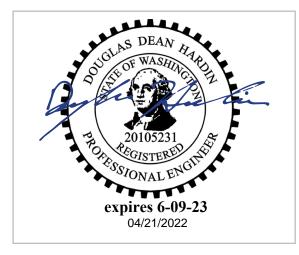
Structural Engineering Calculations

Project Name: Costc Location: Puyal Job Number: 22-19

Costco #660 Puyallup, WA 22-19079

THE AF


DOUGLAS D. HARDIN, P.E. STRUCTURAL ENGINEERING CALCULATIONS

FOR

KPS GLOBAL

COSTCO #660

WALK-INS PUYALLUP, WASHINGTON TGE PROJECT NUMBER: 22-19079

City of Puyallup Development & Permitting Services (ISSUED PERMIT) Building Planning Engineering Public Works Fire Contraction Traffic

PROVED CONSTRUCTION PLANS

DOCUMENTS AND ALL ENGINEERING MUST BE POSTED ON THE JOB AT ALL INSPECTIONS IN A VISIBLE AND READILY ACCESSIBLE LOCATION.

FULL SIZED LEDGIBLE COLOR PLANS ARE REQUIRED TO BE PROVIDED BY THE PERMITEE ON SITE FOR INSPECTION

Approval of submitted plans is not an approval of omissions or oversights by this office or noncompliance with any applicable regulations of local government. The contractor is responsible for making sure that the building complex with all applicable codes and regulations of the local government.

Project Name:Costco #660Location:Puyallup, WAJob Number:22-19079

TABLE OF CONTENTS

	SECTION	PAGE NO.
1.	PROJECT INFORMATION	3
2.	SYMBOLS AND NOTATION	4
3.	GENERAL STRUTCTURAL NOTES	5
4.	DESIGN CRITERIA INFORMATION	7
5.	STRUCTURAL CALCULATIONS CBX	8
6.	SOFTWARE PRINTOUTS (ENERCALC)	
7.	SOFTWARE PRINTOUTS (RISA)	
8.	SOFTWARE PRINTOUTS (RISA CONNECTION)	55
9.	SOFTWARE PRINTOUTS (ANCHOR)	
10.	TESTING REPORT OR LARR	80
11.	DOWEL BEARING STRENGTH	
12.	HILL PHOENIX REPORT	

Project Name: Cost Location: Puya Job Number: 22-1

Costco #660 Puyallup, WA 22-19079

PROJECT INFORMATION

Tamarack Grove Engineering: Address:

> Date: Firm Registration Number: TGE Engineer of Record: Project Manager: Direct Phone: Office Phone: Office Fax: Email:

812 La Cassia Dr Boise, Idaho 83705 4/21/2022 603490470 Douglas D. Hardin, P.E. Ruchin Khadka, E.I. (208) 779-4321 (208) 345-8941 (208) 345-8946 ruchin.khadka@tamarackgrove.com

Project Client Information:

- Company: Project Number: Contact: Address:
- Phone: Email: Client Logo:

KPS Global C18769 Glenn Shuping 4201 N. Beach St. Fort Worth, TX 76137 (682) 317-5357 <u>Glenn.Shuping@kpsglobal.com</u>

Project Site Information:

Name: Address: Costco #660 201 39th Ave. SW Puyallup, Washington 98373 C18769

Client Reference Number:

Local Jurisdiction Information:

Jurisdiction: Enforced Code Used: Contact Info: Pierce County 2018 International Building Code https://www.piercecountywa.gov/

Project Scope of Work:

Tamarack Grove Engineering is providing structural engineering calculations for the walk-in manufactured by KPS Global to verify the structural integrity of the panels and anchorage to the slab. The design of the slab/foundation is to be provided by others. Redline drawings provided to the client as needed based on calculations and code requirements.

City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building	Planning	
Engineering	Public Works	
Fire	Traffic	

Structural Engineering

Calculations

Project Name: Location: Job Number:

Costco #660 Puyallup, WA 22-19079

SYMBOLS AND NOTATION

- BSC = Building Site Class
 - C_e = Exposure Factor
 - C_T = Thermal Factor
- DL_{panel} = Total Panel Dead Load
 - DL_{roof} = Dead Load Roof
 - EC = Exposure Category
 - F_a = Short Period Site Coefficient
 - F_v = Long Period Site Coefficient
 - I_E = Seismic Importance Factor
 - I_s = Snow Importance Factor
- L_{internal} = Minimum Indoor Lateral Live Load
- LL_{panel} = Total Panel Live Load
- LL_{panel_acc} = Total Panel Live Load (Accessible)
 - LL_{roof} = Live Load Roof
 - p_g = Ground Snow Load
 - P_{LL} = Maintenance Worker Live Load
 - R = Response Modification Coefficient
 - S_1 = Mapped MCE_R Spectral Response Acceleration Parameter at a Period of 1 s
 - S_{D1} = Design Spectral Response Acceleration Parameter at a Period of 1 s
 - SDC = Seismic Design Category
 - S_{DS} = Design Spectral Response Acceleration Parameter at Short Periods
 - $S_{M1} = MCE_R$ Spectral Response Acceleration Parameter at a Period of 1 s
 - S_{MS} = MCER Spectral Response Acceleration Parameter at Short Periods Adjusted For Site
 - SRC = Surface Roughness Category
 - S_S = Mapped MCE_R Spectral Response Acceleration Parameter at Short Periods
 - T_L = Long Period Transition Period
 - V = Basic Wind Speed

