WALL 6" STUDS

Project Name: Centeris

Model: 6" BRG WALL

Code: AISI S100-16w/S2-20

Date: 10/08/2025 Simpson Strong-Tie® CFS Designer™ 5.2.8.0

Level 1

600
Sing (0.5

Member (Max Interaction) 600S162-43 , 33 Single C Stud (0.546)

Load Inputs

Top Level is a Roof? False
Axial Loads Redistributed? True
Live Load Reduction Applied? False

Roof Snow Load 0 psf
Roof Wind Uplift 0 psf
Wind Load Defl Modifier 1.0

Stacked Wall Summary Report

Model Ir Level	Wall	Stud Spacing (ir	Suppor Memb Tributa) Length	er Grav ary Load	Ecc. Brac	ing Kyl	y KtL	t Flexu	re Axia	al Lm
1	12	24	4	Stu Dept		5 9	6 96	0	0	None
Level	Wall D (psf)	Floor D F	Floor or Roof L or Lr (psf)	L Reduction Factor	MWFRS Windward W (psf)	MWFRS Leeward W (psf)	C&C Windward W (psf)	C&C Leeward (W (psf)	Seismic oefficient (Eh/D	Seismic Coefficient Ev/D
1	14	20	40	1	5	5	5	5	0.3	0.14

Load Comb	inations				MWFRS	MWFRS	C&C	C&C		
LC	_	_	Max Roof		Windward	Leeward	Windward	Leeward	Roof	Seismic
Number	D	L	(Lr or S)	S	(W)	(W)	(W)	(W)	Uplift (W)	(Eh or Ev)
1	1	1	0	0	0	0	0	0	0	0

Project Name: Centeris

Page 2 of 2 Date: 10/08/2025 Model: 6" BRG WALL

Code: AISI S100-16w/S2-20

Simpson Strong-Tie® CFS Designer[™] 5.2.8.0

Load Comb	<u>inations</u>				MWFRS	MWFRS	C&C	C&C		
LC Number	D	L	Max Roof (Lr or S)	s	Windward (W)	Leeward (W)		Leeward (W)	Roof Uplift (W)	Seismic (Eh or Ev)
2	1	0	1	0	0	0	0	0	0	0
3	1	0.75	0.75	0	0.75	0	0	0	0	0
4	1	0.75	0.75	0	0	0.75	0	0	0	0
5	1	0	0	0	0	0	1	0	0	0
6	1	0	0	0	0	0	0	1	0	0
7	1	0	0	0	0	0	0	0	0	1
8	1	0.75	0	0.75	0	0	0	0	0	0.75
9	0.6	0	0	0	0	0	0	0	1	0
10	0.6	0	0	0	0	0	0	0	1	0

Member Se	<u>lection</u>			Ma-Fy	Ma-Dist	Ma-Brc	Α	xial
Level	Section	Fy (ksi)	Configuration	(ft-lb)	(ft-lb)	(ft-lb)	Pa (lb)	Pa-Dist (lb)
1	600S162-43	33	Single	1271	1088	666	1567.9	4787

	Bending an	d Axial In	teractions	{	Shear and V	Veb Cripp	ling	£			
Level	Control LC	M(LC) (ft-lb)	P(LC) (lb)	Max Intr	Rmax (lb)	Control LC	Va (lb)	Rmax/Va	Pa (lb)	Stiffener Req'd	
1	4	190	400	0.546	63	6	1416	0.045	259	No	

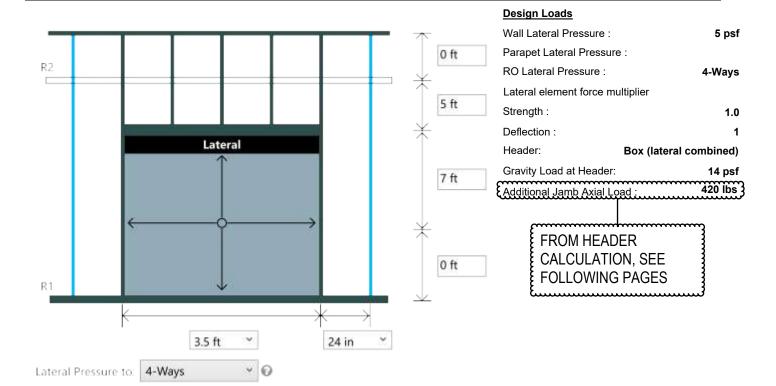
Deflection

Deflection Multiplier for C&C Wind Load: 1.0

	•				-)	
Level	D(Unif) (in)	L/	Control LC	D(Total) (in)	L/	Control LC	
1	0.068	L/2109	6	0.078	L/1855	6	

Project Name: Centeris

Model: 6" BRG WALL HDR @ 3'-6" OPNG


Code: AISI S100-16w/S2-20

6" STUD WALL OPENING WIDTH = 3'-6" DESIGN HT = 12'-0" LATERAL LOAD = 5 PSF DEFLECTION = L/240

Page 22

Page 1 of 2 Date: 10/08/2025

mpson Strong-Tie® CFS Designer™ 5.2.8.0

Brace Settings

Component(s)	Members(s)	Flexural Bracing	Axial KyLy	Axial KtLt	Distortional K-Phi(lb-in/in)	Distortional Lm	Interconnection Spacing
Jamb Studs	600S162-43(33), Single	Full	Head/Sill	Head/Sill	0	None	N/A
Vertical Header	400S125-43(33), Boxed	Full	N/A	N/A	0	None	N/A
Lateral Header	600T125-33(33), Boxed	Full	N/A	N/A	0	None	N/A

Analysis Results

Component(s)	Members(s)	Axial Load (lb)	Max KL/r	Max. Moment (ft-lb)		Bottom Reaction (lb)	Top or End Reaction (lb)
Jamb Studs	600S162-43(33), Single	808.5	146	243.5	74.8	82.5	60.6
Vertical Header	400S125-43(33), Boxed	N/A	N/A	107.2	122.5	N/A	122.5
Lateral Header	600T125-33(33), Boxed	N/A	N/A	28.1	29.5	N/A	29.5

Design Results

		Defl	ection	A + M	V + M		
Component(s)	Members(s)	Span	Parapet	Interaction	Interaction	Web Stiffners	Design OK
Jamb Studs	600S162-43(33), Single	L/1603	L/0	0.65	0.19	No	Yes
Vertical Header	400S125-43(33), Boxed	L/7126	NA	0.11	0.11	No	Yes
Lateral Header	600T125-33(33), Boxed	L/50994	NA	0.03	0.03	No	Yes

Simpson Strong-Tie® Connectors @ Jambs

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Connector Interaction	Anchor Interaction
R2	60.63	0.00	By Others & Anchorage Designed by Engineer	NA	NA
R1	82.50	808.50	600T125-33 (33) & (1) .157", 3/4" embed SST PDPA/PDPAT to	40.24 %	61.11 %

^{*} Reference catalog for connector and anchor requirement notes as well as screw placements requirement

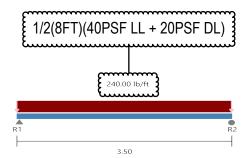
Project Name: Centeris Page 2 of 2

Model: 6" BRG WALL HDR @ 3'-6" OPNG Date: 10/08/2025

Code: AISI S100-16w/S2-20 Simpson Strong-Tie® CFS Designer™ 5.2.8.0

Simpson Strong-Tie® Wall Stud Bridging Connectors @ Jambs

Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min)¹	LSUBH (Max)¹	SUBH (Min)¹	SUBH (Max)¹	MSUBH (Min)¹	MSUBH (Max)¹
Span	Varies	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A


Notes:

- 1) Values in parentheses are stress ratios.
- 2) Bridging connectors are not designed for back-back, box, or built-up sections.
- 3) Reference <u>www.strongtie.com</u> for latest load data, important information, and general notes.
- 4) CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same.
- 5) If the bracing length is larger than the span length, bridging connectors are not designed.

