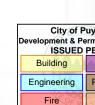
Korum Lincoln 100 River Road Puyallup, WA 98371

RBA Job No. 22 4639

CALCULATIONS FOR: LN-P6

Designed in accordance with: 2018 International Building Code ASCE 7-16 105 mph wind velocity

THE APPROVED
CONSTRUCTION
PLANS AND ALL
ENGINEERING
DOCUMENTS
MUST BE POSTED
ON THE JOB AT
ALL INSPECTIONS
IN A VISIBLE AND
READILY
ACCESSIBLE
LOCATION.



FABRICATOR

Architectural Graphics, Inc. 2655 International Parkway Virginia Beach, Virginia 23452

DESIGN ENGINEER

RBA Structural Engineering, LLC 1 Vantage Way, Suite B-400 Nashville, Tennessee 37228

Project Lincoln Model **LN-P6 SWL** Ву **SEQ**

ROSS BRYAN ASSOCIATES, INC. CONSULTING ENGINEERS NASHVILLE, TN

Sheet No. 2 Job No.

224639 Date 5/10/22 6

of

CODES: 2018 International Building Code

AISC Steel Construction Manual, 13th Edition

ACI 318, Building Code Requirements for Structural Concrete

SIGN DIMENSIONS:

Sign Sign Left Column Distance Between Length, B Depth, s Offset, e Columns, I 12.563 ft. 5.95 ft. **1.734** ft. 6.96

Overall Column Height, h Height, c 5.95 ft. 5.96 ft.

MAIN COLUMN SECTION PROPERTIES:

HSS6X6X3/16 Slender Flanges Section: $F_v =$ ksi 29000 ksi 50 E = in.² in.³ 22.30 **Compact Webs** A = 3.98 $S_x =$ 7.42 $I_x =$ d = 6.00 $S_y =$ 0.00 in.³ 0.00 in.4 in. $I_v =$ in.³ in.³ t = 0.17 in. $Z_x =$ 8.63 C = 11.80 b = 6.00 in. $Z_v =$ 0.00

DEAD LOADS:

Sign Weight = Concrete = 12 psf 150 pcf Column Weight = 14.51 lb/ft Soil = 90 pcf

> City of Puyallup evelopment & Permitting Services ISSUED PERMIT Building Planning Public Works Engineering

PRSG2022

Project Lincoln Model **LN-P6 SWL** Βv SEO

ROSS BRYAN ASSOCIATES, INC. CONSULTING ENGINEERS NASHVILLE, TN

Sheet No. 3 Job No. 224639 Date 5/10/22

6

of

CODES:

Wind Loads per provisions of ASCE 7-16, Chapter 29

SIGN DIMENSIONS:

$$A_{sign} = 74.74985 \text{ ft}^2$$

WIND LOADS:

RIGID STRUCTURE

ft.

0.85

1.00

0.85

$$q_h = 0.00256 * K_z * K_{zt} * K_d * K_e * V^2$$

$$K_{zt} = 1.0$$

 $K_z =$

K_e =

G =

Velocity Pressure Exposure Coefficient, ASCE 7-16, Table 26.10-1

$$K_{zt} = 1.0$$

Topographic Factor, ASCE 7-16, Section 26.8.2

$$K_d = 0.85$$

Wind Directionality Factor, ASCE 7-16, Table 26.6-1 Ground Elevation Factor, ASCE 7-16, Table 26.9-1

Basic Wind Speed, mph, ASCE 7-16, Figure 26.5-1A

$$q_h = 20.39 \text{ lb/ft}^2$$

$$F/A = q_h * G * C_f$$

Design Wind Loads, ASCE 7-16, Section 29.3.1

Gust Effect Factor, ASCE 7-16, Section 26.11

$$B/s = 2.11$$

Length of Sign/Depth of Sign

Depth of Sign/Overall Height

$$C_f = 1.38$$

Force Coefficient, ASCE 7-16, Figure 29.3-1

F/A = 23.85 lb/ft²

CASE A: resultant acts normal to the sign face at a distance above the geometric

center equal to 0.30'

CASE B: resultant acts normal to the sign face at a distance of 1.76' toward the

windward edge and 0.30' above the geometric center

LRFD Loading:

Use wind pressure = 23.85 lb/ft² for 1.0*W from ASCE 7-16, Section 2.3.1

City of Puyallup evelopment & Permitting Services ISSUED PERMIT Building Planning Public Works Engineering

ASD Loading:

Use wind pressure = 14.31 lb/ft² for 0.6*W from ASCE 7-16, Section 2.4.1

Project Lincoln Model **LN-P6 SWL** Ву **SEQ**

ROSS BRYAN ASSOCIATES, INC. | Sheet No. **CONSULTING ENGINEERS NASHVILLE, TN**

ksi

Job No. Date

4 224639

6

5/10/22

CHECK COLUMN: HSS6X6X3/16

50

Slender Flanges

ASD Load Combinations: D + 0.6W ASCE 7-16, Section 2.4

ASD Safety Factor for Flexure:

 $\Omega_{\rm b} =$ 1.67 AISC Specification F1

Service Wind Loads:

Moment Arms:

Sign, P_w =

1.07

3.27 ft.