GENERAL STRUTCTURAL NOTES

- 1. <u>General Structural Notes</u>
 - A. Contractor to verify all openings, building dimensions, column locations and dimensions with owner prior to setting of any cooler boxes or construction.
 - B. The engineer of record is not responsible for any deviations from these plans unless such changes are authorized in writing to the engineer of record.
 - C. The engineer of record is not responsible for any deviations from these plans unless such changes are authorized in writing to the engineer of record.
 - D. The contractor is responsible for providing safe and adequate shoring and/or temporary structural stability for all parts of the structure during construction. The structure shown on the drawings has been designed for final configuration.
 - E. Notching and/or cutting of any structural member in the field is prohibited, unless prior consent is given by the engineer of record.
 - F. All future roof/ceiling mounted equipment not currently shown on the approved shop drawings shall be coordinated with the eor prior to any installation, typ.
 - G. The assumed thickness of existing concrete will be 6" with an f'c of 3,000 psi, unless otherwise noted in calculations.

2. <u>Structural Steel</u>

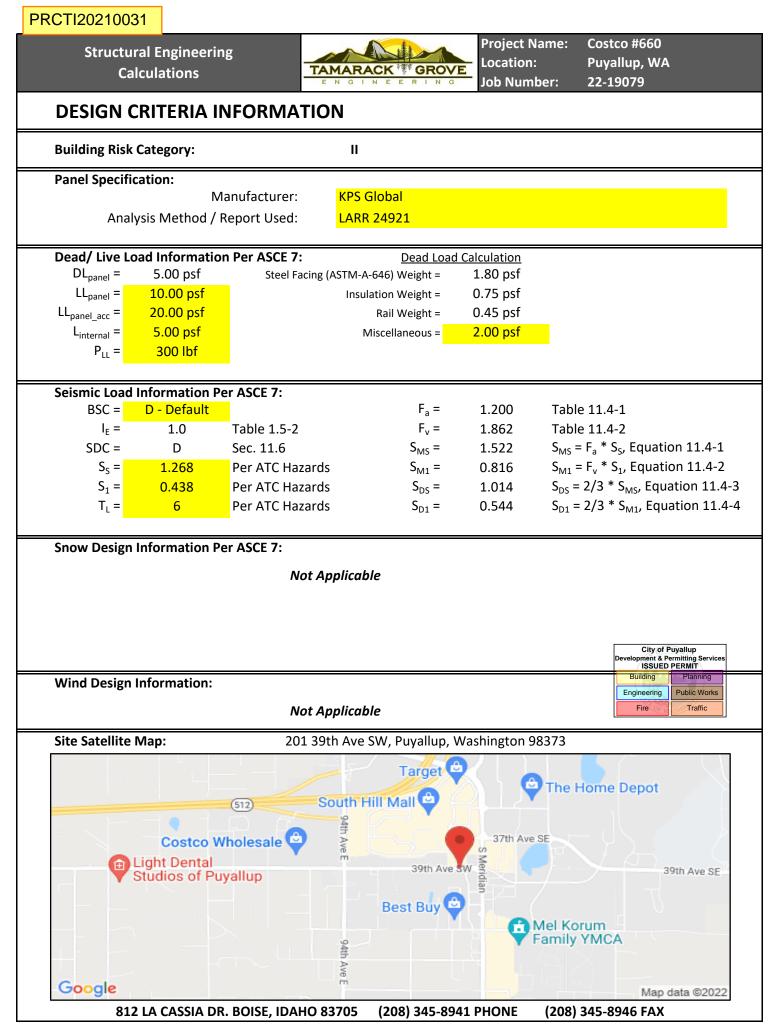
A. All steel construction shall conform to requirements set forth in the latest editions of AISC, "American Institute of Steel Construction", AISC 341-16, "Seismic Provisions for Structural Steel Buildings, Including Supplement No. 1, dated 2016" and AISC 360-16, "Specifications for Structural Steel Buildings".

B. Steel Designations:

- 4. Structural HSS Tubing...... ASTM A500, GRADE 'B' 46 KSI
- C. All anchor bolts, bolts and lags in wood shall conform to ASTM A307 steel U.N.O. and shall have steel washers beneath all nuts and bolt heads. If a certain situation is not detailed use a similar detail. All structural bolts shall conform to ASTM A307. Connections shall generally follow the types shown in AISC manual of steel construction. joints are 'snug tightened' unless otherwise detailed per AISC.
- D. Steel fabricator shall also include and coordinate all structural steel shown on architectural sheets with that of the structural sheets. Coordinate any steel not shown on structural drawings, contractor to verify.
- E. All bearing elevations for joists, beams, and column heights shall be coordinated and verified by the contractor. All elevations must be approved by engineer and architect of record in the shop drawing review process.
- F. All steel welding shall conform to AWS D1.1 with E70XX electrodes.
- G. Provide high strength non-shrink grout under all steel base plates, f'c = 5,000 psi, min.