Project Name: Centeris Model: 3.5ft BRG HDR Code: AISI S100-16w/S2-20

Page 1 of 1 Date: 10/08/2025

Simpson Strong-Tie® CFS Designer™ 5.2.8.0

 Section:
 (2) 400S125-43 (33 ksi)
 Boxed C Stud (punched)

 Maxo =
 992.6 ft-lb
 Va = 3478.2 lb
 I = 1.36 in^4

Loads have not been modified for strength checks Loads have not been modified for deflection calculations

Axial Span KyLy, KtLt			lexual, Distortio	nal	Connector	Stress Ratio
Span	NA	N	lone, N/A	Ą	N/A	-
Web Crip	pling	Bearing) Pa	М		
Support	Load (lb)	(in)	(lb)	(ft-lbs)	Max Int.	Stiffener?
R1*	420.00	2.00	606.1	0.0	0.36	NO
R2*	420.00	2.00	606.1	0.0	0.36	NO

"*" after support means punched near support

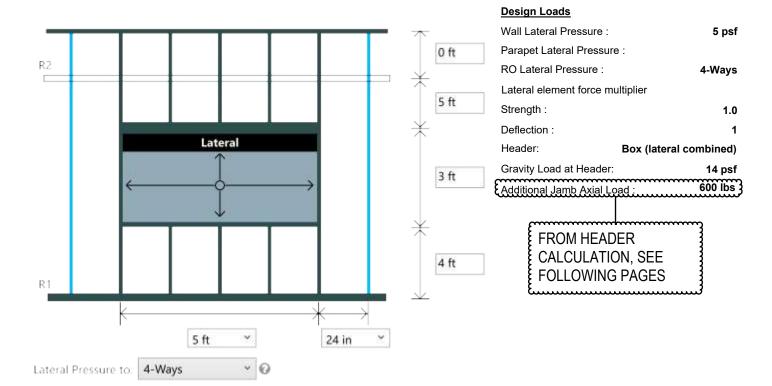
	Code Check	Required	Allowed	Interaction	Notes
Span	Max. Axial, lbs	0.0(t)	-	0%	KΦ=0.00 lb-in/in Max KL/r = N/A
	Max. Shear, lbs	420.0	1619.1	26%	Shear (Punched)
	Max. Moment (MaFy, Ma-dist), ft-lbs	367.5	992.6	37%	
	Moment Stability, ft-lbs	367.5	992.6	37%	
	Shear/Moment	0.37	1.00	37%	Shear 0.0, Moment 367.5
	Axial/Moment	0.37	1.00	37%	Axial 0.0(c), Moment 367.5
	Deflection Span, in	0.020	meets L/2078		

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie Connector	Connector Interaction	Anchor Interaction
R1	0.0	420.0	By Others & Anchorage Designed by Engineer	NA	NA
R2	0.0	420.0	By Others & Anchorage Designed by Engineer	NA	NA

^{*} Reference catalog for connector and anchor requirement notes as well as screw placement requirements

Project Name: Centeris

Model: 6" BRG WALL HDR @ 5'-0" OPNG


Code: AISI S100-16w/S2-20

6" STUD WALL OPENING WIDTH = 5'-0" DESIGN HT = 12'-0" LATERAL LOAD = 5 PSF DEFLECTION = L/240

Page 25

Page 1 of 2 Date: 10/08/2025

mpson Strong-Tie® CFS Designer™ 5.2.8.0

Brace Settings

Component(s)	Members(s)	Flexural Bracing	Axial KyLy	Axial KtLt	Distortional K-Phi(lb-in/in)	Distortional Lm	Interconnection Spacing
Jamb Studs	600S162-43(33), Single	Full	Head/Sill	Head/Sill	0	None	N/A
Vertical Header	400S125-43(33), Boxed	Full	N/A	N/A	0	None	N/A
Lateral Header	600T125-33(33), Boxed	Full	N/A	N/A	0	None	N/A
Sill	600T125-33(33), Single	Full	N/A	N/A	0	None	N/A

Analysis Results

Component(s)	Members(s)	Axial Load (lb)	Max KL/r	Max. Moment (ft-lb)		Bottom Reaction (lb)	Top or End Reaction (lb)
Jamb Studs	600S162-43(33), Single	1041.0	83	307.8	80.0	80.0	73.8
Vertical Header	400S125-43(33), Boxed	N/A	N/A	218.8	175.0	N/A	175.0
Lateral Header	600T125-33(33), Boxed	N/A	N/A	59.7	44.4	N/A	44.4
Sill	600T125-33(33), Single	N/A	N/A	51.9	38.1	N/A	38.1

Design Results

		Dellection		A + M	V + M			
Component(s)	Members(s)	Span	Parapet	Interaction	Interaction	Web Stiffners	Design OK	
Jamb Studs	600S162-43(33), Single	L/1280	L/0	0.60	0.24	No	Yes	
Vertical Header	400S125-43(33), Boxed	L/2444	NA	0.22	0.22	No	Yes	
Lateral Header	600T125-33(33), Boxed	L/16699	NA	0.06	0.06	No	Yes	
Sill	600T125-33(33), Single	L/9618	NA	0.11	0.11	No	Yes	

Simpson Strong-Tie® Connectors @ Jambs

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie® Connector	Connector Interaction	Anchor Interaction
R2	73.75	0.00	By Others & Anchorage Designed by Engineer	NA	NA

Project Name: Centeris

Page 2 of 2

Model: 6" BRG WALL HDR @ 5'-0" OPNG Date: 10/08/2025

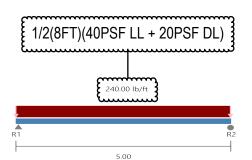
Code: AISI S100-16w/S2-20 Simpson Strong-Tie® CFS Designer™ 5.2.8.0

R1 80.00 1041.00 600T125-33 (33) & (2) .157", 3/4" embed SST PDPA/PDPAT to 19.51 % 29.63 % 4000 nw concrete

Simpson Strong-Tie® Wall Stud Bridging Connectors @ Jambs

Span/Parapet	Bracing Length(in.)	Design Number of Braces	Pn(lb.)	LSUBH (Min)¹	LSUBH (Max)¹	SUBH (Min)¹	SUBH (Max)¹	MSUBH (Min)¹	MSUBH (Max)¹
Span	Varies	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Notes:


- 1) Values in parentheses are stress ratios.
- 2) Bridging connectors are not designed for back-back, box, or built-up sections.
- 3) Reference $\underline{www.strongtie.com}$ for latest load data, important information, and general notes.
- 4) CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same.
- 5) If the bracing length is larger than the span length, bridging connectors are not designed.

