

Construction Stormwater General Permit (CSWGP)

Stormwater Pollution Prevention Plan (SWPPP)

for

STEP BY STEP FAMILY SUPPORT CENTER

Prepared for:
Department of Ecology
Southwest Regional Office

Permittee / Owner	Developer	Operator / Contractor
Krista Linden		TBD

506 33rd Street SE
Puyallup, WA 98372

Certified Erosion and Sediment Control Lead (CESCL)

Name	Organization	Contact Phone Number
TBD		

SWPPP Prepared By

Name	Organization	Contact Phone Number
John Farleigh, PE	Cecil & Associates, LLC	206-450-3068

SWPPP Preparation Date

July / 17 / 2025

Project Construction Dates

Activity / Phase	Start Date	End Date
Parking Improvements	8 / 01 / 2025	4 / 31 / 2026

List of Acronyms and Abbreviations

Acronym / Abbreviation	Explanation
303(d)	Section of the Clean Water Act pertaining to Impaired Waterbodies
BFO	Bellingham Field Office of the Department of Ecology
BMP(s)	Best Management Practice(s)
CESCL	Certified Erosion and Sediment Control Lead
CO₂	Carbon Dioxide
CRO	Central Regional Office of the Department of Ecology
CSWGP	Construction Stormwater General Permit
CWA	Clean Water Act
DMR	Discharge Monitoring Report
DO	Dissolved Oxygen
Ecology	Washington State Department of Ecology
EPA	United States Environmental Protection Agency
ERO	Eastern Regional Office of the Department of Ecology
ERTS	Environmental Report Tracking System
ESC	Erosion and Sediment Control
GULD	General Use Level Designation
NPDES	National Pollutant Discharge Elimination System
NTU	Nephelometric Turbidity Units
NWRO	Northwest Regional Office of the Department of Ecology
pH	Power of Hydrogen
RCW	Revised Code of Washington
SPCC	Spill Prevention, Control, and Countermeasure
su	Standard Units
SWMMEW	Stormwater Management Manual for Eastern Washington
SWMMWW	Stormwater Management Manual for Western Washington
SWPPP	Stormwater Pollution Prevention Plan
TESC	Temporary Erosion and Sediment Control
SWRO	Southwest Regional Office of the Department of Ecology
TMDL	Total Maximum Daily Load
VFO	Vancouver Field Office of the Department of Ecology
WAC	Washington Administrative Code
WSDOT	Washington Department of Transportation
WWHM	Western Washington Hydrology Model

Project Information (1.0)

Project/Site Name: Step by Step Parking Area

Street/Location: 506 33rd Street SE

City: Puyallup State: WA Zip code: 98372

Receiving waterbody: Puyallup River

Existing Conditions (1.1)

Total acreage (including support activities such as off-site equipment staging yards, material storage areas, borrow areas).

Total acreage: 6.0 Acres

Disturbed acreage: 2.0 Acres

Existing structures: None

Landscape topography: Flat

Drainage patterns: Overland flow to existing ditch

Existing Vegetation: Grass

Critical Areas: None

List of known impairments for 303(d) listed or Total Maximum daily Load (TMDL) for the receiving waterbody: Puyallup River - Fecal Coliform TMDL

Proposed Construction Activities (1.2)

Description of site development:

This project proposes the improvement of existing gravel parking lot. The existing gravel will be regraded to support positive drainage towards the grass vegetation west of site.

Description of construction activities:

First install temporary erosion and sediment control BMPs. Construction activities include: Clearing and grubbing, excavation, and replacement of existing gravel.

The existing gravel will be regraded to support positive drainage towards the grass vegetation west of site. Stormwater will be disperse via sheet flow onto existing grass vegetation. Natural drainage pattern will be maintained. Runoff will eventually be conveyed towards existing ditch east of site.

Description of final stabilization:

Final stabilization of the site includes the following: Gravel parking and revegetation of pervious ground areas.

Contaminated Site Information:

There are no known site contaminates.

Construction Stormwater Best Management Practices (BMPs) (2.0)

The SWPPP is a living document reflecting current conditions and changes throughout the life of the project. These changes may be informal (i.e. hand-written notes and deletions). Update the SWPPP when the CESCL has noted a deficiency in BMPs or deviation from original design.

The 13 Elements (2.1)

Element 1: Preserve Vegetation / Mark Clearing Limits (2.1.1)

List and describe BMPs: Temporary fencing, flagging, and silt fence.

Installation Schedules: Establish clearing limits prior to clearing (first thing).

Inspection and Maintenance plan:

Responsible Staff: Excavation/Utility Contractor (CESCL in charge)

The site can be cleared as shown in the TESC Plans. Prior to beginning land disturbing activities, including clearing and grading, all clearing limits shall be clearly marked, both in the field and on the plans, to prevent damage and off-site impacts. Barrier fences shall be constructed as shown on the Temporary Erosion & Sediment Control Plans and in accordance with BMP C103.

Clearing should occur during periods of dry weather to the extent practical. Strippings should be stockpiled onsite, covered in plastic, and preserved for soil amendment at the end of the project.

Element 2: Establish Construction Access (2.1.2)

List and describe BMPs: Stabilized Construction Entrance/Exit (BMP C105) and C140 Dust Control used as needed.

Installation Schedules: Throughout construction

Inspection and Maintenance plan: Daily and after rain events

Dust generation will be limited by installing temporary construction surfaces consisting of rip/rap construction entrance, crushed rock, and first lift of pavement for work surface.

Construction access/exit will be provided from public r/w through rip rap construction roads.

If needed during excavation watering of the site may be done to limit airborn dust.

If sediment is tracked into the public r/w or offsite areas it will be swept and cleaned.

Installation Schedules: The construction entrance will be installed during the first phase of construction and be maintained throughout construction until pavement is installed and all road surfaces have been paved.

Inspection and Maintenance plan:

Construction Entrance/Exit:

Perform visual inspection at the beginning of each working day. Equipment operators should self-report degradation or sediment trackout as observed throughout the working day so that maintenance can be performed.

Quarry spalls shall be added if the pad is no longer in accordance with the specifications.

- If the entrance is not preventing sediment from being tracked onto pavement, then alternative measures to keep the streets free of sediment shall be used. This may include replacement/cleaning of the existing quarry spalls, street sweeping, an increase in the dimensions of the entrance, or the installation of a wheel wash.
- Any sediment that is tracked onto pavement shall be removed by shoveling or street sweeping. The sediment collected by sweeping shall be removed or stabilized on site. The pavement shall not be cleaned by washing down the street, except when high efficiency sweeping is ineffective and there is a threat to public safety. If it is necessary to wash the streets, the construction of a small sump to contain the wash water shall be considered. The sediment would then be washed into the sump where it can be controlled.
- Perform street sweeping by hand or with a high efficiency sweeper. Do not use a non-high efficiency mechanical sweeper because this creates dust and throws soils into storm systems or conveyance ditches.
- Any quarry spalls that are loosened from the pad, which end up on the roadway shall be removed immediately.

- If vehicles are entering or exiting the site at points other than the construction entrance(s), fencing (see BMP C103) shall be installed to control traffic.
- Upon project completion and site stabilization, all construction accesses intended as permanent access for maintenance shall be permanently stabilized.

Dust Control:

Perform visual inspection twice each working day during periods of dry weather. Increase inspection (decrease inspection intervals) if dust is consistently observed.

- Respray or cover area as necessary to keep dust to a minimum.

Responsible Staff: Excavation/Utility Contractor (CESCL in charge)

Revise to reflect current project.

Element 3: Control Flow Rates (2.1.3)

The project will protect properties and waterways downstream of the project from increased speed and volume of stormwater by utilizing the existing storm system as a drainage element throughout construction. The site is already paved and near 100% impervious surface cover. As a result of the project perimeter landscaping and parking area landscaping will be provided which will decrease the overall impervious surface cover. The result will be a decrease in peak discharge rates and volumes from the site.

During the interim construction period a sediment pond will be installed to collect and temporarily retain stormwater onsite until water quality monitoring occurs. Runoff will then be discharged in a controlled manner to protect the downstream.

The project will construct an infiltration system as part of the permanent flow control system. The infiltration system cannot receive construction runoff. Inlet lines shall be plugged until the site is stable.

Will you construct stormwater retention and/or detention facilities?

Yes No

Will you use permanent infiltration ponds or other low impact development (example: rain gardens, bio-retention, porous pavement) to control flow during construction?

Yes No

List and describe BMPs:

Properties downstream from the development site shall be protected from erosion due to any increases in the volume, velocity, and peak flow rate stormwater runoff from the project site. If off-site discharges do occur, temporary basins shall be installed prior to the points of discharge.

Installation Schedules: Install during the first phase of construction and be maintain throughout construction until pavement is installed and all road surfaces have been paved.

Inspection and Maintenance plan:

Inspection and Maintenance plan:

Perform visual inspection once weekly and within 24-hours of a measurable rainfall event.
Note, turbidity monitoring from the pond is required prior to discharge so inspection should be performed at each monitoring period.

Responsible Staff: Excavation/Utility Contractor (CESCL in charge)

Element 4: Install Sediment Controls (2.1.4)

Runoff from disturbed areas will pass through sediment control measures to prevent the transport of sediment downstream until the disturbed area is fully stabilized. Sediment controls will be installed as one of the first steps in grading and will be functional before other land disturbing activities take place. Perimeter sediment control consist of silt fence. Storm drain Inlet Protection (filter socks) will be installed in all existing and new catch basins within the project site and near areas where sediment trackout is possible.

List and describe BMPs: C233 Silt Fence, BMP C220 Storm Drain Inlet Protection

Installation Schedules: Install during the first phase of construction and be maintain throughout construction until pavement is installed and all road surfaces have been paved.

Inspection and Maintenance plan:

Silt Fence:

Perform visual inspection once weekly and within 24-hours of a measurable rainfall event.

- Repair any damage immediately.
- Intercept and convey all evident concentrated flows uphill of the silt fence to a sediment pond.
- Check the uphill side of the fence for signs of the fence clogging and acting as a barrier to flow and then causing channelization of flows parallel to the fence. If this occurs, replace the fence or remove the trapped sediment.
- Remove sediment deposits when the deposit reaches approximately one-third the height of the silt fence, or install a second silt fence.
- Replace filter fabric that has deteriorated due to ultraviolet breakdown.

Storm Drain Inlet Protection:

Perform visual inspection once weekly and within 24-hours of a measurable rainfall event.

- Inspect catch basin filters frequently, especially after storm events. Clean and replace clogged inserts. For systems with clogged stone filters: pull away the stones from the inlet and clean or replace. An alternative approach would be to use the clogged stone as fill and put fresh stone around the inlet.
- Do not wash sediment into storm drains while cleaning. Spread all excavated material evenly over the surrounding land area or stockpile and stabilize as appropriate.

Responsible Staff: Project CESCL

Revise to reflect current project.

Element 5: Stabilize Soils (2.1.5)

Efforts will be made to stabilize soils throughout construction. Immediately after mass excavation the pavement gravel sub-base and first lift of asphalt will be installed as a work surface. Stockpiles will be covered with plastic sheeting as required. The weather report will be monitored so that exposed soils can be covered with plastic or straw prior to a rain event. Excavation will occur during dry periods.

At a minimum soils will be covered if left un-worked as shown in the table below:

West of the Cascade Mountains Crest

Season	Dates	Number of Days Soils Can be Left Exposed
During the Dry Season	May 1 – September 30	7 days
During the Wet Season	October 1 – April 30	2 days

Soils must be stabilized at the end of the shift before a holiday or weekend if needed based on the weather forecast.

Anticipated project dates: Start date: April 2023 End date: December 2025

Will you construct during the wet season?

Yes No

List and describe BMPs: BMP C123 Plastic Covering; BMP C121 Mulching

Installation Schedules: As needed.

Inspection and Maintenance plan:

BMP C123 Plastic Covering:

Perform visual inspection once daily and within 24-hours of a measurable rainfall event. Inspect within 24-hours of wind storms.

- Torn sheets must be replaced and open seams repaired.
- Completely remove and replace the plastic if it begins to deteriorate due to ultraviolet radiation.
- Completely remove plastic when no longer needed.
- Dispose of old tires used to weight down plastic sheeting appropriately.

BMP C121 Mulching:

Perform visual inspection once weekly and within 24-hours of a measurable rainfall event.

- The thickness of the cover must be maintained.
- Any areas that experience erosion shall be remulched and/or protected with a net or blanket. If the erosion problem is drainage related, then the problem shall be fixed and the eroded area remulched.

Table II-4.1.8 Mulch Standards and Guidelines

Mulch Material	Quality Standards	Application Rates	Remarks
Straw	Air-dried; free from undesirable seed and coarse material.	2"-3" thick; 5 bales per 1,000 sf or 2-3 tons per acre	Cost-effective protection when applied with adequate thickness. Hand-application generally requires greater thickness than blown straw. The thickness of straw may be reduced by half when used in conjunction with seeding. In windy areas straw must be held in place by crimping, using a tackifier, or covering with netting. Blown straw always has to be held in place with a tackifier as even light winds will blow it away. Straw, however, has several deficiencies that should be considered when selecting mulch materials. It often introduces and/or encourages the propagation of weed species and it has no significant long-term benefits. It should also not be used within the ordinary high-water elevation of surface waters (due to flotation).
Hydromulch	No growth inhibiting factors.	Approx. 25-30 lbs per 1,000 sf or 1,500 - 2,000 lbs per acre	Shall be applied with hydromulcher. Shall not be used without seed and tackifier unless the application rate is at least doubled. Fibers longer than about 3/4 - 1 inch clog hydromulch equipment. Fibers should be kept to less than 3/4 inch.
Compost	No visible water or dust during handling. Must be produced per WAC 173-350, Solid	2" thick min.; approx. 100 tons per acre	More effective control can be obtained by increasing thickness to 3". Excellent mulch for protecting final grades until landscaping because it can be directly

Table II-4.1.8 Mulch Standards and Guidelines

Mulch Material	Quality Standards	Application Rates	Remarks
	Waste Handling Standards, but may have up to 35% biosolids.	(approx. 800 lbs per yard)	seeded or tilled into soil as an amendment. Compost used for mulch has a coarser size gradation than compost used for BMP C125: Topsoiling / Composting or BMP T5.13: Post-Construction Soil Quality and Depth . It is more stable and practical to use in wet areas and during rainy weather conditions. Do not use near wetlands or near phosphorous impaired water bodies.
Chipped Site Vegetation	Average size shall be several inches. Gradations from fines to 6 inches in length for texture, variation, and interlocking properties.	2" thick min.;	This is a cost-effective way to dispose of debris from clearing and grubbing, and it eliminates the problems associated with burning. Generally, it should not be used on slopes above approx. 10% because of its tendency to be transported by runoff. It is not recommended within 200 feet of surface waters. If seeding is expected shortly after mulch, the decomposition of the chipped vegetation may tie up nutrients important to grass establishment.
Wood-based Mulch or Wood Straw	No visible water or dust during handling. Must be purchased from a supplier with a Solid Waste Handling Permit or one exempt from solid waste regulations.	2" thick min.; approx. 100 tons per acre (approx. 800 lbs. per cubic yard)	This material is often called "hog or hogged fuel". The use of mulch ultimately improves the organic matter in the soil. Special caution is advised regarding the source and composition of wood-based mulches. Its preparation typically does not provide any weed seed control, so evidence of residual vegetation in its composition or known inclusion of weed plants or seeds should be monitored and prevented (or minimized).
Wood Strand Mulch	A blend of loose, long, thin wood pieces derived from	2" thick min.	Cost-effective protection when applied with adequate thickness. A minimum of 95-percent of the wood strand shall have

Table II-4.1.8 Mulch Standards and Guidelines

Mulch Material	Quality Standards	Application Rates	Remarks
	native conifer or deciduous trees with high length-to-width ratio.		lengths between 2 and 10-inches, with a width and thickness between 1/16 and 3/8-inches. The mulch shall not contain resin, tannin, or other compounds in quantities that would be detrimental to plant life. Sawdust or wood shavings shall not be used as mulch. (WSDOT specification (9-14.4(4)))

Responsible Staff: Project CESCL

Element 6: Protect Slopes (2.1.6)

The site does not contain any slopes. Man-made slopes made for temporary cuts or utility trenching will be completed during dry weather. If the forecast dictates they will be covered with plastic sheeting as a temporary measure. The contractor will comply with worker safety standards while in trenches at all times.

Will steep slopes be present at the site during construction?

Yes No

List and describe BMPs: BMP C123 Plastic Covering

Installation Schedules: As required

Inspection and Maintenance plan: See inspection requirements shown in Element 5 (above)

Responsible Staff: Project CESCL

Element 7: Protect Drain Inlets (2.1.7)

Runoff from disturbed areas will pass through sediment control measures to prevent the transport of sediment downstream until the disturbed area is fully stabilized. Sediment controls will be installed as one of the first steps in grading and will be functional before other land disturbing activities take place. Sediment control BMPs that may be used consist of:

List and describe BMPs: C220 Storm Drain Inlet Protection

Installation Schedules: Install during the first phase of construction and be maintain throughout construction until pavement is installed and all road surfaces have been paved.

Inspection and Maintenance plan:

Perform visual inspection once weekly and within 24-hours of a measurable rainfall event.

Storm Drain Inlet Protection:

- Inspect catch basin filters frequently, especially after storm events. Clean and replace clogged inserts. For systems with clogged stone filters: pull away the stones from the inlet and clean or replace. An alternative approach would be to use the clogged stone as fill and put fresh stone around the inlet.
- Do not wash sediment into storm drains while cleaning. Spread all excavated material evenly over the surrounding land area or stockpile and stabilize as appropriate.

Responsible Staff: Project CESCL

Revise to reflect current project.

Element 8: Stabilize Channels and Outlets (2.1.8)

The site will discharge to an un-named stream. Stormwater may not be discharged from the site without turbidity and pH testing. Discharging construction stormwater without turbidity testing may result in an illicit discharge and could result in penalty. Temporary channels and outfalls located onsite will be armored with rock, if needed during construction. Where feasible, the existing and/or permanent stormwater lines will be utilized for conveyance of construction stormwater.

Provide stabilization, including armoring material, adequate to prevent erosion of outlets, adjacent stream banks, slopes, and downstream reaches, will be installed at the outlets of all conveyance systems.

List and describe BMPs: BMP C200: Interceptor Dike and Swale

Installation Schedules: After site demolition during Mass Excavation

Inspection and Maintenance plan:

Perform visual inspection once weekly and within 24-hours of a measurable rainfall event.

Observe for scour and erosion. If scour is occurring take action to reduce water energy (velocity) by installing rock dams and armoring channel with rock and/or plastic.

Responsible Staff: Project CESCL

Element 9: Control Pollutants (2.1.9)

The following pollutants are anticipated to be present on-site:

Table 2 – Pollutants

Pollutant (List pollutants and source, if applicable)
Sediment – Exposed surfaces
Fuel/Oil/Grease – Construction Equipment
Concrete Washout – Concrete trucks and building construction

The project will install measures to prevent the pollution from the typical project site contaminates including sediment, fuel/oil/grease, and concrete.

Sediment will be cleaned with trackout occurs. Construction equipment will be cleaned prior to leaving the construction area. Exposed stockpiles and un-worked soil areas will be covered prior to wet weather.

Fuel/Oil/Grease: These pollutants can only occur if accidental equipment failure or fuel spills occur. Fueling activities will occur in a defined area where potential spills will not enter the storm drain and spills can be cleaned. If fueling is to occur onsite a spill cleanup kit will be provided. Any visible sheen will be cleaned.

Concrete washout will occur in bins that will be collected and disposed in legal offsite disposal facilities. Concrete washwater will not be dumped down the drain.

List and describe BMPs: BMP C123: Plastic Covering, BMP C151: Concrete Handling, BMP C154: Concrete Washout Area,

Installation Schedules: Measures will be installed and maintained throughout construction

Inspection and Maintenance plan:

Plastic Covering:

Perform visual inspection once daily and within 24-hours of a measurable rainfall event. Inspect within 24-hours of wind storms.

- Torn sheets must be replaced and open seams repaired.
- Completely remove and replace the plastic if it begins to deteriorate due to ultraviolet radiation.
- Completely remove plastic when no longer needed.
- Dispose of old tires used to weight down plastic sheeting appropriately.

Concrete Handling:

Perform visual inspection prior to each use and or concrete installation.

Check containers for holes in the liner daily during concrete pours and repair the same day.

Concrete Washout Area:

Perform visual inspection prior to each use and or concrete installation.

- Inspect and verify that concrete washout BMPs are in place prior to the commencement of concrete work.
- During periods of concrete work, inspect daily to verify continued performance.
- Check overall condition and performance.
- Check remaining capacity (% full).
- If using self-installed washout facilities, verify plastic liners are intact and sidewalls are not damaged.
- If using prefabricated containers, check for leaks.
- Washout facilities shall be maintained to provide adequate holding capacity with a minimum freeboard of 12 inches.
- Washout facilities must be cleaned, or new facilities must be constructed and ready for use once the washout is 75% full.
- If the washout is nearing capacity, vacuum and dispose of the waste material in an approved manner.
- Do not discharge liquid or slurry to waterways, storm drains or directly onto ground.
- Do not use sanitary sewer without local approval.
- Place a secure, non-collapsing, non-water collecting cover over the concrete washout facility prior to predicted wet weather to prevent accumulation and overflow of precipitation.
- Remove and dispose of hardened concrete and return the structure to a functional condition. Concrete may be reused on-site or hauled away for disposal or recycling.
- When you remove materials from the self-installed concrete washout, build a new structure; or, if the previous structure is still intact, inspect for signs of weakening or damage, and make any necessary repairs. Re-line the structure with new plastic after each cleaning.
- Removal of Temporary Concrete Washout Facilities
- When temporary concrete washout facilities are no longer required for the work, the hardened concrete, slurries and liquids shall be removed and properly disposed of.
- Materials used to construct temporary concrete washout facilities shall be removed from the site of the work and disposed of or recycled.
- Holes, depressions or other ground disturbance caused by the removal of the temporary concrete washout facilities shall be backfilled, repaired, and stabilized to prevent erosion.

Responsible Staff: Project CESCL/Concrete Truck Operator

Will maintenance, fueling, and/or repair of heavy equipment and vehicles occur on-site?

Yes No

List and describe BMPs: S419 BMPs for Mobile Fueling of Vehicles and Heavy Equipment

Perform visual inspection of equipment once daily.

Ensure that the local fire department approves all mobile fueling operations. Comply with local and Washington State fire codes.

Ensure compliance with all 49 CFR 178 requirements for all fuel delivery vehicles or containers. Documentation from a Department of Transportation (DOT) Registered Inspector provides proof of compliance.

Ensure the presence and the constant observation/monitoring of the driver/operator at the fuel transfer location at all times during fuel transfer and ensure implementation of the following procedures at the fuel transfer locations:

Locate the point of fueling at least 25 feet from the nearest storm sewer or inside an impervious containment with a volumetric holding capacity equal to or greater than 110 percent of the fueling tank volume, or covering the storm sewer to ensure no inflow of spilled or leaked fuel. Covers are not required for storm sewers that convey the inflow to a spill control separator approved by the local jurisdiction and the fire department. Potential spill/leak conveyance surfaces must be impervious and in good repair. Do not remove the drain cover if sheen is present. Properly collect and dispose of any contaminated material.

Place a drip pan, or an absorbent pad under each fueling location prior to and during all dispensing operations. The pan (must be liquid tight) and the absorbent pad must have a capacity of at least 5 gallons. There is no need to report spills retained in the drip pan or the pad.

Manage the handling and operation of fuel transfer hoses and nozzle, drip pan(s), and absorbent pads as needed to prevent spills/leaks of fuel from reaching the ground, storm sewer, and receiving waters.

Avoid extending the fueling hoses across a traffic lane without fluorescent traffic cones, or equivalent devices, conspicuously placed to block all traffic from crossing the fuel hose.

Remove the fill nozzle and cease filling the tank when the automatic shut-off valve engages. Do not lock automatic shutoff fueling nozzles in the open position.

Do not "top off" the fuel receiving equipment.

Provide the driver/operator of the fueling vehicle with:

Adequate flashlights or other mobile lighting to view fuel fill openings with poor accessibility. Consult with local fire department for additional lighting requirements.

Two-way communication with his/her home base.

Train the driver/operator annually in spill prevention and cleanup measures and emergency procedures. Make all employees aware of the significant liability associated with fuel spills.

The responsible manager shall properly sign and date the fueling operating procedures. Distribute procedures to the operators, retain them in the organization files, and make them available in the event an authorized government agency requests a review.

Immediately notify the local fire department (911), the appropriate regional office of the Department of Ecology, and the local jurisdiction in the event of any spill entering surface or ground waters. Establish a "call down list" to ensure the rapid and proper notification of management and government officials should any significant amount of product be lost off-site. Keep the list in a protected but readily accessible location in the mobile fueling truck. The "call down list" should also identify spill response contractors available in the area to ensure the rapid removal of significant product spillage into the environment.

In all fueling vehicles, maintain a minimum of the following spill cleanup materials and have them readily available for use:

Non-water absorbents capable of absorbing at least 15 gallons of fuel.

A storm drain plug or cover kit.

A non-water absorbent containment boom of a minimum 10 feet in length with a 12-gallon minimum absorbent capacity.

A non-spark generating shovel (a steel shovel could generate a spark and cause an explosion in the right environment around a spill).

Two, five-gallon buckets with lids.

Use automatic shutoff nozzles for dispensing the fuel. Replace automatic shut-off nozzles as recommended by the manufacturer.

Maintain and replace equipment on fueling vehicles, particularly hoses and nozzles, at established intervals to prevent failures.

Immediately remove and properly dispose of soils with visible surface contamination to prevent the spread of chemicals to groundwater or receiving water via stormwater runoff.

Do not use dispersants to clean up spills or sheens unless properly removed for disposal following application. Dispersants are prohibited from use for spills on water or where the dispersant may enter storm drains, surface waters, treatment systems, or sanitary sewers.

Applicable Structural Source Control BMPs:

Include the following fuel transfer site components:

Automatic fuel transfer shut-off nozzles.

An adequate lighting system at the filling point.

Installation Schedules: Measures will be installed and maintained throughout construction

Inspection and Maintenance plan:

Perform visual equipment inspection once daily.

Maintain and replace equipment on fueling vehicles, particularly hoses and nozzles immediately if wear is observed. Inspect equipment at each re-fueling period, replace equipment annually unless otherwise replaced prior.

Responsible Staff: Project CESCL/Equipment operator

Will wheel wash or tire bath system BMPs be used during construction?

Yes No

List and describe BMPs: Visual inspection of construction equipment prior to leaving the site

Installation Schedules: First phase of construction and maintained through mass excavation until pavement is installed and site is stabilized.

Inspection and Maintenance plan:

Responsible Staff: Project CESCL

Will pH-modifying sources be present on-site?

Yes No

Table 3 – pH-Modifying Sources

<input checked="" type="checkbox"/>	None
<input type="checkbox"/>	Bulk cement
<input type="checkbox"/>	Cement kiln dust
<input type="checkbox"/>	Fly ash
<input type="checkbox"/>	Other cementitious materials
<input type="checkbox"/>	New concrete washing or curing waters
<input type="checkbox"/>	Waste streams generated from concrete grinding and sawing
<input type="checkbox"/>	Exposed aggregate processes
<input type="checkbox"/>	Dewatering concrete vaults
<input type="checkbox"/>	Concrete pumping and mixer washout waters
<input type="checkbox"/>	Recycled concrete
<input type="checkbox"/>	Recycled concrete stockpiles
<input type="checkbox"/>	Other (i.e., calcium lignosulfate) [please describe:]

List and describe BMPs: BMP C151: Concrete Handling, BMP C152: Sawcutting and Surfacing Pollution Prevention, BMP C154: Concrete Washout Area, BMP C253: pH Control for High pH Water

Sawcutting:

Vacuum slurry and cuttings during cutting and surfacing operations.

Slurry and cuttings shall not remain on permanent concrete or asphalt pavement overnight.

Slurry and cuttings shall not drain to any natural or constructed drainage conveyance including stormwater systems. This may require temporarily blocking catch basins.

Dispose of collected slurry and cuttings in a manner that does not violate ground water or surface water quality standards.

Do not allow process water generated during hydro-demolition, surface roughening or similar operations to drain to any natural or constructed drainage conveyance including stormwater systems. Dispose of process water in a manner that does not violate ground water or surface water quality standards.

Handle and dispose of cleaning waste material and demolition debris in a manner that does not cause contamination of water. Dispose of sweeping material from a pick-up sweeper at an appropriate disposal site.

Installation Schedules: Measures will be installed and maintained throughout construction as required during concrete work.

Concrete Handling:

Wash concrete truck drums at an approved off-site location or in designated concrete washout areas only. Do not wash out concrete trucks onto the ground (including formed areas awaiting concrete), or into storm drains, open ditches, streets, or streams. Refer to BMP C154: Concrete Washout Area for information on concrete washout areas.

Return unused concrete remaining in the truck and pump to the originating batch plant for recycling. Do not dump excess concrete on site, except in designated concrete washout areas as allowed in BMP C154: Concrete Washout Area.

Wash small concrete handling equipment (e.g. hand tools, screeds, shovels, rakes, floats, trowels, and wheelbarrows) into designated concrete washout areas or into formed areas awaiting concrete pour.

At no time shall concrete be washed off into the footprint of an area where an infiltration feature will be installed.

Wash equipment difficult to move, such as concrete paving machines, in areas that do not directly drain to natural or constructed stormwater conveyance or potential infiltration areas.

Do not allow washwater from areas, such as concrete aggregate driveways, to drain directly (without detention or treatment) to natural or constructed stormwater conveyances.

Contain washwater and leftover product in a lined container when no designated concrete washout areas (or formed areas, allowed as described above) are available. Dispose of contained concrete and concrete washwater (process water) properly.

Always use forms or solid barriers for concrete pours, such as pilings, within 15-feet of surface waters.

Refer to BMP C252: Treating and Disposing of High pH Water for pH adjustment requirements.

Refer to the Construction Stormwater General Permit (CSWGP) for pH monitoring requirements if the project involves one of the following activities:

Significant concrete work (as defined in the CSWGP).

The use of soils amended with (but not limited to) Portland cement-treated base, cement kiln dust or fly ash.

Discharging stormwater to segments of water bodies on the 303(d) list (Category 5) for high pH.

Concrete Washout Area:

Location and Placement

Locate concrete washout areas at least 50 feet from sensitive areas such as storm drains, open ditches, water bodies, or wetlands.

Allow convenient access to the concrete washout area for concrete trucks, preferably near the area where the concrete is being poured.

If trucks need to leave a paved area to access the concrete washout area, prevent track-out with a pad of rock or quarry spalls (see BMP C105: Stabilized Construction Access). These areas should be far enough away from other construction traffic to reduce the likelihood of accidental damage and spills.

The number of concrete washout areas you install should depend on the expected demand for storage capacity.

On large sites with extensive concrete work, concrete washout areas should be placed in multiple locations for ease of use by concrete truck drivers.

Concrete Truck Washout Procedures

Washout of concrete truck drums shall be performed in designated concrete washout areas only.

Concrete washout from concrete pumper bins can be washed into concrete pumper trucks and discharged into designated concrete washout areas or properly disposed of off-site.

Concrete Washout Area Installation

Concrete washout areas should be constructed as shown in the figures below, with a recommended minimum length and minimum width of 10 ft, but with sufficient quantity and volume to contain all liquid and concrete waste generated by washout operations.

Plastic lining material should be a minimum of 10 mil polyethylene sheeting and should be free of holes, tears, or other defects that compromise the impermeability of the material.

Lath and flagging should be commercial type.

Liner seams shall be installed in accordance with manufacturers' recommendations.

Soil base shall be prepared free of rocks or other debris that may cause tears or holes in the plastic lining material.

Inspection and Maintenance plan:

Sawcutting:

Continually monitor operations to determine whether slurry, cuttings, or process water could enter waters of the state. If inspections show that a violation of water quality standards could occur, stop operations and immediately implement preventive measures such as berms, barriers, secondary containment, and/or vacuum trucks.

Vacuum slurry and cuttings during cutting and surfacing operations.

Slurry and cuttings shall not remain on permanent concrete or asphalt pavement overnight.

Slurry and cuttings shall not drain to any natural or constructed drainage conveyance including stormwater systems. This may require temporarily blocking catch basins.

Dispose of collected slurry and cuttings in a manner that does not violate ground water or surface water quality standards.

Do not allow process water generated during hydro-demolition, surface roughening or similar operations to drain to any natural or constructed drainage conveyance including stormwater systems. Dispose of process water in a manner that does not violate ground water or surface water quality standards.

Handle and dispose of cleaning waste material and demolition debris in a manner that does not cause contamination of water. Dispose of sweeping material from a pick-up sweeper at an appropriate disposal site.

Concrete Handling:

Perform visual inspection prior to each use and or concrete installation.

Check containers for holes in the liner daily during concrete pours and repair the same day.

Concrete Washout Area:

- Inspect and verify that concrete washout BMPs are in place prior to the commencement of concrete work.
- During periods of concrete work, inspect daily to verify continued performance.
- Check overall condition and performance.
- Check remaining capacity (% full).
- If using self-installed washout facilities, verify plastic liners are intact and sidewalls are not damaged.
- If using prefabricated containers, check for leaks.
- Washout facilities shall be maintained to provide adequate holding capacity with a minimum freeboard of 12 inches.
- Washout facilities must be cleaned, or new facilities must be constructed and ready for use once the washout is 75% full.

- If the washout is nearing capacity, vacuum and dispose of the waste material in an approved manner.
- Do not discharge liquid or slurry to waterways, storm drains or directly onto ground.
- Do not use sanitary sewer without local approval.
- Place a secure, non-collapsing, non-water collecting cover over the concrete washout facility prior to predicted wet weather to prevent accumulation and overflow of precipitation.
- Remove and dispose of hardened concrete and return the structure to a functional condition. Concrete may be reused on-site or hauled away for disposal or recycling.
- When you remove materials from the self-installed concrete washout, build a new structure; or, if the previous structure is still intact, inspect for signs of weakening or damage, and make any necessary repairs. Re-line the structure with new plastic after each cleaning.
- Removal of Temporary Concrete Washout Facilities
- When temporary concrete washout facilities are no longer required for the work, the hardened concrete, slurries and liquids shall be removed and properly disposed of.
- Materials used to construct temporary concrete washout facilities shall be removed from the site of the work and disposed of or recycled.
- Holes, depressions or other ground disturbance caused by the removal of the temporary concrete washout facilities shall be backfilled, repaired, and stabilized to prevent erosion.

Responsible Staff: Project CESCL/Operator

Adjust pH of stormwater if outside the range of 6.5 to 8.5 su.

Obtain written approval from Ecology before using chemical treatment with the exception of CO₂ or dry ice to modify pH.

Concrete trucks must not be washed out onto the ground, or into storm drains, open ditches, streets, or streams. Excess concrete must not be dumped on-site, except in designated concrete washout areas with appropriate BMPs installed. Excess concrete must be returned to the plant for recycling if there are no concrete washout areas with appropriate BMPs installed.

Will uncontaminated water from water-only based shaft drilling for construction of building, road, and bridge foundations be infiltrated provided the wastewater is managed in a way that prohibits discharge to surface waters?

Yes No

List and describe BMPs:

Installation Schedules: Install prior to sawcutting or concrete pouring.

Inspection **and** Maintenance plan:

Responsible Staff: Project CESCL/Operator

Revise to reflect current project.

Element 10: Control Dewatering (2.1.10)

This project does not contain shallow groundwater. Dewatering is not anticipated. However, if it is required the following dewatering BMPs will be implemented.

Table 4 – Dewatering BMPs

<input type="checkbox"/>	Infiltration
<input type="checkbox"/>	Transport off-site in a vehicle (vacuum truck for legal disposal)
<input type="checkbox"/>	Ecology-approved on-site chemical treatment or other suitable treatment technologies
<input type="checkbox"/>	Sanitary or combined sewer discharge with local sewer district approval (last resort)
<input checked="" type="checkbox"/>	Use of sedimentation bag with discharge to ditch or swale (small volumes of localized dewatering)

Disposal Methods:

Stormwater Discharge:

Any pH treatment options that generate treated water that must be discharged off site are subject to flow control requirements. Sites that must implement flow control for the developed site must also control stormwater release rates during construction. All treated stormwater must go through a flow control facility before being released to surface waters which require flow control.

List and describe BMPs: BMP C253: pH Control for High pH Water

Installation Schedules: During parking area improvements

Responsible Staff: Project CESCL

Element 11: Maintain BMPs (2.1.11)

All temporary and permanent Erosion and Sediment Control (ESC) BMPs shall be maintained and repaired as needed to ensure continued performance of their intended function.

Maintenance and repair shall be conducted in accordance with each particular BMP specification (see *Volume II of the SWMMWW* or *Chapter 7 of the SWMMEW*).

Visual monitoring of all BMPs installed at the site will be conducted at least once every calendar week and within 24 hours of any stormwater or non-stormwater discharge from the site. If the site becomes inactive and is temporarily stabilized, the inspection frequency may be reduced to once every calendar month.

All temporary ESC BMPs shall be removed within 30 days after final site stabilization is achieved or after the temporary BMPs are no longer needed.

Trapped sediment shall be stabilized on-site or removed. Disturbed soil resulting from removal of either BMPs or vegetation shall be permanently stabilized.

Additionally, protection must be provided for all BMPs installed for the permanent control of stormwater from sediment and compaction. BMPs that are to remain in place following completion of construction shall be examined and restored to full operating condition. If sediment enters these BMPs during construction, the sediment shall be removed and the facility shall be returned to conditions specified in the construction documents.

Element 12: Manage the Project (2.1.12)

The project will be managed based on the following principles:

- Projects will be phased to the maximum extent practicable and seasonal work limitations will be taken into account.
- Inspection and monitoring:
 - Inspection, maintenance and repair of all BMPs will occur as needed to ensure performance of their intended function.
 - Site inspections and monitoring will be conducted in accordance with Special Condition S4 of the CSWGP. Sampling locations are indicated on the Site Map. Sampling station(s) are located in accordance with applicable requirements of the CSWGP.
- Maintain an updated SWPPP.
 - The SWPPP will be updated, maintained, and implemented in accordance with Special Conditions S3, S4, and S9 of the CSWGP.

As site work progresses the SWPPP will be modified routinely to reflect changing site conditions. The SWPPP will be reviewed monthly to ensure the content is current.

Check all the management BMPs that apply at your site:

Table 5 – Management

<input checked="" type="checkbox"/>	Design the project to fit the existing topography, soils, and drainage patterns
<input checked="" type="checkbox"/>	Emphasize erosion control rather than sediment control
<input checked="" type="checkbox"/>	Minimize the extent and duration of the area exposed
<input checked="" type="checkbox"/>	Keep runoff velocities low
<input checked="" type="checkbox"/>	Retain sediment on-site
<input checked="" type="checkbox"/>	Thoroughly monitor site and maintain all ESC measures
<input checked="" type="checkbox"/>	Schedule major earthwork during the dry season
<input type="checkbox"/>	Other (please describe)

Table 6 – BMP Implementation Schedule

Element 13: Protect Low Impact Development (LID) BMPs (2.1.13)

The project will protect all permanent LID facilities throughout construction. The LID subgrade will be protected from construction traffic to prevent compaction of infiltrative soils. Additionally, the excavation will be protected from being a source of construction runoff retention. Once installed, inlet pipes will be plugged to prevent construction runoff from discharging into the facility. The only method of repairing permanent infiltration facilities if they are fouled during construction is by over-excavating soil subgrades and replacing drain rock entirely.

Pollution Prevention Team (3.0)

Table 7 – Team Information

Title	Name(s)	Phone Number
Certified Erosion and Sediment Control Lead (CESCL)		
Resident Engineer		
Emergency Ecology Contact		
Emergency Permittee/Owner Contact		
Non-Emergency Owner Contact		
Monitoring Personnel		
Ecology Regional Office	Southwest Regional Office	360-407-6300

Monitoring and Sampling Requirements (4.0)

Monitoring includes visual inspection, sampling for water quality parameters of concern, and documentation of the inspection and sampling findings in a site log book. A site log book will be maintained for all on-site construction activities and will include:

- A record of the implementation of the SWPPP and other permit requirements
- Site inspections
- Stormwater sampling data

Create your own Site Inspection Form or use the Construction Stormwater Site Inspection Form found on Ecology's website. <https://www.ecology.wa.gov/Regulations-Permits/Permits-certifications/Stormwater-general-permits/Construction-stormwater-permit>

File a blank form under Appendix D.

The site log book must be maintained on-site within reasonable access to the site and be made available upon request to Ecology or the local jurisdiction.

Numeric effluent limits may be required for certain discharges to 303(d) listed waterbodies. See CSWGP Special Condition S8 and Section 5 of this template.

Complete the following paragraph for sites that discharge to impaired waterbodies for fine sediment, turbidity, phosphorus, or pH:

All stormwater and dewatering discharges from the site are subject to an **effluent limit** of 8.5 su for pH and/or 25 NTU for turbidity.

Site Inspection (4.1)

Site inspections will be conducted at least once every calendar week and within 24 hours following any discharge from the site. For sites that are temporarily stabilized and inactive, the required frequency is reduced to once per calendar month.

The discharge point(s) are indicated on the Site Map (see Appendix A) and in accordance with the applicable requirements of the CSWGP.

Stormwater Quality Sampling (4.2)

Turbidity Sampling (4.2.1)

Requirements include calibrated turbidity meter or transparency tube to sample site discharges for compliance with the CSWGP. Sampling will be conducted at all discharge points at least once per calendar week.

Method for sampling turbidity:

Table 8 – Turbidity Sampling Method

X	Turbidity Meter/Turbidimeter (required for disturbances 5 acres or greater in size)
	Transparency Tube (option for disturbances less than 1 acre and up to 5 acres in size)

The benchmark for turbidity value is 25 nephelometric turbidity units (NTU) and a transparency less than 33 centimeters.

If the discharge's turbidity is 26 to 249 NTU or the transparency is less than 33 cm but equal to or greater than 6 cm, the following steps will be conducted:

1. Review the SWPPP for compliance with Special Condition S9. Make appropriate revisions within 7 days of the date the discharge exceeded the benchmark.
2. Immediately begin the process to fully implement and maintain appropriate source control and/or treatment BMPs as soon as possible. Address the problems within 10 days of the date the discharge exceeded the benchmark. If installation of necessary treatment BMPs is not feasible within 10 days, Ecology may approve additional time when the Permittee requests an extension within the initial 10-day response period.
3. Document BMP implementation and maintenance in the site log book.

If the turbidity exceeds 250 NTU or the transparency is 6 cm or less at any time, the following steps will be conducted:

1. Telephone or submit an electronic report to the applicable Ecology Region's Environmental Report Tracking System (ERTS) within 24 hours.
<https://www.ecology.wa.gov/About-us/Get-involved/Report-an-environmental-issue>
 - Central Region (Benton, Chelan, Douglas, Kittitas, Klickitat, Okanogan, Yakima): (509) 575-2490
 - Eastern Region (Adams, Asotin, Columbia, Ferry, Franklin, Garfield, Grant, Lincoln, Pend Oreille, Spokane, Stevens, Walla Walla, Whitman): (509) 329-3400
 - Northwest Region (King, Kitsap, Island, San Juan, Skagit, Snohomish, Whatcom): (425) 649-7000
 - Southwest Region (Clallam, Clark, Cowlitz, Grays Harbor, Jefferson, Lewis, Mason, Pacific, Pierce, Skamania, Thurston, Wahkiakum,): (360) 407-6300
2. Immediately begin the process to fully implement and maintain appropriate source control and/or treatment BMPs as soon as possible. Address the problems within 10 days of the date the discharge exceeded the benchmark. If installation of necessary treatment BMPs is not feasible within 10 days, Ecology may approve additional time when the Permittee requests an extension within the initial 10-day response period
3. Document BMP implementation and maintenance in the site log book.
4. Continue to sample discharges daily until one of the following is true:
 - Turbidity is 25 NTU (or lower).
 - Transparency is 33 cm (or greater).

- Compliance with the water quality limit for turbidity is achieved.
 - 1 - 5 NTU over background turbidity, if background is less than 50 NTU
 - 1% - 10% over background turbidity, if background is 50 NTU or greater
- The discharge stops or is eliminated.

pH Sampling (4.2.2)

pH monitoring is required for “Significant concrete work” (i.e. greater than 1000 cubic yards poured concrete or recycled concrete over the life of the project). The use of engineered soils (soil amendments including but not limited to Portland cement-treated base [CTB], cement kiln dust [CKD] or fly ash) also requires pH monitoring.

For significant concrete work, pH sampling will start the first day concrete is poured and continue until it is cured, typically three (3) weeks after the last pour.

For engineered soils and recycled concrete, pH sampling begins when engineered soils or recycled concrete are first exposed to precipitation and continues until the area is fully stabilized.

If the measured pH is 8.5 or greater, the following measures will be taken:

1. Prevent high pH water from entering storm sewer systems or surface water.
2. Adjust or neutralize the high pH water to the range of 6.5 to 8.5 su using appropriate technology such as carbon dioxide (CO₂) sparging (liquid or dry ice).
3. Written approval will be obtained from Ecology prior to the use of chemical treatment other than CO₂ sparging or dry ice.

Method for sampling pH:

Table 8 – pH Sampling Method

	pH meter
	pH test kit
X	Wide range pH indicator paper

Discharges to 303(d) or Total Maximum Daily Load (TMDL) Waterbodies (5.0)

303(d) Listed Waterbodies (5.1)

The 303(d) status is listed on the Water Quality Atlas: <https://ecology.wa.gov/Water-Shorelines/Water-quality/Water-improvement/Assessment-of-state-waters-303d>

Circle the applicable answer, if necessary:

Is the receiving water 303(d) (Category 5) listed for turbidity, fine sediment, phosphorus, or pH?

No

List the impairment(s):

Puyallup River is impaired by fecal coliform

TMDL Waterbodies (5.2)

Discharges to TMDL receiving waterbodies will meet in-stream water quality criteria at the point of discharge.

The Construction Stormwater General Permit Proposed New Discharge to an Impaired Water Body form is included in Appendix F.

Reporting and Record Keeping (6.0)

Record Keeping (6.1)

Site Log Book (6.1.1)

A site log book will be maintained for all on-site construction activities and will include:

- A record of the implementation of the SWPPP and other permit requirements
- Site inspections
- Sample logs

Records Retention (6.1.2)

Records will be retained during the life of the project and for a minimum of three (3) years following the termination of permit coverage in accordance with Special Condition S5.C of the CSWGP.

Permit documentation to be retained on-site:

- CSWGP
- Permit Coverage Letter
- SWPPP
- Site Log Book

Permit documentation will be provided within 14 days of receipt of a written request from Ecology. A copy of the SWPPP or access to the SWPPP will be provided to the public when requested in writing in accordance with Special Condition S5.G.2.b of the CSWGP.

Updating the SWPPP (6.1.3)

The SWPPP will be modified if:

- Found ineffective in eliminating or significantly minimizing pollutants in stormwater discharges from the site.
- There is a change in design, construction, operation, or maintenance at the construction site that has, or could have, a significant effect on the discharge of pollutants to waters of the State.

The SWPPP will be modified within seven (7) days if inspection(s) or investigation(s) determine additional or modified BMPs are necessary for compliance. An updated timeline for BMP implementation will be prepared.

Reporting (6.2)

Discharge Monitoring Reports (6.2.1)

Cumulative soil disturbance is one (1) acre or larger; therefore, Discharge Monitoring Reports (DMRs) will be submitted to Ecology monthly. If there was no discharge during a given monitoring period the DMR will be submitted as required, reporting "No Discharge". The DMR due date is fifteen (15) days following the end of each calendar month.

DMRs will be reported online through Ecology's WQWebDMR System.

To sign up for WQWebDMR go to:

<https://www.ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Water-quality-permits-guidance/WQWebPortal-guidance>

Notification of Noncompliance (6.2.2)

If any of the terms and conditions of the permit is not met, and the resulting noncompliance may cause a threat to human health or the environment, the following actions will be taken:

1. Ecology will be notified within 24-hours of the failure to comply by calling the applicable Regional office ERTS phone number (Regional office numbers listed below).
2. Immediate action will be taken to prevent the discharge/pollution or otherwise stop or correct the noncompliance. If applicable, sampling and analysis of any noncompliance will be repeated immediately and the results submitted to Ecology within five (5) days of becoming aware of the violation.
3. A detailed written report describing the noncompliance will be submitted to Ecology within five (5) days, unless requested earlier by Ecology.

Anytime turbidity sampling indicates turbidity is 250 NTUs or greater, or water transparency is 6 cm or less, the Ecology Regional office will be notified by phone within 24 hours of analysis as required by Special Condition S5.A of the CSWGP.

- Central Region at (509) 575-2490 for Benton, Chelan, Douglas, Kittitas, Klickitat, Okanogan, or Yakima County
- Eastern Region at (509) 329-3400 for Adams, Asotin, Columbia, Ferry, Franklin, Garfield, Grant, Lincoln, Pend Oreille, Spokane, Stevens, Walla Walla, or Whitman County
- Northwest Region at (425) 649-7000 for Island, King, Kitsap, San Juan, Skagit, Snohomish, or Whatcom County
- Southwest Region at (360) 407-6300 for Clallam, Clark, Cowlitz, Grays Harbor, Jefferson, Lewis, Mason, Pacific, Pierce, Skamania, Thurston, or Wahkiakum

Include the following information:

1. Your name and / Phone number
2. Permit number
3. City / County of project
4. Sample results
5. Date / Time of call
6. Date / Time of sample
7. Project name

In accordance with Special Condition S4.D.5.b of the CSWGP, the Ecology Regional office will be notified if chemical treatment other than CO₂ sparging is planned for adjustment of high pH water.

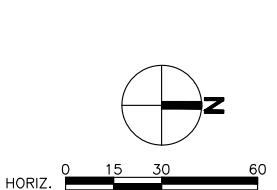
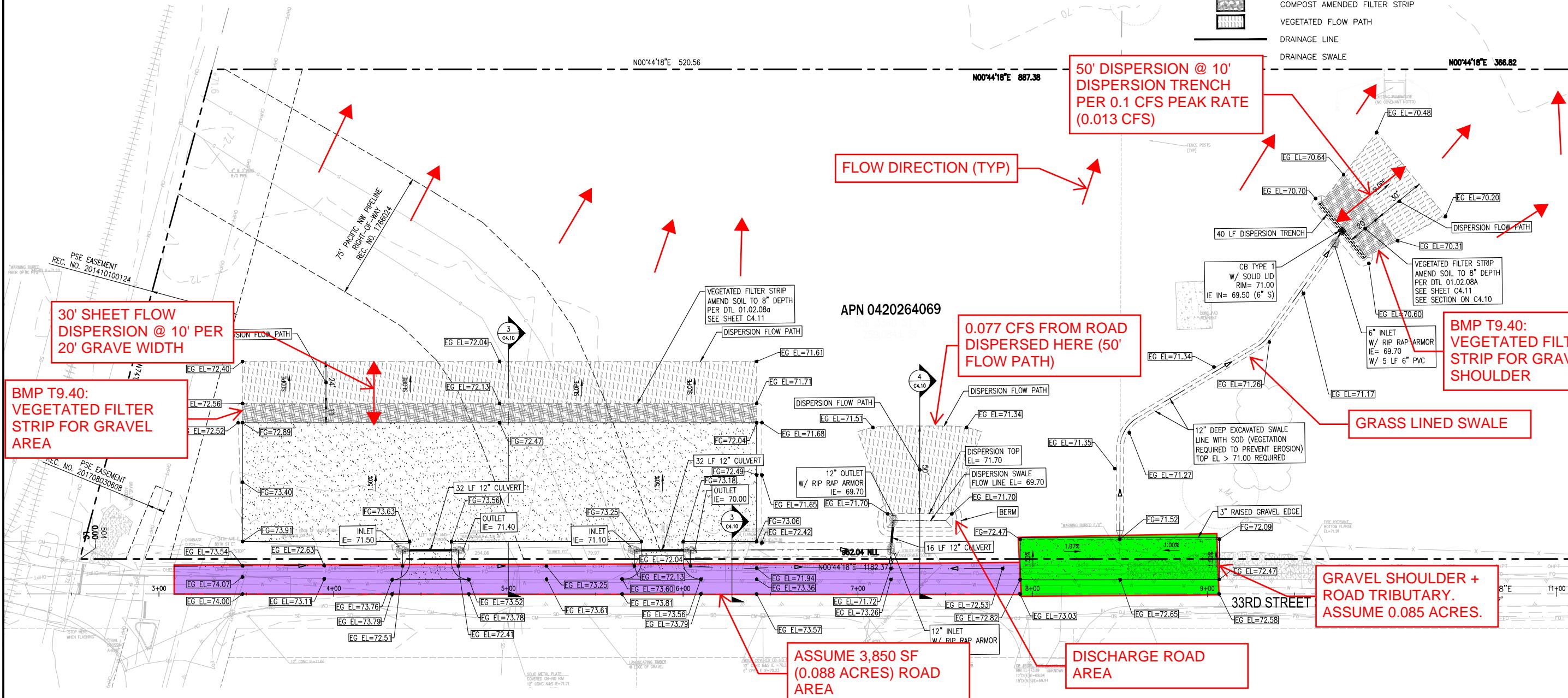
Appendix/Glossary

A. Site Map

LEGEND

PROPERTY LINE	
ROAD CENTERLINE	
EASEMENT LINE	
GRAVEL SURFACING	
COMPOST AMENDED FILTER STRIP	
VEGETATED FLOW PATH	
DRAINAGE LINE	
DRAINAGE SWALE	

REVISIONS	11/18/2025
PERMIT DOCUMENTS	12/12/2023
CIVIL PERMIT APPLICATION	12/12/2023
Description	Date

ILS
PROFESSIONAL ENGINEER
REC'D 11/18/2025
CECIL INSSOC. LLC
PO BOX 598, BOTHELL, WA 98011
(206) 484-3495
www.cecilinssoc.com

CLIENT	STEP BY STEP STEP SUPPORT CENTER 3303 8TH AVENUE SE #4 PUYALLUP, WA 98372
CONTACT	KRISTA LINDEN

STEP BY STEP PARKING LOT REVISION	GRADING & DRAINAGE PLAN
--------------------------------------	-------------------------

C4.00

HORIZ. 0 15 30 60

Scale In Feet

0 15 30 60

B. BMP DETAIL

Maintenance Standards

If the fence has been damaged or visibility reduced, it shall be repaired or replaced immediately and visibility restored.

