


# Crest Lincoln of Woodbridge <br> 185 Amity Road Woodbridge, CT 06525 

RBA Job No. 204638
CALCULATIONS FOR:
LN-P6


## DESIGN ENGINEER

RBA Structural Engineering, LLC
227 French Landing Drive, Suite 500
Nashville, Tennessee 37228


CODES: 2015 International Building Code - Wind Loads per provisions of ASCE 7-16
2015 Aluminum Design Manual, Specification for Aluminum Structures
ACI 318, Building Code Requirements for Structural Concrete

SIGN DIMENSIONS:

| Sign | Sign | Left Column | Distance Between |  |
| :---: | :---: | :---: | :---: | :---: |
| Length, B | Depth, s | Offset, e | Columns, I |  |
| 12.563 | ft. | 5.448 ft. | 1.734 ft. | 6.958 ft. |
| Overall |  | Column | Total Sign |  |
| Height, h |  | Height, c | Area, $\mathrm{A}_{\text {sign }}$ |  |
| 5.448 | ft. | 5.448 ft. | $68.44 \mathrm{ft}^{2}$ |  |

## MAIN COLUMN SECTION PROPERTIES:

Section: 6" Sch 40 Pipe

| A = | 5.58 | in. ${ }^{2}$ | $\mathrm{I}_{\mathrm{x}}=$ | 28.10 | in. ${ }^{4}$ | $\mathrm{J}=$ | 56.20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OD = | 6.63 | in. | $\mathrm{S}_{\mathrm{x}}=$ | 8.50 | in. ${ }^{3}$ | $\mathrm{R}_{\mathrm{b}} / \mathrm{t}=$ | 11.30 |
| $1 \mathrm{D}=$ | 6.07 | in. | $r_{x}=$ | 2.25 | in. |  |  |
| $\mathrm{t}=$ | 0.28 | in. | $\mathrm{Z}_{\mathrm{x}}=$ | 11.30 | in. ${ }^{3}$ |  |  |

Cover Plates: Not Applicable

| $b$ | $=$ | 0.00 | in. |
| ---: | :--- | :--- | :--- |
| $t$ | $=$ | 0.00 | in. |
| $\mathrm{S}_{x(\text { eff })}$ | $=$ | 8.50 | in $^{3}$ |
| $\mathrm{Z}_{x(\text { eff })}$ | $=11.30$ | in $^{3}$ |  |

## MAIN COLUMN MATERIAL PROPERTIES:

Material: 6061-T6 Column Base Condition: Welded

$$
\begin{array}{llllc}
F_{\text {ty }}= & 15 & \text { ksi } & E= & 10100 \\
F_{c y}= & 15 & \mathrm{ksi} & \mathrm{k}_{\mathrm{t}}= & 1
\end{array}
$$

deld

$$
\mathrm{F}_{\mathrm{tu}}=24 \quad \mathrm{ksi}
$$

| Project <br> Model <br> By |
| :--- |
| CODES: |

Wind Loads per provisions of ASCE 7-10, Chapter 29

## SIGN DIMENSIONS:

| Length, B | $=12.563 \mathrm{ft}$. | Height, $\mathrm{s}=5.448 \mathrm{ft}$. | OAH Above Grade, $\mathrm{h}=5.448 \mathrm{ft}$. |
| ---: | :--- | ---: | :--- | ---: |
| Depth $=1.411 \mathrm{ft}$. | $\mathrm{~A}_{\text {sign }}=68.4 \mathrm{ft}^{2}$ |  |  |

## WIND LOADS:

Natural Frequency $=1$

Exposure Category =
C
$\mathrm{a}_{\mathrm{h}}=0.00256 * \mathrm{~K}_{\mathrm{z}} * \mathrm{~K}_{\mathrm{zt}} * \mathrm{~K}_{\mathrm{d}} * \mathrm{~V}^{2}$
$\mathrm{K}_{\mathrm{z}}=0.85$
$\mathrm{K}_{\mathrm{zt}}=1.0$
$K_{d}=0.85$
$\mathrm{V}=160$
$\mathrm{q}_{\mathrm{h}}=47.35 \mathrm{lb} / \mathrm{ft}^{2}$
$\mathrm{F} / \mathrm{A}=\mathrm{q}_{\mathrm{h}}{ }^{*} \mathrm{G} * \mathrm{C}_{\mathrm{f}}$
$\mathrm{G}=0.85$
$\mathrm{B} / \mathrm{s}=2.31$
$\mathrm{s} / \mathrm{h}=1.00$
$C_{f}=1.39$
$F / A=$
56.04
$\mathrm{lb} / \mathrm{ft}^{2}$