^{*} Reference catalog for connector and anchor requirement notes as well as screw placements requirement

Project Name: Centeris Model: 5ft BRG HDR Code: AISI S100-16w/S2-20

Page 1 of 1 Date: 10/08/2025

Simpson Strong-Tie® CFS Designer™ 5.2.8.0

Section: (2) 400S125-43 (33 ksi) Boxed C Stud (punched) **Maxo =** 992.6 ft-lb **Va =** 3478.2 lb **I =** 1.36 in⁴

Loads have not been modified for strength checks Loads have not been modified for deflection calculations

Bridging Connectors - Design Method = AISI S100

Span	Axia KyLy, l		lexual, istortio	nal	Connector	Stress Ratio
Span	NA	N	None, N/A		N/A	-
Web Crip	pling	Bearing) Pa	М		
Support	Load (lb)	(in)	(lb)	(ft-lbs)	Max Int.	Stiffener?
R1*	600.00	2.00	606.1	0.0	0.51	NO
R2*	600.00	2.00	606.1	0.0	0.51	NO

"*" after support means punched near support

	Code Check	Required	Allowed	Interaction	Notes
Span	Max. Axial, lbs	0.0(t)	-	0%	KΦ=0.00 lb-in/in Max KL/r = N/A
	Max. Shear, lbs	600.0	1619.1	37%	Shear (Punched)
	Max. Moment (MaFy, Ma-dist), ft-lbs	750.0	992.6	76%	
	Moment Stability, ft-lbs	750.0	992.6	76%	
	Shear/Moment	0.76	1.00	76%	Shear 0.0, Moment 750.0
	Axial/Moment	0.76	1.00	76%	Axial 0.0(c), Moment 750.0
	Deflection Span, in	0.084	meets L/713		•

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie Connector	Connector Interaction	Anchor Interaction
R1	0.0	600.0	By Others & Anchorage Designed by Engineer	NA	NA
R2	0.0	600.0	By Others & Anchorage Designed by Engineer	NA	NA

^{*} Reference catalog for connector and anchor requirement notes as well as screw placement requirements

2021/2018/2015 IBC and IRC Code Compliant ICC-ESR 4934

CT Shaft Wall Stud System

CEMCO's Solution for Fire-Rated Shaft Walls, Stairwells, and Horizontal Ceilings

Table of Contents

Introduction / CT Shaft Wall Stud System	3
Physical and Section Properties	4
Vertical Limiting Heights (1-Hour Shaft Wall System)	5
Vertical Limiting Heights (2-Hour Shaft Wall System)	6
Vertical Limiting Heights (1-Hour Stairwell System)	7
Shaft Wall Vertical Fire Assemblies	8
Horizontal Spans	9
Shaft Wall Horizontal Fire Assemblies	10
Fire-Rated Shaft Wall Assemblies for CT Studs	11
Shaft Wall Installation Instructions	12
Typical Details 13 -	- 14

Introduction

CT Shaft Wall Stud System

CEMCO's new CT Shaft Wall Product is manufactured from hot-dipped galvanized steel in web depths of 2-1/2", 4" and 6" in 20 ga. (33 mil), and in 18 ga. (43 mil) thicknesses with corresponding J-Tracks. The CT Shaft Wall System is the industry's most flexible in that many gypsum board and gypsum Shaftliner manufacturers are approved in several UL firerated assemblies for both 1 and 2-hour ratings.

ASTM & Code Standards

- ICC-ESR 4934
- ASTM A653/653M Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process.
- ASTM A924/924M Specification for General Requirements for Sheet Steel, Metallic-Coated by the Hot-Dip Process.
- ASTM A1003/1003M Specification for Steel Sheet, Carbon, Metallic and Nonmetallic-Coated for Cold-Formed Framing Members.
- ASTM C645 Standard Specification for Nonstructural Steel Framing Members.
- IBC: 2012, 2015, 2018, 2021
- CBC: 2013, 2016, 2019
- AISI: S100

Technical Support and Resources

- Contact CEMCO's Technical Services Department at 800-775-2362 or email at technicalservices@cemcosteel.com.
- Visit www.cemcosteel.com for all catalogs, specification sheets, typical details, and acoustical/UL reports.

LEED v4 for Building & Design Construction

- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.

MR Credit 4.1/4.2 – Recycled Content

- Total Recycled Content: 36.9%
- Post-Consumer: 19.8%
- Pre-Consumer: 14.4%

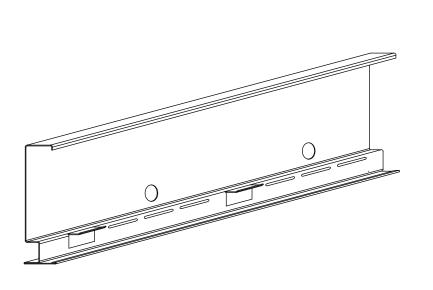
California's Proposition 65 Warning

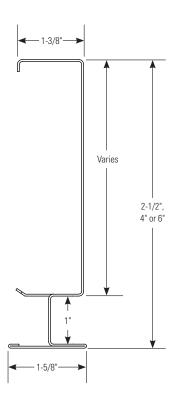
California's Safe Drinking Water and Toxic Enforcement Act of 1986 – commonly referred to as Proposition 65 ("Prop 65") (27 Cal. Code Reg. § 25600, et seq.) – has recently changed, requiring manufacturers to provide a warning based on its knowledge about the presence of one or more of the almost 900 listed chemicals which are known to the State of California to cause cancer and birth defects, or other reproductive harm. With a few exceptions, manufacturers operating in the state of California as well as those entities who distribute, import, package, and/or supply products into the State of California are now required provide a "clear and reasonable" warning to consumers that their products may contain one or more of these listed chemicals or compounds. The complete list is available at www.P65Warnings.ca.gov.

In compliance with the new requirements, we are notifying each of our customers that CEMCO products contain Nickel (metallic) and/or other chemicals listed which are known to the State of California to cause cancer and birth defects or other reproductive harm. Safety data sheets from our major suppliers are available from CEMCO on our website at www.cemcosteel.com.

Overview | CT Shaft Wall Stud System

CT Stud Physical and Section Properties




Physical Properties								Section Pr	operties	
"CT" Stud Designation	Web	Gauge	Mil	Yield Strength (ksi)	Design Thickness (in)	Coating	Weight (lb/ft)	Area (in²)	lx (in ⁴)	Sx (in³)
20CT212	2-1/2	20	33	40	0.0346	G40	0.840	0.247	0.240	0.167
20CT4	4	20	33	40	0.0346	G40	1.016	0.299	0.708	0.307
20CT6	6	20	33	40	0.0346	G40	1.252	0.368	1.858	0.545
18CT212	2-1/2	18	43	40	0.0451	G60	1.090	0.320	0.307	0.214
18CT4	4	18	43	40	0.0451	G60	1.319	0.388	0.909	0.395
18CT6	6	18	43	40	0.0451	G60	1.625	0.478	2.393	0.703

Notes:

- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Ix = Moment of Inertia
- **3.** Sx = Section Modulus

PROPERTIES ARE EQUIVALENT TO A 600S162-43 STUD

SCAFCO Steel Stud Mfg.