Load Distribution to One Column (Case B):

3.50 k-ft M =

Max=

100.00%

kips

Column Design is Controlled by Wind Load CASE B:

100%

of sign load is transferred to column due to offset.

ASD Moment at base of one column:

 $M_{ASD} =$ 3.50

k-ft

k-ft

Yielding: $M_n = M_p = F_y * Z_x$

 $M_n =$ 35.96 k-ft AISC Specification F7-1

Flange Local Buckling: Mn = FySe

31.52 Mn =

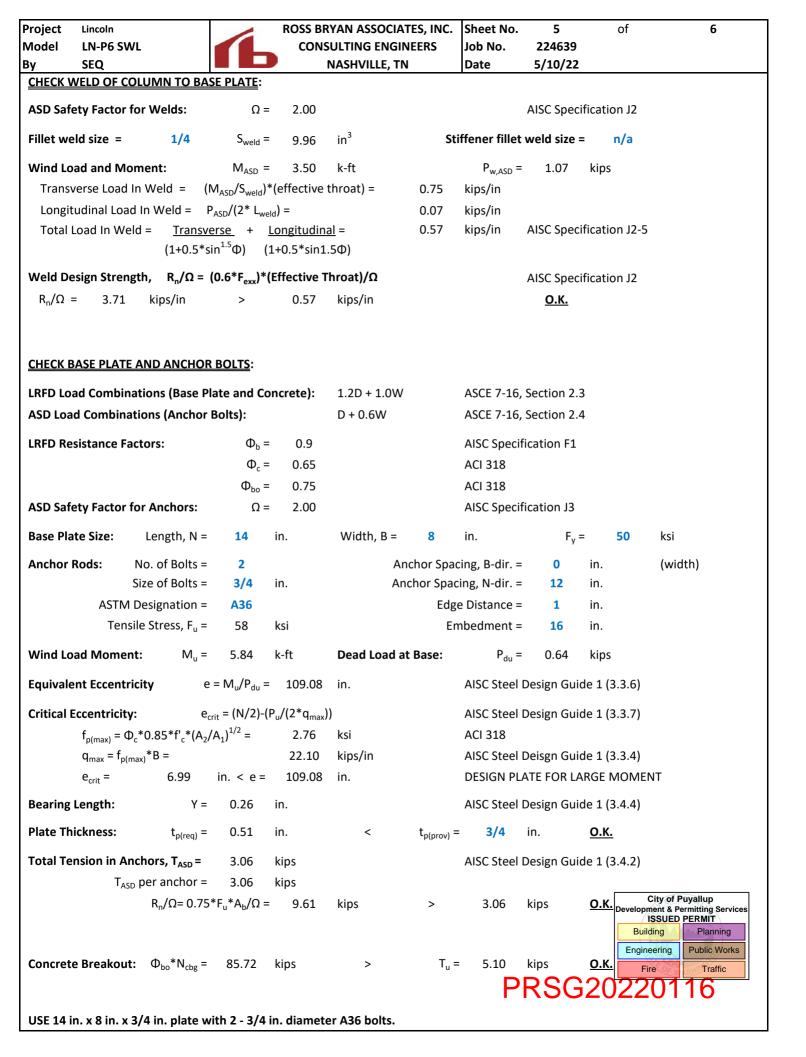
AISC Specification F7-2

Web Local Buckling:

Does Not Apply

AISC Specification F7-3


 $M_n/\Omega_b =$


18.87 k-ft

3.50 $M_{ASD} =$

k-ft

O.K.