RIGID STRUCTURE

Risk Category = I

Velocity Pressure, ASCE 7-10, Section 29.3.2
Velocity Pressure Exposure Coefficient, ASCE 7-10, Table 29.3-1
Topographic Factor, ASCE 7-10, Section 26.8.2
Wind Directionality Factor, ASCE 7-10, Table 26.6-1
Basic Wind Speed, mph, ASCE 7-10, Figure 26.5-1C

Design Wind Loads, ASCE 7-10, Section 29.4.1
Gust Effect Factor, ASCE 7-10, Section 26.9
Length of Sign/Depth of Sign
Depth of Sign/Overall Height
Force Coefficient, ASCE 7-10, Figure 29.4-1
CASE A: resultant acts normal to the sign face at a distance above the geometric center equal to $0.27^{\prime}$

CASE B: resultant acts normal to the sign face at a distance of 2.51' toward the windward edge and 0.27 ' above the geometric center

CASE C loading applies

## LRFD Loading:

Use wind pressure $=56.04$
$\mathrm{lb} / \mathrm{ft}^{2}$
for 1.0*W from ASCE 7-10, Section 2.3.2

## ASD Loading:



CHECK COLUMNS: 6" Sch 40 Pipe 6061-T6

LRFD Load Combinations: $1.2 \mathrm{D}+1.0 \mathrm{~W}$

Resistance Factors:

$$
\begin{aligned}
\Phi_{\mathrm{b}, \mathrm{~T}, \mathrm{~V}} & =0.9 \\
\Phi_{\mathrm{b}} & =0.75 \quad \text { (Tensile Rupture) }
\end{aligned}
$$

Service Wind Load:

$$
\text { Sign, } P_{w}=2.30 \quad \text { kips }
$$

Load Distribution to One Column (Case B):
Max= 100.00\%

| Service Moment at Base: | Total: | $M=$ | 6.90 | k-ft |
| :--- | ---: | ---: | ---: | :--- |
|  | Single Col: | $M=$ | 6.90 | k-ft |
| Factored Moment at Base: | Total | $M_{u}=$ | 11.49 | k-ft |
|  | Single Col: | $M_{u}=$ | 11.49 | $\mathrm{k}-\mathrm{ft}$ |

## Flexure

Compressive Yielding Strength: $\mathrm{M}_{\mathrm{n}}=\mathrm{M}_{\mathrm{p}}=1.17 * \mathrm{~F}_{\mathrm{cy}} * \mathrm{~S}_{\mathrm{x}}$

Tensile Yielding Strength: $M_{n}=M_{p}=1.17{ }^{*} F_{\text {ty }} * S_{x}$
Tensile Rupture Strength: $\mathrm{M}_{\mathrm{n}}=\mathrm{M}_{\mathrm{p}}=1.24 * \mathrm{~F}_{\mathrm{tu}} * \mathrm{~S}_{\mathrm{x}} / \mathrm{k}_{\mathrm{t}}$
Local Buckling - Upper Inelastic Buckling Controls: Mn = Fb Sx

$$
\mathrm{M}_{\mathrm{u}}=11.49 \quad \mathrm{k}-\mathrm{ft} \quad>
$$

Combined Torsion, Shear, Flexure and Axial Force
$\left[\left(\mathrm{P}_{\mathrm{u}} / \Phi \mathrm{P}_{\mathrm{n}}\right)+\left(\mathrm{M}_{\mathrm{u}} / \Phi \mathrm{M}_{\mathrm{n}}\right)\right]+\left[\left(\mathrm{V}_{\mathrm{u}} / \Phi \mathrm{V}_{\mathrm{n}}\right)+\left(\mathrm{T}_{\mathrm{u}} / \Phi \mathrm{T}_{\mathrm{n}}\right)\right]^{2}=$
$\Phi_{b} \mathrm{M}_{\mathrm{n}}=$
k-ft O.K. - within 5\%

ADM, Chapter E
kips
O.K.

ADM, Section G. 3
kips
O.K.
$>$
1.0

ADM, Section F. 6
$\Phi_{b} M_{n}=11.19 \quad k-f t$
$\Phi_{b} M_{n}=11.19 \quad \mathrm{k}-\mathrm{ft}$
$\Phi_{b} M_{n}=15.81 \quad k-f t$
$\Phi_{\mathrm{b}} \mathrm{M}_{\mathrm{n}}=$
$14.21 \mathrm{k}-\mathrm{ft}$

ADM, Section H.3.2
O.K. -within $8 \%$ with $100 \%$ load


USE 14 in. x 8 in. x 1 1/8 in. min. plate with $2-6 / 8$ in. diameter A36 bolts.


