

TANK FARM CONTAINMENT VOLUME CALCULATION

Storage included in these three areas: Fifteen Aboveground Steel Tanks

AREAS	A	B	C	D	E	F	
	Outside Tank Farm	Inside Poly Tanks	Tank Area in Drivethrough	new concrete top triangle	new concrete rectangle	Full Rectangle	Spillway
	Area A	Area B	Area C-O	Area C-1	Area C-2 A	Area C-2B	Area C-3
	35.0	33.67	60.7	2.5	2.5	3.0	2
Length, ft	47.0	17	16.5	2.5	13.5	16	0.5
Width, ft	20.0	24.0	24.0	24.0	24.0	24.0	20.0
Effective Height, in	20	0	0	0	0	4.00	
Elevation, Base, in	4.00	0	14,974	47	505	718	9
Volume (Gallons)	20,509	8,564					

Area Displaced by Tanks					Notes
Tank Number	Volume (Gallons)	Tank Shell	Cont. Section	Dimensions	
1\&2	25,454	steel	AREA A	$127{ }^{\text {" D x 480" H }}$	
3	25,600	steel	AREA A	132" D x 432" H	Tank Not Used
4	28,800	steel	AREA A	120" D x 594" H	
5 \& 6	45,690	steel	AREA A	$141{ }^{\prime \prime} \mathrm{D} \times 720$ H	Tank Not Used - bottom 6' of 60' height has no tank storage
7	24,881	steel	AREA C	132" D x 432" H	
8 \& 9	19,430	stainless steel	AREA C	$141{ }^{\text {" D x } 360 " ~ H ~}$	
10 \& 11	25,260	steel	AREA C	$126 " \mathrm{D} \times 540 \mathrm{H}$	Tanks Not Used - bottom 6' of 45' height has no tank storage
12	1,500	poly	AREA B	64"" D x 116" H	Relocating Tanks From Ecolube Tacoma Plant
13 \& 14	6,100	poly	AREA B	119" D x 140" H	Relocating Tank From Ecolube Tacoma Plant

Largest Tank is Tank 4
Tank 4 Capacity, gal 28,800

Estimated Displacement Volume Calculations			
Tank	gal/ft	Displaced, gal	
Tank 1	636	1,061	
Tank 2	636	1,061	
Tank 3	731	1,219	
Tank 4	606	1,010	
Tank 5	0	0	open bottom
Tank 6	0	0	open bottom
Tank 7	691	1,382	
Tank 8	648	1,295	
Tank 9	648	1,295	
Tank 10	0	0	open bottom
Tank 11		0	open bottom
Tank 12	155	310	
Tank 13	523	2,048	
Tank 14	523	$\mathbf{8 7 1}$	
	Total	$\mathbf{1 1 , 5 5 3}$	Gallons

containment capacity $=$ Length $(\mathrm{ft}) \times$ Width $(\mathrm{ft}) \times \mathrm{h}$ (in) $/ 12$ (in $/ \mathrm{ft}) \times 7.4805$ in use
Containment Capacity: $\mathbf{4 5 , 3 2 6}$ gallon
Precipitation Allowance:
$\begin{array}{lcl}\text { Precipitation Allowance: } \\ 25-\text {-year, } 24 \text {-hour amount }{ }^{*} \text {, in. } & 4 & \text { (Basis: NOAA 100yr-24hr Rainfall Event }=3.8 ")\end{array}$
Precipitation Area ft2
1733
Precipitation Amount, gal
*Puyallup, WA (Western Regional Climate Center)
Total Available Secondary Containment:
Available Containment = Capacity $\boldsymbol{-}$ Precipitation $\boldsymbol{-}$ Displacement $=$
29,452 gal.
"Excess capacity" = Available Containment - Largest Tank Capacity =
652 gal.
at 100\% of Largest Tank
TANKER CONTAINMENT VOLUME CALCULATION
Length (ft)
722
Depth (in)
Volume (gal)
2,475 Gallons Holdup in Truck Loading Station

| City of Puyallup
 Development \& Permitting Services
 ISSUED PERMIT |
| :---: | :---: |
| Building Planning
 Engineering Public Works
 Fire Traffic |