DATE: 10/8/2025

SECTION DESIGNATION: 600S162-43 [33] Single

Section Dimensions:		2
Web Height =	6.000 in	32
Top Flange =	1.625 in	
Bottom Flange =	1.625 in	1
Stiffening Lip =	0.500 in	
Inside Corner Radius =	0.0712 in	
Punchout Width =	1.500 in	
Punchout Length =	4.000 in	
Design Thickness =	0.0451 in	
Steel Properties:		
Fy =	33.000 ksi	
Fu =	45.000 ksi	6
Fya =	36.303 ksi	
•		4 5

Gross Proper	rties						
A(gross)	Weight	A(net)	Sxx	lxx }	Rx	lyy	Ry
(in^2)	(lb/ft)	(in^2)	(in^3)	(in^4) }	(in)	(in^4)	(in)
0.4469	1.5206	0.3792	0.7719	2.3158	2.2764	0.1484	0.5762

Effective Pro	<u>perties</u>						
lxx(defl)	Sxx	Ma-xx	Ma-x(dist)	Vag	Vanet	Syy	Ма-у
(in^4)	(in^3)	(Ft-Lb)	(Ft-Lb)	(lb)	(lb)	(in^3)	(Ft-Lb)
2.3158	0.7673	1390.0	1205.1	1416	1240	0.1080	177.9

K-phi for Distortional Buckling = 0.00 lb*in/in

<u>Torsional</u>	<u>Pro</u>	per	<u>ties</u>
1~1000)		CW

Jx1000	Cw	Xo	m	Ro	Beta
(in^4)	(in^6)	(in)	(in)	(in)	
0.3030	1.0952	-1.062	0.670	2.577	0.830

Warping Torsional Properties

а	Sxx(lip)	Wn(1)	Wn(2)	Wn(3)	Wn(4)	Wn(5)	Wn(6)
(in^3)	(in^3)	(in^2)	(in^2)	(in^2)	(in^2)	(in^2)	(in^2)
97.1	0.9203	3.7825	2.7081	-1.9960	1.9960	-2.7081	-3.7825

Web Crippling - Allowable Loads, Pa (lb)

End Bearing Length = 1.00 (in)

Interior Bearing Length = 3.50 (in)

Cond. 1 (E1F)	Cond. 2 (I1F)	Cond. 3 (E2F)	Cond. 4 (I2F)
259	745	185	743

Punchout Reduction Factor Cond. 1, $Rc(E1F) = 0.925 + 0.083x/h \le 1.0$ Punchout Reduction Factor Cond. 2, $Rc(I1F) = 0.888 + 0.053x/h \le 1.0$

Vertical Limiting Heights (1-Hour Shaft Wall System)

				Limiting	Heights				
Stud Depth	Model Number	Gauge	Design Thickness (in)	Yield (ksi)	Deflection	5 psf	7.5 psf	10 psf	15 psf
· ·			1	-Hour Shaft	Wall System	<u> </u>		· ·	
		20			L/120	16' 0"	13' 11"	12'8"	6' 10"
	0.057040				L/180	14' 1"	12'4"	11'2"	6' 10"
	20CT212		0.0346	40	L/240	12' 10"	11'2"	10' 2"	6' 10"
2 1 /2"					L/360	11' 2"	9' 8"	8' 7"	0' 0"
2-1/2"		18	0.0451		L/120	16' 2"	14' 2"	12' 11"	6' 7"
	18CT212			40	L/180	13' 11"	12' 2"	11'1"	6' 7"
				40	L/240	12' 5"	10' 10"	9' 10"	6' 7"
					L/360	10' 5"	9' 1"	8' 4"	0'0"
	20CT4 18CT4	20	0.0346	40	L/120	20' 10"	18' 2"	16'6"	7' 2"
					L/180	18' 5"	16' 1"	14' 7"	7' 2"
					L/240	16' 10"	14' 8"	13'4"	7' 2"
4"					L/360	14' 8"	12' 10"	11'8"	7' 2"
4					L/120	23' 7"	20' 7"	17' 7"	6' 7"
					L/180	20' 10"	18' 1"	16'6"	6' 7"
					L/240	18' 11"	16'6"	15'0"	6' 7"
					L/360	16' 7"	14'6"	13'0"	6' 7"
	20CT6	20	0.0346	40	L/120	27' 4"	22' 4"	18'4"	6' 11"
					L/180	24' 6"	21'5"	18'4"	6' 11"
					L/240	22' 4"	19' 6"	17'8"	6' 11"
6"					L/360	19' 5"	17' 0"	15' 5"	6' 11"
O	18CT6				L/120	30' 1"	23' 6"	17' 7"	6' 7"
					L/180	26' 2"	22' 11"	17' 7"	6' 7"
					L/240	23' 7"	20' 7"	17' 7"	6' 7"
					L/360	20' 6"	17' 11"	16' 4"	6' 7"

- 1. Allowable heights are based on the transverse load test complying with ICC-ES AC86 and AISI S916-15.
- 2. Studs spaced at 24" O.C. maximum.
- Standard J-Track is used as both top and bottom track.
 CT-Shaft Stud limiting heights were tested with 5/8" Type-X gypsum board oriented vertically.

Overview | CT Shaft Wall Stud Systems

Vertical Limiting Heights (2-Hour Shaft Wall System)

				Limiting	Heights				
Stud Depth	Model Number	Gauge	Design Thickness (in)	Yield (ksi)	Deflection	5 psf	7.5 psf	10 psf	15 psf
			2	-Hour Shaft	Wall System				
			0.0046		L/120	16' 11"	14' 10"	13' 5"	6'11"
	20CT212	20			L/180	15' 1"	13' 2"	12' 0"	6' 11"
	20CT212	20	0.0346	40	L/240	13' 11"	12' 2"	11'1"	6'11"
2 1/2"					L/360	12'4"	10' 8"	9' 7"	6' 11"
2-1/2"			0.0451		L/120	17'0"	14' 11"	13' 6"	6'7"
	10CT212	18		40	L/120	14' 11"	13' 0"	11' 10"	6'7"
	18CT212			40	L/180	13'6"	11' 10"	10' 8"	6'7"
					L/240	11'6"	10' 10"	9'1"	0'0"
	20074	20	0.0346	40	L/360	21'8"	19' 0"	17' 2"	6'11"
					L/180	19' 5"	16' 11"	15' 5"	6'11"
	20CT4	20	0.0346		L/240	17' 10"	15' 6"	14' 1"	6'11"
4"					L/360	15' 8"	13' 8"	12' 5"	6'11"
4	18CT4	18	0.0451	40	L/120	24' 8"	21' 7"	17' 7"	6'7"
					L/180	21' 10"	19' 1"	17' 4"	6'7"
					L/240	20' 0"	17' 6"	15' 11"	6'7"
··········					L/360	17' 8"	15' 6"	14' 0"	6'7"
	3	OCT6 20	0.0346	40	L/120	27' 7"	24' 2"	18' 4"	6'11"
	30000				L/180	25' 4"	22' 1"	18' 4"	6'11"
	20010				L/240	23' 1"	20' 2"	18' 4"	6'11"
6"	}				L/360	20' 2"	17' 7"	16'0"	6'11"
U	18CT6	18			L/120	31'2"	23' 6"	17' 7"	6'7"
			0.0451	40	L/180	27' 5"	23' 6"	17' 7"	6'7"
					L/240	24' 11"	21' 10"	17' 7"	6'7"
					3 L/360	21'11"	19' 1"	17' 5"	6'7"

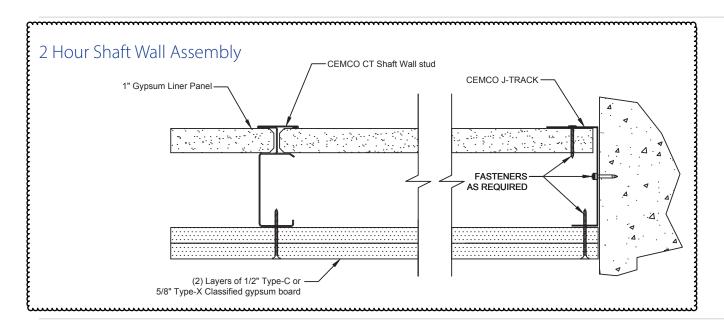
^{1.} Allowable heights are based on the transverse load test complying with ICC-ES AC86 and AISI S916-15.