City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building	Planning	
Engineering	Public Works	
Fire OF W	Traffic	

Structural Engineering Calculations



3. Special Inspections & Testing (Quality Assurance Plan)

A. General:

- 1. Independent testing lab shall be retained by owner to provide inspections and special inspections as described herein.
- 2. The contractor is responsible for coordinating and providing on site access to all required inspections and notifies testing lab in time to perform such inspections prior.
- 3. Do not cover work required to be inspected prior to inspection being made. If work is covered, contractor will be responsible for uncovering as necessary.
- 4. The contractor shall correct all deficiencies as noted within the special inspection reports and/or the engineer of record's field observation (structural observations) reports to bring the construction into compliance with the contract documents, addendums, revisions, RFI's and/or written instructions. The contractor is responsible to request summary reports from the special inspector and engineer of record at the time of the project substantial completion. Prior to requesting the summary of structural observation reports from the engineer of record, the contractor shall submit to the architect and engineer of record a letter stating that all outstanding items noted on previous structural observation reports have been completed in accordance with the contract documents, addendums, revisions, RFI's and/or written instructions.
- B. Special Inspections:
 - 1. All special inspections shall be performed to meet the requirements of the 2018 International Building Code (2018 IBC), as recommended by the local building jurisdiction.
 - 2. Required special inspections shall be performed by an independent certified testing laboratory employed by the owner per section 1704 of the 2018 IBC.
 - 3. The independent certified testing laboratory and inspectors shall be a qualified person who shall show competence to the satisfaction of the local building official, owner, architect and engineer of record for the particular operation. All special inspection reports shall be submitted to the building department, architect and engineer of record stating the project name and address.
 - 4. The contractor and special inspector shall notify the engineer of record of any items not complying with the project specifications, contract documents and/or applicable codes before proceeding with any work involving that item. The engineer of record will review the item and determine its acceptability. If work involving that item proceeds without prior approval from the engineer of record, then the work will be considered non-compliant.

City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building	Planning	
Engineering	Public Works	
Fire OF N	Traffic	

Structural Engineering

Calculations

Project Name: Cost Location: Puya Job Number: 22-1

Costco #660 Puyallup, WA 22-19079

STRUCTURAL CALCULATIONS CBX

JURISDICTION INFORMATION			
JURISDICTION: STRUCTURAL CODE:	PULLAYUP, WASINGTON 2018 INTERNATIONAL BUILD	PASS = 1.0 FAILURE = 0	
DESIGN CRITERIA			
LOAD DESIGN VALUES:			
DL _{panel} := 4.5 <i>psf</i>		Panel Dead Load	
LL _{panel} := 10 <i>psf</i>		Panel Live Load - Not Accessible	
LL _{panel_2} :=20 <i>psf</i>		Panel Live Load - Accessible	
P _{LL} :=300 <i>lbf</i>		Maintenance Worker Live Load	
P _{internal} := 5 <i>psf</i>		Minimum Transverse Load (ASCE 7 1.4.5)	
NOTE: SEISMIC DESIGN	DATA IS GIVEN IN THE LATERAL AN	NALYSIS SECTION BELOW.	
ASD LOAD COMBINAT	IONS (ASCE 7-16)		
$LC_3 := DL_{panel} + LL_{panel} =$	= 14.5 <i>psf</i>	Load Combination 3: D+(Lr, S, or R)	
$LC_{3_{acc}} := DL_{panel} + LL_{par}$	nel_2=24.5 <i>psf</i>	Load Combination 3: D+(Lr, S, or R)	
WALK-IN DESIGN CRIT	ERIA		
Width := 41.54 ft		Unit Width	
Length := 71.67 ft		Unit Length	

H := 10.46 **ft**

 $H_w := 10.06 ft$

NOTE: REFERENCE THE LOS ANGELES RESEARCH REPORT (LARR) AND/OR TESTING REPORTS PROVIDED IN THE APPENDIX FOR PANEL ALLOWABLES UTILIZED.

Unit Height

Wall Height

City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building	Planning	
Engineering	Public Works	
Fire	Traffic	

Structural Engineering Calculations

NON-ACCESSIBLE CEILING PANEL ANALYSIS	
L:= 17.85 <i>ft</i>	Ceiling Panel Span
L _{all} := 22.75 ft	Allowable Span (Per LARR/Testing Report)
T _{width_panel} := 3.92 <i>ft</i>	Tributary Width of Panel
LOADS:	
LL _{panel} := 10 <i>psf</i>	Panel Live Load - Not Accessible
w _{design_ceiling} := LL _{panel} • T _{width_panel} = 39.2 <i>plf</i>	Distributed Live Load
P _{LL} := 300 <i>lbf</i>	Maintenance Worker Live Load
$m_{max} := max \left(\frac{w_{design_ceiling} \cdot L^2}{8}, \frac{P_{LL} \cdot L}{4} \right) = 1561.25 \text{ j}$	ft · Ibf Maximum Moment
w _{all} := 10 <i>psf</i> · T _{width_panel} = 39.2 <i>plf</i>	Allowable Panel Load (Per LARR/Testing Report)
$M_{allow} := \frac{w_{all} \cdot L_{all}^2}{8} = 2536.06 \ ft \cdot lbf$	Allowable Moment
CHECK $M_{allow} \ge m_{max} = 1$	
SUMMARY: USE SPECIFIED CEILING PANELS PER PLANS.	<u>.</u>

Structural Engineering Calculations

Project Name: Costco Location: Puyall Job Number: 22-19

Costco #660 Puyallup, WA 22-19079

CEILING SUPPORT BEAMS AND COLUMNS

Material Specification BEAM W18x35 <LONG>

L:=41.47 **ft**

 $T_{width} := \frac{35.88 \ ft}{2} = 17.94 \ ft$

LOADS:

w_{DL} := DL_{panel} • T_{width} = 80.73 *plf*

 $w_{LL} := LL_{panel} \cdot T_{width} = 179.4 \ plf$

REACTIONS (ENERCALC):