BMP C105: Stabilized Construction Access

Purpose

Stabilized construction accesses are established to reduce the amount of sediment transported onto paved roads outside the project site by vehicles or equipment. This is done by constructing a stabilized pad of quarry spalls at entrances and exits for project sites.

Conditions of Use

Construction accesses shall be stabilized wherever traffic will be entering or leaving a construction site if paved roads or other paved areas are within 1,000 feet of the site.

For residential subdivision construction sites, provide a stabilized construction access for each residence, rather than only at the main subdivision entrance. Stabilized surfaces shall be of sufficient length/width to provide vehicle access/parking, based on lot size and configuration.

On large commercial, highway, and road projects, the designer should include enough extra materials in the contract to allow for additional stabilized accesses not shown in the initial Construction SWPPP. It is difficult to determine exactly where access to these projects will take place; additional materials will enable the contractor to install them where needed.

Design and Installation Specifications

See Figure II-3.1: Stabilized Construction Access for details. Note: the 100' minimum length of the access shall be reduced to the maximum practicable size when the size or configuration of the site does not allow the full length (100').

Construct stabilized construction accesses with a 12-inch thick pad of 4-inch to 8-inch quarry spalls, a 4-inch course of asphalt treated base (ATB), or use existing pavement. Do not use crushed concrete, cement, or calcium chloride for construction access stabilization because these products raise pH levels in stormwater and concrete discharge to waters of the State is prohibited.

A separation geotextile shall be placed under the spalls to prevent fine sediment from pumping up into the rock pad. The geotextile shall meet the standards listed in Table II-3.2: Stabilized Construction Access Geotextile Standards.

**Table II-3.2: Stabilized Construction Access
Geotextile Standards**

Geotextile Property	Required Value
Grab Tensile Strength (ASTM D4751)	200 psi min.

**Table II-3.2: Stabilized Construction Access
Geotextile Standards (continued)**

Geotextile Property	Required Value
Grab Tensile Elongation (ASTM D4632)	30% max.
Mullen Burst Strength (ASTM D3786-80a)	400 psi min.
AOS (ASTM D4751)	20-45 (U.S. standard sieve size)

- Consider early installation of the first lift of asphalt in areas that will be paved; this can be used as a stabilized access. Also consider the installation of excess concrete as a stabilized access. During large concrete pours, excess concrete is often available for this purpose.
- Fencing (see [BMP C103: High-Visibility Fence](#)) shall be installed as necessary to restrict traffic to the construction access.
- Whenever possible, the access shall be constructed on a firm, compacted subgrade. This can substantially increase the effectiveness of the pad and reduce the need for maintenance.
- Construction accesses should avoid crossing existing sidewalks and back of walk drains if at all possible. If a construction access must cross a sidewalk or back of walk drain, the full length of the sidewalk and back of walk drain must be covered and protected from sediment leaving the site.

Alternative Material Specification

WSDOT has raised safety concerns about the Quarry Spall rock specified above. WSDOT observes that the 4-inch to 8-inch rock sizes can become trapped between Dually truck tires, and then released off-site at highway speeds. WSDOT has chosen to use a modified specification for the rock while continuously verifying that the Stabilized Construction Access remains effective. To remain effective, the BMP must prevent sediment from migrating off site. To date, there has been no performance testing to verify operation of this new specification. Jurisdictions may use the alternative specification, but must perform increased off-site inspection if they use, or allow others to use, it.

Stabilized Construction Accesses may use material that meets the requirements of WSDOT's *Standard Specifications for Road, Bridge, and Municipal Construction* Section 9-03.9(1) ([WSDOT, 2016](#)) for ballast except for the following special requirements.

The grading and quality requirements are listed in [Table II-3.3: Stabilized Construction Access Alternative Material Requirements](#).

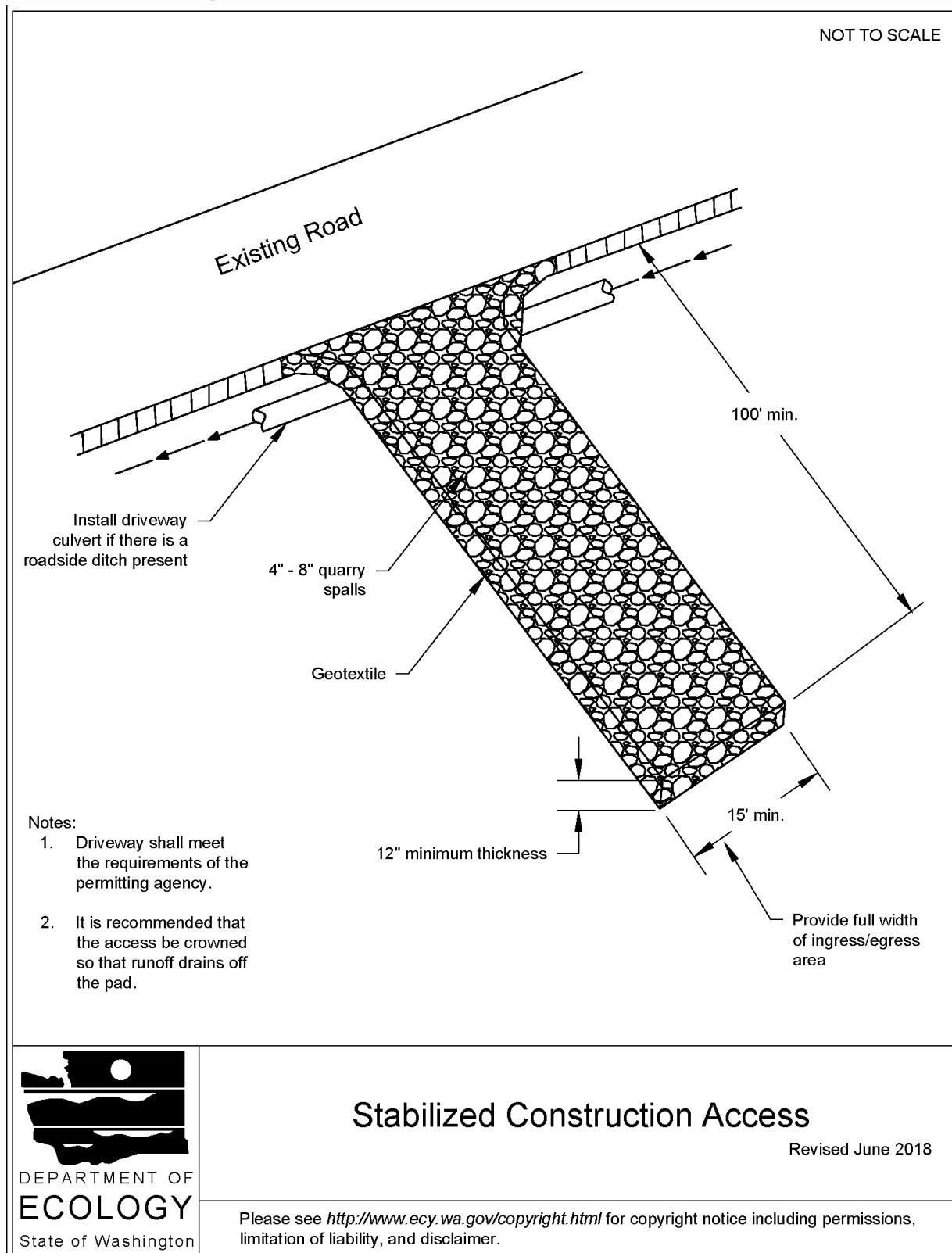
**Table II-3.3: Stabilized
Construction Access
Alternative Material
Requirements**

Sieve Size	Percent Passing
2½"	99-100

**Table II-3.3: Stabilized
Construction Access
Alternative Material
Requirements
(continued)**

Sieve Size	Percent Passing
2"	65-100
$\frac{3}{4}$ "	40-80
No. 4	5 max.
No. 100	0-2
% Fracture	75 min.

- All percentages are by weight.
- The sand equivalent value and dust ratio requirements do not apply.
- The fracture requirement shall be at least one fractured face and will apply the combined aggregate retained on the No. 4 sieve in accordance with FOP for AASHTO T 335.


Maintenance Standards

Quarry spalls shall be added if the pad is no longer in accordance with the specifications.

- If the access is not preventing sediment from being tracked onto pavement, then alternative measures to keep the streets free of sediment shall be used. This may include replacement/cleaning of the existing quarry spalls, street sweeping, an increase in the dimensions of the access, or the installation of BMP C106: Wheel Wash.
- Any sediment that is tracked onto pavement shall be removed by shoveling or street sweeping. The sediment collected by sweeping shall be removed or stabilized on site. The pavement shall not be cleaned by washing down the street, except when high efficiency sweeping is ineffective and there is a threat to public safety. If it is necessary to wash the streets, the construction of a small sump to contain the wash water shall be considered. The sediment would then be washed into the sump where it can be controlled.
- Perform street sweeping by hand or with a high efficiency sweeper. Do not use a non-high efficiency mechanical sweeper because this creates dust and throws soils into storm systems or conveyance ditches.
- Any quarry spalls that are loosened from the pad, which end up on the roadway shall be removed immediately.
- If vehicles are entering or exiting the site at points other than the construction access(es), BMP C103: High-Visibility Fence shall be installed to control traffic.

- Upon project completion and site stabilization, all construction accesses intended as permanent access for maintenance shall be permanently stabilized.

Figure II-3.1: Stabilized Construction Access

Approved as Functionally Equivalent

Ecology has approved products as able to meet the requirements of this BMP. The products did not pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions may choose not to accept these products, or may require additional testing prior to consideration for local use. Products that Ecology has approved as functionally equivalent are available for review on Ecology's website at:

<https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies>

BMP C106: Wheel Wash

Purpose

Wheel washes reduce the amount of sediment transported onto paved roads by washing dirt from the wheels of motor vehicles prior to the motor vehicles leaving the construction site.

Conditions of Use

- Use a wheel wash when BMP C105: Stabilized Construction Access is not preventing sediment from being tracked off site.
- Wheel washing is generally an effective BMP when installed with careful attention to topography. For example, a wheel wash can be detrimental if installed at the top of a slope abutting a right-of-way where the water from the dripping truck can run unimpeded into the street.
- Pressure washing combined with an adequately sized and surfaced pad with direct drainage to a large 10-foot x 10-foot sump can be very effective.
- Wheel wash wastewater is not stormwater. It is commonly called process water, and must be discharged to a separate on-site treatment system that prevents discharge to waters of the State, or to the sanitary sewer with local sewer district approval.
- Wheel washes may use closed-loop recirculation systems to conserve water use.
- Wheel wash wastewater shall not include wastewater from concrete washout areas.
- When practical, the wheel wash should be placed in sequence with BMP C105: Stabilized Construction Access. Locate the wheel wash such that vehicles exiting the wheel wash will enter directly onto BMP C105: Stabilized Construction Access. In order to achieve this, BMP C105: Stabilized Construction Access may need to be extended beyond the standard installation to meet the exit of the wheel wash.

Design and Installation Specifications

Suggested details are shown in Figure II-3.2: Wheel Wash. The Local Permitting Authority may allow other designs. A minimum of 6 inches of asphalt treated base (ATB) over crushed base material or 8 inches over a good subgrade is recommended to pave the wheel wash.

Use a low clearance truck to test the wheel wash before paving. Either a belly dump or lowboy will work well to test clearance.

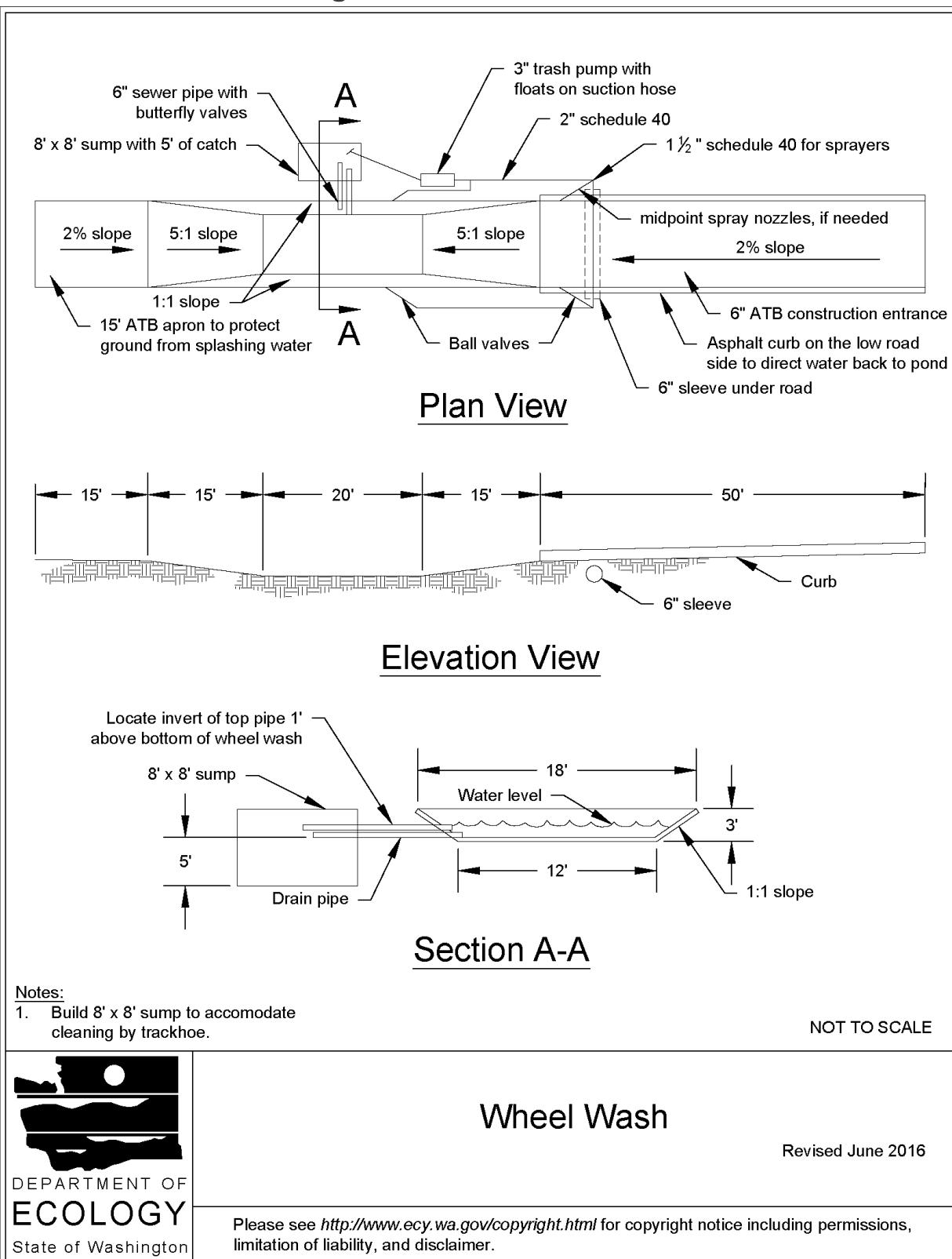
Keep the water level from 12 to 14 inches deep to avoid damage to truck hubs and filling the truck tongues with water.

Midpoint spray nozzles are only needed in extremely muddy conditions.

Wheel wash systems should be designed with a small grade change, 6- to 12-inches for a 10-foot-wide pond, to allow sediment to flow to the low side of pond to help prevent re-suspension of sediment. A drainpipe with a 2- to 3-foot riser should be installed on the low side of the pond to allow for easy cleaning and refilling. Polymers may be used to promote coagulation and flocculation in a closed-loop system. Polyacrylamide (PAM) added to the wheel wash water at a rate of 0.25 - 0.5 pounds per 1,000 gallons of water increases effectiveness and reduces cleanup time. If PAM is already being used for dust or erosion control and is being applied by a water truck, the same truck can be used to change the wash water.

Maintenance Standards

The wheel wash should start out each day with fresh water.


The wheel wash water should be changed a minimum of once per day. On large earthwork jobs where more than 10-20 trucks per hour are expected, the wheel wash water will need to be changed more often.

Approved as Functionally Equivalent

Ecology has approved products as able to meet the requirements of this BMP. The products did not pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions may choose not to accept these products, or may require additional testing prior to consideration for local use. Products that Ecology has approved as functionally equivalent are available for review on Ecology's website at:

<https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies>

Figure II-3.2: Wheel Wash

BMP C107: Construction Road / Parking Area Stabilization

Purpose

Stabilizing roads, parking areas, and other on-site vehicle transportation routes immediately after grading reduces erosion caused by construction traffic or stormwater runoff.

Conditions of Use

Roads and parking areas shall be stabilized wherever they are constructed, whether permanent or temporary, for use by construction traffic.

BMP C103: High-Visibility Fence shall be installed, if necessary, to limit the access of vehicles to only those roads and parking areas that are stabilized.

Design and Installation Specifications

- On areas that will receive asphalt as part of the project, install the first lift as soon as possible.
- A 6-inch depth of 2- to 4-inch crushed rock, gravel base, or crushed surfacing base course shall be applied immediately after grading or utility installation. A 4-inch course of asphalt treated base (ATB) may also be used, or the road/parking area may be paved. It may also be possible to use cement or calcium chloride for soil stabilization. If cement or cement kiln dust is used for roadbase stabilization, pH monitoring and BMP C252: Treating and Disposing of High pH Water is necessary to evaluate and minimize the effects on stormwater. If the area will not be used for permanent roads, parking areas, or structures, a 6-inch depth of hog fuel may also be used, but this is likely to require more maintenance. Whenever possible, construction roads and parking areas shall be placed on a firm, compacted subgrade.
- Temporary road gradients shall not exceed 15 percent. Roadways shall be carefully graded to drain. Drainage ditches shall be provided on each side of the roadway in the case of a crowned section, or on one side in the case of a super-elevated section. Drainage ditches shall be directed to a sediment control BMP.
- Rather than relying on ditches, it may also be possible to grade the road so that runoff sheet-flows into a heavily vegetated area with a well-developed topsoil. Landscaped areas are not adequate. If this area has at least 50 feet of vegetation that water can flow through, then it is generally preferable to use the vegetation to treat runoff, rather than a sediment pond or trap. The 50 feet shall not include wetlands or their buffers. If runoff is allowed to sheetflow through adjacent vegetated areas, it is vital to design the roadways and parking areas so that no concentrated runoff is created.
- Storm drain inlets shall be protected to prevent sediment-laden water entering the drainage system (see BMP C220: Inlet Protection).

Maintenance Standards

Inspect stabilized areas regularly, especially after large storm events.

Crushed rock, gravel base, etc., shall be added as required to maintain a stable driving surface and to stabilize any areas that have eroded.

Following construction, these areas shall be restored to pre-construction condition or better to prevent future erosion.

Perform street cleaning at the end of each day or more often if necessary.

BMP C120: Temporary and Permanent Seeding

Purpose

Seeding reduces erosion by stabilizing exposed soils. A well-established vegetative cover is one of the most effective methods of reducing erosion.

Conditions of Use

Use seeding throughout the project on disturbed areas that have reached final grade or that will remain unworked for more than 30 days.

The optimum seeding windows for western Washington are April 1 through June 30 and September 1 through October 1.

Between July 1 and August 30 seeding requires irrigation until 75 percent grass cover is established.

Between October 1 and March 30 seeding requires a cover of mulch or an erosion control blanket until 75 percent grass cover is established.

Review all disturbed areas in late August to early September and complete all seeding by the end of September. Otherwise, vegetation will not establish itself enough to provide more than average protection.

Mulch is required at all times for seeding because it protects seeds from heat, moisture loss, and transport due to runoff. Mulch can be applied on top of the seed or simultaneously by hydroseeding. See [BMP C121: Mulching](#) for specifications.

Seed and mulch all disturbed areas not otherwise vegetated at final site stabilization. Final stabilization means the completion of all soil disturbing activities at the site and the establishment of a permanent vegetative cover, or equivalent permanent stabilization measures (such as pavement, riprap, gabions, or geotextiles) which will prevent erosion. See [BMP T5.13: Post-Construction Soil Quality and Depth](#).

Design and Installation Specifications

General

- Install channels intended for vegetation before starting major earthwork and hydroseed with a Bonded Fiber Matrix. For vegetated channels that will have high flows, install erosion control blankets over the top of hydroseed. Before allowing water to flow in vegetated channels, establish 75 percent vegetation cover. If vegetated channels cannot be established by seed

Maintenance Standards

Reseed any seeded areas that fail to establish at least 75 percent cover (100 percent cover for areas that receive sheet or concentrated flows). If reseeding is ineffective, use an alternate method such as sodding, mulching, nets, or blankets.

- Reseed and protect by mulch any areas that experience erosion after achieving adequate cover. Reseed and protect by mulch any eroded area.
- Supply seeded areas with adequate moisture, but do not water to the extent that it causes run-off.

Approved as Functionally Equivalent

Ecology has approved products as able to meet the requirements of this BMP. The products did not pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions may choose not to accept these products, or may require additional testing prior to consideration for local use. Products that Ecology has approved as functionally equivalent are available for review on Ecology's website at:

<https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies>

BMP C121: Mulching

Purpose

Mulching soils provides immediate temporary protection from erosion. Mulch also enhances plant establishment by conserving moisture, holding fertilizer, seed, and topsoil in place, and moderating soil temperatures. There are a variety of mulches that can be used. This section discusses only the most common types of mulch.

Conditions of Use

As a temporary cover measure, mulch should be used:

- For less than 30 days on disturbed areas that require cover.
- At all times for seeded areas, especially during the wet season and during the hot summer months.
- During the wet season on slopes steeper than 3H:1V with more than 10 feet of vertical relief.

Mulch may be applied at any time of the year and must be refreshed periodically.

For seeded areas, mulch may be made up of 100 percent:

- cottonseed meal;
- fibers made of wood, recycled cellulose, hemp, or kenaf;

- compost;
- or blends of these.

Tackifier shall be plant-based, such as guar or alpha plantago, or chemical-based such as polyacrylamide or polymers.

Generally, mulches come in 40-50 pound bags. Seed and fertilizer are added at time of application.

Recycled cellulose may contain polychlorinated biphenyl (PCBs). Ecology recommends that products should be evaluated for PCBs prior to use.

Refer to [BMP C126: Polyacrylamide \(PAM\) for Soil Erosion Protection](#) for conditions of use. PAM shall not be directly applied to water or allowed to enter a water body.

Any mulch or tackifier product used shall be installed per the manufacturer's instructions.

Design and Installation Specifications

For mulch materials, application rates, and specifications, see [Table II-3.6: Mulch Standards and Guidelines](#). Consult with the local supplier or the local conservation district for their recommendations. Increase the application rate until the ground is 95% covered (i.e. not visible under the mulch layer). Note: Thickness may be increased for disturbed areas in or near sensitive areas or other areas highly susceptible to erosion.

Where the option of "Compost" is selected, it should be a coarse compost that meets the size gradations listed in [Table II-3.5: Size Gradations of Compost as Mulch Material](#) when tested in accordance with Test Method 02.02-B found in *Test Methods for the Examination of Composting and Compost* (Thompson, 2001).

Table II-3.5: Size Gradations of Compost as Mulch Material

Sieve Size	Percent Passing
3"	100%
1"	90% - 100%
3/4"	70% - 100%
1/4"	40% - 100%

Mulch used within the ordinary high-water mark of surface waters should be selected to minimize potential flotation of organic matter. Composted organic materials have higher specific gravities (densities) than straw, wood, or chipped material. Consult the Hydraulic Permit Authority (HPA) for mulch mixes if applicable.

Maintenance Standards

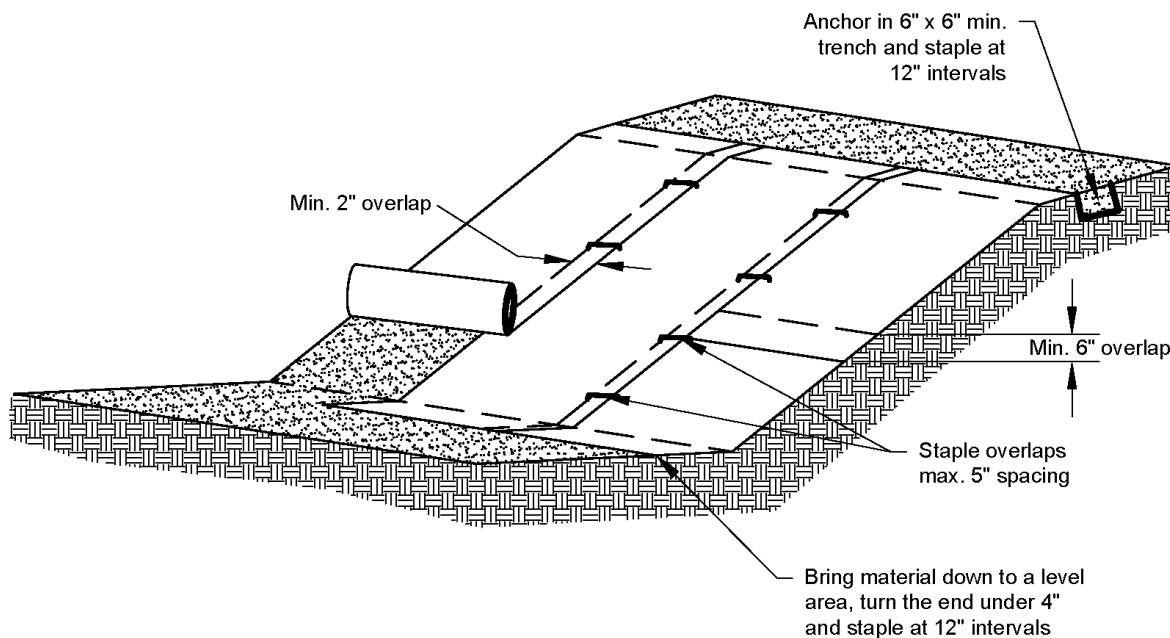
The thickness of the mulch cover must be maintained.

Any areas that experience erosion shall be remulched and/or protected with a net or blanket. If the erosion problem is drainage related, then the problem shall be fixed and the eroded area remulched.

Table II-3.6: Mulch Standards and Guidelines

Mulch Material	Guideline	Description
Straw	Quality Standards	Air-dried; free from undesirable seed and coarse material.
	Application Rates	2"-3" thick; 5 bales per 1,000 sf or 2-3 tons per acre
	Remarks	Cost-effective protection when applied with adequate thickness. Hand-application generally requires greater thickness than blown straw. The thickness of straw may be reduced by half when used in conjunction with seeding. In windy areas straw must be held in place by crimping, using a tackifier, or covering with netting. Blown straw always has to be held in place with a tackifier as even light winds will blow it away. Straw, however, has several deficiencies that should be considered when selecting mulch materials. It often introduces and/or encourages the propagation of weed species and it has no significant long-term benefits. It should also not be used within the ordinary high-water elevation of surface waters (due to flotation).
Hydromulch	Quality Standards	No growth inhibiting factors.
	Application Rates	Approx. 35-45 lbs per 1,000 sf or 1,500 - 2,000 lbs per acre
	Remarks	Shall be applied with hydromulcher. Shall not be used without seed and tackifier unless the application rate is at least doubled. Fibers longer than about 3/4 - 1 inch clog hydromulch equipment. Fibers should be kept to less than 3/4 inch.
Compost	Quality Standards	No visible water or dust during handling. Must be produced per <u>WAC 173-350, Solid Waste Handling Standards</u> , but may have up to 35% biosolids.
	Application Rates	2" thick min.; approx. 100 tons per acre (approx. 750 lbs per cubic yard)
	Remarks	More effective control can be obtained by increasing thickness to 3". Excellent mulch for protecting final grades until landscaping because it can be directly seeded or tilled into soil as an amendment. Compost used for mulch has a coarser size gradation than compost used for <u>BMP C125: Topsoiling / Composting</u> or <u>BMP T5.13: Post-Construction Soil Quality and Depth</u> . It is more stable and practical to use in wet areas and during rainy weather conditions. Do not use near wetlands or near phosphorous impaired water bodies.
Chipped Site Vegetation	Quality Standards	Gradations from fines to 6 inches in length for texture, variation, and interlocking properties. Include a mix of various sizes so that the average size is between 2- and 4- inches.
	Application Rates	2" thick min.;

Table II-3.6: Mulch Standards and Guidelines (continued)


Mulch Material	Guideline	Description
	Remarks	<p>This is a cost-effective way to dispose of debris from clearing and grubbing, and it eliminates the problems associated with burning. Generally, it should not be used on slopes above approx. 10% because of its tendency to be transported by runoff. It is not recommended within 200 feet of surface waters. If permanent seeding or planting is expected shortly after mulch, the decomposition of the chipped vegetation may tie up nutrients important to grass establishment.</p> <p>Note: thick application of this material over existing grass, herbaceous species, and some groundcovers could smother and kill vegetation.</p>
Wood-Based Mulch	Quality Standards	No visible water or dust during handling. Must be purchased from a supplier with a Solid Waste Handling Permit or one exempt from solid waste regulations.
	Application Rates	2" thick min.; approx. 100 tons per acre (approx. 750 lbs. per cubic yard)
	Remarks	This material is often called "wood straw" or "hog fuel". The use of mulch ultimately improves the organic matter in the soil. Special caution is advised regarding the source and composition of wood-based mulches. Its preparation typically does not provide any weed seed control, so evidence of residual vegetation in its composition or known inclusion of weed plants or seeds should be monitored and prevented (or minimized).
Wood Strand Mulch	Quality Standards	A blend of loose, long, thin wood pieces derived from native conifer or deciduous trees with high length-to-width ratio.
	Application Rates	2" thick min.
	Remarks	Cost-effective protection when applied with adequate thickness. A minimum of 95-percent of the wood strand shall have lengths between 2 and 10-inches, with a width and thickness between 1/16 and 1/2-inches. The mulch shall not contain resin, tannin, or other compounds in quantities that would be detrimental to plant life. Sawdust or wood shavings shall not be used as mulch. [Specification 9-14.4(4) from the <i>Standard Specifications for Road, Bridge, and Municipal Construction</i> (<u>WSDOT, 2016</u>)

BMP C122: Nets and Blankets

Purpose

Erosion control nets and blankets are intended to prevent erosion and hold seed and mulch in place on steep slopes and in channels so that vegetation can become well established. In addition, some nets and blankets can be used to permanently reinforce turf to protect drainage ways during high flows.

Figure II-3.4: Slope Installation

Notes:

1. Slope surface shall be smooth before placement for proper soil contact.
2. Stapling pattern as per manufacturer's recommendations.
3. Do not stretch blankets/mattings tight - allow the rolls to mold to any irregularities.
4. For slopes less than 3H:1V, rolls may be placed in horizontal strips.
5. If there is a berm at the top of the slope, anchor upslope of the berm.
6. Lime, fertilize, and seed before installation. Planting of shrubs, trees, etc. should occur after installation.

NOT TO SCALE

DEPARTMENT OF
ECOLOGY
State of Washington

Slope Installation

Revised June 2016

Please see <http://www.ecy.wa.gov/copyright.html> for copyright notice including permissions, limitation of liability, and disclaimer.

BMP C123: Plastic Covering

Purpose

Plastic covering provides immediate, short-term erosion protection to slopes and disturbed areas.

Conditions of Use

Plastic covering may be used on disturbed areas that require cover measures for less than 30 days, except as stated below.

- Plastic is particularly useful for protecting cut and fill slopes and stockpiles. However, the relatively rapid breakdown of most polyethylene sheeting makes it unsuitable for applications greater than six months.
- Due to rapid runoff caused by plastic covering, do not use this method upslope of areas that might be adversely impacted by concentrated runoff. Such areas include steep and/or unstable slopes.
- Plastic sheeting may result in increased runoff volumes and velocities, requiring additional on-site measures to counteract the increases. Creating a trough with wattles or other material can convey clean water away from these areas.
- To prevent undercutting, trench and backfill rolled plastic covering products.
- Although the plastic material is inexpensive to purchase, the cost of installation, maintenance, removal, and disposal add to the total costs of this BMP.
- Whenever plastic is used to protect slopes, install water collection measures at the base of the slope. These measures include plastic-covered berms, channels, and pipes used to convey clean rainwater away from bare soil and disturbed areas. Do not mix clean runoff from a plastic covered slope with dirty runoff from a project.
- Other uses for plastic include:
 - Temporary ditch liner.
 - Pond liner in temporary sediment pond.
 - Liner for bermed temporary fuel storage area if plastic is not reactive to the type of fuel being stored.
 - Emergency slope protection during heavy rains.
 - Temporary drainpipe (“elephant trunk”) used to direct water.

Design and Installation Specifications

- Plastic slope cover must be installed as follows:
 1. Run plastic up and down the slope, not across the slope.
 2. Plastic may be installed perpendicular to a slope if the slope length is less than 10 feet.

3. Provide a minimum of 8-inch overlap at the seams.
4. On long or wide slopes, or slopes subject to wind, tape all seams.
5. Place plastic into a small (12-inch wide by 6-inch deep) slot trench at the top of the slope and backfill with soil to keep water from flowing underneath.
6. Place sand filled burlap or geotextile bags every 3 to 6 feet along seams and tie them together with twine to hold them in place.
7. Inspect plastic for rips, tears, and open seams regularly and repair immediately. This prevents high velocity runoff from contacting bare soil, which causes extreme erosion.
8. Sandbags may be lowered into place tied to ropes. However, all sandbags must be staked in place.

- Plastic sheeting shall have a minimum thickness of 0.06 millimeters.
- If erosion at the toe of a slope is likely, a gravel berm, riprap, or other suitable protection shall be installed at the toe of the slope in order to reduce the velocity of runoff.

Maintenance Standards

- Torn sheets must be replaced and open seams repaired.
- Completely remove and replace the plastic if it begins to deteriorate due to ultraviolet radiation.
- Completely remove plastic when no longer needed.
- Dispose of old tires used to weight down plastic sheeting appropriately.

Approved as Functionally Equivalent

Ecology has approved products as able to meet the requirements of this BMP. The products did not pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions may choose not to accept these products, or may require additional testing prior to consideration for local use. Products that Ecology has approved as functionally equivalent are available for review on Ecology's website at:

<https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies>

BMP C124: Sodding

Purpose

The purpose of sodding is to establish turf for immediate erosion protection and to stabilize drainage paths where concentrated overland flow will occur.

BMP C140: Dust Control

Purpose

Dust control prevents wind transport of dust from disturbed soil surfaces onto roadways, drainage ways, and surface waters.

Conditions of Use

Use dust control in areas (including roadways) subject to surface and air movement of dust where on-site or off-site impacts to roadways, drainage ways, or surface waters are likely.

Design and Installation Specifications

- Vegetate or mulch areas that will not receive vehicle traffic. In areas where planting, mulching, or paving is impractical, apply gravel or landscaping rock.
- Limit dust generation by clearing only those areas where immediate activity will take place, leaving the remaining area(s) in the original condition. Maintain the original ground cover as long as practical.
- Construct natural or artificial windbreaks or windscreens. These may be designed as enclosures for small dust sources.
- Sprinkle the site with water until the surface is wet. Repeat as needed. To prevent carryout of mud onto the street, refer to BMP C105: Stabilized Construction Access and BMP C106: Wheel Wash.
- Irrigation water can be used for dust control. Irrigation systems should be installed as a first step on sites where dust control is a concern.
- Spray exposed soil areas with a dust palliative, following the manufacturer's instructions and cautions regarding handling and application. Used oil is prohibited from use as a dust suppressant. Local governments may approve other dust palliatives such as calcium chloride or PAM.
- PAM (BMP C126: Polyacrylamide (PAM) for Soil Erosion Protection) added to water at a rate of 0.5 pounds per 1,000 gallons of water per acre and applied from a water truck is more effective than water alone. This is due to increased infiltration of water into the soil and reduced evaporation. In addition, small soil particles are bonded together and are not as easily transported by wind. Adding PAM may reduce the quantity of water needed for dust control. Note that the application rate specified here applies to this BMP, and is not the same application rate that is specified in BMP C126: Polyacrylamide (PAM) for Soil Erosion Protection, but the downstream protections still apply.

Refer to BMP C126: Polyacrylamide (PAM) for Soil Erosion Protection for conditions of use. PAM shall not be directly applied to water or allowed to enter a water body.

- Contact your local Air Pollution Control Authority for guidance and training on other dust control measures. Compliance with the local Air Pollution Control Authority constitutes

compliance with this BMP.

- Use vacuum street sweepers.
- Remove mud and other dirt promptly so it does not dry and then turn into dust.
- Techniques that can be used for unpaved roads and lots include:
 - Lower speed limits. High vehicle speed increases the amount of dust stirred up from unpaved roads and lots.
 - Upgrade the road surface strength by improving particle size, shape, and mineral types that make up the surface and base materials.
 - Add surface gravel to reduce the source of dust emission. Limit the amount of fine particles (those smaller than .075 mm) to 10 to 20 percent.
 - Use geotextile fabrics to increase the strength of new roads or roads undergoing reconstruction.
 - Encourage the use of alternate, paved routes, if available.
 - Apply chemical dust suppressants using the admix method, blending the product with the top few inches of surface material. Suppressants may also be applied as surface treatments.
 - Limit dust-causing work on windy days.
 - Pave unpaved permanent roads and other trafficked areas.

Maintenance Standards

Respray area as necessary to keep dust to a minimum.

BMP C150: Materials on Hand

Purpose

Keep quantities of erosion prevention and sediment control materials on the project site at all times to be used for regular maintenance and emergency situations such as unexpected heavy rains. Having these materials on-site reduces the time needed to replace existing or implement new BMPs when inspections indicate that existing BMPs are not meeting the Construction SWPPP requirements. In addition, contractors can save money by buying some materials in bulk and storing them at their office or yard.

Conditions of Use

- Construction projects of any size or type can benefit from having materials on hand. A small commercial development project could have a roll of plastic and some gravel available for immediate protection of bare soil and temporary berm construction. A large earthwork project, such as highway construction, might have several tons of straw, several rolls of plastic, flexible

pipe, sandbags, geotextile fabric and steel "T" posts.

- Materials should be stockpiled and readily available before any site clearing, grubbing, or earthwork begins. A large contractor or project proponent could keep a stockpile of materials that are available for use on several projects.
- If storage space at the project site is at a premium, the contractor could maintain the materials at their office or yard. The office or yard must be less than an hour from the project site.

Design and Installation Specifications

Depending on project type, size, complexity, and length, materials and quantities will vary. A good minimum list of items that will cover numerous situations includes:

- Clear Plastic, 6 mil
- Drainpipe, 6 or 8 inch diameter
- Sandbags, filled
- Straw Bales for mulching
- Quarry Spalls
- Washed Gravel
- Geotextile Fabric
- Catch Basin Inserts
- Steel "T" Posts
- Silt fence material
- Straw Wattles

Maintenance Standards

- All materials with the exception of the quarry spalls, steel "T" posts, and gravel should be kept covered and out of both sun and rain.
- Re-stock materials as needed.

BMP C151: Concrete Handling

Purpose

Concrete work can generate process water and slurry that contain fine particles and high pH, both of which can violate water quality standards in the receiving water. Concrete spillage or concrete discharge to waters of the State is prohibited. Use this BMP to minimize and eliminate concrete, concrete process water, and concrete slurry from entering waters of the State.

Conditions of Use

Any time concrete is used, utilize these management practices. Concrete construction project components include, but are not limited to:

- Curbs
- Sidewalks
- Roads
- Bridges
- Foundations
- Floors
- Runways

Disposal options for concrete, in order of preference are:

1. Off-site disposal
2. Concrete wash-out areas (see BMP C154: Concrete Washout Area)
3. De minimus washout to formed areas awaiting concrete

Design and Installation Specifications

- Wash concrete truck drums at an approved off-site location or in designated concrete washout areas only. Do not wash out concrete trucks onto the ground (including formed areas awaiting concrete), or into storm drains, open ditches, streets, or streams. Refer to BMP C154: Concrete Washout Area for information on concrete washout areas.
 - Return unused concrete remaining in the truck and pump to the originating batch plant for recycling. Do not dump excess concrete on site, except in designated concrete washout areas as allowed in BMP C154: Concrete Washout Area.
- Wash small concrete handling equipment (e.g. hand tools, screeds, shovels, rakes, floats, trowels, and wheelbarrows) into designated concrete washout areas or into formed areas awaiting concrete pour.
- At no time shall concrete be washed off into the footprint of an area where an infiltration feature will be installed.
- Wash equipment difficult to move, such as concrete paving machines, in areas that do not directly drain to natural or constructed stormwater conveyance or potential infiltration areas.
- Do not allow washwater from areas, such as concrete aggregate driveways, to drain directly (without detention or treatment) to natural or constructed stormwater conveyances.
- Contain washwater and leftover product in a lined container when no designated concrete washout areas (or formed areas, allowed as described above) are available. Dispose of contained concrete and concrete washwater (process water) properly.

- Always use forms or solid barriers for concrete pours, such as pilings, within 15-feet of surface waters.
- Refer to BMP C252: Treating and Disposing of High pH Water for pH adjustment requirements.
- Refer to the Construction Stormwater General Permit (CSWGP) for pH monitoring requirements if the project involves one of the following activities:
 - Significant concrete work (as defined in the CSWGP).
 - The use of soils amended with (but not limited to) Portland cement-treated base, cement kiln dust or fly ash.
 - Discharging stormwater to segments of water bodies on the 303(d) list (Category 5) for high pH.

Maintenance Standards

Check containers for holes in the liner daily during concrete pours and repair the same day.

BMP C152: Sawcutting and Surfacing Pollution Prevention

Purpose

Sawcutting and surfacing operations generate slurry and process water that contains fine particles and high pH (concrete cutting), both of which can violate the water quality standards in the receiving water. Concrete spillage or concrete discharge to waters of the State is prohibited. Use this BMP to minimize and eliminate process water and slurry created through sawcutting or surfacing from entering waters of the State.

Conditions of Use

Utilize these management practices anytime sawcutting or surfacing operations take place. Sawcutting and surfacing operations include, but are not limited to:

- Sawing
- Coring
- Grinding
- Roughening
- Hydro-demolition
- Bridge and road surfacing

- 1-Water Resistant Nylon Bag
- 3-Oil Absorbent Socks 3"x 4'
- 2-Oil Absorbent Socks 3"x 10'
- 12-Oil Absorbent Pads 17"x19"
- 1-Pair Splash Resistant Goggles
- 3-Pair Nitrile Gloves
- 10-Disposable Bags with Ties
- Instructions

Maintenance Standards

- Secondary containment facilities shall be maintained free of accumulated rainwater and spills. In the event of spills or leaks, accumulated rainwater and spills shall be collected and placed into drums. These liquids shall be handled as hazardous waste unless testing determines them to be non-hazardous.
- Re-stock spill kit materials as needed.

BMP C154: Concrete Washout Area

Purpose

Prevent or reduce the discharge of pollutants from concrete waste to stormwater by conducting washout off-site, or performing on-site washout in a designated area.

Conditions of Use

Concrete washout areas are implemented on construction projects where:

- Concrete is used as a construction material
- It is not possible to dispose of all concrete wastewater and washout off-site (ready mix plant, etc.).
- Concrete truck drums are washed on-site.

Note that auxiliary concrete truck components (e.g. chutes and hoses) and small concrete handling equipment (e.g. hand tools, screeds, shovels, rakes, floats, trowels, and wheelbarrows) may be washed into formed areas awaiting concrete pour.

At no time shall concrete be washed off into the footprint of an area where an infiltration feature will be installed.

Design and Installation Specifications

Implementation

- Perform washout of concrete truck drums at an approved off-site location or in designated concrete washout areas only.
- Do not wash out concrete onto non-formed areas, or into storm drains, open ditches, streets, or streams.
- Wash equipment difficult to move, such as concrete paving machines, in areas that do not directly drain to natural or constructed stormwater conveyance or potential infiltration areas.
- Do not allow excess concrete to be dumped on-site, except in designated concrete washout areas as allowed above.
- Concrete washout areas may be prefabricated concrete washout containers, or self-installed structures (above-grade or below-grade).
- Prefabricated containers are most resistant to damage and protect against spills and leaks. Companies may offer delivery service and provide regular maintenance and disposal of solid and liquid waste.
- If self-installed concrete washout areas are used, below-grade structures are preferred over above-grade structures because they are less prone to spills and leaks.
- Self-installed above-grade structures should only be used if excavation is not practical.
- Concrete washout areas shall be constructed and maintained in sufficient quantity and size to contain all liquid and concrete waste generated by washout operations.

Education

- Discuss the concrete management techniques described in this BMP with the ready-mix concrete supplier before any deliveries are made.
- Educate employees and subcontractors on the concrete waste management techniques described in this BMP.
- Arrange for the contractor's superintendent or Certified Erosion and Sediment Control Lead (CESCL) to oversee and enforce concrete waste management procedures.
- A sign should be installed adjacent to each concrete washout area to inform concrete equipment operators to utilize the proper facilities.

Contracts

Incorporate requirements for concrete waste management into concrete supplier and subcontractor agreements.

Location and Placement

- Locate concrete washout areas at least 50 feet from sensitive areas such as storm drains, open ditches, water bodies, or wetlands.
- Allow convenient access to the concrete washout area for concrete trucks, preferably near the area where the concrete is being poured.
- If trucks need to leave a paved area to access the concrete washout area, prevent track-out with a pad of rock or quarry spalls (see [BMP C105: Stabilized Construction Access](#)). These areas should be far enough away from other construction traffic to reduce the likelihood of accidental damage and spills.
- The number of concrete washout areas you install should depend on the expected demand for storage capacity.
- On large sites with extensive concrete work, concrete washout areas should be placed in multiple locations for ease of use by concrete truck drivers.

Concrete Truck Washout Procedures

- Washout of concrete truck drums shall be performed in designated concrete washout areas only.
- Concrete washout from concrete pumper bins can be washed into concrete pumper trucks and discharged into designated concrete washout areas or properly disposed of off-site.

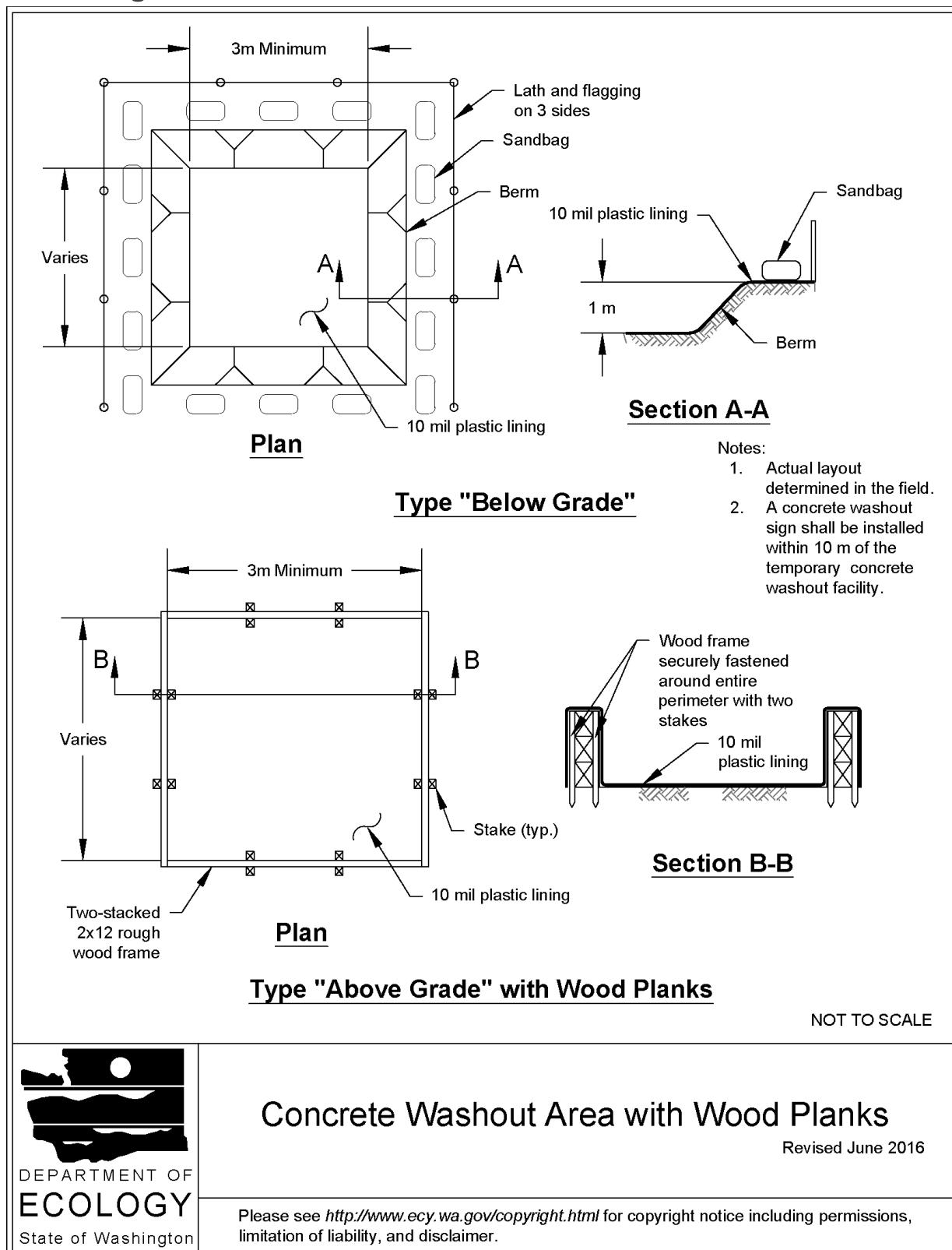
Concrete Washout Area Installation

- Concrete washout areas should be constructed as shown in the figures below, with a recommended minimum length and minimum width of 10 ft, but with sufficient quantity and volume to contain all liquid and concrete waste generated by washout operations.
- Plastic lining material should be a minimum of 10 mil polyethylene sheeting and should be free of holes, tears, or other defects that compromise the impermeability of the material.
- Lath and flagging should be commercial type.
- Liner seams shall be installed in accordance with manufacturers' recommendations.
- Soil base shall be prepared free of rocks or other debris that may cause tears or holes in the plastic lining material.

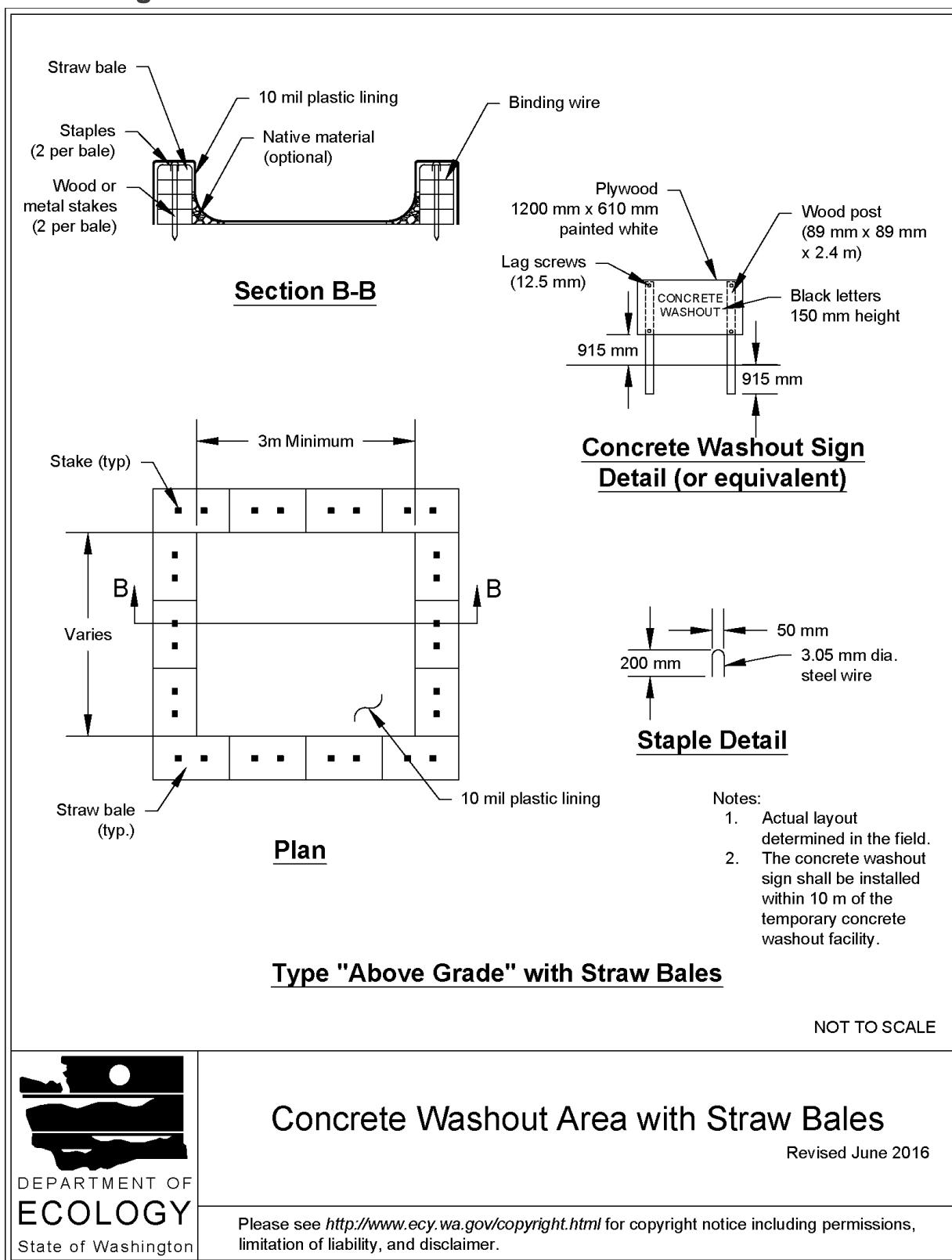
Maintenance Standards

Inspection and Maintenance

- Inspect and verify that concrete washout areas are in place prior to the commencement of concrete work.
- Once concrete wastes are washed into the designated washout area and allowed to harden,


the concrete should be broken up, removed, and disposed of per applicable solid waste regulations. Dispose of hardened concrete on a regular basis.