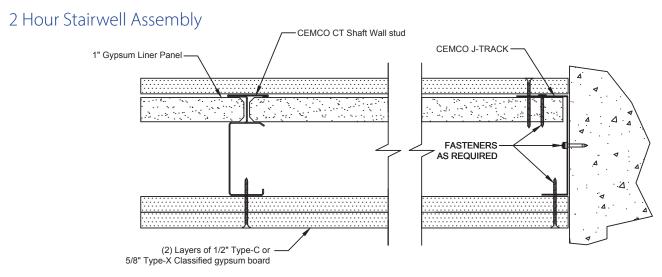
^{2.} Studs spaced at 24" O.C. maximum.

Study Spaced at 24 O.K. Hawkinshin.
 Standard J-Track is used as both top and bottom track.
 CT-Shaft Stud limiting heights were tested with 5/8" Type-X gypsum board oriented vertically.

Vertical Limiting Heights (1-Hour Stairwell System)

				Limiting	Heights				
Stud Depth	Model Number	Gauge	Design Thickness (in)	Yield (ksi)	Deflection	5 psf	7.5 psf	10 psf	15 psf
			1	I-Hour Stair	well System				
		20	0.0346	40	L/120	21' 10"	18' 8"	16' 2"	9' 11"
	20CT4				L/180	19' 4"	16' 11"	15' 4"	9' 11"
	20CT4				L/240	17' 8"	15' 6"	14' 1"	9' 11"
4"					L/360	15' 8"	13'8"	12'6"	9' 11"
4	18CT4	18	0.0451	40	L/120	24' 2"	21'1"	19' 2"	10' 5"
					L/180	21'6"	18'8"	17' 0"	10' 5"
					L/240	19' 8"	17' 2"	15' 7"	10' 5"
					L/360	17' 4"	15' 2"	13' 8"	10' 5"
	20CT6	20 0.0346	0.0346	40	L/120	28' 11"	23' 7"	18' 4"	10' 10"
					L/180	25' 10"	22' 6"	18' 4"	10' 10"
					L/240	23' 8"	20' 8"	18' 4"	10' 10"
6"					L/360	20' 11"	18' 2"	16' 7"	10' 10"
O	18CT6	18	0.0451		L/120	30' 7"	25' 0"	21'8"	10' 5"
				40	L/180	27' 5"	23' 11"	21'8"	10' 5"
					L/240	25' 2"	22' 0"	20' 0"	10'5"
					L/360	22' 2"	19' 5"	17' 7"	10' 5"


Notes:

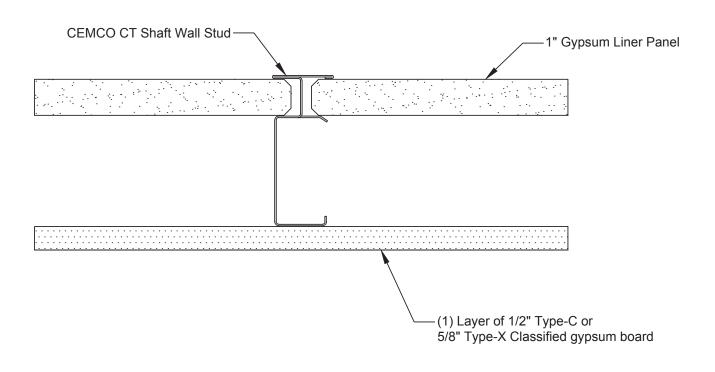

- 1. Allowable heights are based on the transverse load test complying with ICC-ES AC86 and AISI S916-15.
- Aniowable reignis are based on the daily established.
 Studs spaced at 24" O.C. maximum.
 Standard J-Track is used as both top and bottom track.
- **4.** CT-Shaft Stud limiting heights were tested with 5/8" Type-X gypsum board oriented vertically.

5/8" Type-X Classified gypsum board

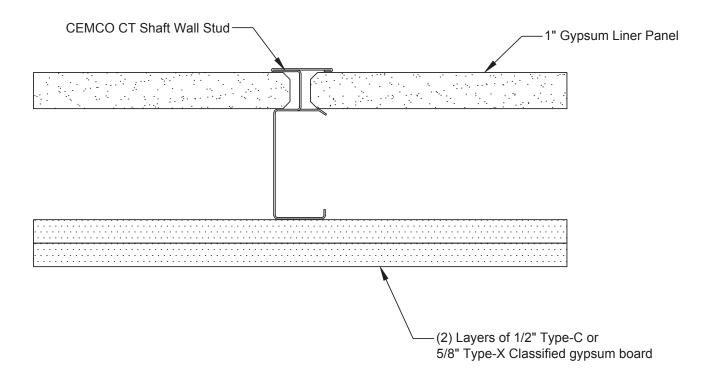
1" Gypsum Liner Panel CEMCO CT Shaft Wall stud CEMCO J-TRACK FASTENERS AS REQUIRED (1) Layer of 1/2" Type-C or

Horizontal Spans (Dead Load Only)

Web		Design Thickness			ayer Type " Shaft Lin			ayer Type " Shaft Lin			ers of Typ ' Shaft Lin	
Depth	Gauge	(in)	Mil	L/120	L/240	L/360	L/120	L/240	L/360	L/120	L/240	L/360
2-1/2"	20	0.0346	33	13'-3"	10'-6"	9'-2"	12'-0"	9'-6"	8'-4"	12'-2"	9'-8"	8'-5"
4"	20	0.0346	33	18'-11"	15'-0"	13'-1"	17'-2"	13'-8"	11'-11"	17'-6"	13'-10"	12'-1"
6"	20	0.0346	33	25'-11"	20'-7"	18'-0"	23'-8"	18'-9"	16'-4"	24'-0"	19'-0"	16'-7"
4"	18	0.0451	43	20'-5"	16'-2"	14'-2"	18'-7"	14'-9"	12'-11"	18'-10"	15'-0"	13'-1"
6"	18	0.0451	43	28'-0"	22'-2"	19'-5"	25'-6"	20'-3"	17'-8"	25'-11"	20'-7"	18'-0"


Notes:

1. Not designed to carry live loads, mechanical loads or for material storage area use.


2. Dead Loads include: Type-X: 2.2 PSF
Tvne-C: 2.0 PSF

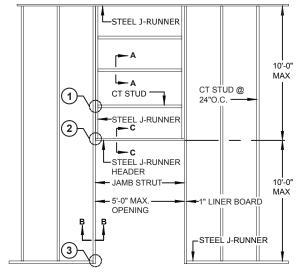
1 Hour Horizontal Assembly

2 Hour Horizontal Assembly

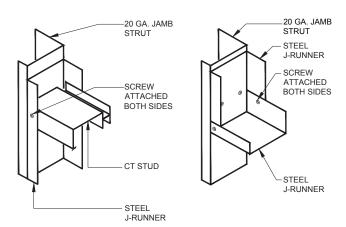
Fire-Rated Shaft Wall Assemblies for CT Studs

1 Hour	2 Hour	3 Hour	4 Hour
GA WP 6800	GA WP 7040	GA WP 7422	GA WP 7640
GA WP 6801	GA WP 7051	GA WP 7424	
GA WP 6802	GA WP 7052		
GA WP 6850	GA WP 7054		
GA WP 6851	GA WP 7054.4		
GA WP 6904	GA WP 7056		
GA WP 6905	GA WP 7057		
GA WP 7024.3	GA WP 7058		
	GA WP 7059		
	GA WP 7060		
	GA WP 7061		
	GA WP 7062		
	GA WP 7064		
	GA WP 7065.2		
	GA WP 7065.5		
	GA WP 7066		
	GA WP 7067		
	GA WP 7073		
	GA WP 7076		
	GA WP 7077		
	GA WP 7078		
	GA WP 7079		
	GA WP 7080		
	GA WP 7084		
	GA WP 7096		
	GA WP 7097		

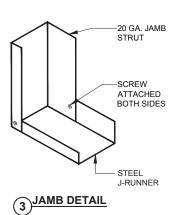
Shaft Wall Installation Instructions

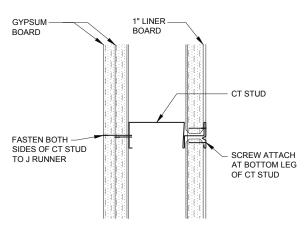


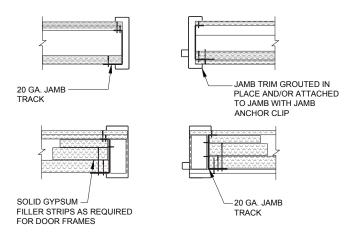
Shaft Wall Installation Instructions

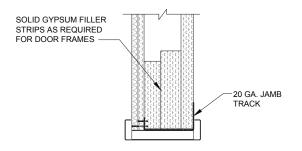

- Layout per construction drawings. Secure J-Track as perimeter framing on floor and plumb to ceiling, floor and sides. Attach using suitable fasteners not to exceed 24" on-center. Sealant may be required per the specific assembly.
- Plan the stud layout at 24" on-center and adjust accordingly at either end to avoid the last CT stud installed is no closer than 8" from the end.
- Cut the first 1" Shaftliner panel 3/4" to 1" less than the total height of the framed section. Plumb the flush against the J-Track and secure with 1-5/8" long #6 Type S screws 24" on-center.
- 4. Insert a CT Stud (cut 3/4" less than the overall height of the section) into the tracks (top and bottom) and fit tightly over the installed Shaftliner panel. Install top and bottom of the CT stud into both legs of the J-Track.
- 5. Install the next 1" Shaftliner board (cut 3/4" to 1" shorter than the overall height of the section) into the T-section of the CT Stud.
- Continue to install successive CT studs and Shaftliner panels as described above until the wall section is closed. The final panel section may be secured using 1-5/8" long #6 Type S screws into the J-Track.
- 7. For doors, rough openings, and other large penetrations/openings, install J-Track with a 3" back leg as perimeter framing for elevator doors and block cavity using a 12" wide gypsum board filler strips per the door frame manufacturer's instructions.
- 8. 1" Shaftliner boards may be abutted, spliced, or stacked within the cavity with panels no shorter than 2' in length. Joints of adjacent Shaftliner panels should be alternately stacked or staggered to prevent a continuous joint (horizontal).

- 9. For a one sided finished vertical system: A 1-hour rating is achieved by installing a layer of 1/2" Type-C or 5/8" Type-X Classified gypsum board horizontally using 1" Type-S or S-12 screws spaced at 24" oncenter ensuring the horizontal joints are offset from any splice joints in the shaftliner panels by no less than 12". For a 2-hour system, a face layer of 1/2" Type-C or 5/8" Type-X Classified gypsum board may be installed either horizontally or vertically over the 1-hour system using 1-5/8" Type S or S-12 screws spaced at 8" on-center.
- 10. For a two-sided finished vertical system: Each side may be installed either horizontally or vertically with 1" Type S or S-12 screws spaced at 8" on-center. Offset edges and ends on opposite sides by at least 24" on-center.
- 11. For a one-sided finished horizontal system: A 1-hour rating is achieved by installing one layer of 1/2" Type-C or 5/8" Type-X Classified gypsum board perpendicular to framing using 1" Type-S or S-12 screws spaced at 24" on-center ensuring long-edged joints are offset from any splice joints in the shaftliner panels by no less than 12". For a 2-hour system, a face layer of 1/2" Type-C or 5/8" Type-X Classified gypsum board may be installed either perpendicular or parallel to framing over the 1-hour system using 1-5/8" Type-S or S-12 screws spaced at 8" on-center.
- 12. If installing for HVAC ducts, consult with the HVAC engineer regarding the level of caulking and sealant required. All joints on the face layers must be taped and finished with joint compound meeting ASTM C 475. All penetration openings must be filled with approved firestopping sealants.



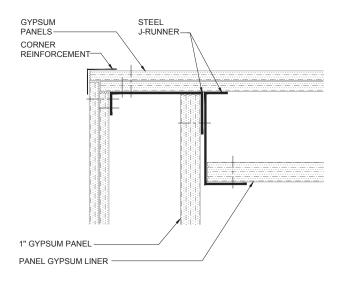

ELEVATOR DOOR ROUGH OPENING

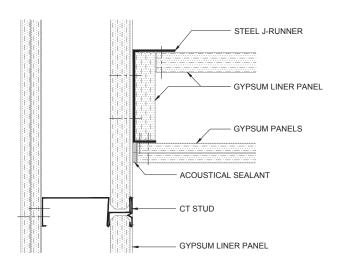

1 HORIZONTAL ATTACHMENT CT STUD TO J-RUNNER



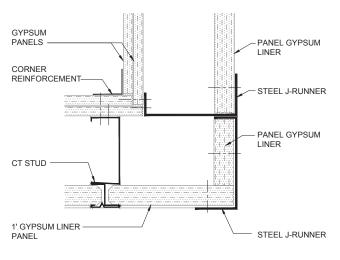
(4) SECTION A-A

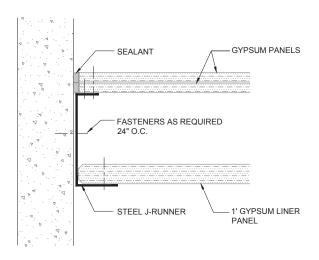
5 SECTION B-B

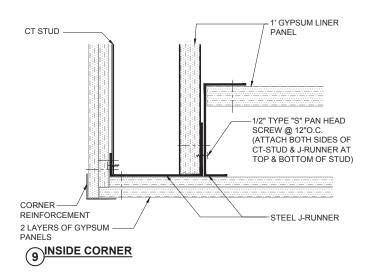


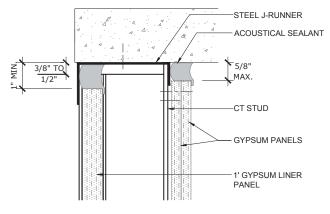

6 HEADER DETAIL SECTION C-C

Overview | CT Shaft Wall Stud System


Typical Details




7)OUTSIDE CORNER


(10)WALL JUNCTION

8 INSIDE CORNER

(11)WALL INTERSECTION

(12)HEAD SECTION (UL TBD)