R_{DL 1}:= 2400 *lbf*

R_{LL 1}:= 3720 *lbf*

 $\delta_{DL} := 1.334 \text{ in} - 0.810 \text{ in} = 0.524 \text{ in}$

BEAM STRAPS ANALYSIS:

d := 18 *in*

M_{max}:=63.444 *kip*•*ft*

LOADS:

 $P_{axial} := \frac{M_{max}}{d} = 42296 \ lbf$

P_{design_brace} := 0.02 • P_{axial} = 845.92 *lbf*

BRACING ELEMENT:

 $\Omega := 1.67$

F_v:=33 *ksi*

E := 29000 ksi

w_{brace} := 3 in

t_{brace} := 0.048 *in*

 $A_g := w_{brace} \cdot t_{brace} = 0.14 \text{ in}^2$

ASTM A992

Design Length

Tributary Width of Ceiling on Beam

Distributed Dead Load on Beam

Distributed Live Load on Beam

Dead Load Reaction on Beam

Live Load Reaction on Beam

Deflection due to Dead Load

Beam Depth

Maximum Moment (ENERCALC)

Maximum Axial Force

Design Tensile Force on Brace

ASD Factor (Tension)

Nominal Yield Strength of Brace

Modulus of Elasticity for Steel

Width of Brace

Thickness of Brace

Gross Cross-Sectional Area of Brace

City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building	Planning	
Engineering	Public Works	
Fire OF W	Traffic	

Project Name:Costco #660Location:Puyallup, WAJob Number:22-19079

Tructure function:
$$T_n := F_v \cdot A_g = 4752 \ lbf$$
Nominal Yield Strength of Brace $T_{all} := \frac{T_n}{\Omega} = 2845.509 \ lbf$ Allowable Yield Strength of BraceTENSILE RUPTURE: $F_{ui} = 45 \ ksi$ Tensile Strength $b_{edge} := 0.75 \ in$ Actual Edge Distance $b_e := min (2 \cdot t_{brace} + 0.63 \ in , b_{edge}) = 0.73 \ in$ Design Edge Distance $\Omega := 2.00$ ASD Adjustment Factor $A_n := 2 \cdot t_{brace} + 0.63 \ in , b_{edge}) = 0.73 \ in$ Design Edge Distance $\Omega := 2.00$ ASD Adjustment Factor $A_n := 2 \cdot t_{brace} + 0.63 \ in , b_{edge}) = 0.73 \ in$ Design Edge Distance $\Omega := 2.00$ ASD Adjustment Factor $A_n := 2 \cdot t_{brace} + 0.63 \ in , b_{edge}) = 0.73 \ in$ Design Edge Distance $\Omega := 2.00$ ASD Adjustment Factor $A_n := 2 \cdot t_{brace} + 0.63 \ in , b_{edge}) = 0.73 \ in$ Design Edge Distance $\Omega := 2.00$ ASD Adjustment Factor $A_n := 2 \cdot t_{brace} + 0.63 \ in , b_{edge}) = 0.73 \ in$ Design Edge Distance $\Omega := 2.00$ ASD Adjustment Factor $A_n := 2 \cdot t_{brace} + 0.63 \ in , b_{edge} = 0.75 \ in^2$ Net Area of Plate Resisting Shear $R_{nt} := \frac{f_u \cdot A_n}{\Omega} = 1.57 \ klp$ Allowable Force on PlateBEARING STRENGTH:Allowable Bearing Strength $A_{pb} := 2 \cdot b_e \cdot t_{brace} = 0.07 \ in^2$ Area of Plate Resisting Bearing Force $R_{nb} := \frac{1.8 \cdot F_v \cdot A_{pb}}{\Omega} = 2.07 \ klp$ Allowable Bearing StrengthBEAM FASTENER CAPACITY:Number of Screws $N_{all_screw_beam} := 1 \ Number of Screws$ Allowable Shear

City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building	Planning	
Engineering	Public Works	
Fire OF W	Traffic	

PRCTI20210031			
Structural Engineering Calculations		Project Name: Location: Job Number:	Costco #660 Puyallup, WA 22-19079
COLUMN SUPPORT:			
SHAPE: HSS 5X5X3/16			
$H_{col} := H_w = 10.06 \ ft$	Height of (Column	
LOADS:			
$R_{COL_DL} := R_{DL_1} = 2400 \ lbf$	Dead Load	I	
$R_{COL_{LL}} := R_{LL_{1}} = 3720 \ lbf$	Live Load		
COLUMN REACTIONS:			
R _{DL_BASE} := 2520 <i>lbf</i>	Dead Load	Reaction (Energ	alc)
R _{LL_BASE} := 3720 <i>lbf</i>	Live Load I	Reaction (Enerca	lc)
BASE PLATE THICKNESS:			
$b_f := 5$ in $d_f := 5$ in	Column Di	mensions	
$\lambda := 1$	Normal W	eight Concrete F	actor
B:=6 <i>in</i> N:=10 <i>in</i>	Base Plate	Dimensions	
$n := (B - 0.8 \cdot b_f) \cdot 0.5 = 1$ in			
$m := (N95 \cdot d_f) \cdot 0.5 = 2.63$ in			
$n' \coloneqq \frac{\sqrt{b_f \cdot d_f}}{4} = 1.25 \text{ in}$		Theory Cantileve Iumn Flange	er Distance From Column
$I := max(m, n, \lambda \cdot n') = 2.63$ in			
F _y :=36 <i>ksi</i>	Base Plate	Yield Strength	
Ω:=1.67	ASD Facto	r	
$t_{min} := I \cdot \sqrt{\frac{2 \cdot \Omega \cdot \left(R_{DL_BASE} + R_{LL_BASE}\right)}{F_{y} \cdot B \cdot N}} =$	0.26 <i>in</i> Minimum	Thickness of Pla	te
t _{actual} :=0.5 <i>in</i>	Actual Thi	ckness of Base P	late
CHECK $t_{actual} \ge t_{min} = 1$			