- During periods of concrete work, inspect the concrete washout areas daily to verify continued performance.
 - Check overall condition and performance.
 - Check remaining capacity (% full).
 - If using self-installed concrete washout areas, verify plastic liners are intact and side-walls are not damaged.
 - If using prefabricated containers, check for leaks.
- Maintain the concrete washout areas to provide adequate holding capacity with a minimum freeboard of 12 inches.
- Concrete washout areas must be cleaned, or new concrete washout areas must be constructed and ready for use once the concrete washout area is 75% full.
- If the concrete washout area is nearing capacity, vacuum and dispose of the waste material in an approved manner.
 - Do not discharge liquid or slurry to waterways, storm drains or directly onto ground.
 - Do not discharge to the sanitary sewer without local approval.
 - Place a secure, non-collapsing, non-water collecting cover over the concrete washout area prior to predicted wet weather to prevent accumulation and overflow of precipitation.
 - Remove and dispose of hardened concrete and return the structure to a functional condition. Concrete may be reused on-site or hauled away for disposal or recycling.
- When you remove materials from a self-installed concrete washout area, build a new structure; or, if the previous structure is still intact, inspect for signs of weakening or damage, and make any necessary repairs. Re-line the structure with new plastic after each cleaning.


Removal of Concrete Washout Areas

- When concrete washout areas are no longer required for the work, the hardened concrete, slurries and liquids shall be removed and properly disposed of.
- Materials used to construct concrete washout areas shall be removed from the site of the work and disposed of or recycled.
- Holes, depressions or other ground disturbance caused by the removal of the concrete washout areas shall be backfilled, repaired, and stabilized to prevent erosion.

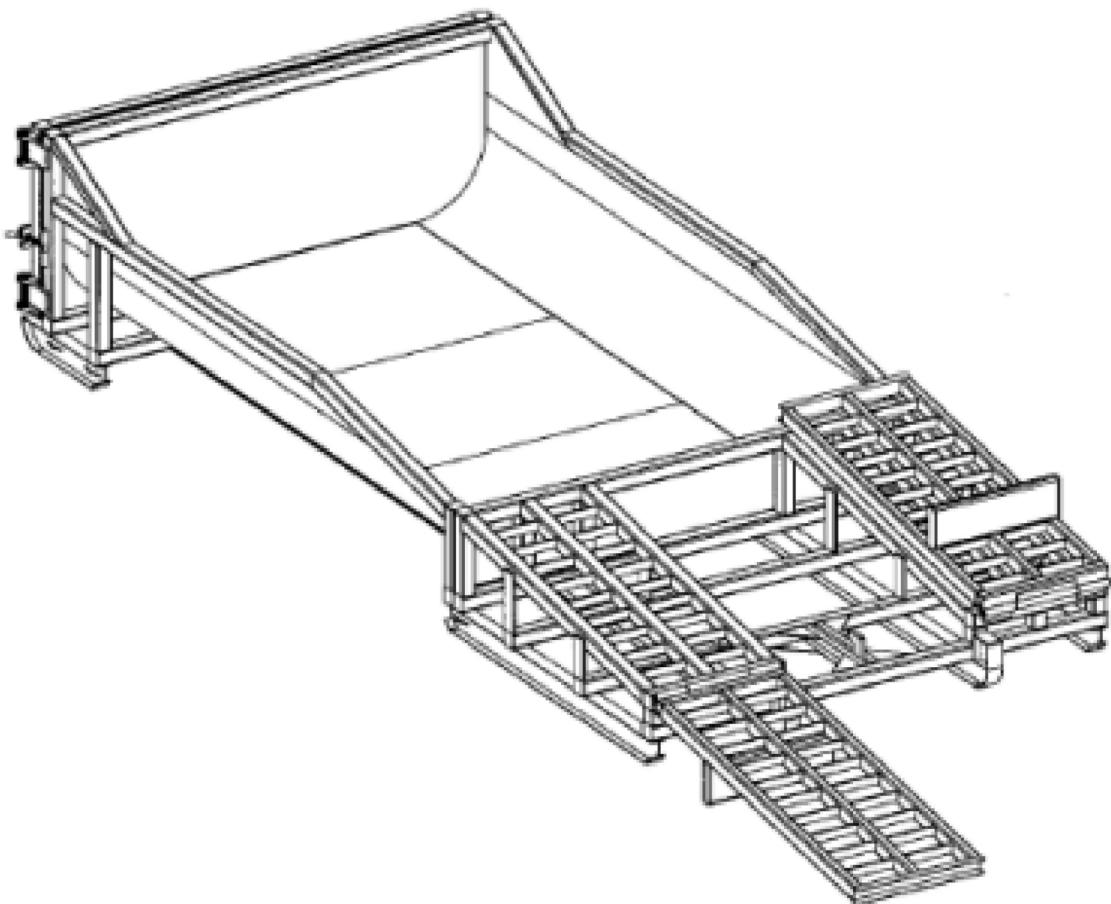

Figure II-3.7: Concrete Washout Area with Wood Planks

Figure II-3.8: Concrete Washout Area with Straw Bales

Figure II-3.9: Prefabricated Concrete Washout Container w/Ramp

NOT TO SCALE

Prefabricated Concrete Washout Container w/Ramp

Revised June 2016

Please see <http://www.ecy.wa.gov/copyright.html> for copyright notice including permissions, limitation of liability, and disclaimer.

Conditions of Use

The construction sequence schedule is an orderly listing of all major land-disturbing activities together with the necessary erosion and sedimentation control measures planned for the project. This type of schedule guides the contractor on work to be done before other work is started so that serious erosion and sedimentation problems can be avoided.

Following a specified work schedule that coordinates the timing of land-disturbing activities and the installation of control measures is perhaps the most cost-effective way of controlling erosion during construction. The removal of ground cover leaves a site vulnerable to erosion. Construction sequencing that limits land clearing, provides timely installation of erosion and sedimentation controls, and restores protective cover quickly can significantly reduce the erosion potential of a site.

Design Considerations

- Minimize construction during rainy periods.
- Schedule projects to disturb only small portions of the site at any one time. Complete grading as soon as possible. Immediately stabilize the disturbed portion before grading the next portion. Practice staged seeding in order to revegetate cut and fill slopes as the work progresses.

II-3.3 Construction Runoff BMPs

BMP C200: Interceptor Dike and Swale

Purpose

Provide a dike of compacted soil or a swale at the top or base of a disturbed slope or along the perimeter of a disturbed construction area to convey stormwater. Use the dike and/or swale to intercept the runoff from unprotected areas and direct it to areas where erosion can be controlled. This can prevent storm runoff from entering the work area or sediment-laden runoff from leaving the construction site.

Conditions of Use

Use an interceptor dike or swale where runoff from an exposed site or disturbed slope must be conveyed to an erosion control BMP which can safely convey the stormwater.

- Locate upslope of a construction site to prevent runoff from entering the disturbed area.
- When placed horizontally across a disturbed slope, it reduces the amount and velocity of runoff flowing down the slope.
- Locate downslope to collect runoff from a disturbed area and direct it to a sediment BMP (e.g. BMP C240: Sediment Trap or BMP C241: Sediment Pond (Temporary)).

Design and Installation Specifications

- Dike and/or swale and channel must be stabilized with temporary or permanent vegetation or other channel protection during construction.
- Steep grades require channel protection and check dams.
- Review construction for areas where overtopping may occur.
- Can be used at the top of new fill before vegetation is established.
- May be used as a permanent diversion channel to carry the runoff.
- Contributing area for an individual dike or swale should be one acre or less.
- Design the dike and/or swale to contain flows calculated by one of the following methods:
 - Single Event Hydrograph Method: The peak volumetric flow rate calculated using a 10-minute time step from a Type 1A, 10-year, 24-hour frequency storm for the worst-case land cover condition.

OR

- Continuous Simulation Method: The 10-year peak flow rate, as determined by an approved continuous runoff model with a 15-minute time step for the worst-case land cover condition.

Worst-case land cover conditions (i.e., producing the most runoff) should be used for analysis (in most cases, this would be the land cover conditions just prior to final landscaping).

Interceptor Dikes

Interceptor dikes shall meet the following criteria:

- Top Width: 2 feet minimum.
- Height: 1.5 feet minimum on berm.
- Side Slope: 2H:1V or flatter.
- Grade: Depends on topography, however, dike system minimum is 0.5%, and maximum is 1%.
- Compaction: Minimum of 90 percent ASTM D698 standard proctor.
- Stabilization: Depends on velocity and reach. Inspect regularly to ensure stability.
- Ground Slopes <5%: Seed and mulch applied within 5 days of dike construction (see [BMP C121: Mulching](#)).
- Ground Slopes 5 - 40%: Dependent on runoff velocities and dike materials. Stabilization should be done immediately using either sod or riprap, or other measures to avoid erosion.
- The upslope side of the dike shall provide positive drainage to the dike outlet. No erosion shall

occur at the outlet. Provide energy dissipation measures as necessary. Sediment-laden runoff must be released through a sediment trapping facility.

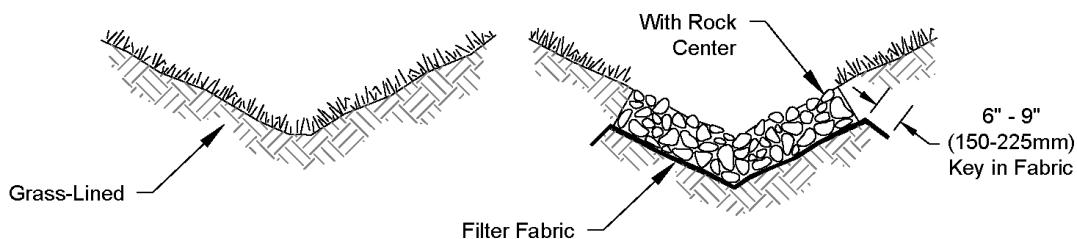
- Minimize construction traffic over temporary dikes. Use temporary cross culverts for channel crossing.
- See [Table II-3.8: Horizontal Spacing of Interceptor Dikes Along Ground Slope](#) for recommended horizontal spacing between dikes.

Table II-3.8: Horizontal Spacing of Interceptor Dikes Along Ground Slope

Average Slope	Slope Percent	Flowpath Length
20H:1V or less	3-5%	300 feet
(10 to 20)H:1V	5-10%	200 feet
(4 to 10)H:1V	10-25%	100 feet
(2 to 4)H:1V	25-50%	50 feet

Interceptor Swales

Interceptor swales shall meet the following criteria:


- Bottom Width: 2 feet minimum; the cross-section bottom shall be level.
- Depth: 1-foot minimum.
- Side Slope: 2H:1V or flatter.
- Grade: Maximum 5 percent, with positive drainage to a suitable outlet (such as [BMP C241: Sediment Pond \(Temporary\)](#)).
- Stabilization: Seed as per [BMP C120: Temporary and Permanent Seeding](#), or [BMP C202: Riprap Channel Lining](#), 12 inches thick riprap pressed into the bank and extending at least 8 inches vertical from the bottom.

Maintenance Standards

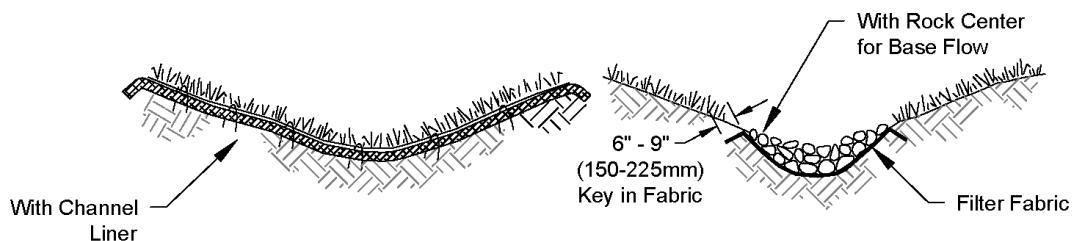
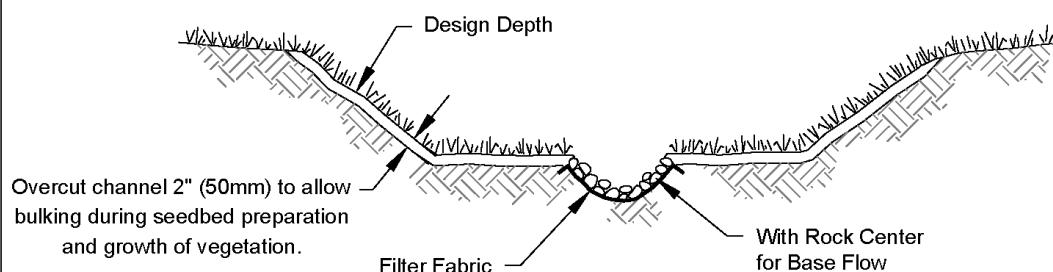

- Inspect diversion dikes and interceptor swales once a week and after every rainfall. Immediately remove sediment from the flow area.
- Damage caused by construction traffic or other activity must be repaired before the end of each working day.
- Check outlets and make timely repairs as needed to avoid gully formation. When the area below the temporary diversion dike is permanently stabilized, remove the dike and fill and stabilize the channel to blend with the natural surface.

Figure II-3.10: Typical Grass-Lined Channels


Typical V-Shaped Channel Cross-Section

Typical Parabolic Channel Cross-Section

Typical Trapezoidal Channel Cross-Section

NOT TO SCALE

DEPARTMENT OF
ECOLOGY
State of Washington

Typical Grass-Lined Channels

Revised June 2016

Please see <http://www.ecy.wa.gov/copyright.html> for copyright notice including permissions, limitation of liability, and disclaimer.

BMP C202: Riprap Channel Lining

Purpose

To protect channels by providing a channel liner using riprap.

Conditions of Use

Use this BMP when natural soils or vegetated stabilized soils in a channel are not adequate to prevent channel erosion.

Use this BMP when a permanent ditch or pipe system is to be installed and a temporary measure is needed.

An alternative to riprap channel lining is BMP C122: Nets and Blankets.

The Federal Highway Administration recommends not using geotextile liners whenever the slope exceeds 10 percent or the shear stress exceeds 8 lbs/ft².

Design and Installation Specifications

- Since riprap is typically used where erosion potential is high, construction must be sequenced so that the riprap is put in place with the minimum possible delay.
- Disturb areas awaiting riprap only when final preparation and placement of the riprap can follow immediately behind the initial disturbance. Where riprap is used for outlet protection, the riprap should be placed before or in conjunction with the construction of the pipe or channel so that it is in place when the pipe or channel begins to operate.
- The designer, after determining the riprap size that will be stable under the flow conditions, shall consider that size to be a minimum size and then, based on riprap gradations actually available in the area, select the size or sizes that equal or exceed the minimum size. The possibility of drainage structure damage by others shall be considered in selecting a riprap size, especially if there is nearby water or a gully in which to toss the stones.
- Stone for riprap shall consist of field stone or quarry stone of approximately rectangular shape. The stone shall be hard and angular and of such quality that it will not disintegrate on exposure to water or weathering and it shall be suitable in all respects for the purpose intended. See Section 9-13 of WSDOT's *Standard Specifications for Road, Bridge, and Municipal Construction* (WSDOT, 2016).
- A lining of engineering filter fabric (geotextile) shall be placed between the riprap and the underlying soil surface to prevent soil movement into or through the riprap. The geotextile should be keyed in at the top of the bank.
- Filter fabric shall not be used on slopes greater than 1.5H:1V as slippage may occur. It should be used in conjunction with a layer of coarse aggregate (granular filter blanket) when the riprap to be placed is 12 inches and larger.

BMP C207: Check Dams

Purpose

Construction of check dams across a swale or ditch reduces the velocity of concentrated flow and dissipates energy at the check dam.

Conditions of Use

Use check dams where temporary or permanent channels are not yet vegetated, channel lining is infeasible, and/or velocity checks are required.

- Check dams may not be placed in streams unless approved by the State Department of Fish and Wildlife.
- Check dams may not be placed in wetlands without approval from a permitting agency.
- Do not place check dams below the expected backwater from any salmonid bearing water between October 1 and May 31 to ensure that there is no loss of high flow refuge habitat for overwintering juvenile salmonids and emergent salmonid fry.

Design and Installation Specifications

- Construct rock check dams from appropriately sized rock. The rock used must be large enough to stay in place given the expected design flow through the channel. The rock must be placed by hand or by mechanical means (do not dump the rock to form the dam) to achieve complete coverage of the ditch or swale and to ensure that the center of the dam is lower than the edges.
- Check dams may also be constructed of either rock or pea-gravel filled bags. Numerous new products are also available for this purpose. They tend to be re-usable, quick and easy to install, effective, and cost efficient.
- Place check dams perpendicular to the flow of water.
- The check dam should form a triangle when viewed from the side. This prevents undercutting as water flows over the face of the check dam rather than falling directly onto the ditch bottom.
- Before installing check dams, impound and bypass upstream water flow away from the work area. Options for bypassing include pumps, siphons, or temporary channels.
- Check dams combined with sumps work more effectively at slowing flow and retaining sediment than a check dam alone. A deep sump should be provided immediately upstream of the check dam.
- In some cases, if carefully located and designed, check dams can remain as permanent installations with very minor regrading. They may be left as either spillways, in which case accumulated sediment would be graded and seeded, or as check dams to prevent further sediment from leaving the site.
- The maximum spacing between check dams shall be such that the downstream toe of the

upstream dam is at the same elevation as the top of the downstream dam.

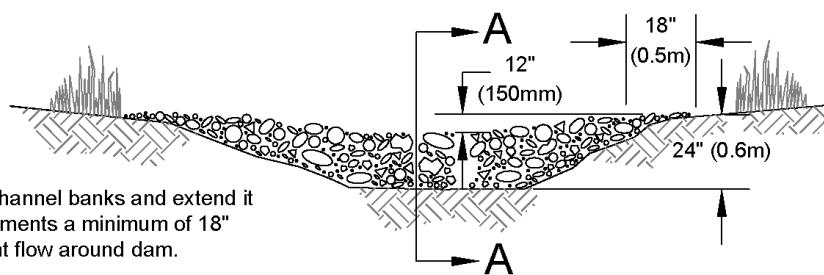
- Keep the maximum height at 2 feet at the center of the check dam.
- Keep the center of the check dam at least 12 inches lower than the outer edges at natural ground elevation.
- Keep the side slopes of the check dam at 2H:1V or flatter.
- Key the stone into the ditch banks and extend it beyond the abutments a minimum of 18 inches to avoid washouts from overflow around the dam.
- Use filter fabric foundation under a rock or sand bag check dam. If a blanket ditch liner is used, filter fabric is not necessary. A piece of organic or synthetic blanket cut to fit will also work for this purpose.
- In the case of grass-lined ditches and swales, all check dams and accumulated sediment shall be removed when the grass has matured sufficiently to protect the ditch or swale - unless the slope of the swale is greater than 4 percent. The area beneath the check dams shall be seeded and mulched immediately after dam removal.
- Ensure that channel appurtenances, such as culvert entrances below check dams, are not subject to damage or blockage from displaced stones.
- See Figure II-3.16: Rock Check Dam.

Maintenance Standards

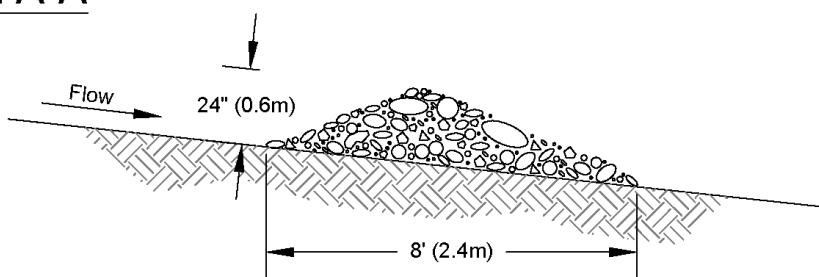
Check dams shall be monitored for performance and sediment accumulation during and after each rainfall that produces runoff. Sediment shall be removed when it reaches one half the sump depth.

- Anticipate submergence and deposition above the check dam and erosion from high flows around the edges of the dam.
- If significant erosion occurs between dams, install a protective riprap liner in that portion of the channel. See BMP C202: Riprap Channel Lining.

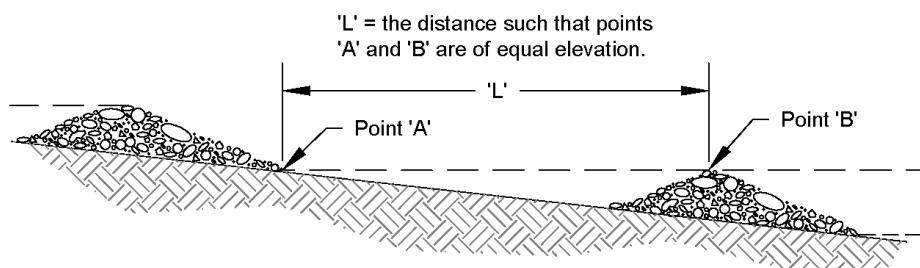
Approved as Functionally Equivalent


Ecology has approved products as able to meet the requirements of this BMP. The products did not pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions may choose not to accept these products, or may require additional testing prior to consideration for local use. Products that Ecology has approved as functionally equivalent are available for review on Ecology's website at:

<https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies>


Figure II-3.16: Rock Check Dam

View Looking Upstream


Note:
Key stone into channel banks and extend it beyond the abutments a minimum of 18" (0.5m) to prevent flow around dam.


Section A-A

Spacing Between Check Dams

NOT TO SCALE

Rock Check Dam

Revised June 2016

Please see <http://www.ecy.wa.gov/copyright.html> for copyright notice including permissions, limitation of liability, and disclaimer.

and staples.

- In the case of grass-lined ditches and swales, check dams and accumulated sediment shall be removed when the grass has matured sufficiently to protect the ditch or swale unless the slope of the swale is greater than 4 percent. The area beneath the check dams shall be seeded and mulched immediately after dam removal.

Maintenance Standards

- Inspect TSDs for performance and sediment accumulation during and after each rainfall that produces runoff. Remove sediment when it reaches one half the height of the TSD.
- Anticipate submergence and deposition above the TSD and erosion from high flows around the edges of the TSD. Immediately repair any damage or any undercutting of the TSD.

BMP C209: Outlet Protection

Purpose

Outlet protection prevents scour at conveyance outlets and minimizes the potential for downstream erosion by reducing the velocity of concentrated stormwater flows.

Conditions of Use

Use outlet protection at the outlets of all ponds, pipes, ditches, or other conveyances that discharge to a natural or manmade drainage feature such as a stream, wetland, lake, or ditch.

Design and Installation Specifications

- The receiving channel at the outlet of a pipe shall be protected from erosion by lining a minimum of 6 feet downstream and extending up the channel sides a minimum of 1-foot above the maximum tailwater elevation, or 1-foot above the crown, whichever is higher. For pipes larger than 18 inches in diameter, the outlet protection lining of the channel shall be four times the diameter of the outlet pipe.
- Standard wingwalls, tapered outlets, and paved channels should also be considered when appropriate for permanent culvert outlet protection (WSDOT, 2015).
- BMP C122: Nets and Blankets or BMP C202: Riprap Channel Lining provide suitable options for lining materials.
- With low flows, BMP C201: Grass-Lined Channels can be an effective alternative for lining material.
- The following guidelines shall be used for outlet protection with riprap:
 - If the discharge velocity at the outlet is less than 5 fps, use 2-inch to 8-inch riprap. Minimum thickness is 1-foot.
 - For 5 to 10 fps discharge velocity at the outlet, use 24-inch to 48-inch riprap. Minimum

thickness is 2 feet.

- For outlets at the base of steep slope pipes (pipe slope greater than 10 percent), use an engineered energy dissipator.
- Filter fabric or erosion control blankets should always be used under riprap to prevent scour and channel erosion. See BMP C122: Nets and Blankets.
- Bank stabilization, bioengineering, and habitat features may be required for disturbed areas. This work may require a Hydraulic Project Approval (HPA) from the Washington State Department of Fish and Wildlife. See I-2.11 Hydraulic Project Approvals.

Maintenance Standards

- Inspect and repair as needed.
- Add rock as needed to maintain the intended function.
- Clean energy dissipator if sediment builds up.

BMP C220: Inlet Protection

Purpose

Inlet protection prevents coarse sediment from entering drainage systems prior to permanent stabilization of the disturbed area.

Conditions of Use

Use inlet protection at inlets that are operational before permanent stabilization of the disturbed areas that contribute runoff to the inlet. Provide protection for all storm drain inlets downslope and within 500 feet of a disturbed or construction area, unless those inlets are preceded by a sediment trapping BMP.

Also consider inlet protection for lawn and yard drains on new home construction. These small and numerous drains coupled with lack of gutters can add significant amounts of sediment into the roof drain system. If possible, delay installing lawn and yard drains until just before landscaping, or cap these drains to prevent sediment from entering the system until completion of landscaping. Provide 18-inches of sod around each finished lawn and yard drain.

Table II-3.10: Storm Drain Inlet Protection lists several options for inlet protection. All of the methods for inlet protection tend to plug and require a high frequency of maintenance. Limit contributing drainage areas for an individual inlet to one acre or less. If possible, provide emergency overflows with additional end-of-pipe treatment where stormwater ponding would cause a hazard.

Table II-3.10: Storm Drain Inlet Protection

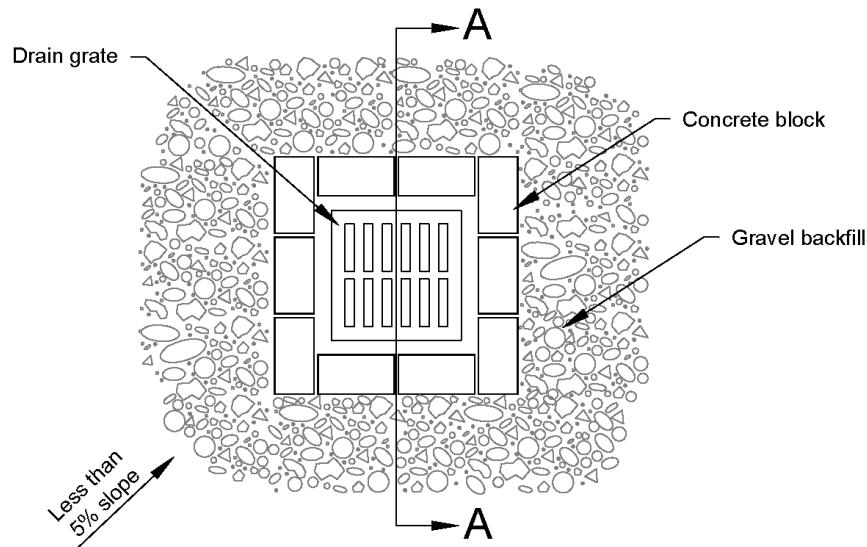
Type of Inlet Protection	Emergency Overflow	Applicable for Paved/ Earthen Surfaces	Conditions of Use
Drop Inlet Protection			
Excavated drop inlet protection	Yes, temporary flooding may occur	Earthen	Applicable for heavy flows. Easy to maintain. Large area requirement: 30'x30'/acre
Block and gravel drop inlet protection	Yes	Paved or Earthen	Applicable for heavy concentrated flows. Will not pond.
Gravel and wire drop inlet protection	No	Paved or Earthen	Applicable for heavy concentrated flows. Will pond. Can withstand traffic.
Catch basin filters	Yes	Paved or Earthen	Frequent maintenance required.
Curb Inlet Protection			
Curb inlet protection with wooden weir	Small capacity overflow	Paved	Used for sturdy, more compact installation.
Block and gravel curb inlet protection	Yes	Paved	Sturdy, but limited filtration.
Culvert Inlet Protection			
Culvert inlet sediment trap	N/A	N/A	18 month expected life.

Design and Installation Specifications

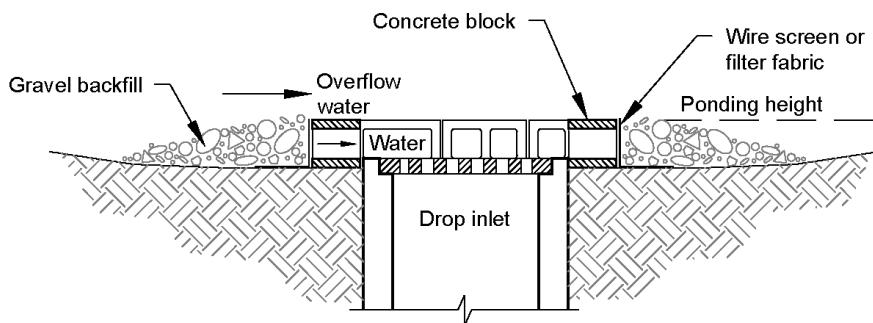
Excavated Drop Inlet Protection

Excavated drop inlet protection consists of an excavated impoundment around the storm drain inlet. Sediment settles out of the stormwater prior to entering the storm drain. Design and installation specifications for excavated drop inlet protection include:

- Provide a depth of 1-2 ft as measured from the crest of the inlet structure.
- Slope sides of excavation should be no steeper than 2H:1V.
- Minimum volume of excavation is 35 cubic yards.
- Shape the excavation to fit the site, with the longest dimension oriented toward the longest inflow area.
- Install provisions for draining to prevent standing water.
- Clear the area of all debris.


- Grade the approach to the inlet uniformly.
- Drill weep holes into the side of the inlet.
- Protect weep holes with screen wire and washed aggregate.
- Seal weep holes when removing structure and stabilizing area.
- Build a temporary dike, if necessary, to the down slope side of the structure to prevent bypass flow.

Block and Gravel Filter


A block and gravel filter is a barrier formed around the inlet with standard concrete blocks and gravel. See Figure II-3.17: Block and Gravel Filter. Design and installation specifications for block gravel filters include:

- Provide a height of 1 to 2 feet above the inlet.
- Recess the first row of blocks 2-inches into the ground for stability.
- Support subsequent courses by placing a pressure treated wood 2x4 through the block opening.
- Do not use mortar.
- Lay some blocks in the bottom row on their side to allow for dewatering the pool.
- Place hardware cloth or comparable wire mesh with $\frac{1}{2}$ -inch openings over all block openings.
- Place gravel to just below the top of blocks on slopes of 2H:1V or flatter.
- An alternative design is a gravel berm surrounding the inlet, as follows:
 - Provide a slope of 3H:1V on the upstream side of the berm.
 - Provide a slope of 2H:1V on the downstream side of the berm.
 - Provide a 1-foot wide level stone area between the gravel berm and the inlet.
 - Use stones 3 inches in diameter or larger on the upstream slope of the berm.
 - Use gravel $\frac{1}{2}$ - to $\frac{3}{4}$ -inch at a minimum thickness of 1-foot on the downstream slope of the berm.

Figure II-3.17: Block and Gravel Filter

Plan View

Section A-A

Notes:

1. Drop inlet sediment barriers are to be used for small, nearly level drainage areas. (less than 5%)
2. Excavate a basin of sufficient size adjacent to the drop inlet.
3. The top of the structure (ponding height) must be well below the ground elevation downslope to prevent runoff from bypassing the inlet. A temporary dike may be necessary on the downslope side of the structure.

NOT TO SCALE

DEPARTMENT OF
ECOLOGY
State of Washington

Block and Gravel Filter

Revised June 2016

Please see <http://www.ecy.wa.gov/copyright.html> for copyright notice including permissions, limitation of liability, and disclaimer.

Gravel and Wire Mesh Filter

Gravel and wire mesh filters are gravel barriers placed over the top of the inlet. This method does not provide an overflow. Design and installation specifications for gravel and wire mesh filters include:

- Use a hardware cloth or comparable wire mesh with $\frac{1}{2}$ -inch openings.
 - Place wire mesh over the drop inlet so that the wire extends a minimum of 1-foot beyond each side of the inlet structure.
 - Overlap the strips if more than one strip of mesh is necessary.
- Place coarse aggregate over the wire mesh.
 - Provide at least a 12-inch depth of aggregate over the entire inlet opening and extend at least 18-inches on all sides.

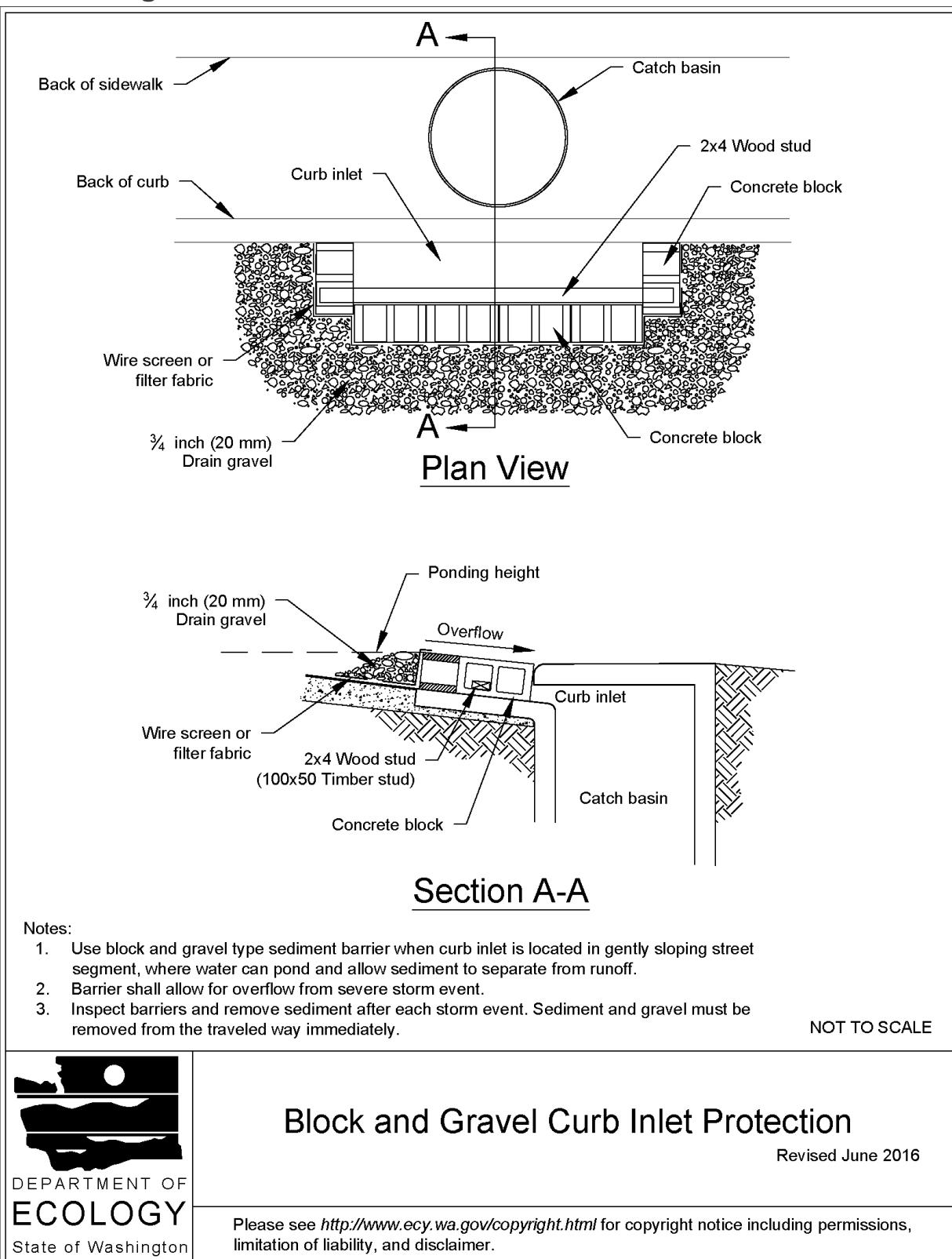
Catch Basin Filters

Catch basin filters are designed by manufacturers for construction sites. The limited sediment storage capacity increases the amount of inspection and maintenance required, which may be daily for heavy sediment loads. To reduce maintenance requirements, combine a catch basin filter with another type of inlet protection. This type of inlet protection provides flow bypass without overflow and therefore may be a better method for inlets located along active rights-of-way. Design and installation specifications for catch basin filters include:

- Provides 5 cubic feet of storage.
- Requires dewatering provisions.
- Provides a high-flow bypass that will not clog under normal use at a construction site.
- Insert the catch basin filter in the catch basin just below the grating.

Curb Inlet Protection with Wooden Weir

Curb inlet protection with wooden weir is an option that consists of a barrier formed around a curb inlet with a wooden frame and gravel. Design and installation specifications for curb inlet protection with wooden weirs include:

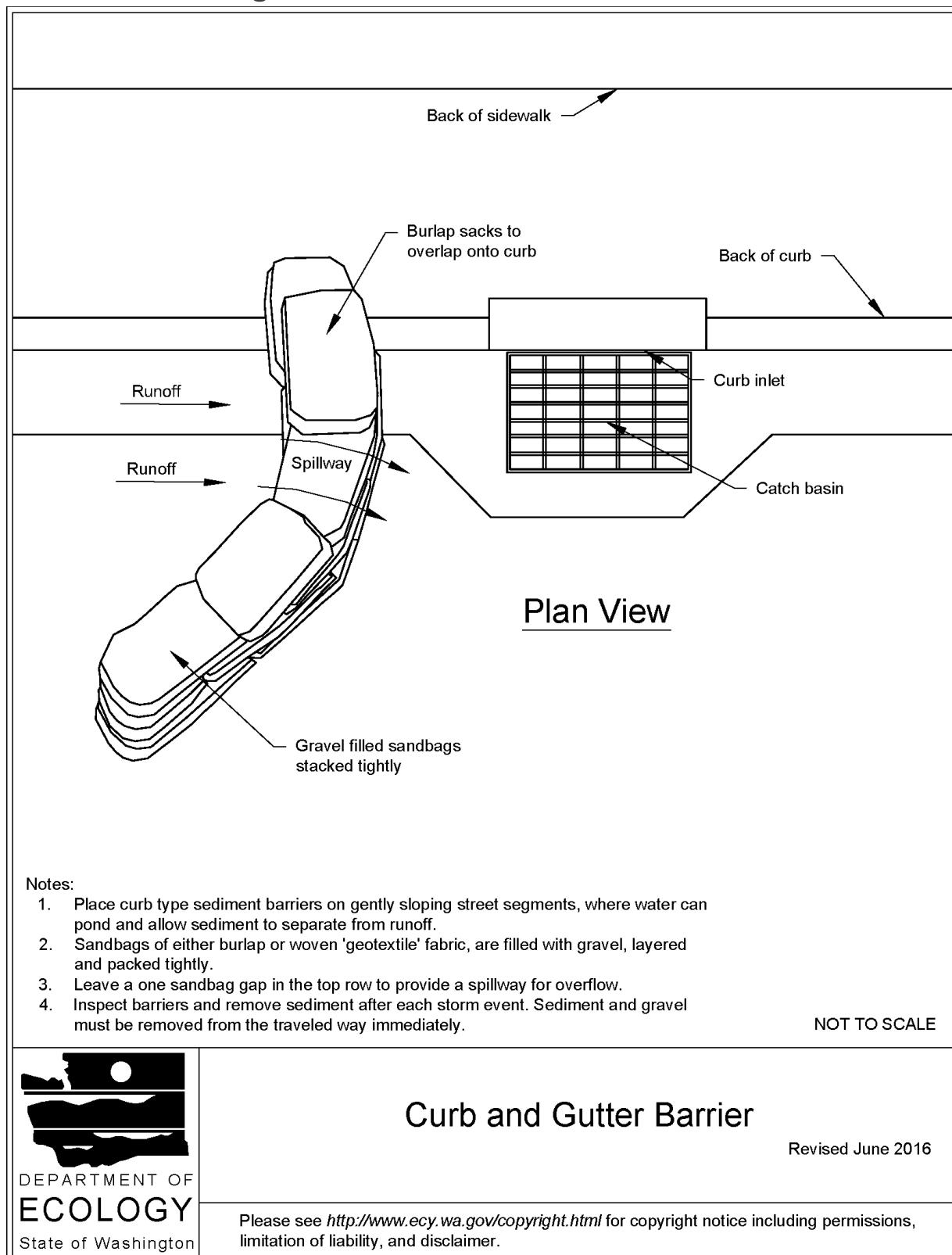

- Use wire mesh with $\frac{1}{2}$ -inch openings.
- Use extra strength filter cloth.
- Construct a frame.
- Attach the wire and filter fabric to the frame.
- Pile coarse washed aggregate against the wire and fabric.
- Place weight on the frame anchors.

Block and Gravel Curb Inlet Protection

Block and gravel curb inlet protection is a barrier formed around a curb inlet with concrete blocks and gravel. See [Figure II-3.18: Block and Gravel Curb Inlet Protection](#). Design and installation specifications for block and gravel curb inlet protection include:

- Use wire mesh with $\frac{1}{2}$ -inch openings.
- Place two concrete blocks on their sides abutting the curb at either side of the inlet opening. These are spacer blocks.
- Place a 2x4 stud through the outer holes of each spacer block to align the front blocks.
- Place blocks on their sides across the front of the inlet and abutting the spacer blocks.
- Place wire mesh over the outside vertical face.
- Pile coarse aggregate against the wire to the top of the barrier.

Figure II-3.18: Block and Gravel Curb Inlet Protection



Curb and Gutter Sediment Barrier

Curb and gutter sediment barrier is a sandbag or rock berm (riprap and aggregate) 3 feet high and 3 feet wide in a horseshoe shape. See Figure II-3.19: Curb and Gutter Barrier. Design and installation specifications for curb and gutter sediment barrier include:

- Construct a horseshoe shaped berm, faced with coarse aggregate if using riprap, 3 feet high and 3 feet wide, at least 2 feet from the inlet.
- Construct a horseshoe shaped sedimentation trap on the upstream side of the berm. Size the trap to sediment trap standards for protecting a culvert inlet.

Figure II-3.19: Curb and Gutter Barrier

Maintenance Standards

- Inspect all forms of inlet protection frequently, especially after storm events. Clean and replace clogged catch basin filters. For rock and gravel filters, pull away the rocks from the inlet and clean or replace. An alternative approach would be to use the clogged rock as fill and put fresh rock around the inlet.
- Do not wash sediment into storm drains while cleaning. Spread all excavated material evenly over the surrounding land area or stockpile and stabilize as appropriate.

Approved as Functionally Equivalent

Ecology has approved products as able to meet the requirements of this BMP. The products did not pass through the Technology Assessment Protocol – Ecology (TAPE) process. Local jurisdictions may choose not to accept these products, or may require additional testing prior to consideration for local use. Products that Ecology has approved as functionally equivalent are available for review on Ecology's website at:

<https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Stormwater-permittee-guidance-resources/Emerging-stormwater-treatment-technologies>

BMP C231: Brush Barrier

Purpose

The purpose of brush barriers is to reduce the transport of coarse sediment from a construction site by providing a temporary physical barrier to sediment and reducing the runoff velocities of overland flow.

Conditions of Use

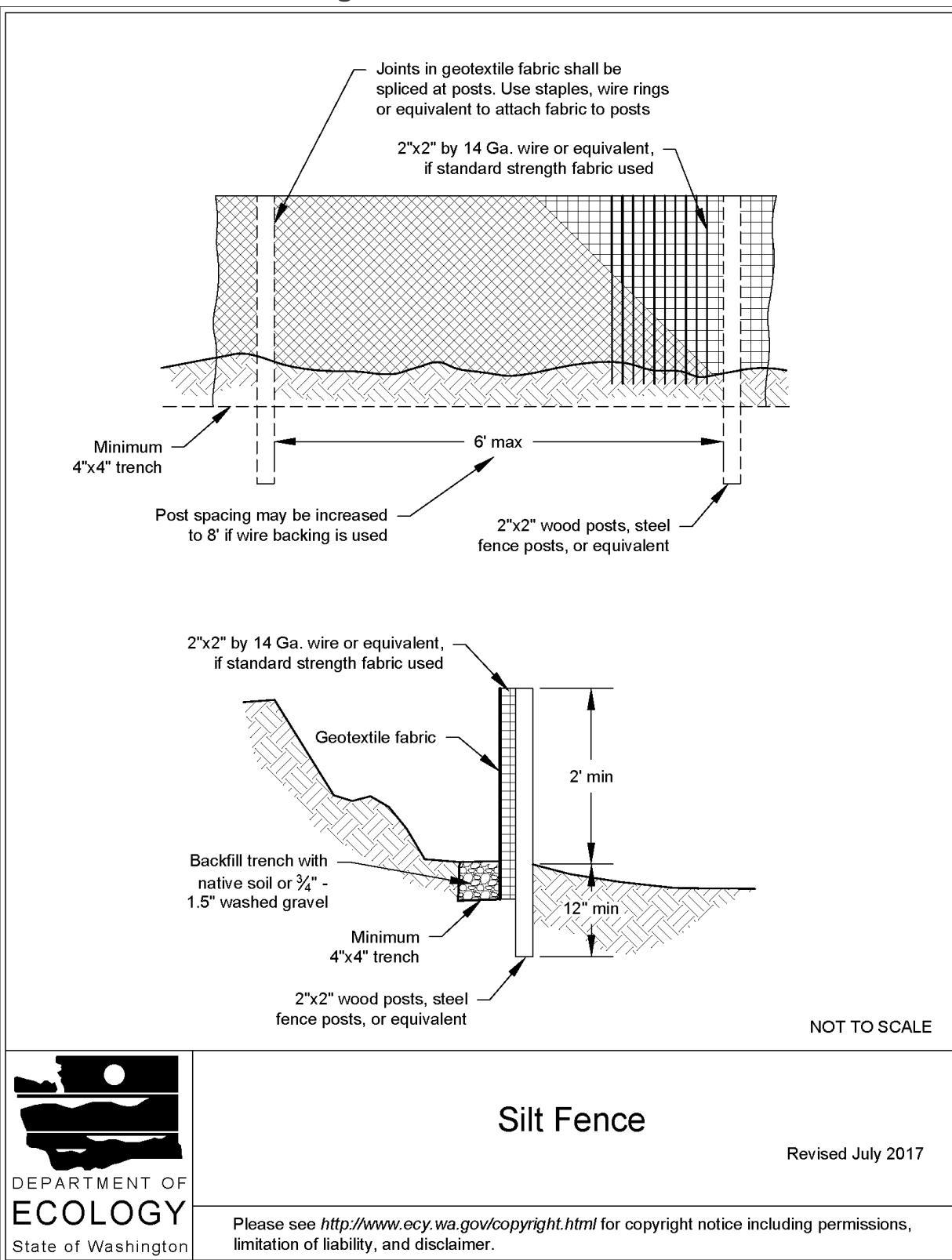
- Brush barriers may be used downslope of disturbed areas that are less than one-quarter acre.
- Brush barriers are not intended to treat concentrated flows, nor are they intended to treat substantial amounts of overland flow. Any concentrated flows must be directed to a sediment trapping BMP. The only circumstance in which overland flow can be treated solely by a brush barrier, rather than by a sediment trapping BMP, is when the area draining to the barrier is small.
- Brush barriers should only be installed on contours.

Design and Installation Specifications

- Height: 2 feet (minimum) to 5 feet (maximum).
- Width: 5 feet at base (minimum) to 15 feet (maximum).
- Filter fabric (geotextile) may be anchored over the brush berm to enhance the filtration ability of the barrier. Ten-ounce burlap is an adequate alternative to filter fabric.

BMP C233: Silt Fence

Purpose


Silt fence reduces the transport of coarse sediment from a construction site by providing a temporary physical barrier to sediment and reducing the runoff velocities of overland flow.

Conditions of Use

Silt fence may be used downslope of all disturbed areas.

- Silt fence shall prevent sediment carried by runoff from going beneath, through, or over the top of the silt fence, but shall allow the water to pass through the fence.
- Silt fence is not intended to treat concentrated flows, nor is it intended to treat substantial amounts of overland flow. Convey any concentrated flows through the drainage system to a sediment trapping BMP.
- Do not construct silt fences in streams or use in V-shaped ditches. Silt fences do not provide an adequate method of silt control for anything deeper than sheet or overland flow.

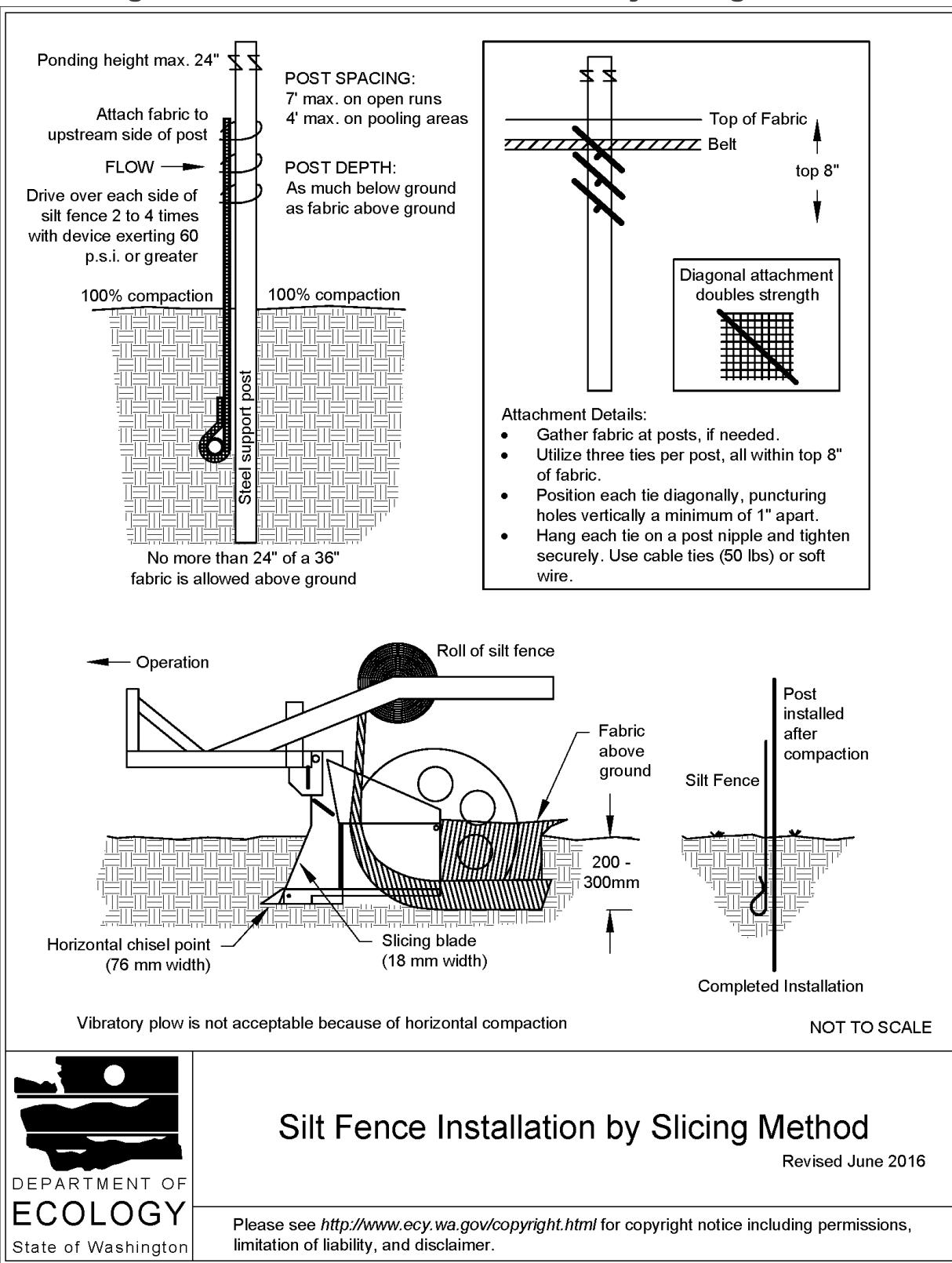
Figure II-3.22: Silt Fence

Design and Installation Specifications

- Use in combination with other construction stormwater BMPs.
- Maximum slope steepness (perpendicular to the silt fence line) 1H:1V.
- Maximum sheet or overland flow path length to the silt fence of 100 feet.
- Do not allow flows greater than 0.5 cfs.
- Use geotextile fabric that meets the following standards. All geotextile properties listed below are minimum average roll values (i.e., the test result for any sampled roll in a lot shall meet or exceed the values shown in Table II-3.11: Geotextile Fabric Standards for Silt Fence):

Table II-3.11: Geotextile Fabric Standards for Silt Fence

Geotextile Property	Minimum Average Roll Value
Polymeric Mesh AOS (ASTM D4751)	0.60 mm maximum for slit film woven (#30 sieve). 0.30 mm maximum for all other geotextile types (#50 sieve). 0.15 mm minimum for all fabric types (#100 sieve).
Water Permittivity (ASTM D4491)	0.02 sec ⁻¹ minimum
Grab Tensile Strength (ASTM D4632)	180 lbs. Minimum for extra strength fabric. 100 lbs minimum for standard strength fabric.
Grab Tensile Strength (ASTM D4632)	30% maximum
Ultraviolet Resistance (ASTM D4355)	70% minimum


- Support standard strength geotextiles with wire mesh, chicken wire, 2-inch x 2-inch wire, safety fence, or jute mesh to increase the strength of the geotextile. Silt fence materials are available that have synthetic mesh backing attached.
- Silt fence material shall contain ultraviolet ray inhibitors and stabilizers to provide a minimum of six months of expected usable construction life at a temperature range of 0°F to 120°F.
- One-hundred percent biodegradable silt fence is available that is strong, long lasting, and can be left in place after the project is completed, if permitted by the local jurisdiction.
- Refer to Figure II-3.22: Silt Fence for standard silt fence details. Include the following Standard Notes for silt fence on construction plans and specifications:
 1. The Contractor shall install and maintain temporary silt fences at the locations shown in the Plans.
 2. Construct silt fences in areas of clearing, grading, or drainage prior to starting those activities.