Expanding Your Solutions

Corporate Headquarters

13191 Crossroads Parkway North, Suite 325, City of Industry, CA 91746 **P:** 800.775.2362 | **F:** 626.330.7598

Southern California Manufacturing Facility

263 North Covina Lane, City of Industry, CA 91746 **P:** 800.775.2362 | **F:** 626.330.7598

Northern California Manufacturing Facility

1001-A Pittsburg Antioch Hwy, Pittsburg, CA 94565 **P:** 925.473.9340 | **F:** 925.473.9341

Denver Colorado Manufacturing Facility

490 Osage Street, Denver, CO 80204 **P:** 303.572.3626 | **F:** 303.572.3627

Fort Worth Texas Manufacturing Facility

8600 Will Rogers Blvd, Fort Worth, TX 76140 **P:** 817.568.1525 | **F:** 817.568.2759

www.cemcosteel.com

CFS JOIST FRAMING DESIGN

Brienen **S**tructural **E**ngineers, P.S.

JOIST BRACING REQUIREMENTS, CONTINUED

B2.6 Bracing Design

Bracing members shall be designed either on the basis of discretely braced design or on the basis of continuously braced design, in accordance with the following:

- (a) Discretely Braced Design. For discretely braced design, bracing members shall be designed in accordance with Section C2.2 of AISI S100 [CSA S136].
- (b) Continuously Braced Design. For continuously braced design, bracing members shall be designed in accordance with Section C2.2 of AISI S100 [CSA S136], unless the following requirements, as applicable, are met:
 - (1) Members are spaced no greater than 24 inches (610 mm) on center.
 - (2) The sheathing or deck shall consist of a minimum of 3/8 inch (9.5 mm) wood structural sheathing that complies with DOC PS 1, DOC PS 2, CSA O437 or CSA O325, or steel deck with a minimum profile depth of 9/16 in. (14.3 mm) and a minimum thickness of 0.0269 in. (0.683 mm). The sheathing or deck shall be attached with minimum No. 8 screws at a maximum 12 inches (305 mm) on center.
 - (3) Floor joists and ceiling joists with simple or continuous spans that exceed 8 feet (2.44 m) shall have the tension flanges laterally braced. Each intermediate brace shall be spaced at 8 feet (2.44 m) maximum and shall be designed to resist a required lateral force, P_L, determined in accordance with the following:

For uniform loads:

 $P_L = 1.5(m/d) F$ (Eq. B2.6-1)

where

m = Distance from shear center to mid-plane of web

d = Depth of C-shape section

F = wa

w = Uniform design load [factored load]

a = Distance between center line of braces

FOR OUR 10" DEEP JOISTS

PL = 1.5*(1.14"/10")*(1.2*20psf + 1.6*40psf)*(2ft oc) * (8ft)PL = 240 lbs

YIELD STRENGTH OF 33MIL x 1 1/2" STRAP ϕ Tn = $(0.9)^*(1.5")^*(0.035")^*(33ksi) = 1560 lbs$

Brienen **S**tructural **E**ngineers, P.S.

JOIST BRACING REQUIREMENTS

APPLICABLE SECTION FOR DETAIL 14/MS1.2

B1.2 Design Basis

The proportioning, designing and detailing of *cold-formed steel light-frame lateral force*resisting systems, trusses, structural members, connections and connectors shall be in accordance with AISI S100 [CSA S136], and the reference documents except as modified or supplemented by the requirements of this Standard.

B1.2.1 Floor Joists, Ceiling Joists and Roof Rafters

- **B1.2.1.1** Floor joists, ceiling joists and roof rafters shall be designed either on the basis of discretely braced design or on the basis of continuously braced design, in accordance with the following:
 - (a) Discretely Braced Design. Floor and roof assemblies using discretely braced design shall be designed neglecting the structural bracing and composite-action contribution of attached sheathing or deck. The discretely braced design requirements of the Standard shall be applied to assemblies where the

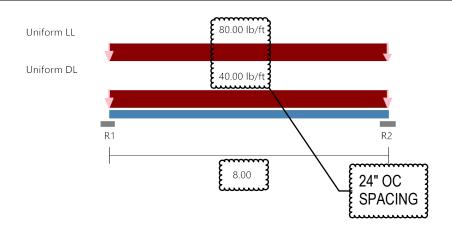
This document is copyrighted by AISI. Any redistribution is prohibited.

20 AISI S240-20

sheathing or deck is not attached directly to structural members.

- (b) Continuously Braced Design. Unless noted otherwise in Section B2 or B4, the continuously braced design requirements of this Standard shall be limited to assemblies where structural sheathing or steel deck is attached directly to floor joists, ceiling joists and roof rafters that comply with all of the following conditions:
 - (1) Maximum web depth = 14 inches (356 mm)
 - (2) Maximum design thickness = 0.1242 inches (3.155 mm)
 - (3) Minimum design yield strength, F_v = 33 ksi (230 MPa)
 - (4) Maximum design yield strength, F_v = 50 ksi (345 MPa)

APPLICABLE SECTION FOR BRACING USING PW WEAR SURFACE TOP AND GYP BOT


TYP CFS CEILING JOISTS 10" STUDS, 24" OC.

Project Name: Centeris

Page 1 of 1 Date: 10/02/2025

Model: 8ft Floor Joist 10" @ 24" OC - 40 psf LL

Code: AISI S100-16w/S2-20 Simpson Strong-Tie® CFS Designer™ 5.2.8.0

Section : 1000S200-54 (50 ksi) @ 24 in" o.c. Single C Stud (punched) **Maxo =** 4254.2 ft-lb **Va =** 1660.8 lb **I =** 10.769 in^4

Deflection Limits:

Total Load - 240

Live Load - 360

Load Comb:

1. DL + LL All spans
2. DL + LL Even spans

4. LL All spans5. LL Even spans

2. DL + LL Even spans 5. LL Even spans
3. DL + LL Odd spans 6. LL Odd spans

ATTACH TO FULL-HEIGHT STUD W/ (6) #10 SMS Ra = 600LBS & TO HSS W/ (3) SHOTPINS Ra = 690LBS

Joist Flexural and Deflection

	Mmax (ft-lb)	K-phi Lr (lb-in/in) (រុំរ		Mmax/ Ma min	Load Comb.	TL Load Defl Comb.	LL Load Defl Comb.	
Span	960	0.0 96	3770.5	0.255	1	L/2758 1	L/4137 4	