City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building	Planning	
Engineering	Public Works	
Fire OF V	Traffic	

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

PUNCHING SHEAR CAPACITY:

PUNCHING SHEAR CAPACITY:				
f' _c := 3000		Compressive Strength of Concrete (psi)		
$\lambda = 1$		Normal Weight Concrete Factor		
t _{slab} :=6 in		Thickness of S	lab	
B=6 <i>in</i>	Base Plate Length	N=10 <i>in</i>	Base Plate Width	
$b_f = 5$ in	Column Dimension along B	$d_f = 5$ in	Column Dimension along N	
$b := b_f + \frac{B - I}{2}$	^b _f —=5.5 <i>in</i> Equivalent Loaded Length	$c := d_f + \frac{N - d_f}{2}$	f-=7.5 <i>in</i> Equivalent Loaded Width	
$\beta := \frac{\max(b, c)}{\min(b, c)}$	=1.36	Ratio of Long Side to Short Side		
$d := \frac{t_{slab}}{2} = 3 in$		Assumed Distance to Steel Reinforcement		
$\alpha_s := 20$		Assumed Position on Slab Factor		
$b_0 := 2 \cdot (b+d) + 2 \cdot (c+d) = 38$ in		Effective Perimeter around Baseplate		
φ := 0.75		LRFD Shear factor		
$v_1 := 4 \cdot \lambda \cdot \sqrt{f'_c} psi = 219.09 psi$				
$v_2 := \left(2 + \frac{4}{\beta}\right) \cdot \lambda \cdot \sqrt{f'_c} psi = 270.21 psi$				
$\mathbf{v}_3 \coloneqq \left(2 + \frac{\alpha_s \cdot \mathbf{d}}{\mathbf{b}_0} \right) \cdot \lambda \cdot \sqrt{\mathbf{f'}_c} psi = 196.03 psi$				
$v_n := min(v_1, v_2, v_3) \cdot \phi \cdot b_0 \cdot d = 16760.31$ <i>lbf</i>		Two-way Shear Strength of Slab		
$P_{u} := 1.2 \cdot R_{DL_{BASE}} + 1.6 \cdot R_{LL_{BASE}} = 8976$ <i>lbf</i>		Factored Load on Slab		
CHECK $v_n \ge P_u = 1$				

SUMMARY: USE SPECIFIED STRUCTURAL SUPPORT PER PLANS.

City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building	Planning	
Engineering	Public Works	
Fire OF V	Traffic	

Structural Engineering Calculations

Project Name:Costco #660Location:Puyallup, WAJob Number:22-19079

WOOD COLUMN SUPPORT (DETAIL 19)		
Material Specification (3) 2X6	Spruce-Pine-Fir	
H _{column} := 10.06 <i>ft</i>	Height of a Column	
LOADS:		
$p_{column_{DL}} := R_{DL_{1}} = 2400 \ lbf$	Dead Load on Column	
p _{column_LL} := R _{LL_1} =3720 <i>lbf</i>	Live Load on Column	
NOTE: SEE ENERCALC FOR FULL ANALYSIS.		
REACTIONS (ENERCALC):		
R _{DL_base} := 2445 <i>lbf</i>	Dead Load at Base	
R _{LL_base} := 3720 <i>lbf</i>	Live Load at Base	
COMPRESSION STRENGTH OF WOOD BASE:		
$I_{b} := 3 \cdot 1.5 \ in = 4.5 \ in$	Length of Column Base	
w _b :=5 <i>in</i>	Width of Column Base	
$A_{col} := I_b \cdot w_b = 22.5 \ in^2$	Area At Column Base	
f _c :=425 <i>psi</i>	Compression Strength of Spruce-Pine-Fir No. 2 Perpendicular to Grain (NDS)	
C _M := 1	Wet Service Factor	
C _t := 1	Temperature Factor	
C _i := 1	Incising Factor	
$C_{b} := \frac{I_{b} + 0.375 \text{ in}}{I_{b}} = 1.08$	Bearing Area Factor	
$F'_{c} := f_{c} \cdot C_{M} \cdot C_{t} \cdot C_{b} = 460.42 \ psi$	Allowable Compressive Strength	
$F_{plate} := \frac{R_{DL_base} + R_{LL_base}}{A_{col}} = 274 \text{ psi}$ CHECK: $F'_{C} > F_{plate} = 1$	Compressive Force Acting on Wood Base (ASD)	
SUMMARY: THE GRAVITY FRAMES PER PLANS ARE SUFFICIENT TO SUPPORT THE IMPOSED LOADS.		