3. The silt fence shall have a 2-feet min. and a 2½-feet max. height above the original ground surface.
4. The geotextile fabric shall be sewn together at the point of manufacture to form fabric lengths as required. Locate all sewn seams at support posts. Alternatively, two sections of silt fence can be overlapped, provided that the overlap is long enough and that the adjacent silt fence sections are close enough together to prevent silt laden water from escaping through the fence at the overlap.
5. Attach the geotextile fabric on the up-slope side of the posts and secure with staples, wire, or in accordance with the manufacturer's recommendations. Attach the geotextile fabric to the posts in a manner that reduces the potential for tearing.
6. Support the geotextile fabric with wire or plastic mesh, dependent on the properties of the geotextile selected for use. If wire or plastic mesh is used, fasten the mesh securely to the up-slope side of the posts with the geotextile fabric up-slope of the mesh.
7. Mesh support, if used, shall consist of steel wire with a maximum mesh spacing of 2-inches, or a prefabricated polymeric mesh. The strength of the wire or polymeric mesh shall be equivalent to or greater than 180 lbs. grab tensile strength. The polymeric mesh must be as resistant to the same level of ultraviolet radiation as the geotextile fabric it supports.
8. Bury the bottom of the geotextile fabric 4-inches min. below the ground surface. Backfill and tamp soil in place over the buried portion of the geotextile fabric, so that no flow can pass beneath the silt fence and scouring cannot occur. When wire or polymeric back-up support mesh is used, the wire or polymeric mesh shall extend into the ground 3-inches min.
9. Drive or place the silt fence posts into the ground 18-inches min. A 12-inch min. depth is allowed if topsoil or other soft subgrade soil is not present and 18-inches cannot be reached. Increase fence post min. depths by 6 inches if the fence is located on slopes of 3H:1V or steeper and the slope is perpendicular to the fence. If required post depths cannot be obtained, the posts shall be adequately secured by bracing or guying to prevent overturning of the fence due to sediment loading.
10. Use wood, steel or equivalent posts. The spacing of the support posts shall be a maximum of 6-feet. Posts shall consist of either:
 - Wood with minimum dimensions of 2 inches by 2 inches by 3 feet. Wood shall be free of defects such as knots, splits, or gouges.
 - No. 6 steel rebar or larger.
 - ASTM A 120 steel pipe with a minimum diameter of 1-inch.
 - U, T, L, or C shape steel posts with a minimum weight of 1.35 lbs./ft.
 - Other steel posts having equivalent strength and bending resistance to the post sizes listed above.
11. Locate silt fences on contour as much as possible, except at the ends of the fence,

where the fence shall be turned uphill such that the silt fence captures the runoff water and prevents water from flowing around the end of the fence.

12. If the fence must cross contours, with the exception of the ends of the fence, place check dams perpendicular to the back of the fence to minimize concentrated flow and erosion. The slope of the fence line where contours must be crossed shall not be steeper than 3H:1V.
 - Check dams shall be approximately 1-foot deep at the back of the fence. Check dams shall be continued perpendicular to the fence at the same elevation until the top of the check dam intercepts the ground surface behind the fence.
 - Check dams shall consist of crushed surfacing base course, gravel backfill for walls, or shoulder ballast. Check dams shall be located every 10 feet along the fence where the fence must cross contours.
- Refer to [Figure II-3.23: Silt Fence Installation by Slicing Method](#) for slicing method details. The following are specifications for silt fence installation using the slicing method:
 1. The base of both end posts must be at least 2- to 4-inches above the top of the geotextile fabric on the middle posts for ditch checks to drain properly. Use a hand level or string level, if necessary, to mark base points before installation.
 2. Install posts 3- to 4-feet apart in critical retention areas and 6- to 7-feet apart in standard applications.
 3. Install posts 24-inches deep on the downstream side of the silt fence, and as close as possible to the geotextile fabric, enabling posts to support the geotextile fabric from upstream water pressure.
 4. Install posts with the nipples facing away from the geotextile fabric.
 5. Attach the geotextile fabric to each post with three ties, all spaced within the top 8-inches of the fabric. Attach each tie diagonally 45 degrees through the fabric, with each puncture at least 1-inch vertically apart. Each tie should be positioned to hang on a post nipple when tightening to prevent sagging.
 6. Wrap approximately 6-inches of the geotextile fabric around the end posts and secure with 3 ties.
 7. No more than 24-inches of a 36-inch geotextile fabric is allowed above ground level.
 8. Compact the soil immediately next to the geotextile fabric with the front wheel of the tractor, skid steer, or roller exerting at least 60 pounds per square inch. Compact the upstream side first and then each side twice for a total of four trips. Check and correct the silt fence installation for any deviation before compaction. Use a flat-bladed shovel to tuck the fabric deeper into the ground if necessary.

Figure II-3.23: Silt Fence Installation by Slicing Method

Maintenance Standards

- Repair any damage immediately.
- Intercept and convey all evident concentrated flows uphill of the silt fence to a sediment trapping BMP.
- Check the uphill side of the silt fence for signs of the fence clogging and acting as a barrier to flow and then causing channelization of flows parallel to the fence. If this occurs, replace the fence and remove the trapped sediment.
- Remove sediment deposits when the deposit reaches approximately one-third the height of the silt fence, or install a second silt fence.
- Replace geotextile fabric that has deteriorated due to ultraviolet breakdown.

BMP C234: Vegetated Strip

Purpose

Vegetated strips reduce the transport of coarse sediment from a construction site by providing a physical barrier to sediment and reducing the runoff velocities of overland flow.

Conditions of Use

- Vegetated strips may be used downslope of all disturbed areas.
- Vegetated strips are not intended to treat concentrated flows, nor are they intended to treat substantial amounts of overland flow. Any concentrated flows must be conveyed through the drainage system to BMP C241: Sediment Pond (Temporary) or other sediment trapping BMP. The only circumstance in which overland flow can be treated solely by a vegetated strip, rather than by a sediment trapping BMP, is when the following criteria are met (see Table II-3.12: Contributing Drainage Area for Vegetated Strips):

Table II-3.12: Contributing Drainage Area for Vegetated Strips

Average Contributing Area Slope	Average Contributing Area Percent Slope	Max Contributing area Flowpath Length
1.5H : 1V or flatter	67% or flatter	100 feet
2H : 1V or flatter	50% or flatter	115 feet
4H : 1V or flatter	25% or flatter	150 feet
6H : 1V or flatter	16.7% or flatter	200 feet
10H : 1V or flatter	10% or flatter	250 feet

BMP C241: Sediment Pond (Temporary)

Purpose

Sediment ponds are temporary ponds used during construction to remove sediment from runoff originating from disturbed areas of the project site. Sediment ponds are typically designed to remove sediment no smaller than medium silt (0.02 mm). Consequently, they usually reduce turbidity only slightly.

Conditions of Use

- Use a sediment pond where the contributing drainage area to the pond is 3 acres or more. Ponds must be used in conjunction with other Construction Stormwater BMPs to reduce the amount of sediment flowing into the pond.
- Do not install sediment ponds on sites where failure of the BMP would result in loss of life, damage to homes or buildings, or interruption of use or service of public roads or utilities. Also, sediment ponds are attractive to children and can be dangerous. Compliance with local ordinances regarding health and safety must be addressed. If fencing of the pond is required, show the type of fence and its location on the drawings in the Construction SWPPP.
- Sediment ponds that can impound 10 acre-ft (435,600 cu-ft, or 3.26 million gallons) or more, or have an embankment of more than 6 feet, are subject to the Washington Dam Safety Regulations ([Chapter 173-175 WAC](#)). See [BMP D.1: Detention Ponds](#) for more information regarding dam safety considerations for detention ponds.
- Projects that are constructing permanent Flow Control BMPs or Runoff Treatment BMPs that use ponding for treatment may use the rough-graded or final-graded permanent BMP footprint for the temporary sediment pond. When permanent BMP footprints are used as temporary sediment ponds, the surface area requirement of the temporary sediment pond must be met. If the surface area requirement of the sediment pond is larger than the surface area of the permanent BMP, then the sediment pond shall be enlarged beyond the permanent BMP footprint to comply with the surface area requirement.

The permanent control structure must be temporarily replaced with a control structure that only allows water to leave the temporary sediment pond from the surface or by pumping. Alternatively, the permanent control structure may be used if it is temporarily modified by plugging any outlet holes below the riser. The permanent control structure must be installed as part of the permanent BMP after the site is fully stabilized.

Design and Installation Specifications

General

- See [Figure II-3.28: Sediment Pond Plan View](#), [Figure II-3.29: Sediment Pond Cross Section](#), and [Figure II-3.30: Sediment Pond Riser Detail](#) for details.
- Use of permanent infiltration BMP footprints for temporary sediment ponds during

construction tends to clog the soils and reduce their capacity to infiltrate. If permanent infiltration BMP footprints are used, the sides and bottom of the temporary sediment pond must only be rough excavated to a minimum of 2 feet above final grade of the permanent infiltration BMP. Final grading of the permanent infiltration BMP shall occur only when all contributing drainage areas are fully stabilized. Any proposed permanent pretreatment BMP prior to the infiltration BMP should be fully constructed and used with the temporary sediment pond to help prevent clogging of the soils. See [Element 13: Protect Low Impact Development BMPs](#) for more information about protecting permanent infiltration BMPs.

- The pond shall be divided into two roughly equal volume cells by a permeable divider that will reduce turbulence while allowing movement of water between the cells. The divider shall be at least one-half the height of the riser, and at least one foot below the top of the riser. Wire-backed, 2- to 3-foot high, high strength geotextile fabric supported by treated 4"x4"s can be used as a divider. Alternatively, staked straw bales wrapped with geotextile fabric may be used. If the pond is more than 6 feet deep, a different divider design must be proposed. A riprap embankment is one acceptable method of separation for deeper ponds. Other designs that satisfy the intent of this provision are allowed as long as the divider is permeable, structurally sound, and designed to prevent erosion under and around the divider.
- The most common structural failure of sediment ponds is caused by piping. Piping refers to two phenomena: (1) water seeping through fine-grained soil, eroding the soil grain by grain and forming pipes or tunnels; and, (2) water under pressure flowing upward through a granular soil with a head of sufficient magnitude to cause soil grains to lose contact and capability for support.

The most critical construction practices to prevent piping are:

- Tight connections between the riser and outlet pipe, and other pipe connections.
- Adequate anchoring of the riser.
- Proper soil compaction of the embankment and riser footing.
- Proper construction of anti-seep devices.

Sediment Pond Geometry

To determine the sediment pond geometry, first calculate the design surface area (SA) of the pond, measured at the top of the riser pipe. Use the following equation:

$$SA = 2 \times Q_2 / 0.00096$$

or

2080 square feet per cfs of inflow

See [BMP C240: Sediment Trap](#) for more information on the above equation.

The basic geometry of the pond can now be determined using the following design criteria:

- Required surface area SA (from the equation above) at the top of the riser.
- Minimum 3.5-foot depth from the top of the riser to the bottom of the pond.

- Maximum 3H:1V interior side slopes and maximum 2H:1V exterior slopes. The interior slopes can be increased to a maximum of 2H:1V if fencing is provided at or above the maximum water surface.
- One foot of freeboard between the top of the riser and the crest of the emergency spillway.
- Flat bottom.
- Minimum 1-foot deep spillway.
- Length-to-width ratio between 3:1 and 6:1.

Sediment Pond Discharge

The outlet for the pond consists of a combination of principal and emergency spillways. These outlets must pass the peak runoff expected from the contributing drainage area for a 100-year storm. If, due to site conditions and basin geometry, a separate emergency spillway is not feasible, the principal spillway must pass the entire peak runoff expected from the 100-year storm. However, an attempt to provide a separate emergency spillway should always be made. Base the runoff calculations on the site conditions during construction. The flow through the dewatering orifice cannot be utilized when calculating the 100-year storm elevation because of its potential to become clogged; therefore, available spillway storage must begin at the principal spillway riser crest.

The principal spillway designed by the procedures described below will result in some reduction in the peak rate of runoff. However, the design will not control the discharge flow rates to the extent required to comply with I-3.4.7 MR7: Flow Control. The size of the contributing basin, the expected life of the construction project, the anticipated downstream effects, and the anticipated weather conditions during construction should be considered to determine the need for additional discharge control.

Principal Spillway: Determine the required diameter for the principal spillway (riser pipe). The diameter shall be the minimum necessary to pass the peak volumetric flow rate using a 15-minute time step from a Type 1A, 10-year, 24-hour frequency storm for the developed condition. Use Figure II-3.31: Riser Inflow Curves to determine the riser diameter.

To aid in determining sediment depth, one-foot intervals shall be prominently marked on the riser.

Emergency Overflow Spillway: Size the emergency overflow spillway for the peak volumetric flow rate using a 10-minute time step from a Type 1A, 100-year, 24-hour frequency storm for the developed condition. See BMP D.1: Detention Ponds for additional guidance for Emergency Overflow Spillway design

Dewatering Orifice: Size of the dewatering orifice(s) (minimum 1-inch diameter) using a modified version of the discharge equation for a vertical orifice and a basic equation for the area of a circular orifice. Determine the required area of the orifice with the following equation:

$$A_o = \frac{A_s(2h)^{0.5}}{0.6 \times 3600 T g^{0.5}}$$

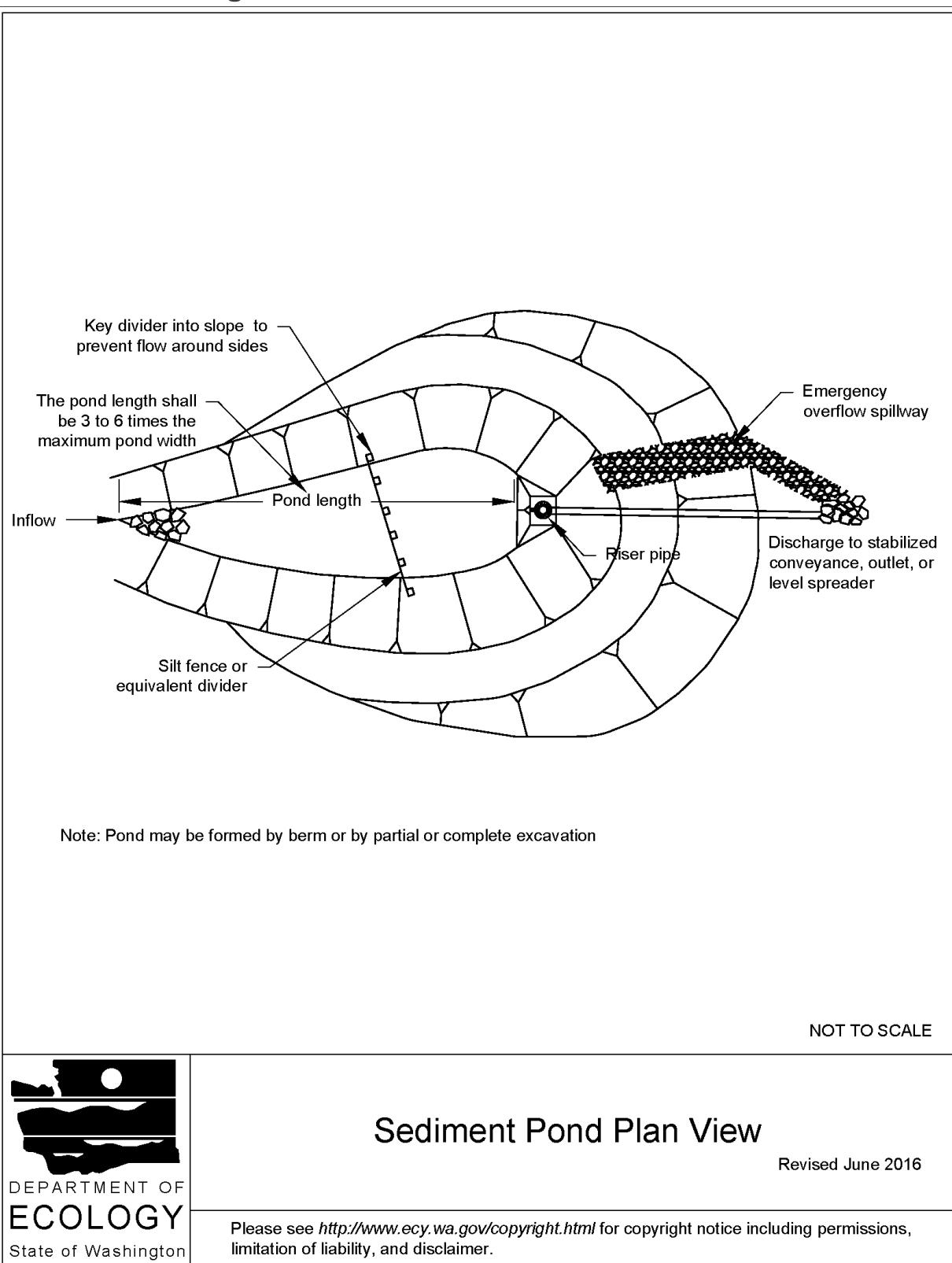
where

A_o = orifice area (square feet)

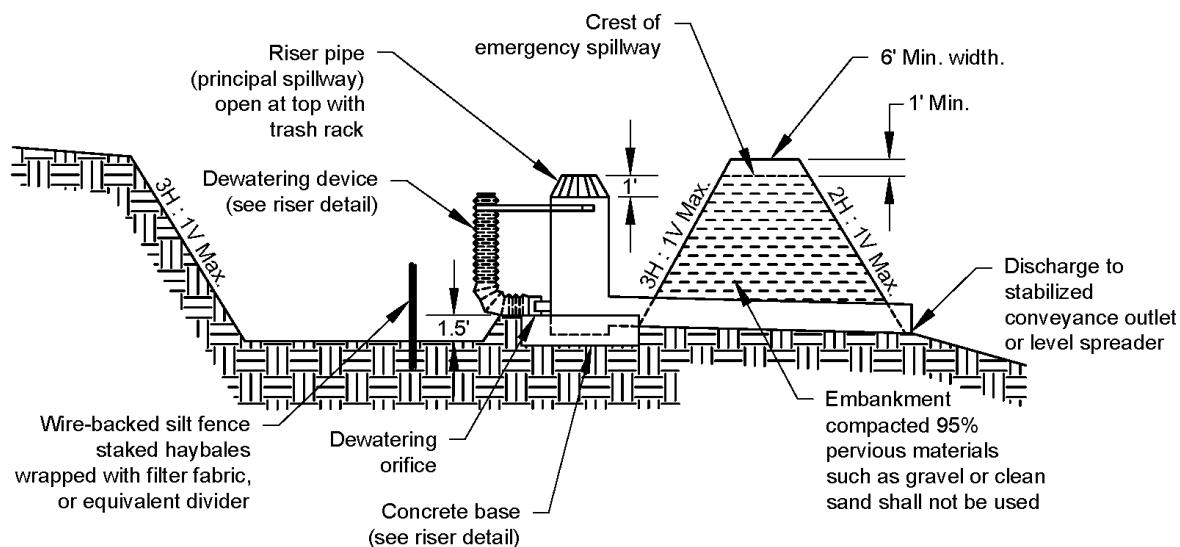
A_S = pond surface area (square feet)

h = head of water above orifice (height of riser in feet)

T = dewatering time (24 hours)


g = acceleration of gravity (32.2 feet/second²)

Convert the orifice area (in square feet) to the orifice diameter D (in inches):

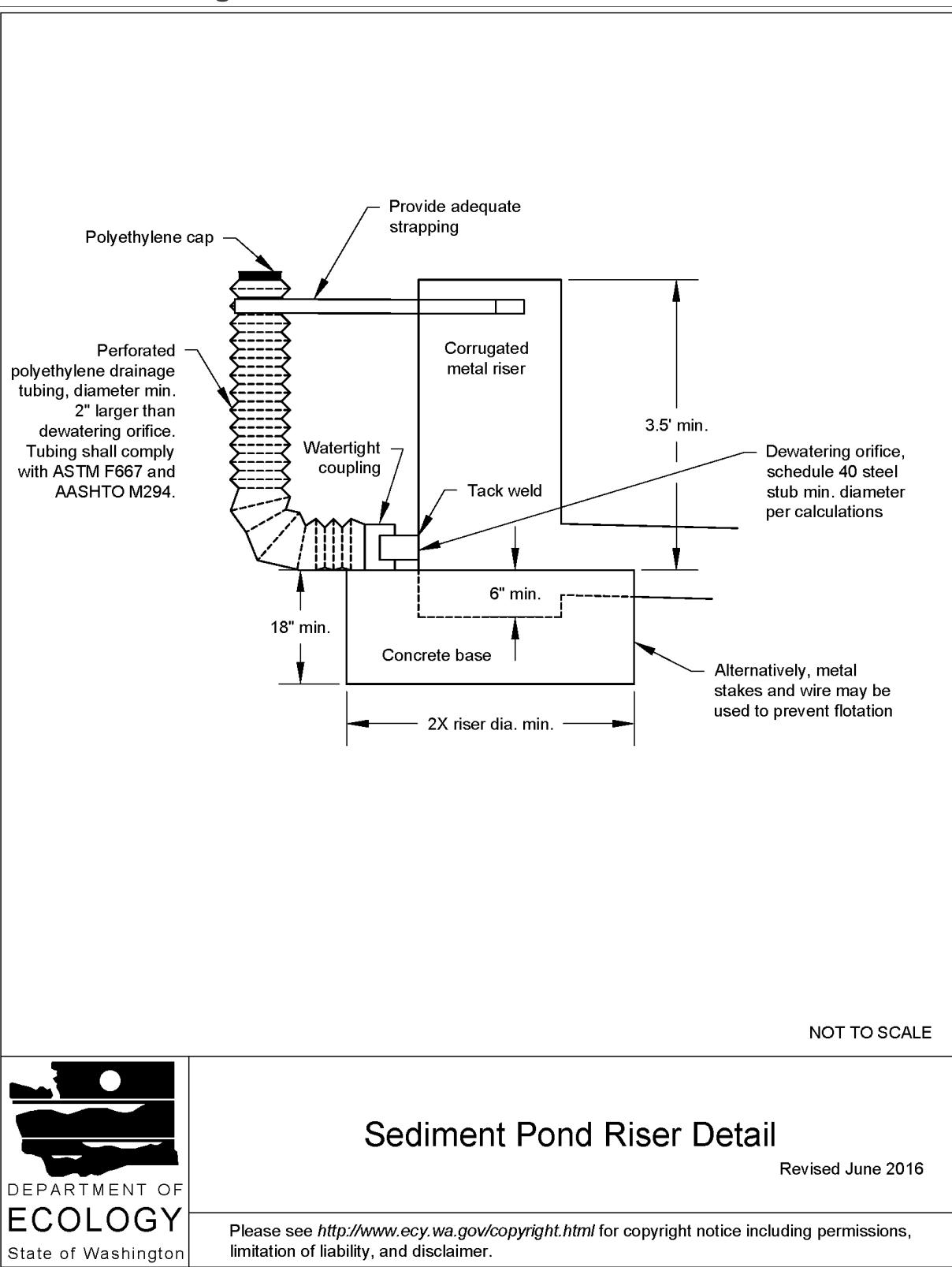

$$D = 24 \times \sqrt{\frac{A_o}{\pi}} = 13.54 \times \sqrt{A_o}$$

The vertical, perforated tubing connected to the dewatering orifice must be at least 2 inches larger in diameter than the orifice to improve flow characteristics. The size and number of perforations in the tubing should be large enough so that the tubing does not restrict flow. The orifice should control the flow rate.

Figure II-3.28: Sediment Pond Plan View

Figure II-3.29: Sediment Pond Cross Section

NOT TO SCALE



Sediment Pond Cross Section

Revised June 2016

Please see <http://www.ecy.wa.gov/copyright.html> for copyright notice including permissions, limitation of liability, and disclaimer.

Figure II-3.30: Sediment Pond Riser Detail

system) will be directed into the permanent Flow Control BMP. If site constraints make locating the untreated stormwater storage pond difficult, the permanent Flow Control BMP may be divided to serve as the untreated stormwater storage pond and the post-treatment temporary flow control pond. A berm or barrier must be used in this case so the untreated water does not mix with the treated water. Both untreated stormwater storage requirements, and adequate post-treatment flow control must be achieved. The designer must document in the Construction SWPPP how the permanent Flow Control BMP is able to attenuate the discharge from the site to meet the requirements of Element 3: Control Flow Rates. If the design of the permanent Flow Control BMP was modified for temporary construction flow control purposes, the construction of the permanent Flow Control BMP must be finalized, as designed for its permanent function, at project completion.

Maintenance Standards

- Rapid sand filters typically have automatic backwash systems that are triggered by a pre-set pressure drop across the filter. If the backwash water volume is not large or substantially more turbid than the untreated stormwater stored in the holding pond or tank, backwash return to the untreated stormwater pond or tank may be appropriate. However, other means of treatment and disposal may be necessary.
- Screen, bag, and fiber filters must be cleaned and/or replaced when they become clogged.
- Sediment shall be removed from the storage and/or treatment ponds as necessary. Typically, sediment removal is required once or twice during a wet season and at the decommissioning of the ponds.
- Disposal of filtration equipment must comply with applicable local, state, and federal regulations.

BMP C252: Treating and Disposing of High pH Water

Purpose

When pH levels in stormwater rise above 8.5, it is necessary to lower the pH levels to the acceptable range of 6.5 to 8.5 prior to discharge to surface or ground water. A pH level range of 6.5 to 8.5 is typical for most natural watercourses, and this neutral pH range is required for the survival of aquatic organisms. Should the pH rise or drop out of this range, fish and other aquatic organisms may become stressed and may die.

Conditions of Use

- The water quality standard for pH in Washington State is in the range of 6.5 to 8.5. Stormwater with pH levels exceeding water quality standards may be either neutralized on site or disposed of to a sanitary sewer or concrete batch plant with pH neutralization capabilities.
- Neutralized stormwater may be discharged to surface waters under the Construction Stormwater General permit.
- Neutralized process water such as concrete truck wash-out, hydro-demolition, or saw-cutting slurry must be managed to prevent discharge to surface waters. Any stormwater

contaminated during concrete work is considered process wastewater and must not be discharged to waters of the State or stormwater collection systems.

- The process used for neutralizing and/or disposing of high pH stormwater from the site must be documented in the Construction Stormwater Pollution Prevention Plan.

Causes of High pH

High pH at construction sites is most commonly caused by the contact of stormwater with poured or recycled concrete, cement, mortars, and other Portland cement or lime containing construction materials. (See [BMP C151: Concrete Handling](#) for more information on concrete handling procedures). The principal caustic agent in cement is calcium hydroxide (free lime).

Calcium hardness can contribute to high pH values and cause toxicity that is associated with high pH conditions. A high level of calcium hardness in waters of the state is not allowed. Ground water standard for calcium and other dissolved solids in Washington State is less than 500 mg/l.

Treating High pH Stormwater by Carbon Dioxide Sparging

Advantages of Carbon Dioxide Sparging

- Rapidly neutralizes high pH water.
- Cost effective and safer to handle than acid compounds.
- CO₂ is self-buffering. It is difficult to overdose and create harmfully low pH levels.
- Material is readily available.

The Chemical Process of Carbon Dioxide Sparging

When carbon dioxide (CO₂) is added to water (H₂O), carbonic acid (H₂CO₃) is formed which can further dissociate into a proton (H⁺) and a bicarbonate anion (HCO₃⁻) as shown below:

The free proton is a weak acid that can lower the pH. Water temperature has an effect on the reaction as well. The colder the water temperature is, the slower the reaction occurs. The warmer the water temperature is, the quicker the reaction occurs. Most construction applications in Washington State have water temperatures in the 50°F or higher range so the reaction is almost simultaneous.

The Treatment Process of Carbon Dioxide Sparging

High pH water may be treated using continuous treatment, continuous discharge systems. These manufactured systems continuously monitor influent and effluent pH to ensure that pH values are within an acceptable range before being discharged. All systems must have fail safe automatic shut off switches in the event that pH is not within the acceptable discharge range. Only trained operators may operate manufactured systems. System manufacturers often provide trained operators or training on their devices.

The following procedure may be used when not using a continuous discharge system:

1. Prior to treatment, the appropriate jurisdiction should be notified in accordance with the regulations set by the jurisdiction.
2. Every effort should be made to isolate the potential high pH water in order to treat it separately from other stormwater on-site.
3. Water should be stored in an acceptable storage facility, detention pond, or containment cell prior to pH treatment.
4. Transfer water to be treated for pH to the pH treatment structure. Ensure that the pH treatment structure size is sufficient to hold the amount of water that is to be treated. Do not fill the pH treatment structure completely, allow at least 2 feet of freeboard.
5. The operator samples the water within the pH treatment structure for pH and notes the clarity of the water. As a rule of thumb, less CO₂ is necessary for clearer water. The results of the samples and water clarity observations should be recorded.
6. In the pH treatment structure, add CO₂ until the pH falls into the range of 6.9-7.1. Adjusting pH to within 0.2 pH units of receiving water (background pH) is recommended. It is unlikely that pH can be adjusted to within 0.2 pH units using dry ice. Compressed carbon dioxide gas should be introduced to the water using a carbon dioxide diffuser located near the bottom of the pH treatment structure, this will allow carbon dioxide to bubble up through the water and diffuse more evenly.
7. Slowly discharge the water, making sure water does not get stirred up in the process. Release about 80% of the water from the pH treatment structure leaving any sludge behind. If turbidity remains above the maximum allowable, consider adding filtration to the treatment train. See BMP C251: Construction Stormwater Filtration.
8. Discharge treated water through a pond or drainage system.
9. Excess sludge needs to be disposed of properly as concrete waste. If several batches of water are undergoing pH treatment, sludge can be left in the treatment structure for the next batch treatment. Dispose of sludge when it fills 50% of the treatment structure volume.
10. Disposal must comply with applicable local, state, and federal regulations.

Treating High pH Stormwater by Food Grade Vinegar

Food grade vinegar that meets FDA standards may be used to neutralize high pH water. Food grade vinegar is only 4% to 18% acetic acid with the remainder being water. Food grade vinegar may be used if dosed just enough to lower pH sufficiently. Use a treatment process as described above for CO₂ sparging, but add food grade vinegar instead of CO₂.

This treatment option for high pH stormwater does not apply to anything but food grade vinegar. Acetic acid does not equal vinegar. Any other product or waste containing acetic acid must go through the evaluation process in Appendix G of *Whole Effluent Toxicity Testing Guidance and Test Review Criteria* (Marshall, 2016).

Disposal of High pH Stormwater

Sanitary Sewer Disposal

Local sewer authority approval is required prior to disposal via the sanitary sewer.

Concrete Batch Plant Disposal

- Only permitted facilities may accept high pH water.
- Contact the facility to ensure they can accept the high pH water.

Maintenance Standards

Safety and materials handling:

- All equipment should be handled in accordance with OSHA rules and regulations.
- Follow manufacturer guidelines for materials handling.

Each operator should provide:

- A diagram of the monitoring and treatment equipment.
- A description of the pumping rates and capacity the treatment equipment is capable of treating.

Each operator should keep a written record of the following:

- Client name and phone number.
- Date of treatment.
- Weather conditions.
- Project name and location.
- Volume of water treated.
- pH of untreated water.
- Amount of CO₂ or food grade vinegar needed to adjust water to a pH range of 6.9-7.1.
- pH of treated water.
- Discharge point location and description.

A copy of this record should be given to the client/contractor who should retain the record for three years.

C. Correspondence

D. Site Inspection Form

Construction Stormwater Site Inspection Form

Project Name _____ Permit # _____ Inspection Date _____ Time _____

Name of Certified Erosion Sediment Control Lead (CESCL) or qualified inspector if *less than one acre*

Print Name: _____

Approximate rainfall amount since the last inspection (in inches): _____

Approximate rainfall amount in the last 24 hours (in inches): _____

Current Weather Clear Cloudy Mist Rain Wind Fog

A. Type of inspection: Weekly Post Storm Event Other

B. Phase of Active Construction (check all that apply):

Pre Construction/installation of erosion/sediment controls

Clearing/Demo/Grading

Infrastructure/storm/roads

Concrete pours

Vertical

Utilities

Offsite improvements

Construction/buildings
 Site temporary stabilized

Final stabilization

C. Questions:

1. Were all areas of construction and discharge points inspected? Yes _____ No _____
2. Did you observe the presence of suspended sediment, turbidity, discoloration, or oil sheen Yes _____ No _____
3. Was a water quality sample taken during inspection? (refer to permit conditions S4 & S5) Yes _____ No _____
4. Was there a turbid discharge 250 NTU or greater, or Transparency 6 cm or less?* Yes _____ No _____
5. If yes to #4 was it reported to Ecology? Yes _____ No _____
6. Is pH sampling required? pH range required is 6.5 to 8.5. Yes _____ No _____

If answering yes to a discharge, describe the event. Include when, where, and why it happened; what action was taken, and when.

*If answering yes to # 4 record NTU/Transparency with continual sampling daily until turbidity is 25 NTU or less/ transparency is 33 cm or greater.

Sampling Results:

Date: _____

Parameter	Method (circle one)	Result			Other/Note
		NTU	cm	pH	
Turbidity	tube, meter, laboratory				
pH	Paper, kit, meter				

Construction Stormwater Site Inspection Form

D. Check the observed status of all items. Provide "Action Required" details and dates.

Element #	Inspection	BMPs Inspected			BMP needs maintenance	BMP failed	Action required (describe in section F)
		yes	no	n/a			
1 Clearing Limits	Before beginning land disturbing activities are all clearing limits, natural resource areas (streams, wetlands, buffers, trees) protected with barriers or similar BMPs? (high visibility recommended)						
2 Construction Access	Construction access is stabilized with quarry spalls or equivalent BMP to prevent sediment from being tracked onto roads?						
	Sediment tracked onto the road way was cleaned thoroughly at the end of the day or more frequent as necessary.						
3 Control Flow Rates	Are flow control measures installed to control stormwater volumes and velocity during construction and do they protect downstream properties and waterways from erosion?						
	If permanent infiltration ponds are used for flow control during construction, are they protected from siltation?						
4 Sediment Controls	All perimeter sediment controls (e.g. silt fence, wattles, compost socks, berms, etc.) installed, and maintained in accordance with the Stormwater Pollution Prevention Plan (SWPPP).						
	Sediment control BMPs (sediment ponds, traps, filters etc.) have been constructed and functional as the first step of grading.						
	Stormwater runoff from disturbed areas is directed to sediment removal BMP.						
5 Stabilize Soils	Have exposed un-worked soils been stabilized with effective BMP to prevent erosion and sediment deposition?						

Construction Stormwater Site Inspection Form

Element #	Inspection	BMPs Inspected			BMP needs maintenance	BMP failed	Action required (describe in section F)
		yes	no	n/a			
5 Stabilize Soils Cont.	Are stockpiles stabilized from erosion, protected with sediment trapping measures and located away from drain inlet, waterways, and drainage channels?						
	Have soils been stabilized at the end of the shift, before a holiday or weekend if needed based on the weather forecast?						
6 Protect Slopes	Has stormwater and ground water been diverted away from slopes and disturbed areas with interceptor dikes, pipes and or swales?						
	Is off-site storm water managed separately from stormwater generated on the site?						
	Is excavated material placed on uphill side of trenches consistent with safety and space considerations?						
	Have check dams been placed at regular intervals within constructed channels that are cut down a slope?						
7 Drain Inlets	Storm drain inlets made operable during construction are protected.						
	Are existing storm drains within the influence of the project protected?						
8 Stabilize Channel and Outlets	Have all on-site conveyance channels been designed, constructed and stabilized to prevent erosion from expected peak flows?						
	Is stabilization, including armoring material, adequate to prevent erosion of outlets, adjacent stream banks, slopes and downstream conveyance systems?						
9 Control Pollutants	Are waste materials and demolition debris handled and disposed of to prevent contamination of stormwater?						
	Has cover been provided for all chemicals, liquid products, petroleum products, and other material?						
	Has secondary containment been provided capable of containing 110% of the volume?						
	Were contaminated surfaces cleaned immediately after a spill incident?						
	Were BMPs used to prevent contamination of stormwater by a pH modifying sources?						

Construction Stormwater Site Inspection Form

Element #	Inspection	BMPs Inspected			BMP needs maintenance	BMP failed	Action required (describe in section F)
		yes	no	n/a			
9 Cont.	Wheel wash wastewater is handled and disposed of properly.						
10 Control Dewatering	Concrete washout in designated areas. No washout or excess concrete on the ground.						
	Dewatering has been done to an approved source and in compliance with the SWPPP.						
	Were there any clean non turbid dewatering discharges?						
11 Maintain BMP	Are all temporary and permanent erosion and sediment control BMPs maintained to perform as intended?						
12 Manage the Project	Has the project been phased to the maximum degree practicable?						
	Has regular inspection, monitoring and maintenance been performed as required by the permit?						
	Has the SWPPP been updated, implemented and records maintained?						
13 Protect LID	Is all Bioretention and Rain Garden Facilities protected from sedimentation with appropriate BMPs?						
	Is the Bioretention and Rain Garden protected against over compaction of construction equipment and foot traffic to retain its infiltration capabilities?						
	Permeable pavements are clean and free of sediment and sediment laden-water runoff. Muddy construction equipment has not been on the base material or pavement.						
	Have soiled permeable pavements been cleaned of sediments and pass infiltration test as required by stormwater manual methodology?						
	Heavy equipment has been kept off existing soils under LID facilities to retain infiltration rate.						

E. Check all areas that have been inspected. ✓

All in place BMPs All disturbed soils All concrete wash out area All material storage areas
 All discharge locations All equipment storage areas All construction entrances/exits

Construction Stormwater Site Inspection Form

F. Elements checked "Action Required" (section D) describe corrective action to be taken. List the element number; be specific on location and work needed. Document, initial, and date when the corrective action has been completed and inspected.

Element #	Description and Location	Action Required	Completion Date	Initials

Attach additional page if needed

Sign the following certification:

"I certify that this report is true, accurate, and complete, to the best of my knowledge and belief"

Inspected by: (print) _____ (Signature) _____ Date: _____
Title/Qualification of Inspector: _____

E. Construction Stormwater General Permit (CSWGP)

Issuance Date: November 18, 2020
Effective Date: January 1, 2021
Expiration Date: December 31, 2025

CONSTRUCTION STORMWATER GENERAL PERMIT

National Pollutant Discharge Elimination System (NPDES) and State Waste Discharge General Permit for Stormwater Discharges Associated with Construction Activity

**State of Washington
Department of Ecology
Olympia, Washington 98504**

In compliance with the provisions of
Chapter 90.48 Revised Code of Washington
(State of Washington Water Pollution Control Act)
and

Title 33 United States Code, Section 1251 et seq.
The Federal Water Pollution Control Act (The Clean Water Act)

Until this permit expires, is modified, or revoked, Permittees that have properly obtained coverage under this general permit are authorized to discharge in accordance with the special and general conditions that follow.

Vincent McGowan, P.E.
Water Quality Program Manager
Washington State Department of Ecology

TABLE OF CONTENTS

LIST OF TABLES	ii
SUMMARY OF PERMIT REPORT SUBMITTALS.....	1
SPECIAL CONDITIONS.....	3
S1. Permit Coverage	3
S2. Application Requirements	7
S3. Compliance with Standards	9
S4. Monitoring Requirements, Benchmarks, and Reporting Triggers	10
S5. Reporting and Recordkeeping Requirements.....	17
S6. Permit Fees	20
S7. Solid and Liquid Waste Disposal	20
S8. Discharges to 303(D) or TMDL Waterbodies	20
S9. Stormwater Pollution Prevention Plan	23
S10. Notice Of Termination	32
GENERAL CONDITIONS.....	34
G1. Discharge Violations.....	34
G2. Signatory Requirements	34
G3. Right of Inspection and Entry.....	35
G4. General Permit Modification and Revocation	35
G5. Revocation of Coverage Under tPermit.....	35
G6. Reporting a Cause for Modification.....	36
G7. Compliance with Other Laws and Statutes.....	36
G8. Duty to Reapply.....	36
G9. Removed Substance.....	36
G10. Duty to Provide Information.....	36
G11. Other Requirements of 40 CFR	37
G12. Additional Monitoring.....	37
G13. Penalties for Violating Permit Conditions	37
G14. Upset.....	37
G15. Property Rights	37
G16. Duty to Comply	37
G17. Toxic Pollutants.....	38
G18. Penalties for Tampering.....	38
G19. Reporting Planned Changes.....	38
G20. Reporting Other Information.....	38
G21. Reporting Anticipated Non-Compliance	38

G22.	Requests to Be Excluded From Coverage Under the Permit	39
G23.	Appeals.....	39
G24.	Severability.....	39
G25.	Bypass Prohibited	39
APPENDIX A – DEFINITIONS.....		42
APPENDIX B – ACRONYMS.....		50

LIST OF TABLES

Table 1	Summary of Required Submittals.....	1
Table 2	Summary of Required On-site Documentation	2
Table 3	Summary of Primary Monitoring Requirements	12
Table 4	Monitoring and Reporting Requirements	14
Table 5	Turbidity, Fine Sediment & Phosphorus Sampling and Limits for 303(d)-Listed Waters	22
Table 6	pH Sampling and Limits for 303(d)-Listed Waters.....	22

SUMMARY OF PERMIT REPORT SUBMITTALS

Refer to the Special and General Conditions within this permit for additional submittal requirements. Appendix A provides a list of definitions. Appendix B provides a list of acronyms.

Table 1 Summary of Required Submittals

Permit Section	Submittal	Frequency	First Submittal Date
S5.A and S8	High Turbidity/Transparency Phone Reporting	As Necessary	Within 24 hours
S5.B	Discharge Monitoring Report	Monthly*	Within 15 days following the end of each month
S5.F and S8	Noncompliance Notification – Telephone Notification	As necessary	Within 24 hours
S5.F	Noncompliance Notification – Written Report	As necessary	Within 5 Days of non-compliance
S9.D	Request for Chemical Treatment Form	As necessary	Written approval from Ecology is required prior to using chemical treatment (with the exception of dry ice, CO ₂ or food grade vinegar to adjust pH)
G2	Notice of Change in Authorization	As necessary	
G6	Permit Application for Substantive Changes to the Discharge	As necessary	
G8	Application for Permit Renewal	1/permit cycle	No later than 180 days before expiration
S2.A	Notice of Permit Transfer	As necessary	
G19	Notice of Planned Changes	As necessary	
G21	Reporting Anticipated Non-compliance	As necessary	

NOTE: *Permittees must submit electronic Discharge Monitoring Reports (DMRs) to the Washington State Department of Ecology monthly, regardless of site discharge, for the full duration of permit coverage. Refer to Section S5.B of this General Permit for more specific information regarding DMRs.

Table 2 Summary of Required On-site Documentation

Document Title	Permit Conditions
Permit Coverage Letter	See Conditions S2, S5
Construction Stormwater General Permit (CSWGP)	See Conditions S2, S5
Site Log Book	See Conditions S4, S5
Stormwater Pollution Prevention Plan (SWPPP)	See Conditions S5, S9
Site Map	See Conditions S5, S9

SPECIAL CONDITIONS

S1. PERMIT COVERAGE

A. Permit Area

This Construction Stormwater General Permit (CSWGP) covers all areas of Washington State, except for federal operators and Indian Country as specified in Special Condition S1.E.3 and 4.

B. Operators Required to Seek Coverage Under this General Permit

1. Operators of the following construction activities are required to seek coverage under this CSWGP:
 - a. Clearing, grading and/or excavation that results in the disturbance of one or more acres (including off-site disturbance acreage related to construction-support activity as authorized in S1.C.2) and discharges stormwater to surface waters of the State; and clearing, grading and/or excavation on sites smaller than one acre that are part of a larger common plan of development or sale, if the common plan of development or sale will ultimately disturb one acre or more and discharge stormwater to surface waters of the State.
 - i. This category includes forest practices (including, but not limited to, class IV conversions) that are part of a construction activity that will result in the disturbance of one or more acres, and discharge to surface waters of the State (that is, forest practices that prepare a site for construction activities); and
 - b. Any size construction activity discharging stormwater to waters of the State that the Washington State Department of Ecology (Ecology):
 - i. Determines to be a significant contributor of pollutants to waters of the State of Washington.
 - ii. Reasonably expects to cause a violation of any water quality standard.
2. Operators of the following activities are not required to seek coverage under this CSWGP (unless specifically required under Special Condition S1.B.1.b, above):
 - a. Construction activities that discharge all stormwater and non-stormwater to groundwater, sanitary sewer, or combined sewer, and have no point source discharge to either surface water or a storm sewer system that drains to surface waters of the State.
 - b. Construction activities covered under an Erosivity Waiver (Special Condition S1.F).
 - c. Routine maintenance that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of a facility.

C. Authorized Discharges

1. **Stormwater Associated with Construction Activity.** Subject to compliance with the terms and conditions of this permit, Permittees are authorized to discharge stormwater associated with construction activity to surface waters of the State or to a storm sewer system that drains to surface waters of the State. (Note that “surface waters of the

State" may exist on a construction site as well as off site; for example, a creek running through a site.)

2. **Stormwater Associated with Construction Support Activity.** This permit also authorizes stormwater discharge from support activities related to the permitted construction site (for example, an on-site portable rock crusher, off-site equipment staging yards, material storage areas, borrow areas, etc.) provided:
 - a. The support activity relates directly to the permitted construction site that is required to have an NPDES permit; and
 - b. The support activity is not a commercial operation serving multiple unrelated construction projects, and does not operate beyond the completion of the construction activity; and
 - c. Appropriate controls and measures are identified in the Stormwater Pollution Prevention Plan (SWPPP) for the discharges from the support activity areas.
3. **Non-Stormwater Discharges.** The categories and sources of non-stormwater discharges identified below are authorized conditionally, provided the discharge is consistent with the terms and conditions of this permit:
 - a. Discharges from fire-fighting activities.
 - b. Fire hydrant system flushing.
 - c. Potable water, including uncontaminated water line flushing.
 - d. Hydrostatic test water.
 - e. Uncontaminated air conditioning or compressor condensate.
 - f. Uncontaminated groundwater or spring water.
 - g. Uncontaminated excavation dewatering water (in accordance with S9.D.10).
 - h. Uncontaminated discharges from foundation or footing drains.
 - i. Uncontaminated or potable water used to control dust. Permittees must minimize the amount of dust control water used.
 - j. Routine external building wash down that does not use detergents.
 - k. Landscape irrigation water.

The SWPPP must adequately address all authorized non-stormwater discharges, except for discharges from fire-fighting activities, and must comply with Special Condition S3. At a minimum, discharges from potable water (including water line flushing), fire hydrant system flushing, and pipeline hydrostatic test water must undergo the following: dechlorination to a concentration of 0.1 parts per million (ppm) or less, and pH adjustment to within 6.5 – 8.5 standard units (su), if necessary.

D. Prohibited Discharges

The following discharges to waters of the State, including groundwater, are prohibited:

1. Concrete wastewater
2. Wastewater from washout and clean-up of stucco, paint, form release oils, curing compounds and other construction materials.
3. Process wastewater as defined by 40 Code of Federal Regulations (CFR) 122.2 (See Appendix A of this permit).
4. Slurry materials and waste from shaft drilling, including process wastewater from shaft drilling for construction of building, road, and bridge foundations unless managed according to Special Condition S9.D.9.j.
5. Fuels, oils, or other pollutants used in vehicle and equipment operation and maintenance.
6. Soaps or solvents used in vehicle and equipment washing.
7. Wheel wash wastewater, unless managed according to Special Condition S9.D.9.
8. Discharges from dewatering activities, including discharges from dewatering of trenches and excavations, unless managed according to Special Condition S9.D.10.

E. Limits on Coverage

Ecology may require any discharger to apply for and obtain coverage under an individual permit or another more specific general permit. Such alternative coverage will be required when Ecology determines that this CSWGP does not provide adequate assurance that water quality will be protected, or there is a reasonable potential for the project to cause or contribute to a violation of water quality standards.

The following stormwater discharges are not covered by this permit:

1. Post-construction stormwater discharges that originate from the site after completion of construction activities and the site has undergone final stabilization.
2. Non-point source silvicultural activities such as nursery operations, site preparation, reforestation and subsequent cultural treatment, thinning, prescribed burning, pest and fire control, harvesting operations, surface drainage, or road construction and maintenance, from which there is natural runoff as excluded in 40 CFR Subpart 122.
3. Stormwater from any federal operator.
4. Stormwater from facilities located on ***Indian Country*** as defined in 18 U.S.C. §1151, except portions of the Puyallup Reservation as noted below.

Indian Country includes:

- a. All land within any Indian Reservation notwithstanding the issuance of any patent, and, including rights-of-way running through the reservation. This includes all federal, tribal, and Indian and non-Indian privately owned land within the reservation.
- b. All off-reservation Indian allotments, the Indian titles to which have not been extinguished, including rights-of-way running through the same.
- c. All off-reservation federal trust lands held for Native American Tribes.

Puyallup Exception: Following the *Puyallup Tribes of Indians Land Settlement Act of 1989*, 25 U.S.C. §1773; the permit does apply to land within the Puyallup Reservation except for discharges to surface water on land held in trust by the federal government.

5. Stormwater from any site covered under an existing NPDES individual permit in which stormwater management and/or treatment requirements are included for all stormwater discharges associated with construction activity.
6. Stormwater from a site where an applicable Total Maximum Daily Load (TMDL) requirement specifically precludes or prohibits discharges from construction activity.

F. Erosivity Waiver

Construction site operators may qualify for an Erosivity Waiver from the CSWGP if the following conditions are met:

1. The site will result in the disturbance of fewer than five (5) acres and the site is not a portion of a common plan of development or sale that will disturb five (5) acres or greater.
2. Calculation of Erosivity “R” Factor and Regional Timeframe:
 - a. The project’s calculated rainfall erosivity factor (“R” Factor) must be less than five (5) during the period of construction activity, (See the CSWGP homepage <http://www.ecy.wa.gov/programs/wq/stormwater/construction/index.html> for a link to the EPA’s calculator and step by step instructions on computing the “R” Factor in the *EPA Erosivity Waiver Fact Sheet*). The period of construction activity starts when the land is first disturbed and ends with final stabilization. In addition:
 - i. For sites west of the Cascades Crest: June 15 – September 15.
 - ii. For sites east of the Cascades Crest, excluding the Central Basin: June 15 – October 15.
 - iii. For sites east of the Cascades Crest, within the Central Basin: no timeframe restrictions apply. The Central Basin is defined as the portions of Eastern Washington with mean annual precipitation of less than 12 inches. For a map of the Central Basin (Average Annual Precipitation Region 2), refer to: <http://www.ecy.wa.gov/programs/wq/stormwater/construction/resourcesguide.html>.
3. Construction site operators must submit a complete Erosivity Waiver certification form at least one week before disturbing the land. Certification must include statements that the operator will:
 - a. Comply with applicable local stormwater requirements; and
 - b. Implement appropriate erosion and sediment control BMPs to prevent violations of water quality standards.
4. This waiver is not available for facilities declared significant contributors of pollutants as defined in Special Condition S1.B.1.b or for any size construction activity that could

reasonably expect to cause a violation of any water quality standard as defined in Special Condition S1.B.1.b.ii.

5. This waiver does not apply to construction activities which include non-stormwater discharges listed in Special Condition S1.C.3.
6. If construction activity extends beyond the certified waiver period for any reason, the operator must either:

- a. Recalculate the rainfall erosivity "R" factor using the original start date and a new projected ending date and, if the "R" factor is still under 5 *and* the entire project falls within the applicable regional timeframe in Special Condition S1.F.2.b, complete and submit an amended waiver certification form before the original waiver expires; *or*
- b. Submit a complete permit application to Ecology in accordance with Special Condition S2.A and B before the end of the certified waiver period.

S2. APPLICATION REQUIREMENTS

A. Permit Application Forms

1. *Notice of Intent Form*

- a. Operators of new or previously unpermitted construction activities must submit a complete and accurate permit application (Notice of Intent, or NOI) to Ecology.
- b. Operators must apply using the electronic application form (NOI) available on Ecology's website (<http://ecy.wa.gov/programs/wq/stormwater/construction/index.html>). Permittees unable to submit electronically (for example, those who do not have an internet connection) must contact Ecology to request a waiver and obtain instructions on how to obtain a paper NOI.

Department of Ecology
Water Quality Program - Construction Stormwater
PO Box 47696
Olympia, Washington 98504-7696

- c. The operator must submit the NOI at least 60 days before discharging stormwater from construction activities and must submit it prior to the date of the first public notice (See Special Condition S2.B, below, for details). The 30-day public comment period begins on the publication date of the second public notice. Unless Ecology responds to the complete application in writing, coverage under the general permit will automatically commence on the 31st day following receipt by Ecology of a *completed* NOI, or the issuance date of this permit, whichever is later; unless Ecology specifies a later date in writing as required by WAC173-226-200(2). See S8.B for Limits on Coverage for New Discharges to TMDL or 303(d)-Listed Waters.
- d. If an applicant intends to use a Best Management Practice (BMP) selected on the basis of Special Condition S9.C.4 ("demonstrably equivalent" BMPs), the applicant must notify Ecology of its selection as part of the NOI. In the event the applicant selects BMPs after submission of the NOI, the applicant must provide notice of the

selection of an equivalent BMP to Ecology at least 60 days before intended use of the equivalent BMP.