Joist Bending and Web Crippling

,	1	comm ²							
₹	Load {	Load	Bearing	Pa	Pn	{ Max }	Load	Stiffeners	
Support	(lb) {	Comb.	(in)	(lb)	(lb)	{ Intr. }	Comb.	Required	
R1	480.0	1	1.00	553.2	968.1	0.45	1	NO	
R2	480.0	1	1.00	553.2	968.1	0.45	1	NO	

Joist Bending and Shear

Support	Vmax (lb)	Load Comb.	Va Factor	V/Va	M/Ma	Intr. Unstiffened	Load Comb.	Intr. Stiffened	Load Comb.
R1	480.0	1	1.000	0.29	0.00	{ 0.29	1	N/A	N/A
R2	480.0	1	1.000	0.29	0.00	{ 0.29	1	N/A	N/A

Joist Reaction and Connections

Support	Rx(lb)	Ry(lb)	Simpson Strong-Tie Connector	Connector Interaction	Anchor Interaction
R1	0.0	480.0	S/DHUTF (3)#10 Joist & (6)#10 top,(8)#14 x 2" face to 14ga top plate	28.24 %	28.24 %
R2	0.0	480.0	S/DHUTF (3)#10 Joist & (6)#10 top,(8)#14 x 2" face to 14ga	28.24 %	28.24 %

^{*} Reference catalog for connector and anchor requirement notes as well as screw placement requirements

LATERAL DESIGN

BSE

Brienen Structural Engineers, P.S.

Project: CENTERIS

Date: 10/09/2025

WALL CONSTRUCTION: (4) LAYRES GYD - (4)(2.50SF) = 10BSF

METAL STYDS - 1.5BSF

ACOUSTIC INSULATION - 2BSF

185.5BSF

USE 14 PSF

BATTERY ROOM EXPANSION (ROOM | 73)

TOTAL CEILING SEISMIC WEIGHT = $(2088F)(384 \text{ H}^2) = 7.7K$ TOP HALF OF WALLS = $\frac{1}{2}(11.17 \text{ H})(1488F)(648F) = 5.0K$ TOTAL SEISMIC MASS = 12.7KFIND FR PER ASCE 7-16, EQN 13.3-1

FR = $\frac{0.4(a_F)S_{05}W_F}{RF/T_F}(1+27K) = \frac{0.4(1.0)(1.006)(12.1K)}{(2.5/1.0)}(1+2(11.79/474))$

FR = 0.237Wp < FPMIN = 0.35 NS IP WP = 0.302Wp . FP = 3.8 X TOTAL

BATTERY ROOM EXPANSION (ROOM 110D)

TOTAL CEILING SEISMIC · WEIGHT = (2005)(178 fiz) = 26x

TOP HALF OF WALLS = 2(1855H)(MRE)(40H) = 28x

TOTAL SEISMIC MRGS = 6.4x

8 fp = 1.94 107AL

Brienen **S**tructural **E**ngineers, P.S.

Diaphragm Shear Provisions from AISI 400-20, Section F2.4

F2.4 Shear Strength

The nominal strength of diaphragms sheathed with wood structural panels is permitted to be termined in accordance with Eq. F2.4.1-1 subject to the requirements in Section F2.4.1.1. $V_n = v_n L$

 $\begin{array}{ll} L &= {\it Diaphragm} \ {\rm resistance} \ {\rm length}, \ {\rm in} \ {\rm ft} \ (m) \\ v_n &= {\it Nominal shear strength} \ {\rm per} \ {\rm unit} \ {\rm length} \ {\rm as \ specified \ in} \ {\rm Table} \ {\rm F2.4-1}, \ {\rm lb/ft} \ (kN/m) \end{array}$

F2.4.1.1 Requirements for Tabulated Systems

The following requirements shall apply to diaphragms sheathed with wood structural

- (a) The aspect ratio (length:width) of the diaphragm does not exceed 4:1 for blocked diaphragms and 3:1 for unblocked diaphragms
- (b) Joists and tracks are ASTM A1003 Structural Grade 33 (Grade 230) Type H steel for members with a designation thickness of 33 and 43 mils, and ASTM A1003 Structural Grade 50 (Grade 340) Type H steel for members with a designation thickness equal to or greater than 54 mils.
- (c) The minimum designation thickness of structural members is 33 mils.
- (d) Joists are C-shape members with a minimum flange width of 1-5/8 in. (41.3 mm), minimum web depth of 3-1/2 in. (89 mm) and minimum edge stiffener of 3/8 in. (9.5
- (e) Track has a minimum flange width of 1-1/4 in. (31.8 mm) and a minimum web depth of 3-1/2 in. (89 mm)
- (f) Screws for structural members are a minimum No. 8 and are in accordance with ASTM C1513.
- (g) Wood structural panel sheathing is manufactured using exterior glue and complies with DOC PS-1 and DOC PS-2.
- (h) Screws used to attach wood structural panels are minimum No. 8 where structural members have a designation thickness of 54 mils or less and No. 10 where structural members have a designation thickness greater than 54 mils and comply with ASTM
- (i) Screws in the field of the panel are attached to intermediate supports at a maximum 12-in. (305 mm) spacing along the structural members.
- (j) Panels less than 12-in. (305-mm) wide are not used.
- (k) Maximum joist spacing is 24 in. (610 mm) on center.
- (1) Where diaphragms are designed as blocked, all panel edges are attached to structural members or panel blocking.
- (m) Where used as blocking, flat strap is a minimum thickness of 33 mils with a minimum width of 1-1/2 in. (38.1 mm) and is installed below the sheathing.
- (n) Where diaphragms are designed as blocked, the screws are installed through the sheathing to the blocking.
- (o) Fasteners along the edges in shear panels are placed from panel edges not less than

F2.4.2 Available Strength

The available strength $(\phi_v V_n \text{ or } V_n/\Omega_v)$ shall be determined from the nominal strength using the applicable safety factors and resistance factors given in this section in accordance with the applicable design method - ASD or LRFD as follows:

-250 (ASD) = 0.60 (LRFD).....

F2.4.3 Design Deflection

The deflection of a diaphragm with wood structural panel sheathing shown in Table F2.4-1 shall be determined by principles of mechanics considering the deformation of the sheathing and its attachment, chords and collectors.

Table F2.4-1 Nominal Shear Strength (v_n) per Unit Length for Diaphragms Sheathed With Wood Structural Panel Sheathing 1, 2

United States and Mexico (lb/ft)										
		Blocked				Unblocked				
	Thick-	bou	ndary ed	gat diaph ges and a nel edge	t all		naximum of 6 in. orted edges			
Sheathing	ness	6	4	2.5	2	Load				
	(in.)	Screw spacing at all other panel edges (in.)				perpendicular to unblocked edges and continuous	All other configurations			
		6	6	4	3	panel joints				
	3/8	768	1022	1660	2045	685	510			
Structural I	7/16	768	1127	1800	2255	755	565			
	15/32	925	1232	1970	2465	825	615			
C-D, C-C and	3/8	690	920	1470	1840	615	460			
other graded wood structural	7/16	760	1015	1620	2030	680	505			
panels	15/32	832	1110	1770	2215	740	555			

For SI: $1^{\circ} = 25.4$ mm, 1 ft = 0.305 m, 1 lb = 4.45 N For diaphragms sheathed with wood structural panels, tabulated R_n values are applicable for

3.8k/(0.6*555lb/ft) = 11'5"for diaphragm support, we have significantly more in each direction.