Project Lincoln

Model LN-P6 SWL

By SEQ

ROSS BRYAN ASSOCIATES, INC. CONSULTING ENGINEERS NASHVILLE, TN

Sheet No. Job No. Date 6 224639

5/10/22

of

CHECK FOUNDATIONS:

LRFD Load Combinations: 1.2D + 1.0W

ASCE 7-16, Section 2.3

Resistance Factors: $\Phi_{plain} = 0.6$

 $\Phi_{\rm v} = 0.75$

ACI 318 ACI 318

 $\Phi_{\rm b}$ = 0.9 ACI 318

 $f'_{c} = 2500$ psi $P_{a} = 150$ psf/ft $q_{a} = 2000$ psf

Total Wind Load:

P_w = 1.07 kips

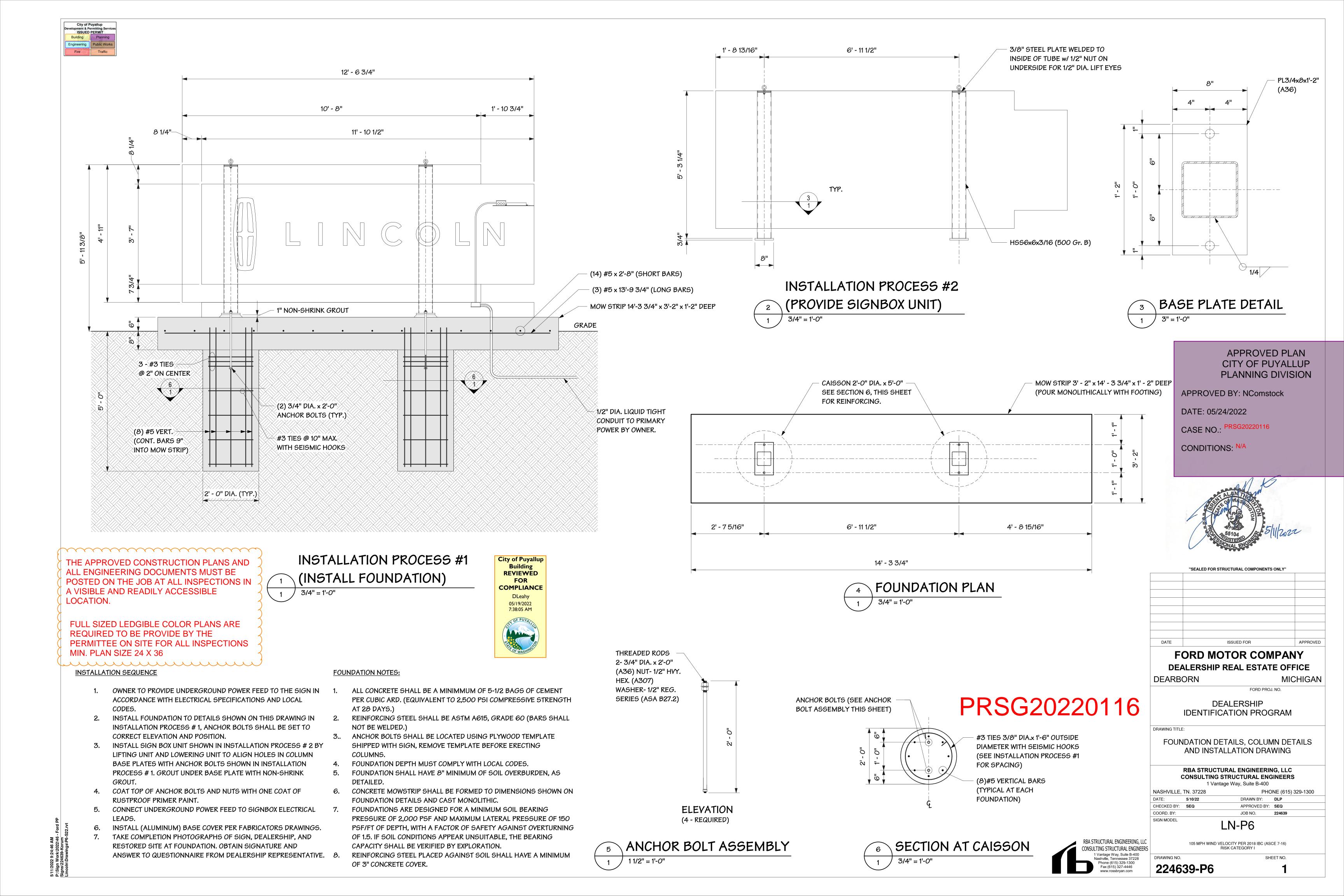
Total Service Moment at base: M = 3.50 k-ft

Circular Caisson Foundation:

No. of Caissons= 2 Diameter = 2 ft. Depth = 5 ft.

 $M_{(top of caisson)} = 4.04 k-ft$

Height to P_w , h = 3.77 ft.


Required Depth, d = 4.70 ft. **O.K.** IBC 2018, Section 1807.3.2.1

Moment in Footing, $M_u = 6.73$ k-ft

Use 8 No. 5 Vertical Bars

Use No. 3 Ties at 10 inches o.c max.

Moment Capacity, $\Phi M_n = 90.81$ k-ft > $M_u = 6.73$ k-ft $PRSC^{\bullet K} \cap 220$