- e. Applicants must notify Ecology if they are aware of contaminated soils and/or groundwater associated with the construction activity. Provide detailed information with the NOI (as known and readily available) on the nature and extent of the contamination (concentrations, locations, and depth), as well as pollution prevention and/or treatment BMPs proposed to control the discharge of soil and/or groundwater contaminants in stormwater. Examples of such detail may include, but are not limited to:
 - i. List or table of all known contaminants with laboratory test results showing concentration and depth,
 - ii. Map with sample locations,
 - iii. Related portions of the Stormwater Pollution Prevention Plan (SWPPP) that address the management of contaminated and potentially contaminated construction stormwater and dewatering water,
 - iv. Dewatering plan and/or dewatering contingency plan.

2. ***Transfer of Coverage Form***

The Permittee can transfer current coverage under this permit to one or more new operators, including operators of sites within a Common Plan of Development, provided:

- i. The Permittee submits a complete Transfer of Coverage Form to Ecology, signed by the current and new discharger and containing a specific date for transfer of permit responsibility, coverage and liability (including any Administrative Orders associated with the permit); and
- ii. Ecology does not notify the current discharger and new discharger of intent to revoke coverage under the general permit. If this notice is not given, the transfer is effective on the date specified in the written agreement.

When a current discharger (Permittee) transfers a portion of a permitted site, the current discharger must also indicate the remaining permitted acreage after the transfer. Transfers do not require public notice.

3. ***Modification of Coverage Form***

Permittees must notify Ecology regarding any changes to the information provided on the NOI by submitting an Update/Modification of Permit Coverage form in accordance with General Conditions G6 and G19. Examples of such changes include, but are not limited to:

- i. Changes to the Permittee's mailing address,
- ii. Changes to the on-site contact person information, and
- iii. Changes to the area/acreage affected by construction activity.

B. Public Notice

For new or previously unpermitted construction activities, the applicant must publish a public notice at least one time each week for two consecutive weeks, at least 7 days apart, in a newspaper with general circulation in the county where the construction is to take place. The notice must be run after the NOI has been submitted and must contain:

1. A statement that *"The applicant is seeking coverage under the Washington State Department of Ecology's Construction Stormwater NPDES and State Waste Discharge General Permit."*
2. The name, address, and location of the construction site.
3. The name and address of the applicant.
4. The type of construction activity that will result in a discharge (for example, residential construction, commercial construction, etc.), and the total number of acres to be disturbed over the lifetime of the project.
5. The name of the receiving water(s) (that is, the surface water(s) to which the site will discharge), or, if the discharge is through a storm sewer system, the name of the operator of the system and the receiving water(s) the system discharges to.
6. The statement: *Any persons desiring to present their views to the Washington State Department of Ecology regarding this application, or interested in Ecology's action on this application, may notify Ecology in writing no later than 30 days of the last date of publication of this notice. Ecology reviews public comments and considers whether discharges from this project would cause a measurable change in receiving water quality, and, if so, whether the project is necessary and in the overriding public interest according to Tier II antidegradation requirements under WAC 173-201A-320. Comments can be submitted to: Department of Ecology, PO Box 47696, Olympia, Washington 98504-7696 Attn: Water Quality Program, Construction Stormwater.*

S3. COMPLIANCE WITH STANDARDS

- A. **Discharges must not** cause or contribute to a violation of surface water quality standards (Chapter 173-201A WAC), groundwater quality standards (Chapter 173-200 WAC), sediment management standards (Chapter 173-204 WAC), and human health-based criteria in the Federal water quality criteria applicable to Washington. (40 CFR Part 131.45) Discharges that are not in compliance with these standards are prohibited.
- B. **Prior to the discharge** of stormwater and non-stormwater to waters of the State, the Permittee must apply All Known, Available, and Reasonable methods of prevention, control, and Treatment (AKART). This includes the preparation and implementation of an adequate SWPPP, with all appropriate BMPs installed and maintained in accordance with the SWPPP and the terms and conditions of this permit.
- C. **Ecology presumes** that a Permittee complies with water quality standards unless discharge monitoring data or other site-specific information demonstrates that a discharge causes or contributes to a violation of water quality standards, when the Permittee complies with the following conditions. The Permittee must fully:

1. Comply with all permit conditions, including; planning, sampling, monitoring, reporting, and recordkeeping conditions.
2. Implement stormwater BMPs contained in stormwater management manuals published or approved by Ecology, or BMPs that are demonstrably equivalent to BMPs contained in stormwater management manuals published or approved by Ecology, including the proper selection, implementation, and maintenance of all applicable and appropriate BMPs for on-site pollution control. (For purposes of this section, the stormwater manuals listed in Appendix 10 of the *Phase I Municipal Stormwater Permit* are approved by Ecology.)

D. Where construction sites also discharge to groundwater, the groundwater discharges must also meet the terms and conditions of this CSWGP. Permittees who discharge to groundwater through an injection well must also comply with any applicable requirements of the Underground Injection Control (UIC) regulations, Chapter 173-218 WAC.

S4. MONITORING REQUIREMENTS, BENCHMARKS, AND REPORTING TRIGGERS

A. Site Log Book

The Permittee must maintain a site log book that contains a record of the implementation of the SWPPP and other permit requirements, including the installation and maintenance of BMPs, site inspections, and stormwater monitoring.

B. Site Inspections

Construction sites one (1) acre or larger that discharge stormwater to surface waters of the State must have site inspections conducted by a Certified Erosion and Sediment Control Lead (CESCL). Sites less than one (1) acre may have a person without CESCL certification conduct inspections. (See Special Conditions S4.B.3 and B.4, below, for detailed requirements of the Permittee's CESCL.)

Site inspections must include all areas disturbed by construction activities, all BMPs, and all stormwater discharge points under the Permittee's operational control.

1. The Permittee must have staff knowledgeable in the principles and practices of erosion and sediment control. The CESCL (sites one acre or more) or inspector (sites less than one acre) must have the skills to assess the:
 - a. Site conditions and construction activities that could impact the quality of stormwater; and
 - b. Effectiveness of erosion and sediment control measures used to control the quality of stormwater discharges. The SWPPP must identify the CESCL or inspector, who must be present on site or on-call at all times. The CESCL (sites one (1) acre or more) must obtain this certification through an approved erosion and sediment control training program that meets the minimum training standards established by Ecology. (See BMP C160 in the manual, referred to in Special Condition S9.C.1 and 2.)
2. The CESCL or inspector must examine stormwater visually for the presence of suspended sediment, turbidity, discoloration, and oil sheen. BMP effectiveness must be evaluated to

determine if it is necessary to install, maintain, or repair BMPs to improve the quality of stormwater discharges.

Based on the results of the inspection, the Permittee must correct the problems identified, by:

- a. Reviewing the SWPPP for compliance with Special Condition S9 and making appropriate revisions within 7 days of the inspection.
- b. Immediately beginning the process of fully implementing and maintaining appropriate source control and/or treatment BMPs, within 10 days of the inspection. If installation of necessary treatment BMPs is not feasible within 10 days, Ecology may approve additional time when an extension is requested by a Permittee within the initial 10-day response period.
- c. Documenting BMP implementation and maintenance in the site log book.

3. The CESCL or inspector must inspect all areas disturbed by construction activities, all BMPs, and all stormwater discharge points at least once every calendar week and within 24 hours of any discharge from the site. (For purposes of this condition, individual discharge events that last more than one (1) day do not require daily inspections. For example, if a stormwater pond discharges continuously over the course of a week, only one (1) inspection is required that week.) Inspection frequency may be reduced to once every calendar month for inactive sites that are temporarily stabilized.
4. The Permittee must summarize the results of each inspection in an inspection report or checklist and enter the report/checklist into, or attach it to, the site log book. At a minimum, each inspection report or checklist must include:
 - a. Inspection date and time.
 - b. Weather information.
 - c. The general conditions during inspection.
 - d. The approximate amount of precipitation since the last inspection.
 - e. The approximate amount of precipitation within the last 24 hours.
 - f. A summary or list of all implemented BMPs, including observations of all erosion/sediment control structures or practices.
 - g. A description of:
 - i. BMPs inspected (including location).
 - ii. BMPs that need maintenance and why.
 - iii. BMPs that failed to operate as designed or intended, and
 - iv. Where additional or different BMPs are needed, and why.
 - h. A description of stormwater discharged from the site. The Permittee must note the presence of suspended sediment, turbidity, discoloration, and oil sheen, as applicable.

- i. Any water quality monitoring performed during inspection.
- j. General comments and notes, including a brief description of any BMP repairs, maintenance, or installations made following the inspection.
- k. An implementation schedule for the remedial actions that the Permittee plans to take if the site inspection indicates that the site is out of compliance. The remedial actions taken must meet the requirements of the SWPPP and the permit.
- l. A summary report of the inspection.
- m. The name, title, and signature of the person conducting the site inspection, a phone number or other reliable method to reach this person, and the following statement: *I certify that this report is true, accurate, and complete to the best of my knowledge and belief.*

Table 3 Summary of Primary Monitoring Requirements

Size of Soil Disturbance ¹	Weekly Site Inspections	Weekly Sampling w/ Turbidity Meter	Weekly Sampling w/ Transparency Tube	Weekly pH Sampling ²	CESCL Required for Inspections?
Sites that disturb less than 1 acre, but are part of a larger Common Plan of Development	Required	Not Required	Not Required	Not Required	No
Sites that disturb 1 acre or more, but fewer than 5 acres	Required	Sampling Required – either method ³		Required	Yes
Sites that disturb 5 acres or more	Required	Required	Not Required ⁴	Required	Yes

¹ Soil disturbance is calculated by adding together all areas that will be affected by construction activity. Construction activity means clearing, grading, excavation, and any other activity that disturbs the surface of the land, including ingress/egress from the site.

² If construction activity results in the disturbance of 1 acre or more, and involves significant concrete work (1,000 cubic yards of concrete or recycled concrete placed or poured over the life of a project) or the use of engineered soils (soil amendments including but not limited to Portland cement-treated base [CTB], cement kiln dust [CKD], or fly ash), and stormwater from the affected area drains to surface waters of the State or to a storm sewer stormwater collection system that drains to other surface waters of the State, the Permittee must conduct pH sampling in accordance with Special Condition S4.D.

³ Sites with one or more acres, but fewer than 5 acres of soil disturbance, must conduct turbidity or transparency sampling in accordance with Special Condition S4.C.4.a or b.

⁴ Sites equal to or greater than 5 acres of soil disturbance must conduct turbidity sampling using a turbidity meter in accordance with Special Condition S4.C.4.a.

C. Turbidity/Transparency Sampling Requirements

1. Sampling Methods
 - a. If construction activity involves the disturbance of five (5) acres or more, the Permittee must conduct turbidity sampling per Special Condition S4.C.4.a, below.
 - b. If construction activity involves one (1) acre or more but fewer than five (5) acres of soil disturbance, the Permittee must conduct either transparency sampling *or* turbidity sampling per Special Condition S4.C.4.a or b, below.
2. Sampling Frequency
 - a. The Permittee must sample all discharge points at least once every calendar week when stormwater (or authorized non-stormwater) discharges from the site or enters any on-site surface waters of the state (for example, a creek running through a site); sampling is not required on sites that disturb less than an acre.
 - b. Samples must be representative of the flow and characteristics of the discharge.
 - c. Sampling is not required when there is no discharge during a calendar week.
 - d. Sampling is not required outside of normal working hours or during unsafe conditions.
 - e. If the Permittee is unable to sample during a monitoring period, the Permittee must include a brief explanation in the monthly Discharge Monitoring Report (DMR).
 - f. Sampling is not required before construction activity begins.
 - g. The Permittee may reduce the sampling frequency for temporarily stabilized, inactive sites to once every calendar month.
3. Sampling Locations
 - a. Sampling is required at all points where stormwater associated with construction activity (or authorized non-stormwater) is discharged off site, including where it enters any on-site surface waters of the state (for example, a creek running through a site).
 - b. The Permittee may discontinue sampling at discharge points that drain areas of the project that are fully stabilized to prevent erosion.
 - c. The Permittee must identify all sampling point(s) in the SWPPP and on the site map and clearly mark these points in the field with a flag, tape, stake or other visible marker.
 - d. Sampling is not required for discharge that is sent directly to sanitary or combined sewer systems.
 - e. The Permittee may discontinue sampling at discharge points in areas of the project where the Permittee no longer has operational control of the construction activity.

4. Sampling and Analysis Methods

- a. The Permittee performs turbidity analysis with a calibrated turbidity meter (turbidimeter) either on site or at an accredited lab. The Permittee must record the results in the site log book in nephelometric turbidity units (NTUs).
- b. The Permittee performs transparency analysis on site with a 1½ inch diameter, 60 centimeter (cm)-long transparency tube. The Permittee will record the results in the site log book in centimeters (cm).

Table 4 Monitoring and Reporting Requirements

Parameter	Unit	Analytical Method	Sampling Frequency	Benchmark Value
Turbidity	NTU	SM2130	Weekly, if discharging	25 NTUs
Transparency	Cm	Manufacturer instructions, or Ecology guidance	Weekly, if discharging	33 cm

5. Turbidity/Transparency Benchmark Values and Reporting Triggers

The benchmark value for turbidity is 25 NTUs. The benchmark value for transparency is 33 centimeters (cm). Note: Benchmark values do not apply to discharges to segments of water bodies on Washington State's 303(d) list (Category 5) for turbidity, fine sediment, or phosphorus; these discharges are subject to a numeric effluent limit for turbidity. Refer to Special Condition S8 for more information and follow S5.F – Noncompliance Notification for reporting requirements applicable to discharges which exceed the numeric effluent limit for turbidity.

- a. Turbidity 26 – 249 NTUs, or Transparency 32 – 7 cm:

If the discharge turbidity is 26 to 249 NTUs; or if discharge transparency is 32 to 7 cm, the Permittee must:

- i. Immediately begin the process to fully implement and maintain appropriate source control and/or treatment BMPs, and no later than 10 days of the date the discharge exceeded the benchmark. If installation of necessary treatment BMPs is not feasible within 10 days, Ecology may approve additional time when the Permittee requests an extension within the initial 10-day response period.
- ii. Review the SWPPP for compliance with Special Condition S9 and make appropriate revisions within 7 days of the date the discharge exceeded the benchmark.
- iii. Document BMP implementation and maintenance in the site log book.

- b. Turbidity 250 NTUs or greater, or Transparency 6 cm or less:

If a discharge point's turbidity is 250 NTUs or greater, or if discharge transparency is less than or equal to 6 cm, the Permittee must complete the reporting and adaptive

management process described below. For discharges which are subject to a numeric effluent limit for turbidity, see S5.F – Noncompliance Notification.

- i. Within 24 hours, telephone or submit an electronic report to the applicable Ecology Region's Environmental Report Tracking System (ERTS) number (or through Ecology's Water Quality Permitting Portal [WQWebPortal] – Permit Submittals when the form is available), in accordance with Special Condition S5.A.
 - **Central Region** (Okanogan, Chelan, Douglas, Kittitas, Yakima, Klickitat, Benton): (509) 575-2490
 - **Eastern Region** (Adams, Asotin, Columbia, Ferry, Franklin, Garfield, Grant, Lincoln, Pend Oreille, Spokane, Stevens, Walla Walla, Whitman): (509) 329-3400
 - **Northwest Region** (Kitsap, Snohomish, Island, King, San Juan, Skagit, Whatcom): (425) 649-7000
 - **Southwest Region** (Grays Harbor, Lewis, Mason, Thurston, Pierce, Clark, Cowlitz, Skamania, Wahkiakum, Clallam, Jefferson, Pacific): (360) 407-6300

These numbers and a link to the ERTS reporting page are also listed at the following website: <http://www.ecy.wa.gov/programs/wq/stormwater/construction/index.html>.

- ii. Immediately begin the process to fully implement and maintain appropriate source control and/or treatment BMPs as soon as possible, addressing the problems within 10 days of the date the discharge exceeded the benchmark. If installation of necessary treatment BMPs is not feasible within 10 days, Ecology may approve additional time when the Permittee requests an extension within the initial 10-day response period.
- iii. Sample discharges daily until:
 - a) Turbidity is 25 NTUs (or lower); or
 - b) Transparency is 33 cm (or greater); or
 - c) The Permittee has demonstrated compliance with the water quality standard for turbidity:
 - 1) No more than 5 NTUs over background turbidity, if background is less than 50 NTUs, or
 - 2) No more than 10% over background turbidity, if background is 50 NTUs or greater; or
- *Note: background turbidity in the receiving water must be measured immediately upstream (upgradient) or outside of the area of influence of the discharge.
- d) The discharge stops or is eliminated.

- iv. Review the SWPPP for compliance with Special Condition S9 and make appropriate revisions within seven (7) days of the date the discharge exceeded the benchmark.

v. Document BMP implementation and maintenance in the site log book.

Compliance with these requirements does not relieve the Permittee from responsibility to maintain continuous compliance with permit benchmarks.

D. pH Sampling Requirements – Significant Concrete Work or Engineered Soils

If construction activity results in the disturbance of 1 acre or more, *and* involves significant concrete work (significant concrete work means greater than 1000 cubic yards placed or poured concrete or recycled concrete used over the life of a project) or the use of engineered soils (soil amendments including but not limited to Portland cement-treated base [CTB], cement kiln dust [CKD], or fly ash), and stormwater from the affected area drains to surface waters of the State or to a storm sewer system that drains to surface waters of the State, the Permittee must conduct pH sampling as set forth below. Note: In addition, discharges to segments of water bodies on Washington State's 303(d) list (Category 5) for high pH are subject to a numeric effluent limit for pH; refer to Special Condition S8.

1. The Permittee must perform pH analysis on site with a calibrated pH meter, pH test kit, or wide range pH indicator paper. The Permittee must record pH sampling results in the site log book.
2. During the applicable pH monitoring period defined below, the Permittee must obtain a representative sample of stormwater and conduct pH analysis at least once per week.
 - a. For sites with significant concrete work, the Permittee must begin the pH sampling period when the concrete is first placed or poured and exposed to precipitation, and continue weekly throughout and after the concrete placement, pour and curing period, until stormwater pH is in the range of 6.5 to 8.5 (su).
 - b. For sites with recycled concrete where monitoring is required, the Permittee must begin the weekly pH sampling period when the recycled concrete is first exposed to precipitation and must continue until the recycled concrete is fully stabilized with the stormwater pH in the range of 6.5 to 8.5 (su).
 - c. For sites with engineered soils, the Permittee must begin the pH sampling period when the soil amendments are first exposed to precipitation and must continue until the area of engineered soils is fully stabilized.
3. The Permittee must sample pH in the sediment trap/pond(s) or other locations that receive stormwater runoff from the area of significant concrete work or engineered soils before the stormwater discharges to surface waters.
4. The benchmark value for pH is 8.5 standard units. Anytime sampling indicates that pH is 8.5 or greater, the Permittee must either:
 - a. Prevent the high pH water (8.5 or above) from entering storm sewer systems or surface waters of the state; *or*
 - b. If necessary, adjust or neutralize the high pH water until it is in the range of pH 6.5 to 8.5 (su) using an appropriate treatment BMP such as carbon dioxide (CO₂) sparging, dry ice or food grade vinegar. The Permittee must obtain written approval from Ecology before using any form of chemical treatment other than CO₂ sparging, dry ice or food grade vinegar.

S5. REPORTING AND RECORDKEEPING REQUIREMENTS

A. High Turbidity Reporting

Anytime sampling performed in accordance with Special Condition S4.C indicates turbidity has reached the 250 NTUs or more (or transparency less than or equal to 6 cm), high turbidity reporting level, the Permittee must notify Ecology within 24 hours of analysis either by calling the applicable Ecology Region's Environmental Report Tracking System (ERTS) number by phone or by submitting an electronic ERTS report (through Ecology's Water Quality Permitting Portal (WQWebPortal) – Permit Submittals when the form is available). See the CSWGP website for links to ERTS and the WQWebPortal. (<http://www.ecy.wa.gov/programs/wq/stormwater/construction/index.html>) Also, see phone numbers in Special Condition S4.C.5.b.i.

B. Discharge Monitoring Reports (DMRs)

Permittees required to conduct water quality sampling in accordance with Special Conditions S4.C (Turbidity/Transparency), S4.D (pH), S8 (303[d]/TMDL sampling), and/or G12 (Additional Sampling) must submit the results to Ecology.

Permittees must submit monitoring data using Ecology's WQWebDMR web application accessed through Ecology's Water Quality Permitting Portal.

Permittees unable to submit electronically (for example, those who do not have an internet connection) must contact Ecology to request a waiver and obtain instructions on how to obtain a paper copy DMR at:

Department of Ecology
Water Quality Program - Construction Stormwater
PO Box 47696
Olympia, WA 98504-7696

Permittees who obtain a waiver not to use WQWebDMR must use the forms provided to them by Ecology; submittals must be mailed to the address above. Permittees must submit DMR forms to be received by Ecology within 15 days following the end of each month.

If there was no discharge during a given monitoring period, all Permittees must submit a DMR as required with "no discharge" entered in place of the monitoring results. DMRs are required for the full duration of permit coverage (from the first full month following the effective date of permit coverage up until Ecology has approved termination of the coverage). For more information, contact Ecology staff using information provided at the following website: www.ecy.wa.gov/programs/wq/permits/paris/contacts.html.

C. Records Retention

The Permittee must retain records of all monitoring information (site log book, sampling results, inspection reports/checklists, etc.), Stormwater Pollution Prevention Plan, copy of the permit coverage letter (including Transfer of Coverage documentation) and any other documentation of compliance with permit requirements for the entire life of the construction project and for a minimum of five (5) years following the termination of permit coverage. Such information must include all calibration and maintenance records, and records of all data used to complete the application for this permit. This period of retention must be extended during

the course of any unresolved litigation regarding the discharge of pollutants by the Permittee or when requested by Ecology.

D. Recording Results

For each measurement or sample taken, the Permittee must record the following information:

1. Date, place, method, and time of sampling or measurement.
2. The first and last name of the individual who performed the sampling or measurement.
3. The date(s) the analyses were performed.
4. The first and last name of the individual who performed the analyses.
5. The analytical techniques or methods used.
6. The results of all analyses.

E. Additional Monitoring by the Permittee

If the Permittee samples or monitors any pollutant more frequently than required by this permit using test procedures specified by Special Condition S4 of this permit, the sampling results for this monitoring must be included in the calculation and reporting of the data submitted in the Permittee's DMR.

F. Noncompliance Notification

In the event the Permittee is unable to comply with any part of the terms and conditions of this permit, and the resulting noncompliance may cause a threat to human health or the environment (such as but not limited to spills or fuels or other materials, catastrophic pond or slope failure, and discharges that violate water quality standards), or exceed numeric effluent limitations (see S8 – Discharges to 303(d) or TMDL Waterbodies), the Permittee must, upon becoming aware of the circumstance:

1. Notify Ecology within 24 hours of the failure to comply by calling the applicable Regional office ERTS phone number (refer to Special Condition S4.C.5.b.i, or go to <https://ecology.wa.gov/About-us/Get-involved/Report-an-environmental-issue> to find contact information for the regional offices.)
2. Immediately take action to prevent the discharge/pollution, or otherwise stop or correct the noncompliance, and, if applicable, repeat sampling and analysis of any noncompliance immediately and submit the results to Ecology within five (5) days of becoming aware of the violation (See S5.F.3, below, for details on submitting results in a report).
3. Submit a detailed written report to Ecology within five (5) days of the time the Permittee becomes aware of the circumstances, unless requested earlier by Ecology. The report must be submitted using Ecology's Water Quality Permitting Portal (WQWebPortal) – Permit Submittals, unless a waiver from electronic reporting has been granted according to S5.B. The report must contain a description of the noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.

The Permittee must report any unanticipated bypass and/or upset that exceeds any effluent limit in the permit in accordance with the 24-hour reporting requirement contained in 40 C.F.R. 122.41(l)(6).

Compliance with these requirements does not relieve the Permittee from responsibility to maintain continuous compliance with the terms and conditions of this permit or the resulting liability for failure to comply. Upon request of the Permittee, Ecology may waive the requirement for a written report on a case-by-case basis, if the immediate notification is received by Ecology within 24 hours.

G. Access to Plans and Records

1. The Permittee must retain the following permit documentation (plans and records) on site, or within reasonable access to the site, for use by the operator or for on-site review by Ecology or the local jurisdiction:
 - a. General Permit
 - b. Permit Coverage Letter
 - c. Stormwater Pollution Prevention Plan (SWPPP)
 - d. Site Log Book
 - e. Erosivity Waiver (if applicable)
2. The Permittee must address written requests for plans and records listed above (Special Condition S5.G.1) as follows:
 - a. The Permittee must provide a copy of plans and records to Ecology within 14 days of receipt of a written request from Ecology.
 - b. The Permittee must provide a copy of plans and records to the public when requested in writing. Upon receiving a written request from the public for the Permittee's plans and records, the Permittee must either:
 - i. Provide a copy of the plans and records to the requester within 14 days of a receipt of the written request; *or*
 - ii. Notify the requester within 10 days of receipt of the written request of the location and times within normal business hours when the plans and records may be viewed; and provide access to the plans and records within 14 days of receipt of the written request; *or*

Within 14 days of receipt of the written request, the Permittee may submit a copy of the plans and records to Ecology for viewing and/or copying by the requester at an Ecology office, or a mutually agreed location. If plans and records are viewed and/or copied at a location other than at an Ecology office, the Permittee will provide reasonable access to copying services for which a reasonable fee may be charged. The Permittee must notify the requester within 10 days of receipt of the request where the plans and records may be viewed and/or copied.

S6. PERMIT FEES

The Permittee must pay permit fees assessed by Ecology. Fees for stormwater discharges covered under this permit are established by Chapter 173-224 WAC. Ecology continues to assess permit fees until the permit is terminated in accordance with Special Condition S10 or revoked in accordance with General Condition G5.

S7. SOLID AND LIQUID WASTE DISPOSAL

The Permittee must handle and dispose of solid and liquid wastes generated by construction activity, such as demolition debris, construction materials, contaminated materials, and waste materials from maintenance activities, including liquids and solids from cleaning catch basins and other stormwater facilities, in accordance with:

- A. Special Condition S3, Compliance with Standards.**
- B. WAC 173-216-110.**
- C. Other applicable regulations.**

S8. DISCHARGES TO 303(d) OR TMDL WATERBODIES

A. Sampling and Numeric Effluent Limits For Certain Discharges to 303(d)-Listed Water Bodies

- 1. Permittees who discharge to segments of water bodies listed as impaired by the State of Washington under Section 303(d) of the Clean Water Act for turbidity, fine sediment, high pH, or phosphorus, must conduct water quality sampling according to the requirements of this section, and Special Conditions S4.C.2.b-f and S4.C.3.b-d, and must comply with the applicable numeric effluent limitations in S8.C and S8.D.
- 2. All references and requirements associated with Section 303(d) of the Clean Water Act mean the most current listing by Ecology of impaired waters (Category 5) that exists on January 1, 2021, or the date when the operator's complete permit application is received by Ecology, whichever is later.

B. Limits on Coverage for New Discharges to TMDL or 303(d)-Listed Waters

Construction sites that discharge to a TMDL or 303(d)-listed waterbody are not eligible for coverage under this permit *unless* the operator:

1. Prevents exposing stormwater to pollutants for which the waterbody is impaired, and retains documentation in the SWPPP that details procedures taken to prevent exposure on site; *or*
2. Documents that the pollutants for which the waterbody is impaired are not present at the site, and retains documentation of this finding within the SWPPP; *or*
3. Provides Ecology with data indicating the discharge is not expected to cause or contribute to an exceedance of a water quality standard, and retains such data on site with the SWPPP. The operator must provide data and other technical information to Ecology that sufficiently demonstrate:
 - a. For discharges to waters without an EPA-approved or -established TMDL, that the discharge of the pollutant for which the water is impaired will meet in-stream water quality criteria at the point of discharge to the waterbody; *or*
 - b. For discharges to waters with an EPA-approved or -established TMDL, that there is sufficient remaining wasteload allocation in the TMDL to allow construction stormwater discharge and that existing dischargers to the waterbody are subject to compliance schedules designed to bring the waterbody into attainment with water quality standards.

Operators of construction sites are eligible for coverage under this permit only after Ecology makes an affirmative determination that the *discharge will not cause or contribute to the existing impairment or exceed the TMDL*.

C. Sampling and Numeric Effluent Limits for Discharges to Water Bodies on the 303(d) List for Turbidity, Fine Sediment, or Phosphorus

1. Permittees who discharge to segments of water bodies on the 303(d) list (Category 5) for turbidity, fine sediment, or phosphorus must conduct turbidity sampling in accordance with Special Condition S4.C.2 and comply with either of the numeric effluent limits noted in Table 5 below.
2. As an alternative to the 25 NTUs effluent limit noted in Table 5 below (applied at the point where stormwater [or authorized non-stormwater] is discharged off-site), Permittees may choose to comply with the surface water quality standard for turbidity. The standard is: no more than 5 NTUs over background turbidity when the background turbidity is 50 NTUs or less, or no more than a 10% increase in turbidity when the background turbidity is more than 50 NTUs. In order to use the water quality standard requirement, the sampling must take place at the following locations:
 - a. Background turbidity in the 303(d)-listed receiving water immediately upstream (upgradient) or outside the area of influence of the discharge.
 - b. Turbidity at the point of discharge into the 303(d)-listed receiving water, inside the area of influence of the discharge.
3. Discharges that exceed the numeric effluent limit for turbidity constitute a violation of this permit.
4. Permittees whose discharges exceed the numeric effluent limit must sample discharges daily until the violation is corrected and comply with the non-compliance notification requirements in Special Condition S5.F.

Table 5 Turbidity, Fine Sediment & Phosphorus Sampling and Limits for 303(d)-Listed Waters

Parameter identified in 303(d) listing	Parameter Sampled	Unit	Analytical Method	Sampling Frequency	Numeric Effluent Limit ¹
• Turbidity • Fine Sediment • Phosphorus	Turbidity	NTU	SM2130	Weekly, if discharging	25 NTUs, at the point where stormwater is discharged from the site; <i>OR</i> In compliance with the surface water quality standard for turbidity (S8.C.2.a)

¹ Permittees subject to a numeric effluent limit for turbidity may, at their discretion, choose either numeric effluent limitation based on site-specific considerations including, but not limited to, safety, access and convenience.

D. Discharges to Water Bodies on the 303(d) List for High pH

1. Permittees who discharge to segments of water bodies on the 303(d) list (Category 5) for high pH must conduct pH sampling in accordance with the table below, and comply with the numeric effluent limit of pH 6.5 to 8.5 su (Table 6).

Table 6 pH Sampling and Limits for 303(d)-Listed Waters

Parameter identified in 303(d) listing	Parameter Sampled/Units	Analytical Method	Sampling Frequency	Numeric Effluent Limit
High pH	pH /Standard Units	pH meter	Weekly, if discharging	In the range of 6.5 – 8.5 su

2. At the Permittee's discretion, compliance with the limit shall be assessed at one of the following locations:
 - a. Directly in the 303(d)-listed waterbody segment, inside the immediate area of influence of the discharge; *or*
 - b. Alternatively, the Permittee may measure pH at the point where the discharge leaves the construction site, rather than in the receiving water.
3. Discharges that exceed the numeric effluent limit for pH (outside the range of 6.5 – 8.5 su) constitute a violation of this permit.
4. Permittees whose discharges exceed the numeric effluent limit must sample discharges daily until the violation is corrected and comply with the non-compliance notification requirements in Special Condition S5.F.

E. Sampling and Limits for Sites Discharging to Waters Covered by a TMDL or another Pollution Control Plan

1. Discharges to a waterbody that is subject to a Total Maximum Daily Load (TMDL) for turbidity, fine sediment, high pH, or phosphorus must be consistent with the TMDL. Refer to <http://www.ecy.wa.gov/programs/wq/tmdl/TMDLsbyWria/TMDLbyWria.html> for more information on TMDLs.
 - a. Where an applicable TMDL sets specific waste load allocations or requirements for discharges covered by this permit, discharges must be consistent with any specific waste load allocations or requirements established by the applicable TMDL.
 - i. The Permittee must sample discharges weekly, unless otherwise specified by the TMDL, to evaluate compliance with the specific waste load allocations or requirements.
 - ii. Analytical methods used to meet the monitoring requirements must conform to the latest revision of the *Guidelines Establishing Test Procedures for the Analysis of Pollutants* contained in 40 CFR Part 136.
 - iii. Turbidity and pH methods need not be accredited or registered unless conducted at a laboratory which must otherwise be accredited or registered.
 - b. Where an applicable TMDL has established a general waste load allocation for construction stormwater discharges, but has not identified specific requirements, compliance with Special Conditions S4 (Monitoring) and S9 (SWPPPs) will constitute compliance with the approved TMDL.
 - c. Where an applicable TMDL has not specified a waste load allocation for construction stormwater discharges, but has not excluded these discharges, compliance with Special Conditions S4 (Monitoring) and S9 (SWPPPs) will constitute compliance with the approved TMDL.
 - d. Where an applicable TMDL specifically precludes or prohibits discharges from construction activity, the operator is not eligible for coverage under this permit.

S9. STORMWATER POLLUTION PREVENTION PLAN

The Permittee must prepare and properly implement an adequate Stormwater Pollution Prevention Plan (SWPPP) for construction activity in accordance with the requirements of this permit beginning with initial soil disturbance and until final stabilization.

A. The Permittee's SWPPP must meet the following objectives:

1. To identify best management practices (BMPs) which prevent erosion and sedimentation, and to reduce, eliminate or prevent stormwater contamination and water pollution from construction activity.
2. To prevent violations of surface water quality, groundwater quality, or sediment management standards.
3. To control peak volumetric flow rates and velocities of stormwater discharges.

B. General Requirements

1. The SWPPP must include a narrative and drawings. All BMPs must be clearly referenced in the narrative and marked on the drawings. The SWPPP narrative must include documentation to explain and justify the pollution prevention decisions made for the project. Documentation must include:
 - a. Information about existing site conditions (topography, drainage, soils, vegetation, etc.).
 - b. Potential erosion problem areas.
 - c. The 13 elements of a SWPPP in Special Condition S9.D.1-13, including BMPs used to address each element.
 - d. Construction phasing/sequence and general BMP implementation schedule.
 - e. The actions to be taken if BMP performance goals are not achieved—for example, a contingency plan for additional treatment and/or storage of stormwater that would violate the water quality standards if discharged.
 - f. Engineering calculations for ponds, treatment systems, and any other designed structures. When a treatment system requires engineering calculations, these calculations must be included in the SWPPP. Engineering calculations do not need to be included in the SWPPP for treatment systems that do not require such calculations.
2. The Permittee must modify the SWPPP if, during inspections or investigations conducted by the owner/operator, or the applicable local or state regulatory authority, it is determined that the SWPPP is, or would be, ineffective in eliminating or significantly minimizing pollutants in stormwater discharges from the site. The Permittee must then:
 - a. Review the SWPPP for compliance with Special Condition S9 and make appropriate revisions within 7 days of the inspection or investigation.
 - b. Immediately begin the process to fully implement and maintain appropriate source control and/or treatment BMPs as soon as possible, addressing the problems no later than 10 days from the inspection or investigation. If installation of necessary treatment BMPs is not feasible within 10 days, Ecology may approve additional time when an extension is requested by a Permittee within the initial 10-day response period.
 - c. Document BMP implementation and maintenance in the site log book.

The Permittee must modify the SWPPP whenever there is a change in design, construction, operation, or maintenance at the construction site that has, or could have, a significant effect on the discharge of pollutants to waters of the State.

C. Stormwater Best Management Practices (BMPs)

BMPs must be consistent with:

1. *Stormwater Management Manual for Western Washington* (most current approved edition at the time this permit was issued), for sites west of the crest of the Cascade Mountains; or

2. *Stormwater Management Manual for Eastern Washington* (most current approved edition at the time this permit was issued), for sites east of the crest of the Cascade Mountains; or
3. Revisions to the manuals listed in Special Condition S9.C.1 & 2, or other stormwater management guidance documents or manuals which provide an equivalent level of pollution prevention, that are approved by Ecology and incorporated into this permit in accordance with the permit modification requirements of WAC 173-226-230; or
4. Documentation in the SWPPP that the BMPs selected provide an equivalent level of pollution prevention, compared to the applicable stormwater management manuals, including:
 - a. The technical basis for the selection of all stormwater BMPs (scientific, technical studies, and/or modeling) that support the performance claims for the BMPs being selected.
 - b. An assessment of how the selected BMP will satisfy AKART requirements and the applicable federal technology-based treatment requirements under 40 CFR part 125.3.

D. SWPPP – Narrative Contents and Requirements

The Permittee must include each of the 13 elements below in Special Condition S9.D.1-13 in the narrative of the SWPPP and implement them unless site conditions render the element unnecessary and the exemption from that element is clearly justified in the SWPPP.

1. Preserve Vegetation/Mark Clearing Limits
 - a. Before beginning land-disturbing activities, including clearing and grading, clearly mark all clearing limits, sensitive areas and their buffers, and trees that are to be preserved within the construction area.
 - b. Retain the duff layer, native topsoil, and natural vegetation in an undisturbed state to the maximum degree practicable.
2. Establish Construction Access
 - a. Limit construction vehicle access and exit to one route, if possible.
 - b. Stabilize access points with a pad of quarry spalls, crushed rock, or other equivalent BMPs, to minimize tracking sediment onto roads.
 - c. Locate wheel wash or tire baths on site, if the stabilized construction entrance is not effective in preventing tracking sediment onto roads.
 - d. If sediment is tracked off site, clean the affected roadway thoroughly at the end of each day, or more frequently as necessary (for example, during wet weather). Remove sediment from roads by shoveling, sweeping, or pickup and transport of the sediment to a controlled sediment disposal area.
 - e. Conduct street washing only after sediment removal in accordance with Special Condition S9.D.2.d.
 - f. Control street wash wastewater by pumping back on site or otherwise preventing it from discharging into systems tributary to waters of the State.

3. Control Flow Rates

- a. Protect properties and waterways downstream of construction sites from erosion and the associated discharge of turbid waters due to increases in the velocity and peak volumetric flow rate of stormwater runoff from the project site, as required by local plan approval authority.
- b. Where necessary to comply with Special Condition S9.D.3.a, construct stormwater infiltration or detention BMPs as one of the first steps in grading. Assure that detention BMPs function properly before constructing site improvements (for example, impervious surfaces).
- c. If permanent infiltration ponds are used for flow control during construction, protect these facilities from sedimentation during the construction phase.

4. Install Sediment Controls

The Permittee must design, install and maintain effective erosion controls and sediment controls to minimize the discharge of pollutants. At a minimum, the Permittee must:

- a. Construct sediment control BMPs (sediment ponds, traps, filters, infiltration facilities, etc.) as one of the first steps in grading. These BMPs must be functional before other land disturbing activities take place.
- b. Minimize sediment discharges from the site. The design, installation and maintenance of erosion and sediment controls must address factors such as the amount, frequency, intensity and duration of precipitation, the nature of resulting stormwater runoff, and soil characteristics, including the range of soil particle sizes expected to be present on the site.
- c. Direct stormwater runoff from disturbed areas through a sediment pond or other appropriate sediment removal BMP, before the runoff leaves a construction site or before discharge to an infiltration facility. Runoff from fully stabilized areas may be discharged without a sediment removal BMP, but must meet the flow control performance standard of Special Condition S9.D.3.a.
- d. Locate BMPs intended to trap sediment on site in a manner to avoid interference with the movement of juvenile salmonids attempting to enter off-channel areas or drainages.
- e. Provide and maintain natural buffers around surface waters, direct stormwater to vegetated areas to increase sediment removal and maximize stormwater infiltration, unless infeasible.
- f. Where feasible, design outlet structures that withdraw impounded stormwater from the surface to avoid discharging sediment that is still suspended lower in the water column.

5. Stabilize Soils

- a. The Permittee must stabilize exposed and unworked soils by application of effective BMPs that prevent erosion. Applicable BMPs include, but are not limited to: temporary and permanent seeding, sodding, mulching, plastic covering, erosion

control fabrics and matting, soil application of polyacrylamide (PAM), the early application of gravel base on areas to be paved, and dust control.

- b. The Permittee must control stormwater volume and velocity within the site to minimize soil erosion.
- c. The Permittee must control stormwater discharges, including both peak flow rates and total stormwater volume, to minimize erosion at outlets and to minimize downstream channel and stream bank erosion.
- d. Depending on the geographic location of the project, the Permittee must not allow soils to remain exposed and unworked for more than the time periods set forth below to prevent erosion.

West of the Cascade Mountains Crest

During the dry season (May 1 - September 30): 7 days

During the wet season (October 1 - April 30): 2 days

East of the Cascade Mountains Crest, except for Central Basin*

During the dry season (July 1 - September 30): 10 days

During the wet season (October 1 - June 30): 5 days

The Central Basin*, East of the Cascade Mountains Crest

During the dry Season (July 1 - September 30): 30 days

During the wet season (October 1 - June 30): 15 days

***Note: The Central Basin** is defined as the portions of Eastern Washington with mean annual precipitation of less than 12 inches.

- e. The Permittee must stabilize soils at the end of the shift before a holiday or weekend if needed based on the weather forecast.
- f. The Permittee must stabilize soil stockpiles from erosion, protected with sediment trapping measures, and where possible, be located away from storm drain inlets, waterways, and drainage channels.
- g. The Permittee must minimize the amount of soil exposed during construction activity.
- h. The Permittee must minimize the disturbance of steep slopes.
- i. The Permittee must minimize soil compaction and, unless infeasible, preserve topsoil.

6. Protect Slopes

- a. The Permittee must design and construct cut-and-fill slopes in a manner to minimize erosion. Applicable practices include, but are not limited to, reducing continuous length of slope with terracing and diversions, reducing slope steepness, and roughening slope surfaces (for example, track walking).
- b. The Permittee must divert off-site stormwater (run-on) or groundwater away from slopes and disturbed areas with interceptor dikes, pipes, and/or swales. Off-site stormwater should be managed separately from stormwater generated on the site.
- c. At the top of slopes, collect drainage in pipe slope drains or protected channels to prevent erosion.

- i. West of the Cascade Mountains Crest: Temporary pipe slope drains must handle the peak 10-minute flow rate from a Type 1A, 10-year, 24-hour frequency storm for the developed condition. Alternatively, the 10-year, 1-hour flow rate predicted by an approved continuous runoff model, increased by a factor of 1.6, may be used. The hydrologic analysis must use the existing land cover condition for predicting flow rates from tributary areas outside the project limits. For tributary areas on the project site, the analysis must use the temporary or permanent project land cover condition, whichever will produce the highest flow rates. If using the Western Washington Hydrology Model (WWHM) to predict flows, bare soil areas should be modeled as "landscaped area."
- ii. East of the Cascade Mountains Crest: Temporary pipe slope drains must handle the expected peak flow rate from a 6-month, 3-hour storm for the developed condition, referred to as the short duration storm.
- d. Place excavated material on the uphill side of trenches, consistent with safety and space considerations.
- e. Place check dams at regular intervals within constructed channels that are cut down a slope.

7. Protect Drain Inlets

- a. Protect all storm drain inlets made operable during construction so that stormwater runoff does not enter the conveyance system without first being filtered or treated to remove sediment.
- b. Clean or remove and replace inlet protection devices when sediment has filled one-third of the available storage (unless a different standard is specified by the product manufacturer).

8. Stabilize Channels and Outlets

- a. Design, construct and stabilize all on-site conveyance channels to prevent erosion from the following expected peak flows:
 - i. West of the Cascade Mountains Crest: Channels must handle the peak 10-minute flow rate from a Type 1A, 10-year, 24-hour frequency storm for the developed condition. Alternatively, the 10-year, 1-hour flow rate indicated by an approved continuous runoff model, increased by a factor of 1.6, may be used. The hydrologic analysis must use the existing land cover condition for predicting flow rates from tributary areas outside the project limits. For tributary areas on the project site, the analysis must use the temporary or permanent project land cover condition, whichever will produce the highest flow rates. If using the WWHM to predict flows, bare soil areas should be modeled as "landscaped area."
 - ii. East of the Cascade Mountains Crest: Channels must handle the expected peak flow rate from a 6-month, 3-hour storm for the developed condition, referred to as the short duration storm.
- b. Provide stabilization, including armoring material, adequate to prevent erosion of outlets, adjacent stream banks, slopes, and downstream reaches at the outlets of all conveyance systems.

9. Control Pollutants

Design, install, implement and maintain effective pollution prevention measures to minimize the discharge of pollutants. The Permittee must:

- a. Handle and dispose of all pollutants, including waste materials and demolition debris that occur on site in a manner that does not cause contamination of stormwater.
- b. Provide cover, containment, and protection from vandalism for all chemicals, liquid products, petroleum products, and other materials that have the potential to pose a threat to human health or the environment. Minimize storage of hazardous materials on-site. Safety Data Sheets (SDS) should be supplied for all materials stored. Chemicals should be kept in their original labeled containers. On-site fueling tanks must include secondary containment. Secondary containment means placing tanks or containers within an impervious structure capable of containing 110% of the volume of the largest tank within the containment structure. Double-walled tanks do not require additional secondary containment.
- c. Conduct maintenance, fueling, and repair of heavy equipment and vehicles using spill prevention and control measures. Clean contaminated surfaces immediately following any spill incident.
- d. Discharge wheel wash or tire bath wastewater to a separate on-site treatment system that prevents discharge to surface water, such as closed-loop recirculation or upland land application, or to the sanitary sewer with local sewer district approval.
- e. Apply fertilizers and pesticides in a manner and at application rates that will not result in loss of chemical to stormwater runoff. Follow manufacturers' label requirements for application rates and procedures.
- f. Use BMPs to prevent contamination of stormwater runoff by pH-modifying sources. The sources for this contamination include, but are not limited to: bulk cement, cement kiln dust, fly ash, new concrete washing and curing waters, recycled concrete stockpiles, waste streams generated from concrete grinding and sawing, exposed aggregate processes, dewatering concrete vaults, concrete pumping and mixer washout waters. (Also refer to the definition for "concrete wastewater" in Appendix A – Definitions.)
- g. Adjust the pH of stormwater or authorized non-stormwater if necessary to prevent an exceedance of groundwater and/or surface water quality standards.
- h. Assure that washout of concrete trucks is performed off-site or in designated concrete washout areas only. Do not wash out concrete truck drums onto the ground, or into storm drains, open ditches, streets, or streams. Washout of small concrete handling equipment may be disposed of in a formed area awaiting concrete where it will not contaminate surface or groundwater. Do not dump excess concrete on site, except in designated concrete washout areas. Concrete spillage or concrete discharge directly to groundwater or surface waters of the State is

prohibited. At no time shall concrete be washed off into the footprint of an area where an infiltration BMP will be installed.

- i. Obtain written approval from Ecology before using any chemical treatment, with the exception of CO₂, dry ice or food grade vinegar, to adjust pH.
- j. Uncontaminated water from water-only based shaft drilling for construction of building, road, and bridge foundations may be infiltrated provided the wastewater is managed in a way that prohibits discharge to surface waters. Prior to infiltration, water from water-only based shaft drilling that comes into contact with curing concrete must be neutralized until pH is in the range of 6.5 to 8.5 (su).

10. Control Dewatering

- a. Permittees must discharge foundation, vault, and trench dewatering water, which have characteristics similar to stormwater runoff at the site, in conjunction with BMPs to reduce sedimentation before discharge to a sediment trap or sediment pond.
- b. Permittees may discharge clean, non-turbid dewatering water, such as well-point groundwater, to systems tributary to, or directly into surface waters of the State, as specified in Special Condition S9.D.8, provided the dewatering flow does not cause erosion or flooding of receiving waters. Do not route clean dewatering water through stormwater sediment ponds. Note that "surface waters of the State" may exist on a construction site as well as off site; for example, a creek running through a site.
- c. Other dewatering treatment or disposal options may include:
 - i. Infiltration
 - ii. Transport off site in a vehicle, such as a vacuum flush truck, for legal disposal in a manner that does not pollute state waters.
 - iii. Ecology-approved on-site chemical treatment or other suitable treatment technologies (See S9.D.9.i, regarding chemical treatment written approval).
 - iv. Sanitary or combined sewer discharge with local sewer district approval, if there is no other option.
 - v. Use of a sedimentation bag with discharge to a ditch or swale for small volumes of localized dewatering.
- d. Permittees must handle highly turbid or contaminated dewatering water separately from stormwater.

11. Maintain BMPs

- a. Permittees must maintain and repair all temporary and permanent erosion and sediment control BMPs as needed to assure continued performance of their intended function in accordance with BMP specifications.
- b. Permittees must remove all temporary erosion and sediment control BMPs within 30 days after achieving final site stabilization or after the temporary BMPs are no longer needed.

12. Manage the Project

- a. Phase development projects to the maximum degree practicable and take into account seasonal work limitations.
- b. Inspect, maintain and repair all BMPs as needed to assure continued performance of their intended function. Conduct site inspections and monitoring in accordance with Special Condition S4.
- c. Maintain, update, and implement the SWPPP in accordance with Special Conditions S3, S4, and S9.

13. Protect Low Impact Development (LID) BMPs

The primary purpose of on-site LID Stormwater Management is to reduce the disruption of the natural site hydrology through infiltration. LID BMPs are permanent facilities.

- a. Permittees must protect all LID BMPs (including, but not limited to, Bioretention and Rain Garden facilities) from sedimentation through installation and maintenance of erosion and sediment control BMPs on portions of the site that drain into the Bioretention and/or Rain Garden facilities. Restore the BMPs to their fully functioning condition if they accumulate sediment during construction. Restoring the facility must include removal of sediment and any sediment-laden bioretention/rain garden soils, and replacing the removed soils with soils meeting the design specification.
- b. Permittees must maintain the infiltration capabilities of LID BMPs by protecting against compaction by construction equipment and foot traffic. Protect completed lawn and landscaped areas from compaction due to construction equipment.
- c. Permittees must control erosion and avoid introducing sediment from surrounding land uses onto permeable pavements. Do not allow muddy construction equipment on the base material or pavement. Do not allow sediment-laden runoff onto permeable pavements or base materials.
- d. Permittees must clean permeable pavements fouled with sediments or no longer passing an initial infiltration test using local stormwater manual methodology or the manufacturer's procedures.
- e. Permittees must keep all heavy equipment off existing soils under LID BMPs that have been excavated to final grade to retain the infiltration rate of the soils.

E. SWPPP – Map Contents and Requirements

The Permittee's SWPPP must also include a vicinity map or general location map (for example, a USGS quadrangle map, a portion of a county or city map, or other appropriate map) with enough detail to identify the location of the construction site and receiving waters within one mile of the site.

The SWPPP must also include a legible site map (or maps) showing the entire construction site. The following features must be identified, unless not applicable due to site conditions.

1. The direction of north, property lines, and existing structures and roads.
2. Cut and fill slopes indicating the top and bottom of slope catch lines.

3. Approximate slopes, contours, and direction of stormwater flow before and after major grading activities.
4. Areas of soil disturbance and areas that will not be disturbed.
5. Locations of structural and nonstructural controls (BMPs) identified in the SWPPP.
6. Locations of off-site material, stockpiles, waste storage, borrow areas, and vehicle/equipment storage areas.
7. Locations of all surface water bodies, including wetlands.
8. Locations where stormwater or non-stormwater discharges off-site and/or to a surface waterbody, including wetlands.
9. Location of water quality sampling station(s), if sampling is required by state or local permitting authority.
10. Areas where final stabilization has been accomplished and no further construction-phase permit requirements apply.
11. Location or proposed location of LID facilities.

S10. NOTICE OF TERMINATION

Partial terminations of permit coverage are not authorized.

- A.** The site is eligible for termination of coverage when it has met any of the following conditions:
 1. The site has undergone final stabilization, the Permittee has removed all temporary BMPs (except biodegradable BMPs clearly manufactured with the intention for the material to be left in place and not interfere with maintenance or land use), and all stormwater discharges associated with construction activity have been eliminated; *or*
 2. All portions of the site that have not undergone final stabilization per Special Condition S10.A.1 have been sold and/or transferred (per Special Condition S2.A), and the Permittee no longer has operational control of the construction activity; *or*
 3. For residential construction only, the Permittee has completed temporary stabilization and the homeowners have taken possession of the residences.
- B.** When the site is eligible for termination, the Permittee must submit a complete and accurate Notice of Termination (NOT) form, signed in accordance with General Condition G2, to:

Department of Ecology
Water Quality Program - Construction Stormwater
PO Box 47696
Olympia, WA 98504-7696

When an electronic termination form is available, the Permittee may choose to submit a complete and accurate Notice of Termination (NOT) form through the Water Quality Permitting Portal rather than mailing a hardcopy as noted above.

The termination is effective on the 31st calendar day following the date Ecology receives a complete NOT form, unless Ecology notifies the Permittee that termination request is denied because the Permittee has not met the eligibility requirements in Special Condition S10.A.

Permittees are required to comply with all conditions and effluent limitations in the permit until the permit has been terminated.

Permittees transferring the property to a new property owner or operator/Permittee are required to complete and submit the Notice of Transfer form to Ecology, but are not required to submit a Notice of Termination form for this type of transaction.

GENERAL CONDITIONS

G1. DISCHARGE VIOLATIONS

All discharges and activities authorized by this general permit must be consistent with the terms and conditions of this general permit. Any discharge of any pollutant more frequent than or at a level in excess of that identified and authorized by the general permit must constitute a violation of the terms and conditions of this permit.

G2. SIGNATORY REQUIREMENTS

- A.** All permit applications must bear a certification of correctness to be signed:
 - 1. In the case of corporations, by a responsible corporate officer.
 - 2. In the case of a partnership, by a general partner of a partnership.
 - 3. In the case of sole proprietorship, by the proprietor.
 - 4. In the case of a municipal, state, or other public facility, by either a principal executive officer or ranking elected official.
- B.** All reports required by this permit and other information requested by Ecology (including NOIs, NOTs, and Transfer of Coverage forms) must be signed by a person described above or by a duly authorized representative of that person. A person is a duly authorized representative only if:
 - 1. The authorization is made in writing by a person described above and submitted to Ecology.
 - 2. The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility, such as the position of plant manager, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters.
- C.** Changes to authorization. If an authorization under paragraph G2.B.2 above is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, a new authorization satisfying the requirements of paragraph G2.B.2 above must be submitted to Ecology prior to or together with any reports, information, or applications to be signed by an authorized representative.
- D.** Certification. Any person signing a document under this section must make the following certification:

I certify under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

G3. RIGHT OF INSPECTION AND ENTRY

The Permittee must allow an authorized representative of Ecology, upon the presentation of credentials and such other documents as may be required by law:

- A.** To enter upon the premises where a discharge is located or where any records are kept under the terms and conditions of this permit.
- B.** To have access to and copy, at reasonable times and at reasonable cost, any records required to be kept under the terms and conditions of this permit.
- C.** To inspect, at reasonable times, any facilities, equipment (including monitoring and control equipment), practices, methods, or operations regulated or required under this permit.
- D.** To sample or monitor, at reasonable times, any substances or parameters at any location for purposes of assuring permit compliance or as otherwise authorized by the Clean Water Act.

G4. GENERAL PERMIT MODIFICATION AND REVOCATION

This permit may be modified, revoked and reissued, or terminated in accordance with the provisions of Chapter 173-226 WAC. Grounds for modification, revocation and reissuance, or termination include, but are not limited to, the following:

- A.** When a change occurs in the technology or practices for control or abatement of pollutants applicable to the category of dischargers covered under this permit.
- B.** When effluent limitation guidelines or standards are promulgated pursuant to the CWA or Chapter 90.48 RCW, for the category of dischargers covered under this permit.
- C.** When a water quality management plan containing requirements applicable to the category of dischargers covered under this permit is approved, or
- D.** When information is obtained that indicates cumulative effects on the environment from dischargers covered under this permit are unacceptable.

G5. REVOCATION OF COVERAGE UNDER THE PERMIT

Pursuant to Chapter 43.21B RCW and Chapter 173-226 WAC, the Director may terminate coverage for any discharger under this permit for cause. Cases where coverage may be terminated include, but are not limited to, the following:

- A.** Violation of any term or condition of this permit.
- B.** Obtaining coverage under this permit by misrepresentation or failure to disclose fully all relevant facts.
- C.** A change in any condition that requires either a temporary or permanent reduction or elimination of the permitted discharge.
- D.** Failure or refusal of the Permittee to allow entry as required in RCW 90.48.090.
- E.** A determination that the permitted activity endangers human health or the environment, or contributes to water quality standards violations.
- F.** Nonpayment of permit fees or penalties assessed pursuant to RCW 90.48.465 and Chapter 173-224 WAC.

G. Failure of the Permittee to satisfy the public notice requirements of WAC 173-226-130(5), when applicable.

The Director may require any discharger under this permit to apply for and obtain coverage under an individual permit or another more specific general permit. Permittees who have their coverage revoked for cause according to WAC 173-226-240 may request temporary coverage under this permit during the time an individual permit is being developed, provided the request is made within ninety (90) days from the time of revocation and is submitted along with a complete individual permit application form.

G6. REPORTING A CAUSE FOR MODIFICATION

The Permittee must submit a new application, or a supplement to the previous application, whenever a material change to the construction activity or in the quantity or type of discharge is anticipated which is not specifically authorized by this permit. This application must be submitted at least sixty (60) days prior to any proposed changes. Filing a request for a permit modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not relieve the Permittee of the duty to comply with the existing permit until it is modified or reissued.

G7. COMPLIANCE WITH OTHER LAWS AND STATUTES

Nothing in this permit will be construed as excusing the Permittee from compliance with any applicable federal, state, or local statutes, ordinances, or regulations.

G8. DUTY TO REAPPLY

The Permittee must apply for permit renewal at least 180 days prior to the specified expiration date of this permit. The Permittee must reapply using the electronic application form (NOI) available on Ecology's website. Permittees unable to submit electronically (for example, those who do not have an internet connection) must contact Ecology to request a waiver and obtain instructions on how to obtain a paper NOI.

Department of Ecology
Water Quality Program - Construction Stormwater
PO Box 47696
Olympia, WA 98504-7696

G9. REMOVED SUBSTANCE

The Permittee must not re-suspend or reintroduce collected screenings, grit, solids, sludges, filter backwash, or other pollutants removed in the course of treatment or control of stormwater to the final effluent stream for discharge to state waters.

G10. DUTY TO PROVIDE INFORMATION

The Permittee must submit to Ecology, within a reasonable time, all information that Ecology may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit or to determine compliance with this permit. The Permittee must also submit to Ecology, upon request, copies of records required to be kept by this permit [40 CFR 122.41(h)].

G11. OTHER REQUIREMENTS OF 40 CFR

All other requirements of 40 CFR 122.41 and 122.42 are incorporated in this permit by reference.

G12. ADDITIONAL MONITORING

Ecology may establish specific monitoring requirements in addition to those contained in this permit by administrative order or permit modification.

G13. PENALTIES FOR VIOLATING PERMIT CONDITIONS

Any person who is found guilty of willfully violating the terms and conditions of this permit shall be deemed guilty of a crime, and upon conviction thereof shall be punished by a fine of up to ten thousand dollars (\$10,000) and costs of prosecution, or by imprisonment at the discretion of the court. Each day upon which a willful violation occurs may be deemed a separate and additional violation.

Any person who violates the terms and conditions of a waste discharge permit shall incur, in addition to any other penalty as provided by law, a civil penalty in the amount of up to ten thousand dollars (\$10,000) for every such violation. Each and every such violation shall be a separate and distinct offense, and in case of a continuing violation, every day's continuance shall be deemed to be a separate and distinct violation.

G14. UPSET

Definition – “Upset” means an exceptional incident in which there is unintentional and temporary noncompliance with technology-based permit effluent limitations because of factors beyond the reasonable control of the Permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.

An upset constitutes an affirmative defense to an action brought for noncompliance with such technology-based permit effluent limitations if the requirements of the following paragraph are met.

A Permittee who wishes to establish the affirmative defense of upset must demonstrate, through properly signed, contemporaneous operating logs or other relevant evidence that: 1) an upset occurred and that the Permittee can identify the cause(s) of the upset; 2) the permitted facility was being properly operated at the time of the upset; 3) the Permittee submitted notice of the upset as required in Special Condition S5.F, and; 4) the Permittee complied with any remedial measures required under this permit.

In any enforcement proceeding, the Permittee seeking to establish the occurrence of an upset has the burden of proof.

G15. PROPERTY RIGHTS

This permit does not convey any property rights of any sort, or any exclusive privilege.

G16. DUTY TO COMPLY

The Permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Clean Water Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or denial of a permit renewal application.

G17. TOXIC POLLUTANTS

The Permittee must comply with effluent standards or prohibitions established under Section 307(a) of the Clean Water Act for toxic pollutants within the time provided in the regulations that establish those standards or prohibitions, even if this permit has not yet been modified to incorporate the requirement.

G18. PENALTIES FOR TAMPERING

The Clean Water Act provides that any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this permit shall, upon conviction, be punished by a fine of not more than \$10,000 per violation, or by imprisonment for not more than two years per violation, or by both. If a conviction of a person is for a violation committed after a first conviction of such person under this condition, punishment shall be a fine of not more than \$20,000 per day of violation, or imprisonment of not more than four (4) years, or both.

G19. REPORTING PLANNED CHANGES

The Permittee must, as soon as possible, give notice to Ecology of planned physical alterations, modifications or additions to the permitted construction activity. The Permittee should be aware that, depending on the nature and size of the changes to the original permit, a new public notice and other permit process requirements may be required. Changes in activities that require reporting to Ecology include those that will result in:

- A.** The permitted facility being determined to be a new source pursuant to 40 CFR 122.29(b).
- B.** A significant change in the nature or an increase in quantity of pollutants discharged, including but not limited to: a 20% or greater increase in acreage disturbed by construction activity.
- C.** A change in or addition of surface water(s) receiving stormwater or non-stormwater from the construction activity.
- D.** A change in the construction plans and/or activity that affects the Permittee's monitoring requirements in Special Condition S4.

Following such notice, permit coverage may be modified, or revoked and reissued pursuant to 40 CFR 122.62(a) to specify and limit any pollutants not previously limited. Until such modification is effective, any new or increased discharge in excess of permit limits or not specifically authorized by this permit constitutes a violation.

G20. REPORTING OTHER INFORMATION

Where the Permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to Ecology, it must promptly submit such facts or information.

G21. REPORTING ANTICIPATED NON-COMPLIANCE

The Permittee must give advance notice to Ecology by submission of a new application or supplement thereto at least forty-five (45) days prior to commencement of such discharges, of any facility expansions, production increases, or other planned changes, such as process modifications, in the permitted facility or activity which may result in noncompliance with permit limits or conditions. Any maintenance of facilities, which might necessitate unavoidable interruption of

operation and degradation of effluent quality, must be scheduled during non-critical water quality periods and carried out in a manner approved by Ecology.

G22. REQUESTS TO BE EXCLUDED FROM COVERAGE UNDER THE PERMIT

Any discharger authorized by this permit may request to be excluded from coverage under the general permit by applying for an individual permit. The discharger must submit to the Director an application as described in WAC 173-220-040 or WAC 173-216-070, whichever is applicable, with reasons supporting the request. These reasons will fully document how an individual permit will apply to the applicant in a way that the general permit cannot. Ecology may make specific requests for information to support the request. The Director will either issue an individual permit or deny the request with a statement explaining the reason for the denial. When an individual permit is issued to a discharger otherwise subject to the construction stormwater general permit, the applicability of the construction stormwater general permit to that Permittee is automatically terminated on the effective date of the individual permit.

G23. APPEALS

- A.** The terms and conditions of this general permit, as they apply to the appropriate class of dischargers, are subject to appeal by any person within 30 days of issuance of this general permit, in accordance with Chapter 43.21B RCW, and Chapter 173-226 WAC.
- B.** The terms and conditions of this general permit, as they apply to an individual discharger, are appealable in accordance with Chapter 43.21B RCW within 30 days of the effective date of coverage of that discharger. Consideration of an appeal of general permit coverage of an individual discharger is limited to the general permit's applicability or nonapplicability to that individual discharger.
- C.** The appeal of general permit coverage of an individual discharger does not affect any other dischargers covered under this general permit. If the terms and conditions of this general permit are found to be inapplicable to any individual discharger(s), the matter shall be remanded to Ecology for consideration of issuance of an individual permit or permits.

G24. SEVERABILITY

The provisions of this permit are severable, and if any provision of this permit, or application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit shall not be affected thereby.

G25. BYPASS PROHIBITED

A. Bypass Procedures

Bypass, which is the intentional diversion of waste streams from any portion of a treatment facility, is prohibited for stormwater events below the design criteria for stormwater management. Ecology may take enforcement action against a Permittee for bypass unless one of the following circumstances (1, 2, 3 or 4) is applicable.

1. Bypass of stormwater is consistent with the design criteria and part of an approved management practice in the applicable stormwater management manual.
2. Bypass for essential maintenance without the potential to cause violation of permit limits or conditions.

Bypass is authorized if it is for essential maintenance and does not have the potential to cause violations of limitations or other conditions of this permit, or adversely impact public health.

3. Bypass of stormwater is unavoidable, unanticipated, and results in noncompliance of this permit.

This bypass is permitted only if:

- a. Bypass is unavoidable to prevent loss of life, personal injury, or severe property damage. "Severe property damage" means substantial physical damage to property, damage to the treatment facilities which would cause them to become inoperable, or substantial and permanent loss of natural resources which can reasonably be expected to occur in the absence of a bypass.
- b. There are no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, maintenance during normal periods of equipment downtime (but not if adequate backup equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventative maintenance), or transport of untreated wastes to another treatment facility.
- c. Ecology is properly notified of the bypass as required in Special Condition S5.F of this permit.

4. A planned action that would cause bypass of stormwater and has the potential to result in noncompliance of this permit during a storm event.

The Permittee must notify Ecology at least thirty (30) days before the planned date of bypass. The notice must contain:

- a. A description of the bypass and its cause
- b. An analysis of all known alternatives which would eliminate, reduce, or mitigate the need for bypassing.
- c. A cost-effectiveness analysis of alternatives including comparative resource damage assessment.
- d. The minimum and maximum duration of bypass under each alternative.
- e. A recommendation as to the preferred alternative for conducting the bypass.
- f. The projected date of bypass initiation.
- g. A statement of compliance with SEPA.
- h. A request for modification of water quality standards as provided for in WAC 173-201A-110, if an exceedance of any water quality standard is anticipated.
- i. Steps taken or planned to reduce, eliminate, and prevent reoccurrence of the bypass.

5. For probable construction bypasses, the need to bypass is to be identified as early in the planning process as possible. The analysis required above must be considered during

preparation of the Stormwater Pollution Prevention Plan (SWPPP) and must be included to the extent practical. In cases where the probable need to bypass is determined early, continued analysis is necessary up to and including the construction period in an effort to minimize or eliminate the bypass.

Ecology will consider the following before issuing an administrative order for this type bypass:

- a. If the bypass is necessary to perform construction or maintenance-related activities essential to meet the requirements of this permit.
- b. If there are feasible alternatives to bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, stopping production, maintenance during normal periods of equipment down time, or transport of untreated wastes to another treatment facility.
- c. If the bypass is planned and scheduled to minimize adverse effects on the public and the environment.

After consideration of the above and the adverse effects of the proposed bypass and any other relevant factors, Ecology will approve, conditionally approve, or deny the request. The public must be notified and given an opportunity to comment on bypass incidents of significant duration, to the extent feasible. Approval of a request to bypass will be by administrative order issued by Ecology under RCW 90.48.120.

B. Duty to Mitigate

The Permittee is required to take all reasonable steps to minimize or prevent any discharge or sludge use or disposal in violation of this permit that has a reasonable likelihood of adversely affecting human health or the environment.

APPENDIX A – DEFINITIONS

AKART is an acronym for “All Known, Available, and Reasonable methods of prevention, control, and Treatment.” AKART represents the most current methodology that can be reasonably required for preventing, controlling, or abating the pollutants and controlling pollution associated with a discharge.

Applicable TMDL means a TMDL for turbidity, fine sediment, high pH, or phosphorus, which was completed and approved by EPA before January 1, 2021, or before the date the operator’s complete permit application is received by Ecology, whichever is later. TMDLs completed after a complete permit application is received by Ecology become applicable to the Permittee only if they are imposed through an administrative order by Ecology, or through a modification of permit coverage.

Applicant means an *operator* seeking coverage under this permit.

Benchmark means a pollutant concentration used as a permit threshold, below which a pollutant is considered unlikely to cause a water quality violation, and above which it may. When pollutant concentrations exceed benchmarks, corrective action requirements take effect. Benchmark values are not water quality standards and are not numeric effluent limitations; they are indicator values.

Best Management Practices (BMPs) means schedules of activities, prohibitions of practices, maintenance procedures, and other physical, structural and/or managerial practices to prevent or reduce the pollution of waters of the State. BMPs include treatment systems, operating procedures, and practices to control stormwater associated with construction activity, spillage or leaks, sludge or waste disposal, or drainage from raw material storage.

Buffer means an area designated by a local jurisdiction that is contiguous to and intended to protect a sensitive area.

Bypass means the intentional diversion of waste streams from any portion of a treatment facility.

Calendar Day A period of 24 consecutive hours starting at 12:00 midnight and ending the following 12:00 midnight.

Calendar Week (same as **Week**) means a period of seven consecutive days starting at 12:01 a.m. (0:01 hours) on Sunday.

Certified Erosion and Sediment Control Lead (CESCL) means a person who has current certification through an approved erosion and sediment control training program that meets the minimum training standards established by Ecology (See BMP C160 in the SWMM).

Chemical Treatment means the addition of chemicals to stormwater and/or authorized non-stormwater prior to filtration and discharge to surface waters.

Clean Water Act (CWA) means the Federal Water Pollution Control Act enacted by Public Law 92-500, as amended by Public Laws 95-217, 95-576, 96-483, and 97-117; USC 1251 et seq.

Combined Sewer means a sewer which has been designed to serve as a sanitary sewer and a storm sewer, and into which inflow is allowed by local ordinance.

Common Plan of Development or Sale means a site where multiple separate and distinct construction activities may be taking place at different times on different schedules and/or by different contractors, but still under a single plan. Examples include: 1) phased projects and projects with multiple filings or lots, even if the separate phases or filings/lots will be constructed under separate contract or by separate owners (e.g., a development where lots are sold to separate builders); 2) a development plan that may be phased over multiple years, but is still under a consistent plan for long-term development; 3) projects in a contiguous area that may be unrelated but still under the same contract, such as construction of a building extension and a new parking lot at the same facility; and 4) linear projects such as roads, pipelines, or utilities. If the project is part of a common plan of development or sale, the disturbed area of the entire plan must be used in determining permit requirements.

Composite Sample means a mixture of grab samples collected at the same sampling point at different times, formed either by continuous sampling or by mixing discrete samples. May be "time-composite" (collected at constant time intervals) or "flow-proportional" (collected either as a constant sample volume at time intervals proportional to stream flow, or collected by increasing the volume of each aliquot as the flow increases while maintaining a constant time interval between the aliquots).

Concrete Wastewater means any water used in the production, pouring and/or clean-up of concrete or concrete products, and any water used to cut, grind, wash, or otherwise modify concrete or concrete products. Examples include water used for or resulting from concrete truck/mixer/pumper/tool/chute rinsing or washing, concrete saw cutting and surfacing (sawing, coring, grinding, roughening, hydro-demolition, bridge and road surfacing). When stormwater comes into contact with concrete wastewater, the resulting water is considered concrete wastewater and must be managed to prevent discharge to waters of the State, including groundwater.

Construction Activity means land disturbing operations including clearing, grading or excavation which disturbs the surface of the land (including off-site disturbance acreage related to construction-support activity). Such activities may include road construction, construction of residential houses, office buildings, or industrial buildings, site preparation, soil compaction, movement and stockpiling of topsoils, and demolition activity.

Construction Support Activity means off-site acreage that will be disturbed as a direct result of the construction project and will discharge stormwater. For example, off-site equipment staging yards, material storage areas, borrow areas, and parking areas.

Contaminant means any hazardous substance that does not occur naturally or occurs at greater than natural background levels. See definition of "hazardous substance" and WAC 173-340-200.

Contaminated soil means soil which contains contaminants, pollutants, or hazardous substances that do not occur naturally or occur at levels greater than natural background.

Contaminated groundwater means groundwater which contains contaminants, pollutants, or hazardous substances that do not occur naturally or occur at levels greater than natural background.

Demonstrably Equivalent means that the technical basis for the selection of all stormwater BMPs is documented within a SWPPP, including:

1. The method and reasons for choosing the stormwater BMPs selected.
2. The pollutant removal performance expected from the BMPs selected.

3. The technical basis supporting the performance claims for the BMPs selected, including any available data concerning field performance of the BMPs selected.
4. An assessment of how the selected BMPs will comply with state water quality standards.
5. An assessment of how the selected BMPs will satisfy both applicable federal technology-based treatment requirements and state requirements to use all known, available, and reasonable methods of prevention, control, and treatment (AKART).

Department means the Washington State Department of Ecology.

Detention means the temporary storage of stormwater to improve quality and/or to reduce the mass flow rate of discharge.

Dewatering means the act of pumping groundwater or stormwater away from an active construction site.

Director means the Director of the Washington State Department of Ecology or his/her authorized representative.

Discharger means an owner or operator of any facility or activity subject to regulation under Chapter 90.48 RCW or the Federal Clean Water Act.

Domestic Wastewater means water carrying human wastes, including kitchen, bath, and laundry wastes from residences, buildings, industrial establishments, or other places, together with such groundwater infiltration or surface waters as may be present.

Ecology means the Washington State Department of Ecology.

Engineered Soils means the use of soil amendments including, but not limited, to Portland cement treated base (CTB), cement kiln dust (CKD), or fly ash to achieve certain desirable soil characteristics.

Equivalent BMPs means operational, source control, treatment, or innovative BMPs which result in equal or better quality of stormwater discharge to surface water or to groundwater than BMPs selected from the SWMM.

Erosion means the wearing away of the land surface by running water, wind, ice, or other geological agents, including such processes as gravitational creep.

Erosion and Sediment Control BMPs means BMPs intended to prevent erosion and sedimentation, such as preserving natural vegetation, seeding, mulching and matting, plastic covering, filter fences, sediment traps, and ponds. Erosion and sediment control BMPs are synonymous with stabilization and structural BMPs.

Federal Operator is an entity that meets the definition of "Operator" in this permit and is either any department, agency or instrumentality of the executive, legislative, and judicial branches of the Federal government of the United States, or another entity, such as a private contractor, performing construction activity for any such department, agency, or instrumentality.

Final Stabilization (same as **fully stabilized** or **full stabilization**) means the completion of all soil disturbing activities at the site and the establishment of permanent vegetative cover, or equivalent permanent stabilization measures (such as pavement, riprap, gabions, or geotextiles) which will prevent erosion. See the applicable Stormwater Management Manual for more information on vegetative cover expectations and equivalent permanent stabilization measures.

Groundwater means water in a saturated zone or stratum beneath the land surface or a surface waterbody.

Hazardous Substance means any dangerous or extremely hazardous waste as defined in RCW 70.105.010 (5) and (6), or any dangerous or extremely dangerous waste as designated by rule under chapter 70.105 RCW; any hazardous substance as defined in RCW 70.105.010(14) or any hazardous substance as defined by rule under chapter 70.105 RCW; any substance that, on the effective date of this section, is a hazardous substance under section 101(14) of the federal cleanup law, 42U.S.C., Sec. 9601(14); petroleum or petroleum products; and any substance or category of substances, including solid waste decomposition products, determined by the director by rule to present a threat to human health or the environment if released into the environment. The term hazardous substance does not include any of the following when contained in an underground storage tank from which there is not a release: crude oil or any fraction thereof or petroleum, if the tank is in compliance with all applicable federal, state, and local law.

Injection Well means a well that is used for the subsurface emplacement of fluids. (See **Well**.)

Jurisdiction means a political unit such as a city, town or county; incorporated for local self-government.

National Pollutant Discharge Elimination System (NPDES) means the national program for issuing, modifying, revoking and reissuing, terminating, monitoring, and enforcing permits, and imposing and enforcing pretreatment requirements, under sections 307, 402, 318, and 405 of the Federal Clean Water Act, for the discharge of pollutants to surface waters of the State from point sources. These permits are referred to as NPDES permits and, in Washington State, are administered by the Washington State Department of Ecology.

Notice of Intent (NOI) means the application for, or a request for coverage under this general permit pursuant to WAC 173-226-200.

Notice of Termination (NOT) means a request for termination of coverage under this general permit as specified by Special Condition S10 of this permit.

Operator means any party associated with a construction project that meets either of the following two criteria:

- The party has operational control over construction plans and specifications, including the ability to make modifications to those plans and specifications; or
- The party has day-to-day operational control of those activities at a project that are necessary to ensure compliance with a SWPPP for the site or other permit conditions (e.g., they are authorized to direct workers at a site to carry out activities required by the SWPPP or comply with other permit conditions).

Permittee means individual or entity that receives notice of coverage under this general permit.

pH means a liquid's measure of acidity or alkalinity. A pH of 7 is defined as neutral. Large variations above or below this value are considered harmful to most aquatic life.

pH Monitoring Period means the time period in which the pH of stormwater runoff from a site must be tested a minimum of once every seven days to determine if stormwater pH is between 6.5 and 8.5.

Point Source means any discernible, confined, and discrete conveyance, including but not limited to, any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, and container from which pollutants are or may be discharged to surface waters of the State. This term does not include return flows from irrigated agriculture. (See the Fact Sheet for further explanation)

Pollutant means dredged spoil, solid waste, incinerator residue, filter backwash, sewage, garbage, domestic sewage sludge (biosolids), munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt, and industrial, municipal, and agricultural waste. This term does not include sewage from vessels within the meaning of section 312 of the CWA, nor does it include dredged or fill material discharged in accordance with a permit issued under section 404 of the CWA.

Pollution means contamination or other alteration of the physical, chemical, or biological properties of waters of the State; including change in temperature, taste, color, turbidity, or odor of the waters; or such discharge of any liquid, gaseous, solid, radioactive or other substance into any waters of the State as will or is likely to create a nuisance or render such waters harmful, detrimental or injurious to the public health, safety or welfare; or to domestic, commercial, industrial, agricultural, recreational, or other legitimate beneficial uses; or to livestock, wild animals, birds, fish or other aquatic life.

Process Wastewater means any non-stormwater which, during manufacturing or processing, comes into direct contact with or results from the production or use of any raw material, intermediate product, finished product, byproduct, or waste product. If stormwater commingles with process wastewater, the commingled water is considered process wastewater.

Receiving Water means the waterbody at the point of discharge. If the discharge is to a storm sewer system, either surface or subsurface, the receiving water is the waterbody to which the storm system discharges. Systems designed primarily for other purposes such as for groundwater drainage, redirecting stream natural flows, or for conveyance of irrigation water/return flows that coincidentally convey stormwater are considered the receiving water.

Representative means a stormwater or wastewater sample which represents the flow and characteristics of the discharge. Representative samples may be a grab sample, a time-proportionate *composite sample*, or a flow proportionate sample. Ecology's Construction Stormwater Monitoring Manual provides guidance on representative sampling.

Responsible Corporate Officer for the purpose of signatory authority means: (i) a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy- or decision-making functions for the corporation, or (ii) the manager of one or more manufacturing, production, or operating facilities, provided, the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures (40 CFR 122.22).

Sanitary Sewer means a sewer which is designed to convey domestic wastewater.

Sediment means the fragmented material that originates from the weathering and erosion of rocks or unconsolidated deposits, and is transported by, suspended in, or deposited by water.

Sedimentation means the depositing or formation of sediment.

Sensitive Area means a waterbody, wetland, stream, aquifer recharge area, or channel migration zone.

SEPA (State Environmental Policy Act) means the Washington State Law, RCW 43.21C.020, intended to prevent or eliminate damage to the environment.

Significant Amount means an amount of a pollutant in a discharge that is amenable to available and reasonable methods of prevention or treatment; or an amount of a pollutant that has a reasonable potential to cause a violation of surface or groundwater quality or sediment management standards.

Significant Concrete Work means greater than 1000 cubic yards placed or poured concrete or recycled concrete used over the life of a project.

Significant Contributor of Pollutants means a facility determined by Ecology to be a contributor of a significant amount(s) of a pollutant(s) to waters of the State of Washington.

Site means the land or water area where any "facility or activity" is physically located or conducted.

Source Control BMPs means physical, structural or mechanical devices or facilities that are intended to prevent pollutants from entering stormwater. A few examples of source control BMPs are erosion control practices, maintenance of stormwater facilities, constructing roofs over storage and working areas, and directing wash water and similar discharges to the sanitary sewer or a dead end sump.

Stabilization means the application of appropriate BMPs to prevent the erosion of soils, such as, temporary and permanent seeding, vegetative covers, mulching and matting, plastic covering and sodding. See also the definition of Erosion and Sediment Control BMPs.

Storm Drain means any drain which drains directly into a *storm sewer system*, usually found along roadways or in parking lots.

Storm Sewer System means a means a conveyance, or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, manmade channels, or storm drains designed or used for collecting or conveying stormwater. This does not include systems which are part of a *combined sewer* or Publicly Owned Treatment Works (POTW), as defined at 40 CFR 122.2.

Stormwater means that portion of precipitation that does not naturally percolate into the ground or evaporate, but flows via overland flow, interflow, pipes, and other features of a stormwater drainage system into a defined surface waterbody, or a constructed infiltration facility.

Stormwater Management Manual (SWMM) or Manual means the technical Manual published by Ecology for use by local governments that contain descriptions of and design criteria for BMPs to prevent, control, or treat pollutants in stormwater.

Stormwater Pollution Prevention Plan (SWPPP) means a documented plan to implement measures to identify, prevent, and control the contamination of point source discharges of stormwater.

Surface Waters of the State includes lakes, rivers, ponds, streams, inland waters, salt waters, and all other surface waters and water courses within the jurisdiction of the state of Washington.

Temporary Stabilization means the exposed ground surface has been covered with appropriate materials to provide temporary stabilization of the surface from water or wind erosion. Materials include, but are not limited to, mulch, riprap, erosion control mats or blankets and temporary cover crops. Seeding alone is not considered stabilization. Temporary stabilization is not a substitute for the more permanent "final stabilization."

Total Maximum Daily Load (TMDL) means a calculation of the maximum amount of a pollutant that a waterbody can receive and still meet state water quality standards. Percentages of the total maximum daily load are allocated to the various pollutant sources. A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and nonpoint sources. The TMDL calculations must include a "margin of safety" to ensure that the waterbody can be protected in case there are unforeseen events or unknown sources of the pollutant. The calculation must also account for seasonal variation in water quality.

Transfer of Coverage (TOC) means a request for transfer of coverage under this general permit as specified by Special Condition S2.A of this permit.

Treatment BMPs means BMPs that are intended to remove pollutants from stormwater. A few examples of treatment BMPs are detention ponds, oil/water separators, biofiltration, and constructed wetlands.

Transparency means a measurement of water clarity in centimeters (cm), using a 60 cm transparency tube. The transparency tube is used to estimate the relative clarity or transparency of water by noting the depth at which a black and white Secchi disc becomes visible when water is released from a value in the bottom of the tube. A transparency tube is sometimes referred to as a "turbidity tube."

Turbidity means the clarity of water expressed as nephelometric turbidity units (NTUs) and measured with a calibrated turbidimeter.

Uncontaminated means free from any contaminant. See definition of "contaminant" and WAC 173-340-200.

Upset means an exceptional incident in which there is unintentional and temporary noncompliance with technology-based permit effluent limitations because of factors beyond the reasonable control of the Permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.

Waste Load Allocation (WLA) means the portion of a receiving water's loading capacity that is allocated to one of its existing or future point sources of pollution. WLAs constitute a type of water quality based effluent limitation (40 CFR 130.2[h]).

Water-Only Based Shaft Drilling is a shaft drilling process that uses water only and no additives are involved in the drilling of shafts for construction of building, road, or bridge foundations.

Water Quality means the chemical, physical, and biological characteristics of water, usually with respect to its suitability for a particular purpose.

Waters of the State includes those waters as defined as "waters of the United States" in 40 CFR Subpart 122.2 within the geographic boundaries of Washington State and "waters of the State" as defined in Chapter 90.48 RCW, which include lakes, rivers, ponds, streams, inland waters, underground waters, salt

waters, and all other surface waters and water courses within the jurisdiction of the state of Washington.

Well means a bored, drilled or driven shaft, or dug hole whose depth is greater than the largest surface dimension. (See **Injection Well**.)

Wheel Wash Wastewater means any water used in, or resulting from the operation of, a tire bath or wheel wash (BMP C106: Wheel Wash), or other structure or practice that uses water to physically remove mud and debris from vehicles leaving a construction site and prevent track-out onto roads. When stormwater comingles with wheel wash wastewater, the resulting water is considered wheel wash wastewater and must be managed according to Special Condition S9.D.9.

APPENDIX B – ACRONYMS

AKART	All Known, Available, and Reasonable Methods of Prevention, Control, and Treatment
BMP	Best Management Practice
CESCL	Certified Erosion and Sediment Control Lead
CFR	Code of Federal Regulations
CKD	Cement Kiln Dust
cm	Centimeters
CPD	Common Plan of Development
CTB	Cement-Treated Base
CWA	Clean Water Act
DMR	Discharge Monitoring Report
EPA	Environmental Protection Agency
ERTS	Environmental Report Tracking System
ESC	Erosion and Sediment Control
FR	Federal Register
LID	Low Impact Development
NOI	Notice of Intent
NOT	Notice of Termination
NPDES	National Pollutant Discharge Elimination System
NTU	Nephelometric Turbidity Unit
RCW	Revised Code of Washington
SEPA	State Environmental Policy Act
SWMM	Stormwater Management Manual
SWPPP	Stormwater Pollution Prevention Plan
TMDL	Total Maximum Daily Load
UIC	Underground Injection Control
USC	United States Code
USEPA	United States Environmental Protection Agency
WAC	Washington Administrative Code
WQ	Water Quality
WWHM	Western Washington Hydrology Model

F. 303(d) List Waterbodies / TMDL Waterbodies Information

Quality Assurance Project Plan

Puyallup River Tributaries Effectiveness Monitoring

October 2019
Publication No. 19-10-040

Publication Information

Each study conducted by the Washington State Department of Ecology must have an approved Quality Assurance Project Plan (QAPP). The plan describes the objectives of the study and the procedures to be followed to achieve those objectives. After completing the study, Ecology will post the final report of the study to the Internet.

This Quality Assurance Project Plan is available on Ecology's website at
<https://fortress.wa.gov/ecy/publications/SummaryPages/1910040.html>

Data for this project are available in Ecology's [EIM Database](#).
Study ID: EFF_PRT.

This QAPP was written using QAPP Template Version 1.0. Revision date: 8/27/2018.

Federal Clean Water Act 1996 303(d) Listings Addressed in this Study. See Section 3.1.

Contact Information

For more information contact:

Publication Coordinator
Environmental Assessment Program
P.O. Box 47600, Olympia, WA 98504-7600
Phone: (360) 407-6764

Washington State Department of Ecology – <https://ecology.wa.gov>

- Headquarters, Olympia 360-407-6000
- Northwest Regional Office, Bellevue 425-649-7000
- Southwest Regional Office, Olympia 360-407-6300
- Central Regional Office, Union Gap 509-575-2490
- Eastern Regional Office, Spokane 509-329-3400

Cover photo: Boise Creek taken by Allison Brownlee 6-25-2019

Any use of product or firm names in this publication is for descriptive purposes only and does not imply endorsement by the author or the Department of Ecology.

To request ADA accommodation for disabilities, or printed materials in a format for the visually impaired, call Ecology at 360-407-6764 or visit <https://ecology.wa.gov/accessibility>. People with impaired hearing may call Washington Relay Service at 711. People with speech disability may call TTY at 877-833-6341.

Quality Assurance Project Plan

Puyallup River Tributaries Effectiveness Monitoring

October 2019

Approved by:

Signature:	Date:
Allison Brownlee , Author, Principal Investigator, WQP SWRO	
Signature:	Date:
Andrew Kolosseus , Water Cleanup & Technical Unit Supervisor, WQP SWRO	
Signature:	Date:
Andrew Kolosseus , Water Quality Program, Southwest Regional Office Section Manager	
Signature:	Date:
Donovan Gray , TMDL Lead, WQP SWRO	
Signature:	Date:
Niamh O'Rourke , Year 1 Co-Principal Investigator, EAP	
Signature:	Date:
Stacy Polkowske , Watershed Health & Effectiveness Monitoring Unit Supervisor, EAP	
Signature:	Date:
Alan Rue , Acting Director, Manchester Environmental Laboratory, EAP	
Signature:	Date:
Arati Kaza , Ecology Quality Assurance Officer	

Signatures are not available on the Internet version.

EAP: Environmental Assessment Program

WQP SWRO: Water Quality Program, Southwest Regional Office

1.0 Table of Contents

	Page
List of Figures	v
List of Tables	vi
2.0 Abstract	1
3.0 Background	1
3.1 Introduction and problem statement	1
3.2 Study area and surroundings	4
3.2.1 History of study area	5
3.2.2 Summary of previous studies and existing data	7
3.2.3 Parameters of interest and potential sources	10
3.2.4 Regulatory criteria or standards	12
3.3 Water quality impairment studies	13
3.4 Effectiveness monitoring studies	14
4.0 Project Description.....	14
4.1 Project goals.....	15
4.2 Project objectives	15
4.3 Information needed and sources	16
4.4 Tasks required	17
4.5 Systematic planning process used.....	17
5.0 Organization and Schedule	17
5.1 Key individuals and their responsibilities	17
5.2 Special training and certifications.....	18
5.3 Organization chart.....	18
5.4 Proposed project schedule.....	19
5.5 Budget and funding.....	20
6.0 Quality Objectives	21
6.1 Data quality objectives.....	21
6.2 Measurement quality objectives	22
6.2.1 Targets for precision, bias, and sensitivity	22
6.2.2 Targets for comparability, representativeness, and completeness.....	24
6.3 Acceptance criteria for quality of existing data	25
6.4 Model quality objectives.....	25
7.0 Study Design	26
7.1 Study boundaries.....	26
7.2 Field data collection.....	26
7.2.1 Sampling locations and frequency	26
7.2.2 Field parameters and laboratory analytes to be measured	30
7.3 Modeling and analysis design.....	31
7.4 Assumptions in relation to objectives and study area	31
7.5 Possible challenges and contingencies.....	31
7.5.1 Logistical problems	31
7.5.2 Practical constraints.....	32

7.5.3 Schedule limitations	32
8.0 Field Procedures.....	32
8.1 Invasive species evaluation.....	32
8.2 Measurement and sampling procedures.....	32
8.3 Containers, preservation methods, holding times	32
8.4 Equipment decontamination	33
8.5 Sample ID	33
8.6 Chain of custody	34
8.7 Field log requirements	34
8.8 Other activities	34
9.0 Laboratory Procedures	35
9.1 Lab procedures table	35
9.2 Sample preparation method(s)	35
9.3 Special method requirements	35
9.4 Laboratories accredited for methods.....	35
10.0 Quality Control Procedures.....	36
10.1 Table of field and laboratory quality control	37
10.2 Corrective action processes.....	37
11.0 Data Management Procedures	38
11.1 Data recording and reporting requirements	38
11.2 Laboratory data package requirements	38
11.3 Electronic transfer requirements	38
11.4 EIM/STORET data upload procedures.....	38
11.5 Model information management.....	38
12.0 Audits and Reports.....	39
12.1 Field, laboratory, and other audits	39
12.2 Responsible personnel	39
12.3 Frequency and distribution of reports	39
12.4 Responsibility for reports.....	39
13.0 Data Verification.....	39
13.1 Field data verification, requirements, and responsibilities	40
13.2 Laboratory data verification.....	40
13.3 Validation requirements, if necessary	40
13.4 Model quality assessment	41
14.0 Data Quality (Usability) Assessment.....	41
14.1 Process for determining project objectives were met	41
14.2 Treatment of non-detects	41
14.3 Data analysis and presentation methods	41
14.4 Sampling design evaluation	41
14.5 Documentation of assessment.....	42
15.0 References.....	42
16.0 Appendices.....	44
Appendix A. Glossaries, Acronyms, and Abbreviations	44
Glossary of General Terms.....	44

Acronyms and Abbreviations.....	48
Units of Measurement	48
Quality Assurance Glossary	50
References for QA Glossary	56

List of Figures

	Page
Figure 1. The flow path of Boise, Pussyfoot, and Second Creeks as they each flow into the lower White River, which then enters the lower Puyallup River and eventually into Puget Sound.	2
Figure 2. The three watersheds within the larger Puyallup River Watershed: Boise Creek, Pussyfoot Creek, and Second Creek.	4
Figure 3. Land uses of the three watersheds. Source: National Land Cover Database, 2011.	6
Figure 4. Target dry season (July-October) fecal coliform reductions in the White River watershed (Mathieu and James, 2011, Ecology report 11-10-040).	8
Figure 5. Target wet season (November-June) fecal coliform reductions in the White River watershed (Mathieu and James, 2011, Ecology report 11-10-040). Pussyfoot Creek is labeled as the Unnamed Trib to the White River.	9
Figure 6. Sampling locations along Boise Creek.	28
Figure 7. Sampling locations in Pussyfoot Creek.	29
Figure 8. Sampling locations in Second Creek.	30

List of Tables

Table 1. Summary of current water quality impairments for Boise, Pussyfoot, and Second Creeks.....	3
Table 2. Land uses of the three watersheds. Source: National Land Cover Database, 2011.....	6
Table 3. Ecology water quality data that includes Boise Creek, Pussyfoot Creek, and/or Second Creek.....	7
Table 4. List of other organizations collecting data in study area.....	10
Table 5. Water quality criteria for parameters assessed in this study.....	13
Table 6. Organization of project staff and responsibilities.....	17
Table 7. Proposed schedule for completing field and laboratory work, and data entry into EIM for the 10-year study. The EIM Study ID is EFF_PRT....	19
Table 8. Laboratory budget for status and trends component of project (all years).....	20
Table 9. Laboratory budget for implementation and adaptive management component of project (years 1, 5, 10).....	20
Table 10. Additional estimated budget for field equipment.....	21
Table 11. MQOs for parameters measured in the field.....	23
Table 12. MQOs for lab parameters.....	23
Table 13. Latitude and longitude of all planned sample sites.....	26
Table 14. Laboratory parameters to be sampled.....	30
Table 15. Field parameters to be collected (in-situ).....	31
Table 16. Sample containers, preservation, and holding times.....	33
Table 17. Measurement methods (laboratory).....	35
Table 18. Rating of accuracy for field instruments.....	36
Table 19. Quality control samples, type, and frequency.....	37

2.0 Abstract

In 2011, the Department of Ecology (Ecology) wrote a water quality cleanup plan known as a Total Maximum Daily Load (TMDL) for the Puyallup River Watershed (Mathieu and James, 2011, Ecology report 11-10-040). For the last few years, Ecology has focused TMDL implementation and follow up actions in the large and complex watershed. During the TMDL, Ecology found that Boise Creek was the largest fecal coliform loading source of any tributary to the Puyallup River and identified it as a high priority for cleanup. A subsequent study of Second and Pussyfoot Creeks (Dickes, 2015, Ecology report 15-10-048) found fecal coliform exceedances at several locations in both tributaries to the Puyallup River. In addition to bacteria, there are other parameters of concern including temperature, pH, and dissolved oxygen. Boise, Pussyfoot, and Second Creeks are all tributaries to the White River which then feeds into the lower Puyallup River. Ecology is currently preparing a pH TMDL for the Lower White River with a focus on reducing inputs of phosphorus.

As part of Ecology's focused TMDL implementation effort, Ecology's nonpoint staff and partners are currently working together to address bacteria pollution sources in the three tributaries: Boise Creek, Pussyfoot Creek, and Second Creek. It is the goal of the implementation work plan that efforts to reduce sources of bacteria will simultaneously improve water quality overall including the other parameters of concern. This effectiveness monitoring study will meet the following objectives:

- Track general water quality trends in each of the tributaries.
- Provide the information feedback needed for adaptive management purposes.
- Trace sources of pollution and identify likely causes.

To meet these objectives, a long-term (10 year) study has been developed that includes monthly sampling with more extensive sampling efforts in years 1, 5, and 10.

3.0 Background

3.1 Introduction and problem statement

The 2011 Puyallup River Watershed TMDL called for the reduction of bacteria concentrations to meet Washington state water quality standards by 2022. The TMDL documented specific actions for partners to take in order to make such reductions and called for an effectiveness monitoring study as described in this document. This effectiveness monitoring study will focus on three tributaries to the White River where water quality standards have not been met and where implementation efforts have been prioritized: Boise, Pussyfoot, and Second Creeks. The White River flows into the lower portion of the Puyallup River near the city of Sumner. A map of the three tributaries, where they enter the White River, and where the White River flows into the Puyallup River is presented in Figure 1.

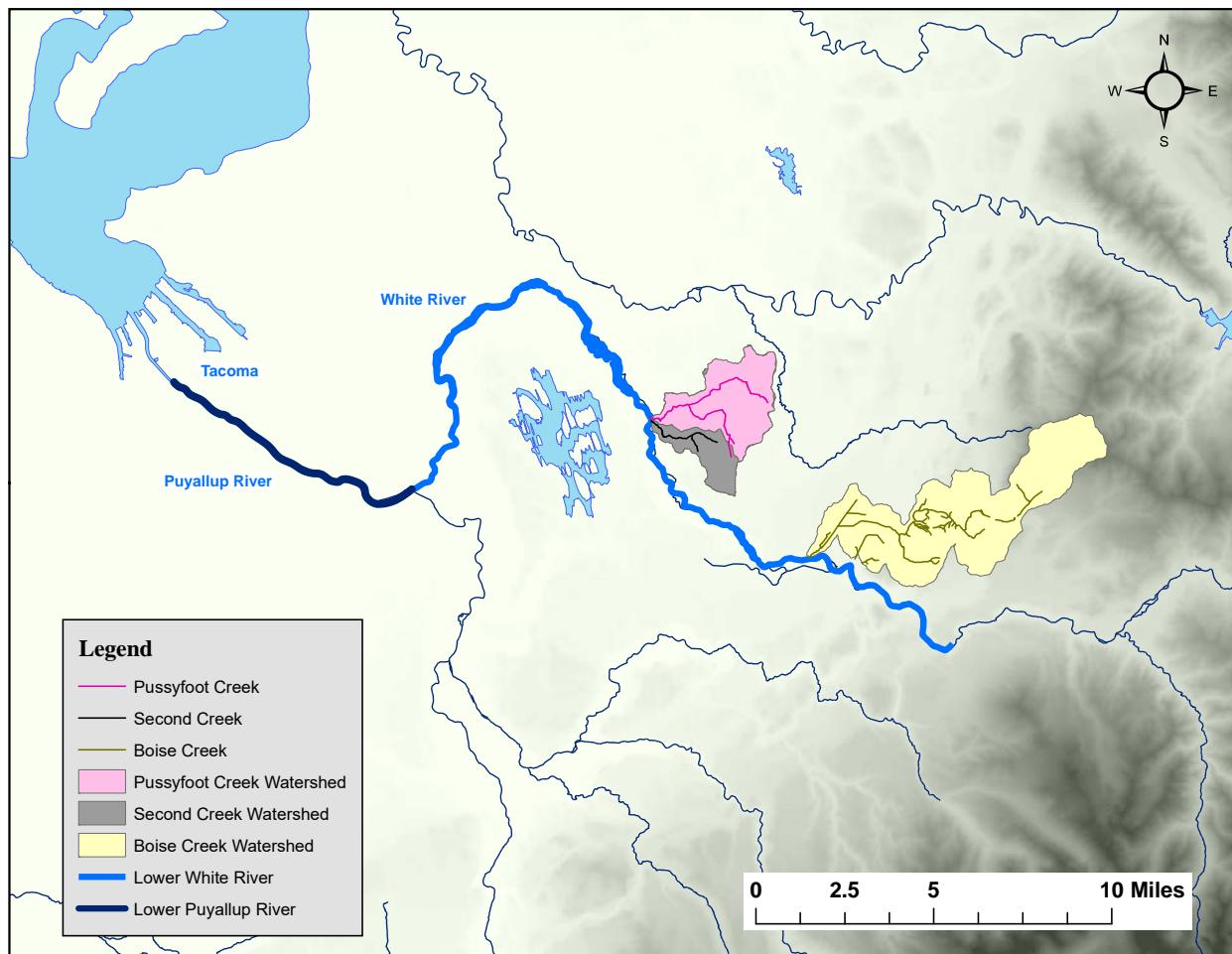


Figure 1. The flow path of Boise, Pussyfoot, and Second Creeks as they each flow into the lower White River, which then enters the lower Puyallup River and eventually into Puget Sound.

Boise, Pussyfoot, and Second Creeks are largely rural and rural-residential watersheds. During the 2011 Puyallup TMDL, Boise Creek was found to be the largest fecal coliform loading source of any tributary to the Puyallup River. Since 2011, some sources of bacteria have been found and resolved, while other sources remain or have been newly identified. Implementation efforts by Ecology and other stakeholders have been focused on failing septic systems, livestock agriculture, and stormwater.

Data from a 2012-2013 study (Dickes, 2015, Ecology report 15-10-048) found that the mainstem sites as well as many of the tributaries and ditches on Pussyfoot Creek and Second Creek exceeded bacteria standards. Ecology identified a dairy in the Pussyfoot watershed that had manure management issues as well as several other sites with direct livestock access to Pussyfoot Creek. Second Creek also had elevated bacteria concentrations, but the sources were not as evident. Both Pussyfoot Creek and Second Creek flow into the White River through the Muckleshoot Indian Tribe's Reservation and were not meeting standards prior to entering the Reservation.

In addition to bacteria, other water quality parameters are of current concern. Ecology is preparing a pH TMDL in the Lower White River with a focus on reducing levels of phosphorus. Surplus nutrients via inputs such as agricultural runoff can cause excessive algal growth. Algae naturally take up carbon dioxide from water for cellular growth, but when excessive algae is present, the increased uptake of carbon can increase the pH of the river. Ecology has documented exceedances of pH in the lower White River since 1990 (Mathieu, 2012).

Currently, there are at least two water quality impairments per watershed, including three listings for pH or temperature on the state water quality assessment 303(d) list. The 303(d) list contains polluted waters of the state that require a TMDL (Category 5). Table 1 summarizes the water quality impairments for each watershed.

Table 1. Summary of current water quality impairments for Boise, Pussyfoot, and Second Creeks.

Watershed	Parameter	Impairment Category	Listing IDs
Boise Creek	Temperature	2	35343
Boise Creek	Temperature	5	7496, 9382
Boise Creek	Dissolved Oxygen	2	9380
Boise Creek	pH	2	9381, 35338
Boise Creek	pH	5	35337
Boise Creek	Bacteria	4a	74205, 74206
Boise Creek	Bacteria	4a	16706
Pussyfoot Creek	Temperature	2	73828
Pussyfoot Creek	pH	5	71272
Pussyfoot Creek	Bacteria	4a	45691
Pussyfoot Creek	Mercury	2	79845
Second Creek	Dissolved Oxygen	2	14763
Second Creek	pH	2	14764

Category 2 - water of concern

Category 4a - impaired with a water quality improvement project in place

Category 5 - impaired with no water quality improvement project in place

This effectiveness monitoring study will assess the efficacy of implementation efforts to reduce sources of pollution in the three focus tributaries to the Puyallup River. It will also aid in the identification and source tracing of additional sources. Further, Ecology has changed its bacteria indicator from fecal coliform to *Escherichia coli* (*E.coli*) in the state water quality standards to more accurately protect against waterborne diseases. This study will monitor both fecal coliform bacteria and *E. coli*, in addition to other water quality parameters.

3.2 Study area and surroundings

This study focuses on three tributaries in the Puyallup River basin: Boise, Pussyfoot, and Second Creeks. The Puyallup River basin, Water Resource Inventory Area (WRIA) 10, drains an area of approximately 1,065 square miles. The watershed contains more than a dozen cities and towns, including part of Washington State's third largest city, Tacoma. The Puyallup River originates from the Puyallup glacier of Mount Rainier in the Cascade Range and empties into Puget Sound at Commencement Bay in Tacoma. The major rivers of the basin are the Puyallup River and its two largest tributaries: the White River (sometimes known as the Stuck River) and the Carbon River. Boise Creek, Pussyfoot Creek, and Second Creek are all sub-watersheds within the larger Puyallup River Watershed (Figure 2).

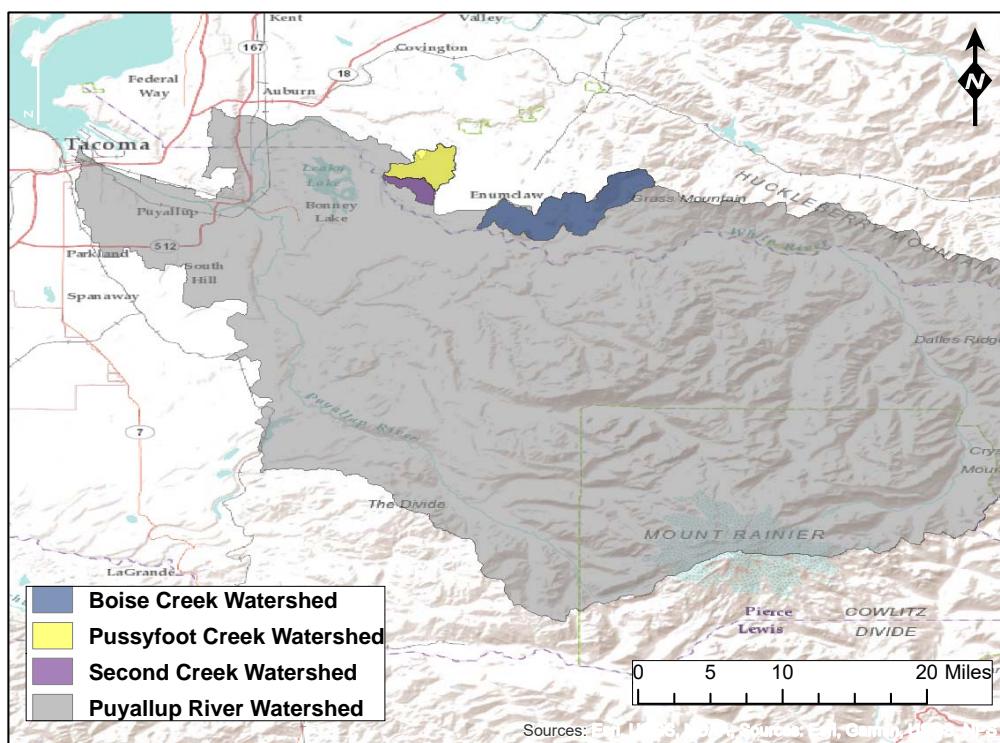


Figure 2. The three watersheds within the larger Puyallup River Watershed: Boise Creek, Pussyfoot Creek, and Second Creek.

The Puyallup River basin has a temperate marine climate with warm, dry summers and cool, wet winters. The mean annual air temperature is about 52°F. The warmest month is July, with an average temperature of about 64°F. The coolest month is January, with an average temperature of about 39°F. Eighty percent of the annual precipitation occurs during October through March. A more detailed description of the Puyallup River basin can be found in the Puyallup River fecal coliform TMDL (Mathieu and James, 2011).

The headwaters of Boise Creek begin in the Cascade Mountains east of the City of Enumclaw, Washington and drain more than 18 square miles (nearly 12,000 acres) within King County. Although the headwaters begin in steeper, forested, mountainous terrain, this quickly gives way to the flatter terrain of the Puget Sound lowlands which dominate the watershed. Boise Creek enters the lower White River almost directly north of the city of Buckley.

Pussyfoot and Second creeks are located in King County south of the town of Auburn and north of the cities of Enumclaw and Buckley. Both enter the right bank of the White River. They are often mapped as unnamed tributaries. However, this study has used the names given by the local community. Pussyfoot Creek (stream number 10.0048, Williams, et al., 1975) enters at river mile (RM) 15.45 and Second Creek (stream number 10.0050, Williams, et al., 1975) enters just upstream at RM 15.5.

The White River flows through the Muckleshoot Indian Tribe's Reservation between RM 15.5 and RM 8.9. Surface waters that flow into the reservation boundaries are considered waters of the state upstream of the boundary and tribal waters downstream of the boundary. The opposite applies to waters flowing out of tribal land. The lower segments of Pussyfoot Creek and Second Creek are on tribal property.

3.2.1 History of study area

The Puyallup River basin has been substantially altered from its historic condition. In particular, the lower river bears little resemblance to its historic past. Extensive urban growth, heavy industry, a large modern marine port, an extended revetment and levee system, and agriculture have combined to significantly alter the natural landscape. The area is experiencing rapid residential growth, generally into areas that were previously agricultural. The upper watershed is still primarily rural residential and agricultural, with very low housing densities. The lower watershed is more urbanized where housing densities are typically higher and mixed with commercial and industrial properties.

The upper basin of Boise Creek is primarily forestland, while the lower basin drains part of the city of Enumclaw and is a mix of rural residential, agriculture, and commercial (Figure 3). More than half of the drainage area is forested (mostly Weyerhaeuser property) with the remainder of the drainage dominated by shrub and grasses, development, and agricultural land cover (Table 2). Slightly more than 3% of the land area is comprised of farms that are enrolled in King County's Farmland Preservation Program, which preserves farmland by purchasing development rights. In addition, there are many small tributaries and ditches that drain from agricultural land within the drainage (King County, 2013).

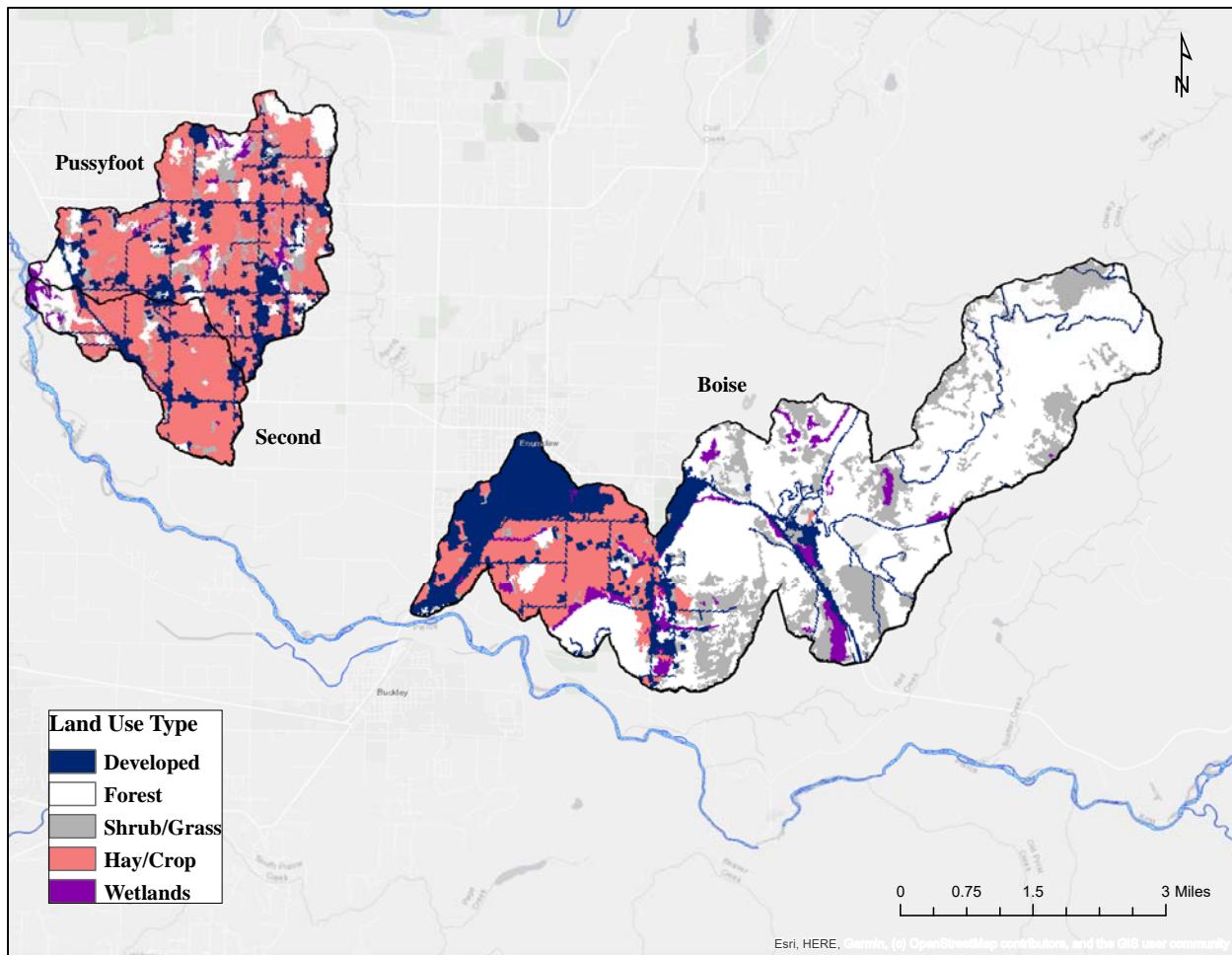


Figure 3. Land uses of the three watersheds. Source: National Land Cover Database, 2011.

Table 2. Land uses of the three watersheds. Source: National Land Cover Database, 2011.

Land Use	Boise	Second	Pussyfoot
Developed	16%	15%	19%
Forest	53%	10%	14%
Shrub/Grass	17%	4%	8%
Hay/Crop	11%	69%	55%
Wetlands	3%	2%	2%

Both Pussyfoot and Second watersheds are largely agricultural (69% and 55%, respectively, Figure 3 and Table 2). The second most dominant land use for both is developed land. The land use in the upper watersheds is rural residential. There are many farms pasturing livestock such as cattle, horses, alpaca, and sheep. There are also dairies in the area. The lower area of both watersheds are less developed.

3.2.2 Summary of previous studies and existing data

Several TMDL and related studies have been completed for watersheds within the Puyallup Basin and have consistently identified Boise Creek as a problem area. Ecology studies that have sampled in Boise, Pussyfoot, and/or Second creeks are listed in Table 3.

Table 3. Ecology water quality data that includes Boise Creek, Pussyfoot Creek, and/or Second Creek.

EIM Study ID	Relevant Watersheds	Study Name	Collection Date	Parameters
AMS001B	Boise	Statewide River and Stream Ambient Monitoring	1941-1979	Multiple including bacteria, nutrients, and pH
AMS001E	Boise	Statewide River and Stream Ambient Monitoring	2000-2009	Multiple including bacteria, nutrients, and pH
BEDI0020 and BEDI0021	Pussyfoot, Second	Pussyfoot Creek and Second Creek Fecal Coliform Characterization Monitoring	2012-2013	Fecal Coliform
fwbenth1	Boise	Freshwater Ambient Biological Assessment Program	93-2004	Dissolved oxygen, pH, temperature, conductivity
GPEL0010	Boise, Pussyfoot, Second	Lower White River pH TMDL	2012	pH
GPEL0002	Boise	Puyallup River TMDL	Sep-Oct, 1990	Biological oxygen demand, ammonia, chlorine
KERI0003	Boise	Lower White River Nutrient TMDL	1996-1997	Multiple including bacteria, nutrients, and pH
LSUL0001	Boise, Pussyfoot	2011 Puyallup River TMDL	2006-2007	Fecal Coliform
PSTox001	Pussyfoot	Toxics in Surface Runoff to Puget Sound	2009-2010	Toxics, nutrients

Ecology collected bacteria and streamflow data between October 2006 and September 2007 for the development of the 2011 Puyallup River TMDL (Mathieu and James, 2011). Data was collected twice a month from 55 sites throughout the watershed. Two of these sites were on Pussyfoot Creek and six along Boise Creek. This study concluded that Boise Creek was the largest fecal coliform loading source that violated water quality standards and designated it as the number one priority cleanup basin for the Puyallup River Basin TMDL. Target reductions recommended from this study were made for Boise Creek in the dry season (Figure 4) and both Boise and Pussyfoot creeks in the wet season (Figure 5).

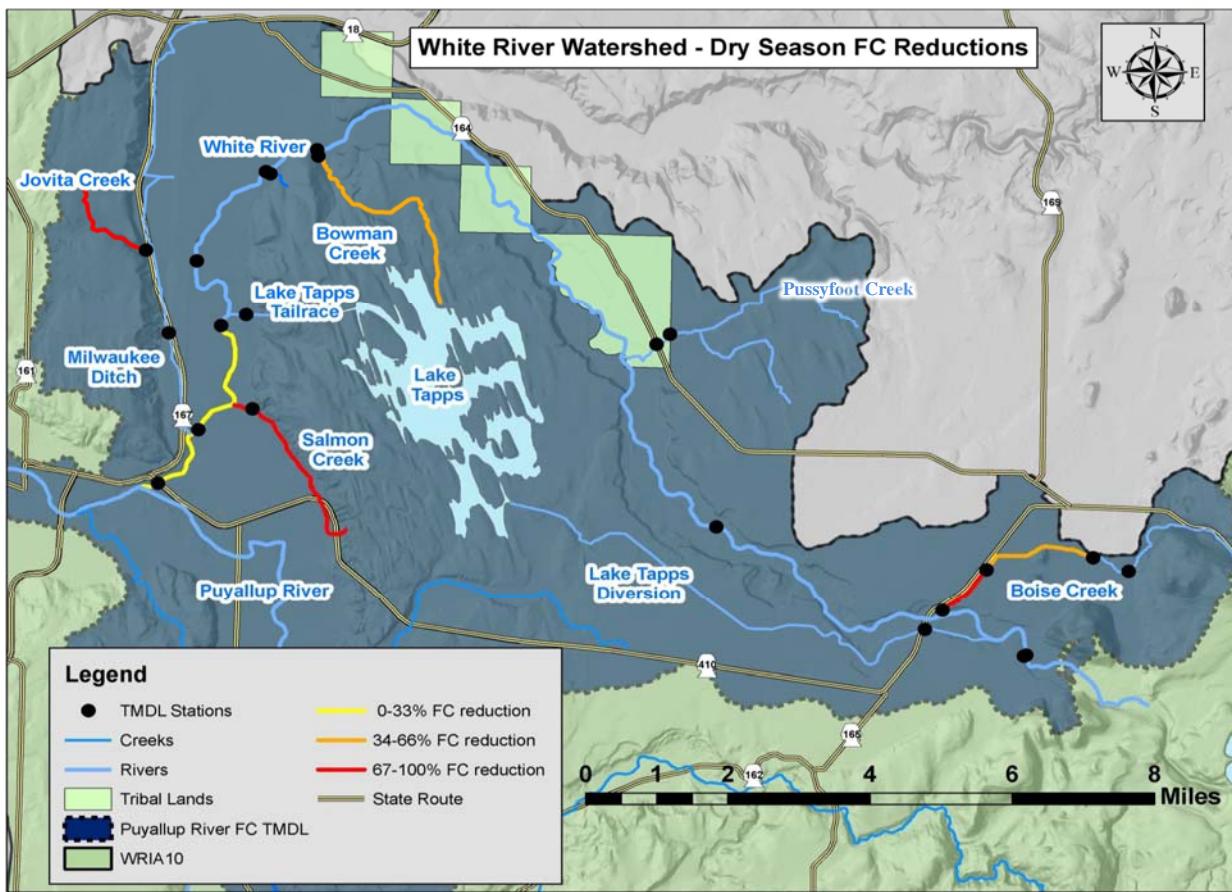


Figure 4. Target dry season (July-October) fecal coliform reductions in the White River watershed (Mathieu and James, 2011, Ecology report 11-10-040).

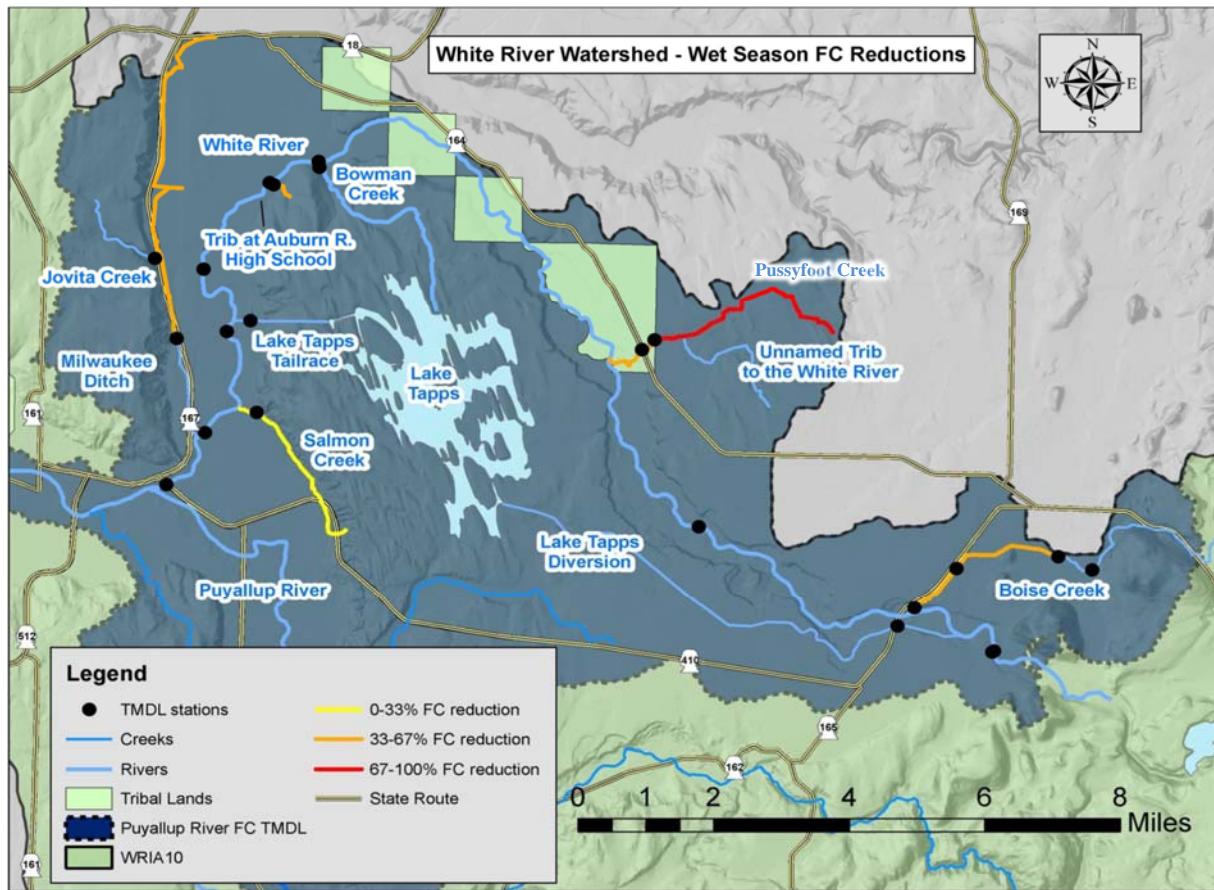


Figure 5. Target wet season (November-June) fecal coliform reductions in the White River watershed (Mathieu and James, 2011, Ecology report 11-10-040). Pussyfoot Creek is labeled as the Unnamed Trib to the White River.

As a result of the 2011 TMDL recommendations, Ecology conducted additional fecal coliform source identification sampling in Pussyfoot and Second creeks from November 2012 to June 2013. This study concluded that the mainstem sites on both creeks exceeded the Primary Contact Recreation standards for fecal coliform bacteria. Additionally, many of the tributaries and ditches also exceeded the standards. The study identified several sources in Pussyfoot Creek and recommended improving land and livestock management. Second Creek had elevated fecal coliforms, however the sources were not determined and further investigation was recommended.

Due to elevated levels of nutrients and pH, there is a TMDL currently under development for the Lower White River including Boise, Pussyfoot, and Second Creeks. Between July and December of 2012, 54 sites along the White River were sampled for pH and a suite of water quality parameters (Mathieu, 2012). The goal of the study is to establish a TMDL for phosphorus, including load and wasteload allocations for current and future sources.

In addition to Ecology, several other organizations have collected water quality data in the focus areas of this study (Table 4). Many of these projects are ongoing and data will be assessed and potentially included when analyzing the results of this effectiveness study.

Table 4. List of other organizations collecting data in study area.

Organization	Relevant Watersheds	Description	Collection Date	Parameters
King County Science and Technical Support Group	Boise	Monthly sampling at Mud Mtn Rd crossing	2015-current	temperature, conductivity, DO, pH, turbidity, TSS, total phosphorus, orthophosphate, total nitrogen, total alkalinity, NO ₃ , NO ₂ , NH ₃ , FC, <i>E.coli</i>
King County Stormwater Services Group	Boise	Municipal stormwater (MS4) sampling	Unknown	<i>E.coli</i>
Muckleshoot Indian Tribe	Pussyfoot	Water quality sampling on tribal land	Unknown	FC
City of Enumclaw	Boise	Municipal stormwater (MS4) sampling	Unknown	FC
King Conservation District – Stream Steward Program	Boise	Monthly volunteer program	2013-current	temperature, pH, NO ₃ , DO, turbidity, <i>E.coli</i>

DO: Dissolved Oxygen

TSS: Total Suspended Solids

FC: Fecal Coliform

3.2.3 Parameters of interest and potential sources

This study will address a standard suite of ambient parameters including all parameters listed in the state water quality impairment list for Boise, Pussyfoot, and Second Creeks (Table 1). Source tracing may require the collection of additional parameters including optical brighteners and streamflow.

Bacteria

Fecal coliform and *E. coli* bacteria primarily enter waterways from one or more of the following sources:

- Livestock with direct access to streams or operations with poor manure management.
- Failing or improperly constructed septic systems.
- Pet waste.
- Wildlife.
- Improperly treated sewage or other illicit discharges to the MS4 or the creek itself.

The only point source bacteria discharge within the Boise Creek watershed is municipal stormwater. Stormwater appears to be a significant source within the urban boundary of the city of Enumclaw. Outside Enumclaw, road outfalls are secondary sources. The Puyallup River Fecal Coliform TMDL assigned Enumclaw, Washington State Department of Transportation, and King County bacteria wasteload allocations for municipal stormwater.

Given the land uses described in Table 2, nonpoint pollution sources are dominant. The Puyallup River Fecal Coliform TMDL concluded that livestock and failing septic systems are the most significant sources of bacteria in the Boise Creek watershed.

Implementation actions identified in the Puyallup River Fecal Coliform TMDL focus on these sources, and are likewise a focus of this effectiveness monitoring study. The Pussyfoot Creek and Second Creek Fecal Coliform Characterization Monitoring Study (Dickes, 2015) found manure management issues and several locations with direct livestock access on Pussyfoot Creek. Sources of bacterial exceedances were not evident on Second Creek and further investigation was suggested.

pH

The Lower White River pH TMDL is currently in development and sources remain undetermined. Early indications are that pH is naturally high, but that anthropogenic sources are contributing to the exceedances. Specifically phosphorus discharges from the Enumclaw and Buckley Wastewater Treatment Plants (WWTPs) appear to be the primary contributors. However, neither WWTP discharge to Boise Creek, instead they both discharge to the White River directly. No point sources have been identified in Boise, Pussyfoot, or Second creeks.

Nutrients

When excess phosphorus or nitrogen is available, excessive algal growth can ultimately lead to higher pH and lower dissolved oxygen. Nonpoint sources can include groundwater inflows, stormwater, erosion, and direct discharges such as from livestock standing in a stream. Several potential nutrient loading sources are present within the watersheds and include:

- Failing on-site septic systems.
- Municipal stormwater.
- Poor livestock or pet manure management.
- Livestock with direct access to the creek.
- Fertilization.
- Bank erosion.
- Wildlife.

Temperature

No temperature TMDL has been completed or is planned for Boise, Pussyfoot, or Second creeks. The only point source in the watersheds is municipal stormwater, but peak stormwater flows usually occur during winter when temperature criteria are not exceeded. Stormwater infrastructure may be indirectly influencing temperature in that impervious surfaces can disrupt natural hydrology and impede or interrupt cool groundwater exchange in summer. But as the three creeks are mostly rural, this is probably not the primary cause of the temperature problem.

Dissolved Oxygen

An old Puyallup River TMDL (June, 1993) exists for biological oxygen demand (BOD) and ammonia. The TMDL concluded that 'municipal permits' (i.e. WWTPs) represented the largest BOD and ammonia loads. However, no WWTPs discharge to Boise, Pussyfoot, or Second creeks. The BOD and ammonia TMDL did assign load allocations to nonpoint sources but they were rudimentary in that little attempt was made to characterize the loading amongst tributaries within the smaller watersheds.

Dissolved oxygen levels are most likely co-dependent to nutrient loads and temperature. Excessive algal growth from nutrient loading can cause anoxic conditions. Potential sources are thus the same as those listed above for nutrients and temperature.

3.2.4 Regulatory criteria or standards

Ecology is responsible for establishing water quality standards for surface waters in Washington. The water quality standards are found in Washington Administration Code (WAC) Chapter 173-201A. The standards use existing scientific information to develop numeric and narrative criteria as well as designate beneficial uses for different water bodies. The standards also include an anti-degradation policy that requires the protection and maintenance of existing uses and water quality of a higher quality than required by the numeric criteria. Water quality standards are designed to protect public health and public enjoyment of state waters as well as the propagation and protection of fish, shellfish, and wildlife.

The water quality standards for Boise, Pussyfoot, and Second creeks are established to protect aquatic wildlife, recreation, water supply, and other miscellaneous uses. These three tributaries to the White River are designated for primary contact recreation and core summer salmonid habitat (WAC 173-201A-602). Specific water quality criteria for measured variables are detailed in Table 5.

Table 5. Water quality criteria for parameters assessed in this study.

Parameter	Criteria
Bacteria	Fecal coliform organism levels within an averaging period must not exceed a geometric mean value of 100 CFU or MPN per 100 mL, with not more than 10 percent of all samples (or any single sample when less than ten sample points exist) obtained within an averaging period exceeding 200 CFU or MPN per 100mL. <i>E. coli</i> organism levels within an averaging period must not exceed a geometric mean value of 100 CFU or MPN per 100 mL, with not more than 10 percent of all samples (or any single sample when less than ten sample points exist) obtained within the averaging period exceeding 320 CFU or MPN per 100 mL.
Dissolved Oxygen	DO concentration will not fall below 9.5 mg/L more than once every ten years on average. When a waterbody's DO is lower than 9.5 mg/L (or within 0.2 mg/L) and that condition is due to natural conditions, then human actions considered cumulatively may not cause the DO of that water body to decrease more than 0.2 mg/L.
Temperature	7-day average of the daily maximum temperature (7-DADMax) will not exceed 16°C for core summer salmonid habitat more than once every ten years on average. When a waterbody's temperature is warmer than the criteria (or within 0.3°C) and that condition is due to natural conditions, then human actions considered cumulatively may not cause the 7-DADMax temperature of that water body to increase more than 0.3°C. Boise Creek has supplemental spawning/incubation criteria of 13°C from September 1 to July 1.
Turbidity	Turbidity shall not exceed 5 nephelometric turbidity units (NTU) over background when the background is 50 NTU or less or a 10% increase in turbidity when the background is more than 50 NTU.
pH	pH shall be within the range of 6.5 to 8.5 with human-caused variation within above range of less than 0.2 units.

CFU: Colony forming units

MPN: Most probable number

3.3 Water quality impairment studies

Ecology's periodic Water Quality Assessment designates waterbodies that are impaired. Based on data from water quality impairment studies and results of the Water Quality Assessment, TMDLs are created. This effectiveness monitoring study follows up on implementation activities resulting from the Puyallup fecal coliform TMDL and resultant studies.

3.4 Effectiveness monitoring studies

Effectiveness monitoring is a vital part of TMDL implementation efforts. This effectiveness monitoring study will measure the extent to which Boise, Pussyfoot, and Second creeks have improved and whether implementation efforts have been successful in bringing these waterbodies into compliance with state water quality standards. This is a long-term study that will monitor current and future implementation efforts between 2019 and 2029.

This TMDL effectiveness monitoring study will provide the following information to facilitate adaptive management needs:

- A measure of progress toward implementation of recommendations - how much watershed restoration has been achieved and how much more effort is required.
- More efficient allocation of funding and optimization in planning and decision-making.
- Identification of restoration activities that worked and those that were most successful for the money spent.
- Technical feedback to refine the initial TMDL model, best management practices, nonpoint source plans, and permits.

Current and past implementation efforts have focused on locating failing septic systems, updating the Enumclaw MS4 permit to include focused bacteria monitoring, conducting drive-by observations and site-visits for area of potential concern, public outreach, and continued collaboration with local agencies.

4.0 Project Description

This Quality Assurance Project Plan (QAPP) serves jointly with the following documents:

- Programmatic QAPP for Water Quality Impairment Studies (McCarthy and Mathieu, 2017).
- Standard Operating Procedures for the Collection, Processing, and Analysis of Stream Samples (Ward, 2016).
- Guidance for Effectiveness Monitoring of Total Maximum Daily Loads in Surface Water (Collyard and Onwumere, 2013).

The above documents address elements that apply to all water quality impairment projects, while this QAPP addresses elements specific to this project.

4.1 Project goals

The main goals of this effectiveness monitoring study are to:

1. Track general water quality trends in each of the tributaries.
2. Provide the information feedback needed for adaptive management purposes.
3. Trace sources of pollution and identify likely causes.

Monitoring should continue throughout the length of the implementation period (i.e. 10 years).

4.2 Project objectives

The goals of this study will be met by achieving the following project objectives:

Objective 1: Status and Trends

The status and trends portion of this project will monitor the lower most accessible location in each waterbody monthly for 10 years. An additional upstream site on Boise Creek was added to this category based on previous exceedances from municipal stormwater in the area. These sites will be sampled to track general water quality trends in each of the tributaries by monitoring a larger suite of parameters. The lab analytes will be bacteria (fecal coliform, *E.coli*) and nutrients (total phosphorus, orthophosphate, total persulfate nitrogen, nitrate-nitrite, ammonia). These parameters will be analyzed by Manchester Lab. Field parameters collected using a calibrated YSI ProDSS (multi-parameter digital sampling system) will include temperature, conductivity, dissolved oxygen, turbidity, and pH.

Objective 2: Implementation and Adaptive Management

The implementation and adaptive management objective will be met by sampling all 26 established sites twice per month during years 1, 5, and 10. During these focused years, there is overlap with the monthly sampling at the status and trends locations. The sites that are not included with the status trends objective will not be visited during the intervening years. All sites are spread more-or-less evenly throughout the study area and are restricted by public access (e.g. private roads) and safety concerns. The results from this objective will provide information needed for adaptive management purposes. Lab parameters sampled will be limited to bacteria (fecal coliform, *E. coli*). If ample water is available, field parameters including temperature, conductivity, dissolved oxygen, turbidity, and pH will be collected using a calibrated YSI ProDSS. Although site visits will be conducted all months of the year, Pussyfoot and Second creeks are expected to be dry between the months of August through October, due to the ephemeral nature of the streams. For this reason, the sample plan and budget includes only 9 months of sampling at these two watersheds.

If samples are collected during the dry months, the cost will come out of the ten percent set aside for source tracing (see below) or other funding opportunities.

Objective 3: Source Tracing

Ten percent of the budget has been set aside for uncertain sampling needs. Monitoring for this objective will trace sources of bacteria pollution and identify likely causes as they arise. The sites are currently unplanned locations and will be necessary to further narrow and/or trace suspected pollution sources on an as needed basis. Site locations will be identified through results from routine sampling locations and nonpoint field assessments. These could also be incidental locations (such as ditches and drains) that typically do not carry water, but are discharging into the waterbody due to increased rain or other discharges. Bacteria samples and field parameters will be collected at these locations.

4.3 Information needed and sources

- Bacteria and nutrients – to be collected by Ecology's Watershed Health & Effectiveness Monitoring Unit (WHEMU) and the Southwest Regional Office Water Cleanup Technical Unit (WCTU) during this project.
- Temperature, conductivity, dissolved oxygen, turbidity, and pH data – to be collected by WHEMU and WCTU with calibrated multi-parameter YSI ProDSS when conditions allow.
- Streamflow – daily discharge from Boise Creek will be obtained from USGS gauge (12099600) located at RM 0.1 (https://waterdata.usgs.gov/wa/nwis/uv/?site_no=12099600&PARAmeter_cd=00060,00065) and King County's gauge (69B) located at 268th Ave NE (<https://green2.kingcounty.gov/hydrology/DataDownload.aspx>)
- Meteorology data – daily precipitation will be obtained from King County's Enumclaw Rain gauge (44u) (Hydrologic Information Center Gauge Map <https://green2.kingcounty.gov/hydrology/gaugemap.aspx>).
- Implementation information of water quality improvement projects including non-Ecology efforts – to be collected through the TMDL lead and non-point South West Regional Office staff.
- Stakeholder information including local monitoring results – to be obtained from King County, City of Enumclaw, Muckleshoot Indian Tribe, and King Conservation District through public websites or personal communication and direct collaboration.

4.4 Tasks required

A general overview of the tasks required to meet the project goals for this effort are discussed below and in Section 4.2. Additional detail on the technical approach and field and lab tasks are described in Section 7.

The following tasks will be performed to support the goals and objectives of this study:

- Collect surface water samples from Boise Creek, Pussyfoot Creek, and Second Creek for bacteria and nutrient analysis.
- Collect surface water quality data including temperature, conductivity, dissolved oxygen, turbidity, and pH from surface waters of each site when ample water is present. A calibrated YSI ProDSS will be used to accomplish this task.
- Collect observational data at each site visit including any evidence of likely sources of pollution. Images taken as necessary.

This project also uses various tools to accomplish the required tasks, such as:

- Standard Operating Procedures (SOPs) for field and calibration activities.
- Checklists for field supplies and calibrations.
- Paper and digital logs for calibration activities.
- Chain of Custody forms for all lab samples.
- Sample collection gear such as personal protective equipment, poles, boots, and coolers.
- Computer programs for compiling, storing, organizing, analyzing, and reporting of information such as field and laboratory sample data.

4.5 Systematic planning process used

This QAPP, in combination with the Programmatic QAPP for Water Quality Impairment Studies, represent the systematic planning process.

5.0 Organization and Schedule

5.1 Key individuals and their responsibilities

Table 6. Organization of project staff and responsibilities.

Staff (All Ecology)	Title	Responsibilities
Donovan Gray Water Quality Program SWRO Phone: 360-407-6407	TMDL Lead	Clarifies scope of the project. Provides internal review of the QAPP and approves the final QAPP. Occasionally assists with field work.
Allison Brownlee WQ, SWRO WCTU Phone: 360-407-6296	Project Manager/ Principal Investigator	Writes the QAPP. Oversees joint field sampling with EAP and transportation of samples to the laboratory. Conducts QA review of data, analyzes and interprets data, and enters data into EIM. Writes the draft report and final report.
Niamh O'Rourke EAP WHEMU Phone: 360-407-7614	Co-Principal Investigator	Oversees initiation of field work, assists with field work, and provides general technical assistance, data management, web reporting, and enters data into EIM. Technical review of QAPP and report.
Andrew Kolosseus WQ, SWRO WCTU Phone: 360-407-6271	Unit Supervisor for the Project Manager	Provides internal review of the QAPP, approves the budget, and approves the final QAPP.
Andrew Kolosseus WQ, SWRO Phone: 360-407-6271	Section Manager for the Project Manager	Reviews the project scope and budget, tracks progress, reviews the draft QAPP, and approves the final QAPP.
Alan Rue Manchester Environmental Laboratory Phone: 360-871-8801	Director	Reviews and approves the final QAPP.
Arati Kaza EAP Phone: 360-407-6445	Ecology Quality Assurance Officer	Reviews and approves the draft QAPP and the final QAPP and addendums. Ensures adherence to QC-related SOPs and practices

EAP: Environmental Assessment Program

EIM: Environmental Information Management database

QAPP: Quality Assurance Project Plan

SWRO: Southwest Regional Office

WCTU: Water Quality Cleanup Technical Unit

WHEMU: Watershed Health and Effectiveness Monitoring Unit

WQ: Water Quality

5.2 Special training and certifications

Ecology field staff are trained through education and experience. Field staff are required to be familiar with all study related SOPs and are required to adhere to task specific procedures documented in the EAP and WQ Safety Plans. Field staff certify review of these procedures every two years. Key personnel involved in the collection of water quality data and interpretation of results for this study have extensive experience in similar efforts.

5.3 Organization chart

Table 6 lists the individuals involved in this study. All are employees of the Department of Ecology.

5.4 Proposed project schedule

This study is a multiyear study and is expected to be conducted over a ten year period (2019- 2029). Sampling will begin in July of 2019.

- Water quality monitoring for the status and trends objective will occur monthly at the mouths of all three creeks (Boise, Pussyfoot, Second), as well as the one added location upstream on Boise Creek.
- Water quality monitoring for the implementation and adaptive management objective will occur twice monthly at all sites during years 1, 5, and 10 (sampling at the four stations mentioned above has overlap between both objectives). Pussyfoot Creek and Second Creek are expected to only include 9 months of sampling due to the creeks running dry between August and October.
- Water quality monitoring for source tracing will occur as deemed necessary by non-point specialists working in the watershed or by the need to follow up on pollution sources found during the study.

Ecology's WHEMU will co-lead the study with WCTU staff during years 1, 5, and 10. Table 7 shows the schedule for completing field and laboratory work, data entry into Ecology's Environmental Information Management database (EIM), and the final report.

Table 7. Proposed schedule for completing field and laboratory work, and data entry into EIM for the 10-year study. The EIM Study ID is EFF_PRT.

Field and laboratory work	Due date	Lead staff
Field work completed	June 2029	Niamh O'Rourke and Allison Brownlee
Laboratory analyses completed	August 2029	Laboratory
Environmental Information System (EIM) database	Due date	Lead staff
EIM data loaded	October 2029	Niamh O'Rourke and Allison Brownlee
EIM data entry review	November 2029	Allison Brownlee and Niamh O'Rourke
EIM complete	December 2029	Allison Brownlee
Final report	Due date	Lead staff
Draft due to supervisor	March 2030	Allison Brownlee
Draft due to client/peer reviewer	April 2030	Allison Brownlee
Final report	Due date	Lead staff
Draft due to external reviewer(s)	May 2030	Allison Brownlee
Final (all reviews done) due to publications coordinator	June 2030	Allison Brownlee
Final report due on web	July 2030	Allison Brownlee

5.5 Budget and funding

The project budget is divided between lab and field costs. All lab samples will be analyzed at Ecology's accredited Manchester Environmental Laboratory (MEL). The 10 year estimated lab budget is detailed in Tables 8 and 9. The total project lab budget is \$151,589, which includes 10% (\$13,781) for source tracing. Field costs are estimated with considerations for equipment replacement and sensor calibrations throughout the 10 year study period and are listed in Table 10.

Table 8. Laboratory budget for status and trends component of project (all years).

Parameter	Creek	No. Sites	Surveys per Year	Field Reps per Year	No. Years	Total Samples	Cost per Sample	Sub-total
Bacteria	Boise	2	12	6	10	300	\$42	\$12,600
Bacteria	Pussyfoot	1	9	3	10	120	\$42	\$5,040
Bacteria	Second	1	9	3	10	120	\$42	\$5,040
TP	Boise	2	12	6	10	300	\$20	\$6,000
TP	Pussyfoot	1	9	3	10	120	\$20	\$2,400
TP	Second	1	9	3	10	120	\$20	\$2,400
Orthophosphate	Boise	2	12	6	10	300	\$20	\$6,000
Orthophosphate	Pussyfoot	1	9	3	10	120	\$20	\$2,400
Orthophosphate	Second	1	9	3	10	120	\$20	\$2,400
TPN	Boise	2	12	6	10	300	\$20	\$6,000
TPN	Pussyfoot	1	9	3	10	120	\$20	\$2,400
TPN	Second	1	9	3	10	120	\$20	\$2,400
Ammonia-N	Boise	2	12	6	10	300	\$15	\$4,500
Ammonia-N	Pussyfoot	1	9	3	10	120	\$15	\$1,800
Ammonia-N	Second	1	9	3	10	120	\$15	\$1,800
Nitrate + Nitrite	Boise	2	12	6	10	300	\$15	\$4,500
Nitrate + Nitrite	Pussyfoot	1	9	3	10	120	\$15	\$1,800
Nitrate + Nitrite	Second	1	9	3	10	120	\$15	\$1,800

Bacteria: Fecal coliform (MF) + E.coli (MF)

TPN: Total Persulfate Nitrogen

TP: Total Phosphorus

Table 9. Laboratory budget for implementation and adaptive management component of project (years 1, 5, 10).

Parameter	Creek	No. Sites	Surveys per Year	Field Reps per Year	No. Years	Total Samples	Cost per Sample	Sub-total
Bacteria	Boise: S&T sites	2	12	0	3	72	\$ 42	\$3,024
Bacteria	Boise: non S&T sites	7	24	24	3	576	\$ 42	\$24,192
Bacteria	Pussyfoot: S&T	1	9	0	3	27	\$ 42	\$1,134

Parameter	Creek	No. Sites	Surveys per Year	Field Reps per Year	No. Years	Total Samples	Cost per Sample	Sub-total
Bacteria	Pussyfoot: non S&T	9	18	12	3	522	\$ 42	\$21,924
Bacteria	Second: S&T	1	9	0	3	27	\$ 42	\$1,134
Bacteria	Second: non S&T	6	18	12	3	360	\$ 42	\$15,120

Bacteria: Fecal coliform (MF) + E.coli (MF)

Table 10. Additional estimated budget for field equipment.

Item	Quantity	Cost	Total
YSI ProDSS Handheld w/GPS	1	\$ 2,160	\$ 2,160
ProDSS 1m 4 port cable w/Depth	1	\$ 2,540	\$ 2,540
ProDSS Turbidity Sensor	1	\$ 1,100	\$ 1,100
ProDSS Conductivity and Temperature Sensor	1	\$ 700	\$ 700
ProDSS pH Sensor	1	\$ 450	\$ 450
ProDSS ODO Dissolved Oxygen Sensor	1	\$ 1,000	\$ 1,000
ProDSS calibration/storage cup	1	\$ 160	\$ 160
ProDSS Probe Guard kit	1	\$ 70	\$ 70
Large, hard sided carrying case	1	\$ 350	\$ 350
pH 4 buffer	45	\$ 15	\$ 675
pH 7 buffer	45	\$ 15	\$ 675
pH 10 buffer	45	\$ 15	\$ 675
Conductivity standard 100 uS/cm	35	\$ 26	\$ 910
YSI Turbidity Standard 12.4 NTU	6	\$ 309	\$ 1,854
YSI Turbidity Standard 124 NTU	6	\$ 340	\$ 2,040

6.0 Quality Objectives

6.1 Data quality objectives

The main data quality objective (DQO) for this study is to collect data of sufficient quantity and quality for effectiveness monitoring of TMDL implementation efforts. This objective will be met by using standard methods that meet the measurement quality objectives (MQOs) that are described below and that are comparable to previous study results.

6.2 Measurement quality objectives

MQOs are performance or acceptance criteria for data quality indicators including precision, bias, sensitivity, representativeness, comparability, and completeness. Field measurements and laboratory analyses both have inherent data variability and as such, MQOs are equally important for both methods. For a measurement of data accuracy, precision and bias are addressed.

6.2.1 Targets for precision, bias, and sensitivity

The MQOs for project results, expressed in terms of acceptable precision, bias, and sensitivity, are described in this section and summarized in Tables 11 and 12 below.

6.2.1.1 Precision

Precision is a measure of variability between results of replicate measurements that is due to random error. It will be assessed by analyzing duplicate field measurements or laboratory samples. Random error can occur from the environment, field procedures, and/or lab methods. Common sources of random error include field sampling procedures, sample handling, sample transportation, lab sample preparation and analysis, and data handling. Field precision will be addressed by collecting replicate samples or measurements. Lab precision will be assessed by MEL and will follow their standard quality control procedures (MEL, 2016). Precision will be expressed as percent relative standard deviation (% RSD) or absolute error and assessed using the MQOs defined in Tables 11 and 12. The targets for precision of field duplicates are based on historical performance by MEL for environmental samples taken around the state by EAP (Mathieu, 2006).

6.2.1.2 Bias

Bias is the difference between the sample mean and the true value. Bias will be addressed by calibrating field and laboratory instruments, and by analyzing lab control samples, matrix spikes, and/or standard reference materials. Bias can originate from instrument sensor drift or improper calibration, sample instability during transportation or storage, sample or equipment contamination, or the inability of analytical methods to detect all forms of the parameter. Field bias will be assessed through frequent calibrations and sensor performance checks, as well as following appropriate sample collection procedures outlined in published SOPs. MQOs for field parameters are listed in Table 11. Lab bias will be assessed by MEL through the use of blanks and spiked samples. MQOs for lab parameters are presented in Table 12.

6.2.1.3 Sensitivity

Sensitivity is a measure of the capability of a field instrument or lab method to detect a substance. It is commonly described as a detection limit. Field instruments have a sensitivity typically reported by the manufacturer that is determined by its range, accuracy, and resolution. Sensitivity levels for all field sensors are detailed in Table 11. For lab data, the method detection limit (MDL) is usually used to describe sensitivity. The method reporting limit (MRL) is typically a little higher than the MDL and is used to represent sensitivity for lab parameters listed in Table 12. MDLs for these parameters are listed in Section 9.1 (Table 17).

Table 11. MQOs for parameters measured in the field.

Parameter	Equipment	Duplicate Measurements: Precision	Equipment Information: Accuracy	Equipment Information: Resolution	Equipment Information: Range	Expected Range
Water Temperature	YSI ProDSS	± 0.2°C	± 0.2°C	0.1°C	-5 - 70°C	0-30°C
Conductivity	YSI ProDSS	5% RSD	±0.5% of reading or 0.001 mS/cm, w.i.g. ^a	0.001 mS/cm (range dependent) ^b	0 - 200 mS/cm	20 – 1,000 uS/cm
Dissolved Oxygen	YSI ProDSS	5% RSD	± 0.1 mg/L or ± 1% of reading, w.i.g. ^a	0.01 or 0.1 mg/L (auto-scaling) ^a	0 - 50 mg/L	0.1 - 15 mg/L
pH	YSI ProDSS	± 0.2 s.u.	± 0.2 s.u.	0.01 s.u.	0 - 14 s.u.	6 - 10 s.u.
Turbidity	YSI ProDSS	15% RSD	0 – 399.99 NTU: ± 2% of reading 400 – 1600 NTU: ±4% of reading	0.01 NTU	0 – 1,600 NTU	0 - 500 NTU

w.i.g.: whichever is greater

a: for 1,4 m cables; for 10 m, 20 m, 30 m cables: ±2.0% of the reading or 1.0 uS/cm, whichever is greater

b: range dependent, for 0.501 to 50.00 mS/cm: 0.01; for 50.01 to 200 mS/cm: 0.1

Table 12. MQOs for lab parameters.

Parameter	Analytical Method	Precision: Lab Duplicates (RPD)	Precision: Field Duplicates (median) ^b	Bias (% recovery): Matrix Spikes or SRMs	Bias (% recovery): Lab Control Samples	Bias (% recovery): Calibration Standards/ Blanks	Bias (% recovery): Method Blank Limit	Sensitivity: Method Lower Reporting Limit ^a
Ammonia-N	SM4500-NH3 H	20%	10% RSD	75-125%	80-120%	ICV/CCV: 90-110% ICB/CCB: <½ RL ^c	<½ RL ^c	0.01 mg/L
Nitrate + Nitrite-N	SM4500-NO3 I	20%	10% RSD	75-125%	80-120%	ICV/CCV: 90-110% ICB/CCB: <½ RL ^c	<½ RL ^c	0.01 mg/L
Total Persulfate Nitrogen	SM4500-N B	20%	10% RSD	75-125%	80-120%	ICV/CCV: 90-110% ICB/CCB: <½ RL ^c	<½ RL ^c	0.025 mg/L
Ortho-phosphate	SM4500-P G	20%	10% RSD	75-125%	80-120%	ICV/CCV: 90-110%	<½ RL ^c	0.003 mg/L

Parameter	Analytical Method	Precision: Lab Duplicates (RPD)	Precision: Field Duplicates (median) ^b	Bias (% recovery): Matrix Spikes or SRMs	Bias (% recovery): Lab Control Samples	Bias (% recovery): Calibration Standards/ Blanks	Bias (% recovery): Method Blank Limit	Sensitivity: Method Lower Reporting Limit ^a
						ICB/CCB: <½ RL ^c		
Total Phosphorus	SM4500-P H	20%	10% RSD	75-125%	80-120%	ICV/CCV: 90-110% ICB/CCB: <½ RL ^c	<½ RL ^c	0.01 mg/L
Fecal coliform (MF) + <i>E. coli</i> (MF)	SM9222 D + SM9222 G	40%	≤ 20% RSD & 90% of replicate pairs ≤ 50% RSD ^b	n/a	n/a	n/a	<MDL	1 cfu/100 mL

RL: reporting limit; MDL: method detection limit; CCV: Continuing Calibration Verification CCB: Continuing Calibration Blank; ICV: Initial Calibration Verification; ICB: Initial Calibration Blank; RPD: Relative Percent Difference; SRM: Standard Reference Material;

RSD: Relative Standard Deviation

a reporting limit may vary depending on dilutions

b field duplicate results with a mean of less than or equal to 5x the reporting limit will be evaluated separately

c or less than 10% of the lowest sample concentration for all samples in the batch

6.2.2 Targets for comparability, representativeness, and completeness

6.2.2.1 Comparability

The comparability of study results to previously collected data will be achieved through following Ecology's strict protocols and by following published Ecology SOPs. Many factors can affect comparability including quality assurance documents such as QAPPs and SOPs, staff training, sample locations, seasonality and weather conditions, lab methods, calibration practices, equipment maintenance, and data entry quality control procedures. This study will adhere to the following Ecology SOPs and refer to equipment manuals for instrument-specific quality procedures:

- Programmatic QAPP for Water Quality Impairment Studies (McCarthy and Mathieu, 2017).
- Standard Operating Procedures for the Collection, Processing, and Analysis of Stream Samples (Ward, 2016).
- Guidance for Effectiveness Monitoring of Total Maximum Daily Loads in Surface Water (Collyard and Onwumere, 2013).
- Standard Operation Procedure for Hydrolab®, DataSonde®, MiniSonde® and HL4 Multiprobes (Anderson, 2016).
- Standard Operating Procedure for Measuring Streamflow for Water Quality Studies (Mathieu, 2016).

6.2.2.2 Representativeness

Representativeness is mainly a function of individual study design. Each study is designed to collect sufficient data, meet study-specific objectives, and assess spatial and temporal variability of the measured parameters throughout the study area. Sampling locations are distributed throughout each watershed in a manner designed to meet study objectives. Sampling will be conducted throughout the year, capturing both dry and wet seasons for a 10 year period, which was also designed to meet study objectives.

6.2.2.3 Completeness

Completeness is a measure of the amount of valid data required to meet project objectives. The goal for this effectiveness study is to collect and analyze 100% of the samples or measurements when proper water levels allow. Due to unforeseen problems that may arise from site access problems, weather conditions, or equipment malfunction, a completeness of 95% will be acceptable. If equipment fails or samples are damaged, Ecology will attempt to recollect the data under similar conditions, such as the following day, if possible. In general, each project should be designed to accommodate some data loss and still meet project goals and objectives.

If completeness targets are not met, the study report will analyze the effect of the incomplete data on meeting the study objectives, account for data completeness (or incompleteness) in any data analyses, and document data completeness and its consequences in any study reports.

Investigative samples may not meet the minimum requirements for statistical or other data analysis, but will still be useful for source location identification, recommendations, or other analyses.

6.3 Acceptance criteria for quality of existing data

This study will likely use data collected through monitoring efforts conducted by others, including Ecology, King County, Muckleshoot Indian Tribe, King Conservation District, and the City of Enumclaw. The primary source of historical data will be Ecology's EIM database and project files for Ecology-sponsored studies. EIM will be used to access all analytical results and observational data whereas project files will be used to gather more detailed information such as site specific sampling locations and method descriptions. These data and all data from outside Ecology will be reviewed to assess comparability with this study.

6.4 Model quality objectives

NA

7.0 Study Design

7.1 Study boundaries

All field samples will be collected within the watersheds of Boise, Pussyfoot, and Second creeks. Reference Figure 1 for a map of these watersheds. Figures 6-8 show sampling locations within each watershed. Additional sampling locations could be added for source tracing or if sites become inaccessible over the duration of the project. Sites could also be abandoned or moved due to accessibility during the 10 year study.

7.2 Field data collection

7.2.1 Sampling locations and frequency

Sampling locations are listed in Table 13 and Figures 6-8. Fieldwork will begin July 2019 and continue through June 2029. During years 1, 5, and 10 of the study, all sites will be visited twice a month, approximately every 2 weeks. For all intervening years, only status and trends sites will be visited on a monthly basis, approximately four weeks apart. Due to the length of time required by MEL for processing bacteria samples, site visits will be conducted on Mondays and Tuesdays whenever possible.

Table 13. Latitude and longitude of all planned sample sites.

Map Site ID	EIM Site ID	Status and Trends	Implementation	Description	NAD83 Latitude	NAD83 Longitude
Boise_ST1	10-BOI-0.1	x	x	Boise Creek at mouth (bridge at SE Mud Mtn Rd)	47.1761	-122.0186
Boise_ST2	10-BOID-0.3	x	x	Boise Creek at SE 456 th St	47.1923	-121.9985
Boise_I1	10-BOI-1.0		x	Boise Creek at 252 nd Ave SE	47.1857	-122.0054
Boise_I2	10-BOI-1.2		x	Boise Creek via Foothills Trail	47.1882	-122.0028
Boise_I3	10-BOI-1.7		x	Boise Creek at 268 th Ave SE	47.1903	-121.9841
Boise_I4	10-BOI-2.2		x	Boise Creek at 276 th Ave SE	47.1885	-121.9737
Boise_I5	10-BOI-3.2		x	Boise Creek at 284 th Ave SE, north	47.1854	-121.9633
Boise_I6	10-BOIT-0.4		x	Boise Creek at 284 th Ave SE, north of SE 470 th St	47.1800	-121.9634

Map Site ID	EIM Site ID	Status and Trends	Implementation	Description	NAD83 Latitude	NAD83 Longitude
Boise_I7	10-BOIT-0.7		x	Boise Creek at 284 th Ave SE, south of SE 472 nd St, southeast tributary	47.1760	-121.9633
Psyft_ST1	10-UNW-0.2	x	x	Pussyfoot at 180 th Ave SE, upstream side of road	47.2356	-122.1012
Psyft_I1	10-SFPUS-0.23		x	Pussyfoot at 188 th Ave SE	47.2334	-122.0908
Psyft_I2	10-SFPUS-0.92		x	Pussyfoot at 196 th Ave SE, south of	47.2333	-122.0800
Psyft_I3	10-SFPUS-1.75		x	Pussyfoot at SE 416 th St, upstream side of road	47.2282	-122.0717
Psyft_I4	10-SFPUS-2.4		x	Pussyfoot at SE 424 th St, near 208 th	47.221	-122.0656
Psyft_I5	10-PUS-2.10		x	Pussyfoot at 196 th Ave SE, north of SE	47.2409	-122.0803
Psyft_I6	10-PUS-2.22		x	Pussyfoot at 196 th Ave SE, south of	47.2423	-122.0801
Psyft_I7	10-PUS-2.6		x	Pussyfoot at 200 th Ave SE	47.245	-122.0748
Psyft_I8	10-PUS-3.46		x	Pussyfoot at 212 th Ave SE	47.2463	-122.0591
Psyft_I9	10-PUS-3.7		x	Pussyfoot at SE 400 th St	47.2426	-122.0566
Second_ST1	10-SEC-1.1	x	x	Second at Auburn Enumclaw Rd SE, hard to access	47.2229	-122.0969
Second_ST1 (alternative)	10-SEC-1.4	x	x	Second at 188 th Ave SE, downstream	47.2241	-122.0910
Second_I1	10-SECT-0.01		x	Second at 188 th Ave SE, upstream of tributary	47.2241	-122.0910
Second_I2	10-SEC-1.50		x	Tributary to Second at 188 th Ave SE	47.2242	-122.0909
Second_I3	10-SEC-2.07		x	Second at 196 th Ave SE, downstream side of	47.2229	-122.0804
Second_I4	10-SEC-2.08		x	Second at 196 th Ave SE, upstream side of road above ditch and pipe	47.2229	-122.0801

Map Site ID	EIM Site ID	Status and Trends	Implementation	Description	NAD83 Latitude	NAD83 Longitude
Second_I5	10-SEC-2.33		x	Second at 424 th St, north side of road	47.2211	-122.0756
Second_I6	10-SEC-2.34		x	Second at 424 th St, south side of road	47.2209	-122.0756

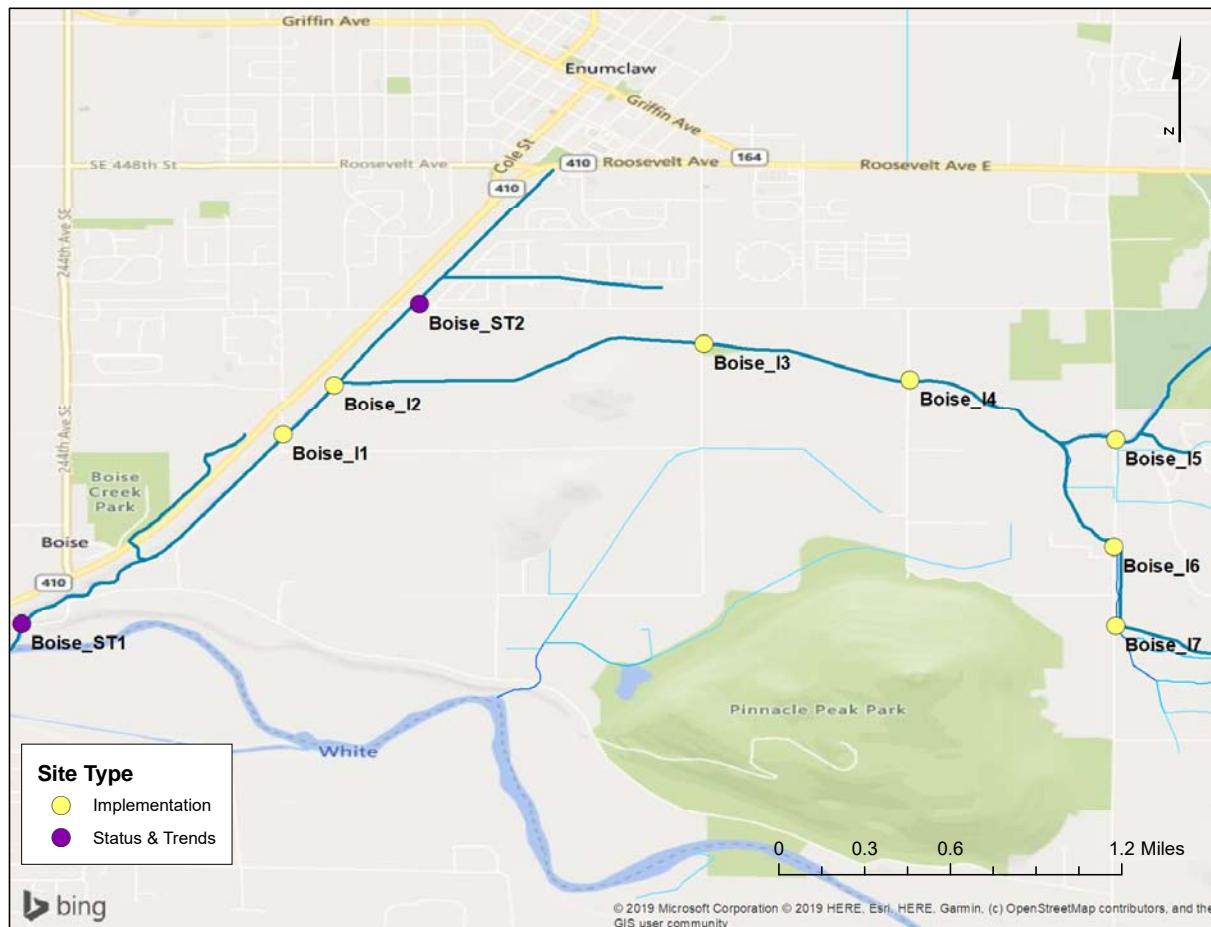


Figure 6. Sampling locations along Boise Creek.

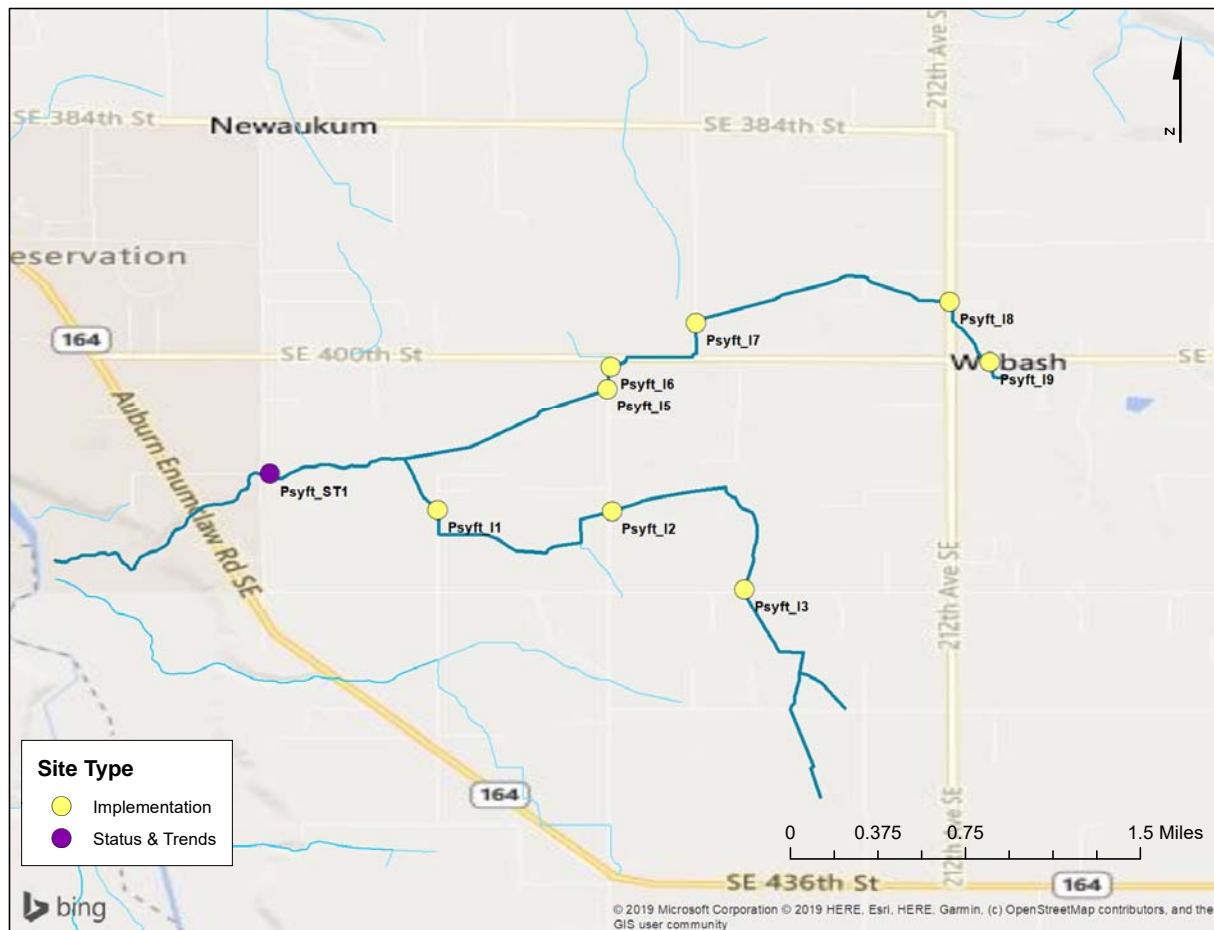


Figure 7. Sampling locations in Pussyfoot Creek.

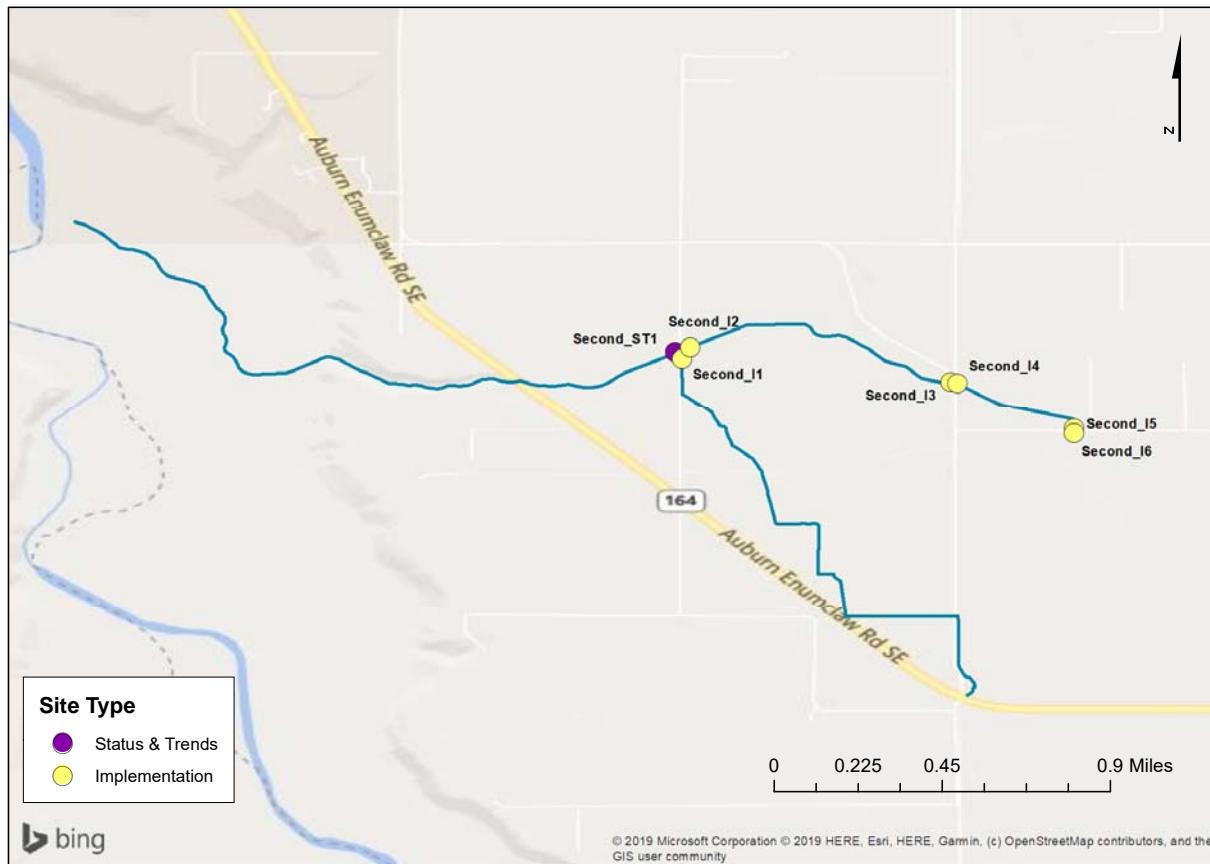


Figure 8. Sampling locations in Second Creek.

7.2.2 Field parameters and laboratory analytes to be measured

Tables 14 and 15 show the list of parameters required to meet the data needs of the study. Parameters may be added or removed from the study design as the project advances.

Table 14. Laboratory parameters to be sampled.

Parameter	Status and Trends	Implementation	Source Tracing
Fecal coliform (MF)	X	X	To be determined as needed
<i>E. coli</i> (MF)	X	X	To be determined as needed
Total Phosphorus	X		To be determined as needed
Orthophosphate	X		To be determined as needed
Total Persulfate Nitrogen	X		To be determined as needed

Parameter	Status and Trends	Implementation	Source Tracing
Ammonia-N	X		To be determined as needed
Nitrate + nitrite-N	X		To be determined as needed

Table 15. Field parameters to be collected (in-situ).

Parameter	Status and Trends	Implementation	Source Tracing
Temperature	X	X	To be determined as needed
Conductivity	X	X	To be determined as needed
Dissolved Oxygen	X	X	To be determined as needed
pH	X	X	To be determined as needed
Turbidity	X	X	To be determined as needed

7.3 Modeling and analysis design

NA

7.4 Assumptions in relation to objectives and study area

Assumptions that underlie the project design include:

- Funding and resources will continue for the duration of the long-term effectiveness monitoring to adequately assess the efficacy of TMDL implementation efforts.
- Water quality management actions will reduce pollutant loading to the watersheds and will result in higher water quality over time.
- The project design including site selection and sample frequency will adequately represent the watersheds. It will also sufficiently monitor the effectiveness of TMDL implementation efforts and aid in source tracing of new pollutants.

7.5 Possible challenges and contingencies

7.5.1 Logistical problems

Due to the long duration of this effectiveness monitoring study, site accessibility could become a possible challenge. If a site becomes inaccessible due to road changes, erosion, etc., the addition of a new site will be considered based on the needs of the project objectives.

In addition, the ephemeral nature of both Pussyfoot Creek and Second Creek could present challenges for sample collection if adequate water levels are not present or if weather patterns are conducive to longer drought periods. These events will be documented throughout the project. If equipment failure occurs during a sampling event, troubleshooting will be attempted in the field. If troubleshooting fails, any missed sites will be revisited at the next most convenient time dependent on staff priorities and lab availability.

7.5.2 Practical constraints

Practical constraints to this study may include unforeseen budget cuts and staff reductions or vacancies. Contingencies would include site or parameter reductions, a reduction in sample frequency, and/or sampling postponement.

7.5.3 Schedule limitations

The project schedule could be affected by the various factors listed above. Strong efforts will be made to ensure the sampling schedule stays consistent with the project plan. These efforts may include re-prioritizing budget needs within the program, collaborating with other work groups, and ensuring all sampling equipment is properly maintained and calibrated prior to sampling.

8.0 Field Procedures

8.1 Invasive species evaluation

Although the Boise Creek, Pussyfoot Creek, and Second Creek watersheds are not areas of extreme concern, field staff will follow SOP EAP070 on minimizing the spread of invasive species (Parsons et al., 2018).

8.2 Measurement and sampling procedures

All water samples will be collected using Ecology's SOP for the Collection, Processing, and Analysis of Stream Samples (Ward, 2016). Water quality data collected by multi-parameter sondes will follow guidance from Ecology's SOP for Hydrolab® DataSonde®, MiniSonde®, and HL4 Multiprobes (Anderson, 2016), supplemented with details from equipment manuals as needed. If deemed necessary, streamflow measurements will be conducted following Ecology's SOP for Measuring Streamflow for Water Quality Studies (Mathieu, 2016).

8.3 Containers, preservation methods, holding times

Field staff will collect discrete samples directly into pre-cleaned or sterilized containers supplied by MEL and described in their Lab User's Manual (MEL, 2016).

Table 16 lists the sample parameters, containers, volumes, preservation requirements, and holding times for all lab samples. Field staff will store samples for laboratory analysis on ice in a walk-in cooler and arrange for sample pick-up via MEL staff. MEL follows standard analytical methods outlined in their Lab User's Manual (MEL, 2016).

Table 16. Sample containers, preservation, and holding times.

Parameter	Matrix	Minimum Quantity	Container	Holding Time	Preservative
Ammonia-N	Water	125 mL	125 mL clear w/m poly bottle	28 days	H ₂ SO ₄ to pH <2; Cool to ≤6°C
Nitrate + Nitrite-N	Water	125 mL	125 mL clear w/m poly bottle	28 days	H ₂ SO ₄ to pH <2; Cool to ≤6°C
Total Persulfate Nitrogen	Water	125 mL	125 mL clear w/m poly bottle	28 days	H ₂ SO ₄ to pH <2; Cool to ≤6°C
Orthophosphate	Water	125 mL	125 mL amber w/m poly bottle, 0.45 um pore size filters	48 hrs	Filter in field with 0.45 um pore size filter; Cool to ≤6°C
Total Phosphorus	Water	60 mL	125 mL clear w/m poly bottle	28 days	1:1 HCl to pH <2; Cool to ≤6°C
Fecal coliform (MF) + <i>E. coli</i> (MF)	Water	250 mL	250 mL clear w/m poly autoclaved bottle	24 hours	Fill the bottle to the shoulder; Cool to ≤10°C

w/m: wide mouth

8.4 Equipment decontamination

Staff will follow all recommended protocols from instrument manufacturers for cleaning, maintaining, and calibrating sensors.

8.5 Sample ID

All samples will be labeled with station, date, time, parameter, sample identification number, and work order number, which are recorded in the field log and on the chain of custody (COC) form. Each lab sample is automatically given a unique identification number once loaded into the database. This number is transferred to analyses logs for internal lab samples. All sample bottles are reconciled against forms to verify completeness as samples move through the analytical process, described in the Quality Control section of this QAPP.

8.6 Chain of custody

Based on field log data, COC forms will be created and filled out for each sample event. COC logs are delivered to the lab with the corresponding samples for management of sample counts, scheduling, and tracking. Once the samples are delivered, lab personnel log in each sample and assign a lab number to each, using the sample label number and date. Each laboratory sample number must correspond to a particular date, station, and depth.

When data results are received from MEL, COC forms are reconciled with data to ensure complete delivery and correct invoicing for all results. If discrepancies exist, research and investigation of the discrepancy is conducted in coordination with MEL until the problem is resolved.

8.7 Field log requirements

Field logs will consist of pre-printed templates that will include the following information:

- Field personnel.
- Site, date and time of which data is collected.
- Observational data (flow, weather, water color, etc.).
- Field measurement results.
- Any deviation from the sampling plan that might affect interpretation of results.
- Notes of potential sources of pollution.

Field measurements collected with a multi-parameter sonde will be recorded both internally within the data logger and handwritten into the field log. These recordings will be verified for uniformity once data is uploaded. Photos will also be taken as necessary to record observations and events. These photos will be used to document each sampling event and for the creation of reports, procedures, and other documents. Digital copies of all field and sample logs (COCs) will be stored for future reference on a shared, secure, and frequently backed up network server.

8.8 Other activities

Other activities related to field work include sensor and equipment maintenance, correspondence with MEL personnel for sample delivery and bottle ordering, budget tracking, and field staff training.

The project manager or field lead for each sample event is responsible for:

- Conducting all pre-sampling sensor calibrations.
- Prepping all field gear including sampling poles, gloves, filters, etc.
- Ensuring adequate supply of sample bottles.
- Cancelling assessments if conditions warrant.

- Complying with field and safety procedures.
- Knowledge of use and location of the safety equipment.
- Sample handling and processing, including chemical safety protocols.
- Emergency procedures.

9.0 Laboratory Procedures

9.1 Lab procedures table

Ecology's Manchester Environmental Laboratory (MEL) conducts laboratory analyses and procedures following Standard Operating Procedures (SOPs) and other guidance documents. Analytical methods and lower reporting limits are listed in Table 17.

Table 17. Measurement methods (laboratory).

Analyte	Matrix	Expected Range of Results	Method	Method Detection Limit
Ammonia-N	Water	<0.01 – 30 mg/L	SM4500-NH3 H	0.004 mg/L
Nitrate + Nitrite-N	Water	<0.01 – 30 mg/L	SM4500-NO3 I	0.0025 mg/L
Total Persulfate Nitrogen	Water	0.5 – 50 mg/L	SM4500-N B	0.013 mg/L
Orthophosphate	Water	0.01 – 5.0 mg/L	SM4500-P G	0.0017 mg/L
Total Phosphorus	Water	0.01 – 10 mg/L	SM4500-P H	0.006 mg/L
Fecal coliform (MF)	Water	1 – 15,000 cfu/100 mL	SM9222 D	1.0 cfu/100 mL (RL)
<i>E. coli</i> (MF)	Water	1-15,000 cfu/100 mL	SM9222 G	1.0 cfu/100 mL (RL)

RL: Reporting Limit

9.2 Sample preparation method(s)

Sample preparation methods are listed in standard operating procedures for lab analyses or in analytical methods.

9.3 Special method requirements

NA

9.4 Laboratories accredited for methods

All chemical analysis will be performed at MEL, which is accredited for all methods.

10.0 Quality Control Procedures

Implementing quality control (QC) procedures provides the information needed to assess the quality of the data that is collected. These procedures also help identify problems or issues associated with data collection and/or data analysis while the project is underway.

For field instruments, the following QC procedures will be performed:

- Pre check: Prior to each sample event, all sensors will be checked and if necessary, calibrated, following recommendations by the manufacturer.
- Post check: At the conclusion of each sample event, all sensors will be checked again to assess for any potential bias from instrument drift, fouling, or interference.
- The YSI ProDSS, a multi-parameter probe used for all field measurements, requires periodic calibrations for all sensors excluding temperature to maintain accurate measurements. According to the manufacturer, temperature calibration is not available nor required for accurate temperature measurements.
- Pre and post checks for each sensor will be conducted as following:
 - For conductivity, pH, and turbidity, using certified standards specific to each parameter.
 - For dissolved oxygen (DO), checking the probe against 100% water saturated air or in a 100% air saturated water bath.
 - The results from each field instrument will be assigned an accuracy rating based on the criteria in Table 18.
- If a pre-check falls below the excellent accuracy rating, the sensor will be re-calibrated.
- If a post-check falls below the good accuracy rating, the data will be investigated and potentially flagged with a qualifier.

Table 18. Rating of accuracy for field instruments.

Measured Field Parameter	Excellent	Good	Fair	Poor
Water Temperature	$\leq \pm 0.2^{\circ}\text{C}$	$> \pm 0.2 - 0.5^{\circ}\text{C}$	$> \pm 0.5 - 0.8^{\circ}\text{C}$	$> \pm 0.8^{\circ}\text{C}$
Specific Conductance	$\leq \pm 3\%$	$> \pm 3 - 10\%$	$> \pm 10 - 15\%$	$> \pm 15\%$
Dissolved Oxygen	$\leq \pm 5\%$	$> \pm 5 - 10\%$	$> \pm 10 - 15\%$	$> \pm 15\%$
pH	$\leq \pm 0.2$ units	$> \pm 0.2 - 0.5$ units	$> \pm 0.5 - 0.8$ units	$> \pm 0.8$ units
Turbidity	$\leq \pm 0.5$ NTU or $\leq \pm 5\%$, whichever is greater	$> \pm 0.5 - 1.0$ NTU or $> \pm 5 - 10\%$, whichever is greater	$> \pm 1.0 - 2.0$ NTU or $> \pm 10 - 20\%$, whichever is greater	$> \pm 2.0$ NTU or $> \pm 20\%$, whichever is greater

10.1 Table of field and laboratory quality control

The primary types of QC samples used to evaluate and control the accuracy of laboratory analyses are check standards, duplicates, spikes, and blanks (MEL, 2016). Check standards serve as an independent check on the calibration of the analytical system and can be used to evaluate bias. MEL routinely duplicates sample analyses in the laboratory to determine laboratory precision. Matrix spikes are used to check for matrix interference with detection of the analyte and can be used to evaluate bias as it relates to matrix effects. Blanks are used to check for sample contamination in the laboratory process. Laboratory and field QC procedures are presented in Table 19.

Table 19. Quality control samples, type, and frequency.

Parameter	Field Replicates	Field Blanks	Lab Check Standards	Lab Method Blanks	Lab Analytical Duplicates	Lab Matrix Spikes
Ammonia-N	20-30%	10%	1/batch	1/batch	1/batch	1/batch
Nitrate + Nitrite-N	20-30%	10%	1/batch	1/batch	1/batch	1/batch
Total Persulfate Nitrogen	20-30%	10%	1/batch	1/batch	1/batch	1/batch
Orthophosphate	20-30%	10%	1/batch	1/batch	1/batch	1/batch
Total Phosphorus	20-30%	10%	1/batch	1/batch	1/batch	1/batch
Fecal coliform	10-30%	n/a	n/a	n/a	1/batch	n/a
<i>E. coli</i>	10-30%	n/a	n/a	n/a	1/batch	n/a

10.2 Corrective action processes

QC results may indicate problems with data during the course of the project. Corrective action processes will be used if activities are found to be inconsistent with this QAPP, if field instruments yield unusual results, if results do not meet MQOs or performance expectations, or if some other unforeseen problems arise. There may be cause for field instruments to be recalibrated, following SOPs, while still on site. Options for corrective actions might include:

- Retrieving missing information.
- Re-calibrating the measurement system.
- Re-analyzing samples within holding time requirements.
- Modifying the analytical procedures.
- Requesting additional sample collection or additional field measurements.
- Qualifying results.

11.0 Data Management Procedures

11.1 Data recording and reporting requirements

Staff will record all field data in a field notebook. Before leaving each site, staff will check field notebooks for missing or improbable measurements. Staff will enter field-generated data into EIM as soon as is practical after they return from the field. Data entry will be checked against the field notebook data for errors and omissions.

Lab results will be checked for missing and/or improbable data. MEL will send data through Ecology's Laboratory Information Management System (LIMS). Data will be checked for completeness and reviewed for any additional required qualifiers.

In addition, data summaries and web maps will be either presented in free form on Ecology's [Effectiveness Monitoring web page](https://ecology.wa.gov/Research-Data/Monitoring-assessment/Water-quality-improvement-effectiveness-monitoring) (<https://ecology.wa.gov/Research-Data/Monitoring-assessment/Water-quality-improvement-effectiveness-monitoring>), or Ecology's EIM.

11.2 Laboratory data package requirements

Laboratory-generated data reduction, review, and reporting will follow procedures outlined in MEL's Lab Users Manual (MEL, 2016). Variability in lab duplicates will be quantified, also using procedures in this manual. Any estimated results will be qualified and their use restricted as appropriate. A standard case narrative of laboratory QA/QC results will be sent to the project manager for each set of samples.

11.3 Electronic transfer requirements

MEL will provide all data electronically to the project manager through the LIMS to EIM data feed. There is already a protocol in place for how and what MEL transfers to EIM through LIMS.

11.4 EIM/STORET data upload procedures

All water quality data will be entered into EIM, following all existing Ecology business rules and the EIM User's Manual for loading, data quality checks, and editing.

11.5 Model information management

NA

12.0 Audits and Reports

12.1 Field, laboratory, and other audits

Audits will be conducted annually on all EIM data to check for missing values, extreme outliers, negative values, and duplicates. Any errors found will be investigated and corrected if possible. Audits of field procedures and sample processing are not planned for this study.

12.2 Responsible personnel

The project manager conducts audits of all data and works with field sampling staff and lab technicians to complete reviews.

12.3 Frequency and distribution of reports

A peer-reviewed technical report or water quality improvement report will be completed and published to Ecology's website. The final report will also be distributed to all managers, clients, tribes, municipalities, and other stakeholders involved or interested in the study. Ecology has specific publication guidelines depending on the type of final report that describe the exact requirements necessary for publication.

12.4 Responsibility for reports

The project manager is responsible for the final report. The project manager is also responsible for communicating with TMDL and non-point staff about status and trends throughout the study period. This may be in the form of various products and presentations of results.

13.0 Data Verification

Data verification and review is conducted by the project manager and WHEMU team by examining all field and laboratory-generated data to ensure:

- Specified methods and protocols were followed.
- Data are consistent, correct, and complete, with no errors or omissions.
- Data specified in the Sampling Process Design section were obtained.
- Results for QC samples, as specified in the Measurement Quality Objectives and Quality Control, accompany the sample results.
- Established criteria for QC results were met.
- Data qualifiers (QC codes) are properly assigned.

13.1 Field data verification, requirements, and responsibilities

Throughout field sampling, the field staff are responsible for carrying out station positioning, sample collection, and field measurement procedures as specified in the QAPP and SOPs. Additionally, staff systematically review all field documents (such as field logs, COCs, and sample labels) to ensure data entries are consistent, correct, and complete, with no errors or omissions. Field notebooks will be checked for missing or improbable measurements, and initial data will be verified before leaving each site. This process involves checking the data sheet for omissions or outliers. If measurement data are missing or a measurement is determined to be an outlier, the measurement will be flagged in the data sheet and repeated if possible.

Upon returning from the field, data are both manually entered and downloaded from instruments and then uploaded into the appropriate database or project folder (see Data Management Section). Manually entered data will be verified/checked against the original form. If errors or omissions are found, the source of the data (e.g., field crew, instruments) will be consulted to determine the correct value or form of the data in question.

Following data entry verification, raw field measurement data will undergo the following quality analysis verification process to evaluate the performance of the sensors:

Review discrete field QC checks

1. Review post-check data for field QC check instruments, reject data as appropriate.
2. Assign a quality rating to the field check values (excellent, good, fair, poor) based on the post-check criteria in Table 18.

After data have been finalized and entered into the EIM database, data will be reviewed for completeness and potential errors following Ecology's internal EIM review protocols.

13.2 Laboratory data verification

MEL staff will perform laboratory verification following standard laboratory practices (MEL, 2016). After the lab verification, the project manager will perform a secondary verification of the data. This secondary verification will entail a detailed review of all parts of the lab data with special attention to lab QC results. After data entry and data validation tasks are completed, all field and laboratory data will be entered into the EIM system. EIM data will be independently reviewed by staff for errors at an initial 10% frequency. If significant entry errors are discovered, a more intensive review will be undertaken.

13.3 Validation requirements, if necessary

NA

13.4 Model quality assessment

NA

14.0 Data Quality (Usability) Assessment

14.1 Process for determining project objectives were met

After all laboratory and field data are verified and validated, the project manager will thoroughly examine the data, using statistics and professional judgment, to determine if MQOs have been met for completeness, representativeness, and comparability. If the criteria have not been met, the project manager will decide if affected data should be qualified or rejected based upon the decision criteria in the QAPP. The project manager will decide how any qualified data will be used in the technical analysis.

14.2 Treatment of non-detects

Any non-detects will be included in the study analysis. For bacteria values below the detection limit, a conservative value of the detection limit minus one significant digit will be used (Sargent and Lowe, 2014). For bacteria values above the detection limit, the upper detection limit plus one significant digit will be used.

14.3 Data analysis and presentation methods

Data analysis consists of comparing results to water quality standards and detecting changes in monitoring parameters over time. Procedures comparing results to water quality standards are defined in the following:

- [Ecology's Water Quality Program Policy 1-11](https://ecology.wa.gov/Water-Shorelines/Water-quality/Water-improvement/Assessment-of-state-waters-303d/Assessment-policy-1-11) (<https://ecology.wa.gov/Water-Shorelines/Water-quality/Water-improvement/Assessment-of-state-waters-303d/Assessment-policy-1-11>).
- Guidance for Effectiveness Monitoring of Total Maximum Daily Loads in Surface Waters (Collyard and Onwumere, 2013).
- Programmatic QAPP for Water Quality Impairment Studies (McCarthy and Mathieu, 2017).

14.4 Sampling design evaluation

The project manager will decide whether data meet the MQOs, criteria for completeness, representativeness, and comparability, and whether meaningful conclusions (with enough statistical power) can be drawn from the results and analysis. If so, the sampling design will be considered effective. The sampling design will be considered successful if project objectives are met.

14.5 Documentation of assessment

In the technical report, the project manager will include a summary of the data quality assessment findings. This summary will be included in the data quality section of the report.

15.0 References

Anderson, P. 2016. [Standard Operating Procedure for Hydrolab® DataSonde®, MiniSonde®, and HL4 Multiprobes, Version 2.1.](#) Washington State Department of Ecology, Olympia, WA. SOP Number EAP033.

<https://www.ecology.wa.gov/About-us/How-we-operate/Scientific-services/Quality-assurance>

Collyard, S. and Onwumere, G. 2013. [Guidance for Effectiveness Monitoring of Total Maximum Daily Loads in Surface Water.](#) Washington State Department of Ecology, Olympia, WA. Publication No. 13-03-024.

<https://fortress.wa.gov/ecy/publications/SummaryPages/1303024.html>

Dickes, B. 2015. [Pussyfoot Creek and Second Creek Fecal Coliform Characterization Monitoring: Two Tributaries to the White River.](#) Washington State Department of Ecology, Olympia, WA. Publication No. 15-10-048. <https://test-fortress.wa.gov/ecy/publications/SummaryPages/1510048.html>

EPA, 2002. Guidance for Quality Assurance Project Plans for Modeling. U.S. Environmental Protection Agency, Office of Environmental Information, Washington, D.C. EPA/240/R-02/007.

King County, 2013. Boise Creek Bacterial Source Tracking Study: 2012 Summary of Findings. Prepared by Raymond Timm, King County Science Section. Seattle, WA.

Mathieu, N. 2006. [Replicate Precision for 12 Total Maximum Daily Load \(TMDL\) Studies and Recommendations for Precision Measurement Quality Objectives for Water Quality Parameters.](#) Washington State Department of Ecology, Olympia, WA. Publication No. 06-03-044. <https://fortress.wa.gov/ecy/publications/SummaryPages/0603044.html>

Mathieu, N. 2012. [Quality Assurance Project Plan: Lower White River pH Total Maximum Daily Load Water Quality Study Design.](#) Washington State Department of Ecology, Olympia, WA. Publication No. 12-03-104. <https://fortress.wa.gov/ecy/publications/documents/1203104.pdf>

Mathieu, N. 2016. [Standard Operating Procedure for Measuring Streamflow for Water Quality Studies, Version 3.0](#). Washington State Department of Ecology, Olympia, WA. SOP Number EAP024.

<https://www.ecology.wa.gov/About-us/How-we-operate/Scientific-services/Quality-assurance>

Mathieu, N. and James, C. 2011. [Puyallup River Watershed: Fecal Coliform Total Maximum Daily Load – Water Quality Improvement Report and Implementation Plan](#). Washington State Department of Ecology, Olympia, WA. Publication No. 11-10-040. <https://test-fortress.wa.gov/ecy/publications/SummaryPages/1110040.html>

McCarthy, S. and Mathieu, N. 2017. [Programmatic Quality Assurance Project Plan. Water Quality Impairment Studies](#). March 2017. Publication No. 17-03-107. <https://fortress.wa.gov/ecy/publications/SummaryPages/1703107.html>

MEL, 2016. Manchester Environmental Laboratory Lab Users Manual, Ninth Edition. Manchester Environmental Laboratory, Washington State Department of Ecology, Manchester, WA.

Parsons, J., D. Hallock, K. Seiders, B. Ward, C. Coffin, E. Newell, C. Deligeannis, and K. Welch, 2018. [Standard Operating Procedure EAP070, Version 2.2: Minimize the Spread of Invasive Species](#). Washington State Department of Ecology, Olympia, WA. <https://fortress.wa.gov/ecy/publications/documents/1803201.pdf>

WAC 173-201A. [Water Quality Standards for Surface Waters in the State of Washington](#). Washington State Department of Ecology, Olympia, WA. <http://app.leg.wa.gov/WAC/default.aspx?cite=173>

Ward, B.J. 2016. [Standard Operating Procedure for the Collection, Processing, and Analysis of Stream Samples, Version 1.5](#). Washington State Department of Ecology, Olympia, WA. SOP Number EAP034. <https://www.ecology.wa.gov/About-us/How-we-operate/Scientific-services/Quality-assurance>

Williams, R.W., M.L. Richard, and J.A. James. 1975. A Catalog of Washington Streams and Salmon Utilization, Volume 1, Puget Sound Region. Washington Department of Fisheries. Olympia, WA.

16.0 Appendices

Appendix A. Glossaries, Acronyms, and Abbreviations

Glossary of General Terms

Ambient: Background or away from point sources of contamination. Surrounding environmental condition.

Anthropogenic: Human-caused.

Clean Water Act: A federal act passed in 1972 that contains provisions to restore and maintain the quality of the nation's waters. Section 303(d) of the Clean Water Act establishes the TMDL program.

Conductivity: A measure of water's ability to conduct an electrical current. Conductivity is related to the concentration and charge of dissolved ions in water.

Designated uses: Those uses specified in Chapter 173-201A WAC (Water Quality Standards for Surface Waters of the State of Washington) for each water body or segment, regardless of whether or not the uses are currently attained.

Dissolved oxygen (DO): A measure of the amount of oxygen dissolved in water.

E. coli: A bacterium (*Escherichia coli*) commonly found in the intestines of humans and other animals, some strains of which can cause severe food poisoning.

Effluent: An outflowing of water from a natural body of water or from a human-made structure. For example, the treated outflow from a wastewater treatment plant.

Eutrophic: Nutrient rich and high in productivity resulting from human activities such as fertilizer runoff and leaky septic systems.

Extraordinary primary contact: Waters providing extraordinary protection against waterborne disease or that serve as tributaries to extraordinary quality shellfish harvesting areas.

Fecal coliform (FC): That portion of the coliform group of bacteria which is present in intestinal tracts and feces of warm-blooded animals as detected by the product of acid or gas from lactose in a suitable culture medium within 24 hours at 44.5 plus or minus 0.2 degrees Celsius. Fecal coliform bacteria are "indicator" organisms that suggest the possible presence of disease-causing organisms. Concentrations are measured in colony forming units per 100 milliliters of water (cfu/100 mL).

Geometric mean: A mathematical expression of the central tendency (an average) of multiple sample values. A geometric mean, unlike an arithmetic mean, tends to dampen the effect of very high or low values, which might bias the mean if a straight average (arithmetic mean) were calculated. This is helpful when analyzing bacteria concentrations, because levels may vary anywhere from 10 to 10,000 fold over a given period. The calculation is performed by either:

(1) taking the nth root of a product of n factors, or (2) taking the antilogarithm of the arithmetic mean of the logarithms of the individual values.

Load allocation: The portion of a receiving water's loading capacity attributed to one or more of its existing or future sources of nonpoint pollution or to natural background sources.

Loading capacity: The greatest amount of a substance that a water body can receive and still meet water quality standards.

Municipal separate storm sewer systems (MS4): A conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, manmade channels, or storm drains): (1) owned or operated by a state, city, town, borough, county, parish, district, association, or other public body having jurisdiction over disposal of wastes, stormwater, or other wastes and (2) designed or used for collecting or conveying stormwater; (3) which is not a combined sewer; and (4) which is not part of a Publicly Owned Treatment Works (POTW) as defined in the Code of Federal Regulations at 40 CFR 122.2.

National Pollutant Discharge Elimination System (NPDES): National program for issuing, modifying, revoking and reissuing, terminating, monitoring, and enforcing permits, and imposing and enforcing pretreatment requirements under the Clean Water Act. The NPDES program regulates discharges from wastewater treatment plants, large factories, and other facilities that use, process, and discharge water back into lakes, streams, rivers, bays, and oceans.

Nonpoint source: Pollution that enters any waters of the state from any dispersed land-based or water-based activities, including but not limited to atmospheric deposition, surface-water runoff from agricultural lands, urban areas, or forest lands, subsurface or underground sources, or discharges from boats or marine vessels not otherwise regulated under the NPDES program. Generally, any unconfined and diffuse source of contamination. Legally, any source of water pollution that does not meet the legal definition of "point source" in section 502(14) of the Clean Water Act.

Nutrient: Substance such as carbon, nitrogen, and phosphorus used by organisms to live and grow. Too many nutrients in the water can promote algal blooms and rob the water of oxygen vital to aquatic organisms.

pH: A measure of the acidity or alkalinity of water. A low pH value (0 to 7) indicates that an acidic condition is present, while a high pH (7 to 14) indicates a basic or alkaline condition. A pH of 7 is considered to be neutral. Since the pH scale is logarithmic, a water sample with a pH of 8 is ten times more basic than one with a pH of 7.

Point source: Source of pollution that discharges at a specific location from pipes, outfalls, and conveyance channels to a surface water. Examples of point source discharges include municipal wastewater treatment plants, municipal stormwater systems, industrial waste treatment facilities, and construction sites where more than 5 acres of land have been cleared.

Pollution: Contamination or other alteration of the physical, chemical, or biological properties of any waters of the state. This includes change in temperature, taste, color, turbidity, or odor of the waters. It also includes discharge of any liquid, gaseous, solid, radioactive, or other substance into any waters of the state. This definition assumes that these changes will, or are likely to, create a nuisance or render such waters harmful, detrimental, or injurious to (1) public health, safety, or welfare, or (2) domestic, commercial, industrial, agricultural, recreational, or other legitimate beneficial uses, or (3) livestock, wild animals, birds, fish, or other aquatic life.

Primary contact recreation: Activities where a person would have direct contact with water to the point of complete submergence including, but not limited to, skin diving, swimming, and water skiing.

Reach: A specific portion or segment of a stream.

Riparian: Relating to the banks along a natural course of water.

Salmonid: Fish that belong to the family Salmonidae. Species of salmon, trout, or char.

Sediment: Soil and organic matter that is covered with water (for example, river or lake bottom).

Stormwater: The portion of precipitation that does not naturally percolate into the ground or evaporate but instead runs off roads, pavement, and roofs during rainfall or snow melt. Stormwater can also come from hard or saturated grass surfaces such as lawns, pastures, playfields, and from gravel roads and parking lots.

Streamflow: Discharge of water in a surface stream (river or creek).

Surface waters of the state: Lakes, rivers, ponds, streams, inland waters, salt waters, wetlands and all other surface waters and water courses within the jurisdiction of Washington State.

Thalweg: The deepest and fastest moving portion of a stream.

Total Maximum Daily Load (TMDL): A distribution of a substance in a water body designed to protect it from not meeting (exceeding) water quality standards. A TMDL is equal to the sum of all of the following: (1) individual wasteload allocations for point sources, (2) the load allocations for nonpoint sources, (3) the contribution of natural sources, and (4) a margin of safety to allow for uncertainty in the wasteload determination. A reserve for future growth is also generally provided.

Turbidity: A measure of water clarity. High levels of turbidity can have a negative impact on aquatic life.

Wasteload allocation: The portion of a receiving water's loading capacity allocated to existing or future point sources of pollution. Wasteload allocations constitute one type of water quality-based effluent limitation.

Watershed: A drainage area or basin in which all land and water areas drain or flow toward a central collector such as a stream, river, or lake at a lower elevation.

303(d) list: Section 303(d) of the federal Clean Water Act, requiring Washington State to periodically prepare a list of all surface waters in the state for which beneficial uses of the water – such as for drinking, recreation, aquatic habitat, and industrial use – are impaired by pollutants. These are water quality-limited estuaries, lakes, and streams that fall short of state surface water quality standards and are not expected to improve within the next two years.

Acronyms and Abbreviations

BMP	Best management practice
CM	Creek mile
DO	(see Glossary above)
e.g.	For example
Ecology	Washington State Department of Ecology
EIM	Environmental Information Management database
EPA	U.S. Environmental Protection Agency
et al.	And others
FC	(see Glossary above)
GIS	Geographic Information System software
GPS	Global Positioning System
i.e.	In other words
MEL	Manchester Environmental Laboratory
MQO	Measurement quality objective
NPDES	(See Glossary above)
QA	Quality assurance
QC	Quality control
RM	River mile
RPD	Relative percent difference
RSD	Relative standard deviation
SOP	Standard operating procedures
SRM	Standard reference materials
TMDL	(See Glossary above)
WAC	Washington Administrative Code
WQA	Water Quality Assessment
WRIA	Water Resource Inventory Area
WWTP	Wastewater treatment plant

Units of Measurement

°C	degrees centigrade
cfs	cubic feet per second
cfu	colony forming units
cms	cubic meters per second, a unit of flow
ft	feet
g	gram, a unit of mass
kcfs	1000 cubic feet per second
kg	kilograms, a unit of mass equal to 1,000 grams
kg/d	kilograms per day
km	kilometer, a unit of length equal to 1,000 meters
l/s	liters per second (0.03531 cubic foot per second)
m	meter
mm	millimeter
mg	milligram

mgd	million gallons per day
mg/d	milligrams per day
mg/Kg	milligrams per kilogram (parts per million)
mg/L	milligrams per liter (parts per million)
mg/L/hr	milligrams per liter per hour
mL	milliliter
mmol	millimole or one-thousandth of a mole
mole	an International System of Units (IS) unit of matter
NTU	nephelometric turbidity units
psu	practical salinity units
s.u.	standard units
µg/g	micrograms per gram (parts per million)
µg/Kg	micrograms per kilogram (parts per billion)
µg/L	micrograms per liter (parts per billion)
µm	micrometer
µM	micromolar (a chemistry unit)
µhos/cm	micromhos per centimeter
µS/cm	microsiemens per centimeter, a unit of conductivity
ww	wet weight

Quality Assurance Glossary

Accreditation: A certification process for laboratories, designed to evaluate and document a lab's ability to perform analytical methods and produce acceptable data. For Ecology, it is "Formal recognition by (Ecology)...that an environmental laboratory is capable of producing accurate analytical data." [WAC 173-50-040] (Kammin, 2010)

Accuracy: The degree to which a measured value agrees with the true value of the measured property. USEPA recommends that this term not be used, and that the terms precision and bias be used to convey the information associated with the term accuracy (USGS, 1998).

Analyte: An element, ion, compound, or chemical moiety (pH, alkalinity) which is to be determined. The definition can be expanded to include organisms, e.g., fecal coliform, Klebsiella (Kammin, 2010).

Bias: The difference between the sample mean and the true value. Bias usually describes a systematic difference reproducible over time and is characteristic of both the measurement system and the analyte(s) being measured. Bias is a commonly used data quality indicator (DQI) (Kammin, 2010; Ecology, 2004).

Blank: A synthetic sample, free of the analyte(s) of interest. For example, in water analysis, pure water is used for the blank. In chemical analysis, a blank is used to estimate the analytical response to all factors other than the analyte in the sample. In general, blanks are used to assess possible contamination or inadvertent introduction of analyte during various stages of the sampling and analytical process (USGS, 1998).

Calibration: The process of establishing the relationship between the response of a measurement system and the concentration of the parameter being measured (Ecology, 2004).

Check standard: A substance or reference material obtained from a source independent from the source of the calibration standard; used to assess bias for an analytical method. This is an obsolete term, and its use is highly discouraged. See Calibration Verification Standards, Lab Control Samples (LCS), Certified Reference Materials (CRM), and/or spiked blanks. These are all check standards but should be referred to by their actual designator, e.g., CRM, LCS (Kammin, 2010; Ecology, 2004).

Comparability: The degree to which different methods, data sets and/or decisions agree or can be represented as similar; a data quality indicator (USEPA, 1997).

Completeness: The amount of valid data obtained from a project compared to the planned amount. Usually expressed as a percentage. A data quality indicator (USEPA, 1997).

Continuing Calibration Verification Standard (CCV): A quality control (QC) sample analyzed with samples to check for acceptable bias in the measurement system. The CCV is usually a midpoint calibration standard that is re-run at an established frequency during the course of an analytical run (Kammin, 2010).

Control chart: A graphical representation of quality control results demonstrating the performance of an aspect of a measurement system (Kammin, 2010; Ecology 2004).

Control limits: Statistical warning and action limits calculated based on control charts. Warning limits are generally set at +/- 2 standard deviations from the mean, action limits at +/- 3 standard deviations from the mean (Kammin, 2010).

Data integrity: A qualitative DQI that evaluates the extent to which a data set contains data that is misrepresented, falsified, or deliberately misleading (Kammin, 2010).

Data quality indicators (DQI): Commonly used measures of acceptability for environmental data. The principal DQIs are precision, bias, representativeness, comparability, completeness, sensitivity, and integrity (USEPA, 2006).

Data quality objectives (DQO): Qualitative and quantitative statements derived from systematic planning processes that clarify study objectives, define the appropriate type of data, and specify tolerable levels of potential decision errors that will be used as the basis for establishing the quality and quantity of data needed to support decisions (USEPA, 2006).

Data set: A grouping of samples organized by date, time, analyte, etc. (Kammin, 2010).

Data validation: An analyte-specific and sample-specific process that extends the evaluation of data beyond data verification to determine the usability of a specific data set. It involves a detailed examination of the data package, using both professional judgment and objective criteria, to determine whether the MQOs for precision, bias, and sensitivity have been met. It may also include an assessment of completeness, representativeness, comparability, and integrity, as these criteria relate to the usability of the data set. Ecology considers four key criteria to determine if data validation has actually occurred. These are:

- Use of raw or instrument data for evaluation.
- Use of third-party assessors.
- Data set is complex.
- Use of EPA Functional Guidelines or equivalent for review.

Examples of data types commonly validated would be:

- Gas Chromatography (GC).
- Gas Chromatography-Mass Spectrometry (GC-MS).
- Inductively Coupled Plasma (ICP).

The end result of a formal validation process is a determination of usability that assigns qualifiers to indicate usability status for every measurement result. These qualifiers include:

- No qualifier – data are usable for intended purposes.
- J (or a J variant) – data are estimated, may be usable, may be biased high or low.
- REJ – data are rejected, cannot be used for intended purposes.

(Kammin, 2010; Ecology, 2004).

Data verification: Examination of a data set for errors or omissions, and assessment of the Data Quality Indicators related to that data set for compliance with acceptance criteria (MQOs). Verification is a detailed quality review of a data set (Ecology, 2004).

Detection limit (limit of detection): The concentration or amount of an analyte which can be determined to a specified level of certainty to be greater than zero (Ecology, 2004).

Duplicate samples: Two samples taken from and representative of the same population, and carried through and steps of the sampling and analytical procedures in an identical manner. Duplicate samples are used to assess variability of all method activities including sampling and analysis (USEPA, 1997).

Field blank: A blank used to obtain information on contamination introduced during sample collection, storage, and transport (Ecology, 2004).

Initial Calibration Verification Standard (ICV): A QC sample prepared independently of calibration standards and analyzed along with the samples to check for acceptable bias in the measurement system. The ICV is analyzed prior to the analysis of any samples (Kammin, 2010).

Laboratory Control Sample (LCS): A sample of known composition prepared using contaminant-free water or an inert solid that is spiked with analytes of interest at the midpoint of the calibration curve or at the level of concern. It is prepared and analyzed in the same batch of regular samples using the same sample preparation method, reagents, and analytical methods employed for regular samples (USEPA, 1997).

Matrix spike: A QC sample prepared by adding a known amount of the target analyte(s) to an aliquot of a sample to check for bias due to interference or matrix effects (Ecology, 2004).

Measurement Quality Objectives (MQOs): Performance or acceptance criteria for individual data quality indicators, usually including precision, bias, sensitivity, completeness, comparability, and representativeness (USEPA, 2006).

Measurement result: A value obtained by performing the procedure described in a method (Ecology, 2004).

Method: A formalized group of procedures and techniques for performing an activity (e.g., sampling, chemical analysis, data analysis), systematically presented in the order in which they are to be executed (EPA, 1997).

Method blank: A blank prepared to represent the sample matrix, prepared and analyzed with a batch of samples. A method blank will contain all reagents used in the preparation of a sample, and the same preparation process is used for the method blank and samples (Ecology, 2004; Kammin, 2010).

Method Detection Limit (MDL): This definition for detection was first formally advanced in 40CFR 136, October 26, 1984 edition. MDL is defined there as the minimum concentration of an analyte that, in a given matrix and with a specific method, has a 99% probability of being identified, and reported to be greater than zero (Federal Register, October 26, 1984).

Percent Relative Standard Deviation (%RSD): A statistic used to evaluate precision in environmental analysis. It is determined in the following manner:

$$\%RSD = (100 * s)/x$$

where s is the sample standard deviation and x is the mean of results from more than two replicate samples (Kammin, 2010).

Parameter: A specified characteristic of a population or sample. Also, an analyte or grouping of analytes. Benzene and nitrate + nitrite are all parameters (Kammin, 2010; Ecology, 2004).

Population: The hypothetical set of all possible observations of the type being investigated (Ecology, 2004).

Precision: The extent of random variability among replicate measurements of the same property; a data quality indicator (USGS, 1998).

Quality assurance (QA): A set of activities designed to establish and document the reliability and usability of measurement data (Kammin, 2010).

Quality Assurance Project Plan (QAPP): A document that describes the objectives of a project, and the processes and activities necessary to develop data that will support those objectives (Kammin, 2010; Ecology, 2004).

Quality control (QC): The routine application of measurement and statistical procedures to assess the accuracy of measurement data (Ecology, 2004).

Relative Percent Difference (RPD): RPD is commonly used to evaluate precision. The following formula is used:

$$[\text{Abs}(a-b)/((a + b)/2)] * 100$$

where “Abs()” is absolute value and a and b are results for the two replicate samples. RPD can be used only with 2 values. Percent Relative Standard Deviation is (%RSD) is used if there are results for more than 2 replicate samples (Ecology, 2004).

Replicate samples: Two or more samples taken from the environment at the same time and place, using the same protocols. Replicates are used to estimate the random variability of the material sampled (USGS, 1998).

Representativeness: The degree to which a sample reflects the population from which it is taken; a data quality indicator (USGS, 1998).

Sample (field): A portion of a population (environmental entity) that is measured and assumed to represent the entire population (USGS, 1998).

Sample (statistical): A finite part or subset of a statistical population (USEPA, 1997).

Sensitivity: In general, denotes the rate at which the analytical response (e.g., absorbance, volume, meter reading) varies with the concentration of the parameter being determined. In a specialized sense, it has the same meaning as the detection limit (Ecology, 2004).

Spiked blank: A specified amount of reagent blank fortified with a known mass of the target analyte(s); usually used to assess the recovery efficiency of the method (USEPA, 1997).

Spiked sample: A sample prepared by adding a known mass of target analyte(s) to a specified amount of matrix sample for which an independent estimate of target analyte(s) concentration is available. Spiked samples can be used to determine the effect of the matrix on a method's recovery efficiency (USEPA, 1997).

Split sample: A discrete sample subdivided into portions, usually duplicates (Kammin, 2010).

Standard Operating Procedure (SOP): A document which describes in detail a reproducible and repeatable organized activity (Kammin, 2010).

Surrogate: For environmental chemistry, a surrogate is a substance with properties similar to those of the target analyte(s). Surrogates are unlikely to be native to environmental samples. They are added to environmental samples for quality control purposes, to track extraction efficiency and/or measure analyte recovery. Deuterated organic compounds are examples of surrogates commonly used in organic compound analysis (Kammin, 2010).

Systematic planning: A step-wise process which develops a clear description of the goals and objectives of a project, and produces decisions on the type, quantity, and quality of data that will be needed to meet those goals and objectives. The DQO process is a specialized type of systematic planning (USEPA, 2006).

References for QA Glossary

Ecology, 2004. Guidance for the Preparation of Quality Assurance Project Plans for Environmental Studies. Washington State Department of Ecology, Olympia, WA.
<https://fortress.wa.gov/ecy/publications/SummaryPages/0403030.html>

Kammin, B., 2010. Definition developed or extensively edited by William Kammin, 2010. Washington State Department of Ecology, Olympia, WA.

USEPA, 1997. Glossary of Quality Assurance Terms and Related Acronyms. U.S. Environmental Protection Agency.

USEPA, 2006. Guidance on Systematic Planning Using the Data Quality Objectives Process EPA QA/G-4.

<http://www.epa.gov/quality/qs-docs/g4-final.pdf>

USGS, 1998. Principles and Practices for Quality Assurance and Quality Control. Open-File Report 98-636. U.S. Geological Survey.

<http://ma.water.usgs.gov/fhwa/products/ofr98-636.pdf>

G. Contaminated Site Information

NOT APPLICABLE

H. Engineering Calculations

NOT APPLICABLE