City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building	Planning	
Engineering	Public Works	
Fire OF W	Traffic	

Structural Engineering Calculations

Project Name: Costco #660 Location: Puyallup, WA

Material Specification BEAM W18x35 (MID) L:= 37.31 **ft** $T_{width} := \frac{35.88 \ ft}{2} = 17.94 \ ft$ LOADS: w_{DL} := DL_{panel} • T_{width} = 80.73 *plf* $w_{LL} := LL_{panel} \cdot T_{width} = 179.4 \ plf$ **REACTIONS (ENERCALC):** R_{DL 1} := 2159 *lbf* R_{LL 1}:= 3347 *lbf* $\delta_{DL} := 0.874 \text{ in} - 0.531 \text{ in} = 0.343 \text{ in}$ BEAM STRAPS ANALYSIS: d := 18 *in* M_{max}:=51.354 *kip*•*ft* LOADS: $P_{axial} := \frac{M_{max}}{d} = 34236 \ lbf$ P_{design brace} := 0.02 • P_{axial} = 684.72 *lbf* **BRACING ELEMENT:** $\Omega := 1.67$ F_v:= 33 *ksi* E := 29000 ksi w_{brace} := 3 in t_{brace} := 0.048 in $A_g := w_{brace} \cdot t_{brace} = 0.14$ in²

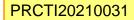
Job Number: 22-19079 ASTM A992 Design Length Tributary Width of Ceiling on Beam Distributed Dead Load on Beam Distributed Live Load on Beam Dead Load Reaction on Beam Live Load Reaction on Beam Deflection due to Dead Load Beam Depth Maximum Moment (ENERCALC) Maximum Axial Force **Design Tensile Force on Brace** ASD Factor (Tension) Nominal Yield Strength of Brace Modulus of Elasticity for Steel

Width of Brace

Thickness of Brace

Gross Cross-Sectional Area of Brace

City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building Planning		
Engineering	Public Works	
Fire OF W	Traffic	



Project Name:Costco #660Location:Puyallup, WAJob Number:22-19079

TENSILE	YIFI	DING:
LINDILL		DING.

$$T_{n}:=F_{v} \cdot A_{n} = 4752 \ lbf \qquad Nominal Yield Strength of Brace
T_{n}:=F_{v} \cdot A_{n} = 42845.509 \ lbf \qquad Allowable Yield Strength of Brace
TENSILE RUPTURE:
$$F_{n}:=45 \ ksi \qquad Tensile Strength
b_{edge} := 0.75 \ in \qquad Actual Edge Distance
b_{e}:=min (2 \cdot t_{brace} + 0.63 \ in, b_{edge}) = 0.73 \ in \qquad Design Edge Distance
0:=2.00 \qquad ASD Adjustment Factor
A_{n}:= 2 \cdot t_{brace} \cdot b_{e} = 0.07 \ in^{2} \qquad Net Area of Plate Resisting Shear
R_{n}:= \frac{F_{v} \cdot A_{n}}{\Omega} = 1.57 \ klp \qquad Allowable Force on Plate
BEARING STRENGTH:
A_{pb}:= 2 \cdot b_{e} \cdot t_{brace} = 0.07 \ in^{2} \qquad Area of Plate Resisting Bearing Force
R_{n}:= \frac{1.8 \cdot F_{v} \cdot A_{pb}}{\Omega} = 2.07 \ klp \qquad Allowable Bearing Strength
BEAM FASTENER CAPACITY:
Number of Screws
Val_screw_beam := 1 \qquad Number of Screws
Val_screw_cell := 1 \qquad Number of Tek Screw (ESR-1976)
REQUIRD NUMBER OF BRACES:
P_{all := min (T_{all}, R_{nt}, R_{nb}, V_{all_screw_cell}) = 76 \ lbf \qquad Governing Allowable Load
n_{reeq} := cell (\frac{P_{design_brace}}{P_{all}}) = 10 \qquad Minimum Number of Braces Required
NoTE: PROVIDE BRACES AT EACH END AND EVENLY SPACED.$$$$

City of Puyallup Development & Permitting Services ISSUED PERMIT		
Building	Planning	
Engineering	Public Works	
Fire OF V	Traffic	

Project Name:Costco #660Location:Puyallup, WAJob Number:22-19079

BEAM W18X35 ANALYSIS BRIDGE BEAM:

BEAIN W18X35 ANALYSIS BRIDGE BEAINT			
L:= 29.67 ft	Design Length		
LOADS:			
R _{DL_1} =2159 <i>lbf</i>	Dead Load Reaction on Beam		
R _{LL_1} =3347 <i>lbf</i>	Live Load Reaction on Beam		
$a_1 := 5.54 \ ft$ $a_2 := 23.48 \ ft$	Locations of W12x40 Reactions		
H _{PW} := 3.94 <i>ft</i>	Height of Parefet wall		
R _{PW} :=DL _{panel} • H _{PW} =17.73 <i>plf</i>	Point Dead Load on Beam Parefet wall		
REACTIONS (ENERCALC):			
R _{DL_2} := 2989 <i>lbf</i>	Dead Load Reaction on Column		
R _{LL_2} :=3420 <i>lbf</i>	Live Load Reaction on Column		
$\delta_{DL} := 0.458 \text{ in} - 0.240 \text{ in} = 0.218 \text{ in}$	Deflection due to Dead Load		
PARAPET WALL TO BRIDGE BEAM CONNECTION (#14 T	TEK SCREWS):		
$T_{top_header_height} := \frac{H_{PW}}{2} = 1.97 ft$	Tributary height of panel acting on screws		
S _{screw} := 48 in	Spacing of Tek Screws		
P _{lat} := T _{top_header_height} • P _{internal} • S _{screw} = 39.4 <i>lbf</i>	Lateral force acting on conduit bracing		
#14 TEK SCREW:			
V _{all_screw} := 76 <i>Ibf</i>	Allowable Shear on Screw (ESR-1976)		
T _{all_screw} ≔ 57 <i>lbf</i>	Allowable Tension on Screw (ESR-1976)		
$C\!H\!EC\!K \qquad P_{lat} \!\leq\! V_{all_screw} \!=\! 1 \qquad P_{lat} \!\leq\! T_{all_screw} \!=\! 1$			
SUMMARY: USE SPECIFIED STRUCTURAL SUPPORT PER PLANS.			

ASTM A992

Tributary Width of Ceiling on Beam

Distributed Dead Load on Beam

Distributed Live Load on Beam

Dead Load Reaction on Beam

Live Load Reaction on Beam

Deflection due to Dead Load

Design Length

Costco #660 Project Name: Location: Puyallup, WA 22-19079 Job Number:

Material Specification BEAM W18x35 (CORNER)

L:= 4.67 ft

$$\Gamma_{\text{width}} := \frac{12.95 \ ft}{2} = 6.48 \ ft$$

LOADS:

 $w_{DL} := DL_{panel} \cdot T_{width} = 29.14 \ plf$

w_{LL} := LL_{panel} • T_{width} = 64.75 *plf*

REACTIONS (ENERCALC):

R_{DL 3} := 150 *lbf*

R_{LL 3} := 151 *lbf*

 $\delta_{\text{DI}} := 0$ in -0 in = 0 in

SUMMARY: USE SPECIFIED STRUCTURAL SUPPORT PER PLANS.

Material Specification HSS 5x5x3/16"(SP-2)

 $H_{column} := H_w + 18$ in = 11.56 ft

LOADS:

 $p_{column_{DL}} := R_{DL_2} + R_{DL_3} = 3139$ *lbf*

 $p_{column LL} := R_{LL 2} + R_{LL 3} = 3571$ *lbf*

Dead Load on Column

Height of a Column

A500 GRADE B

Live Load on Column

NOTE: SEE THE ENERCALC SOFTWARE PRINTOUTS IN DESIGN AIDS FOR MEMBER ANALYSIS.

COLUMN REACTIONS (ENERCALC):

R_{DL base} := 3277 *lbf*

R_{LL_base} := 3571 *lbf*

Dead Load at Base Plate

Live Load at Base Plate

Structural Engineering Calculations

Project Name:Costco #660Location:Puyallup, WAJob Number:22-19079

BASE PLATE THICKNESS:

b _f :=5 <i>in</i> d _f :=5	<mark>in</mark>	Column Dimensions
$\lambda := 1$		Normal Weight Concrete Factor
B:=6 <i>in</i> N:=10	<mark>) in</mark>	Base Plate Dimensions
$n := (B - 0.8 \cdot b_f) \cdot 0.5$	=1 <i>in</i>	
$\mathbf{m} \coloneqq \left(\mathbf{N}95 \cdot \mathbf{d}_{\mathbf{f}}\right) \cdot 0.5$	5=2.63 <i>in</i>	
$n' \coloneqq \frac{\sqrt{b_{f} \cdot d_{f}}}{4} = 1.25 \mathbf{i}$	n	Yield-Line Theory Cantilever Distance From Column Web or Column Flange
$I := max (m, n, \lambda \cdot n') =$	=2.63 <i>in</i>	
F _y :=38 <i>ksi</i>		Base Plate Yield Strength
$\Omega := 1.67$		ASD Factor
$t_{min} := I \cdot \sqrt{\frac{2 \cdot \Omega \cdot (R_{DL})}{F_y}}$	$\frac{1}{B \cdot N} = 0.26$ in	Minimum Thickness of Plate
t _{actual} := 0.50 <i>in</i>		Actual Thickness of Base Plate
CHECK $t_{actual} \ge t_{min} = 1$	1	

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

PUNCHING SHEAR CAPACITY:

PUNCHING SHEAR CAP	PACITY:			
f' _c := 3000		Compressive Strength of Concrete (psi)		
$\lambda = 1$		Normal Weight Concrete Factor		
t _{slab} :=6 in		Thickness of S	lab	
B=6 <i>in</i> B	ase Plate Length	N=10 <i>in</i>	Base Plate	e Width
b _f =5 <i>in</i> C	olumn Dimension along B	$d_f = 5$ in	Column D	Dimension along N
$\mathbf{b} := \mathbf{b}_{\mathbf{f}} + \frac{\mathbf{B} - \mathbf{b}_{\mathbf{f}}}{2} =$	= 5.5 <i>in</i> Equivalent Loaded Length	$c := d_f + \frac{N - d_f}{2}$	f-=7.5 <i>in</i>	Equivalent Loaded Width
$\beta := \frac{\max(b,c)}{\min(b,c)} = 1.$	36	Ratio of Long	Side to Sho	ort Side
$d := \frac{t_{slab}}{2} = 3 in$		Assumed Dista	ance to Ste	el Reinforcement
α _s := 20		Assumed Posi	tion on Sla	b Factor
$b_0 := 2 \cdot (b + d) + 2 \cdot (b $	(c+d) = 38 <i>in</i>	Effective Perin	neter arou	nd Baseplate
φ := 0.75		LRFD Shear factor		
$v_1 := 4 \cdot \lambda \cdot \sqrt{f'_c} p$	psi=219.09 psi			
$v_2 := \left(2 + \frac{4}{\beta}\right) \cdot \lambda$	√f' _c <i>psi</i> =270.21 <i>psi</i>			
$v_3 := \left(2 + \frac{\alpha_s \cdot d}{b_0}\right)$	$\cdot \lambda \cdot \sqrt{f'_c} psi = 196.03 psi$			
$\boldsymbol{v}_{n} \! := \! \textit{min}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right)$	$\cdot \phi \cdot b_0 \cdot d = 16760.31$ <i>lbf</i>	Two-way Shea	ar Strength	of Slab
$P_{u} := 1.2 \cdot R_{DL_base} + 1.6 \cdot R_{LL_base} = 9646$ <i>lbf</i>		Factored Load on Slab		
CHECK $v_n \ge P_u = 1$				

SUMMARY: USE SPECIFIED STRUCTURAL SUPPORT PER PLANS.

Structural Engineering Calculations

Project Name: Location: Job Number:

Costco #660 Puyallup, WA 22-19079

SUSPENDED PARAPET WALL ALL THREAD ANALYSIS

$H_p := 3.94 \ ft$	Heigth of Parapet Wall		
S _{all_thread} := 48 <i>in</i>	Spacing of All-Thread		
LOADS:			
$P_{DL} := DL_{panel} \cdot H_{p} \cdot S_{all_thread} = 70.92 \ lbf$	Total Dead Load on Rod		
ALL-THREAD ROD:			
Ω := 1.67	ASD Factor		
K:=1.0			
F _y :=36 <i>ksi</i>	Nominal Yield Strength of All-Thread		
E := 29000 <i>ksi</i>	Modulus of Elasticity for Steel		
d _{rod} := 0.375 <i>in</i>	Diameter of All-Thread Rod		
$A_{gross} := \pi \cdot \left(\frac{d_{rod}}{2}\right)^2 = 0.11 \text{ in}^2$	Gross Cross-Sectional Area of Rod		
ASTM STEEL CONSTRUCTION MANUAL CHAP. D - ME	MBERS IN TENSION:		
$T_n := F_y \cdot A_{gross} = 3976.078 \ lbf$	Nominal Yield Strength of Rod		
$T_{all} := \frac{T_n}{\Omega} = 2380.885 \ lbf$	Allowable Yield Strength of Rod		
THREADED ROD CHECK			
P _{DL} = 70.92 <i>lbf</i>	Total Load on All Threaded Rod		
CHECK $P_{DL} \le T_{all} = 1$			
SUMMARY: THE ALLOWABLE LOADS ARE GREATER THAN THE ACTUAL LOADS ON THE ROD. THEREFORE,			
USE 3/8" THREADED ROD TO SUSPEND CEILING PANELS FROM EXISTING STRUCTURE PER PLAN.			

CONNECTION TO EXISTING STRUCTURES BY OTHERS.

Structural Engineering Calculations

Costco #660 Project Name: Location: Puyallup, WA 22-19079 Job Number:

TYPICAL HEADER

 $L_h := 5 ft$

HEADER PANEL CALCULATIONS:

 $D_h := H_w - 7.08 ft = 2.98 ft$

$$R := \frac{L_h}{D_h} = 1.68$$

$$LC_3 := DL_{panel} + LL_{panel} = 14.5 \text{ psf}$$

 $v_{allow} := 222 \ plf$

 $T_{width} := \frac{17.89 ft}{2} = 8.95 ft$

 $w_{design} := T_{width} \cdot LC_3 + DL_{panel} \cdot D_h = 143.11 \ plf$

HEADER PANEL CAPACITY:

$$v_{\text{allow}_{1}} := \frac{8 \cdot v_{\text{allow}} \cdot D_{\text{h}}}{L_{\text{h}}} = 1058.5 \text{ plf}$$

$$w_{allow_2} := \frac{v_{allow} \cdot 2 \cdot D_h}{L_h} = 264.62 \text{ plf}$$

CAM-LOCK CONNECTION CAPACITY:

FOS := 3

ν

$$V_{\text{all}_cam} := \frac{1210}{\text{FOS}} \quad lbf = 403.33 \quad lbf$$
$$n_{\text{cam}} := 2$$

$$w_{allow_3} \coloneqq \frac{2 \cdot (V_{all_cam} \cdot n_{cam})}{L_h} = 322.67 \text{ plf}$$

 $w_{allow} := min(w_{allow_1}, w_{allow_2}, w_{allow_3}) = 264.62 \ plf$ Allowable Distributed Load

Length of Header Depth/Height of Header

Header Aspect Ratio

Load Combination 3: D+(Lr, S, or R)

Allowable Shear (Per LARR/Testing Report)

Tributary Width Acting on Header

Load Applied to Header

Allowable Distributed Load due to Bending $(\mathsf{M} := \mathsf{v}_{\mathsf{allow}} \cdot \mathsf{D}_{\mathsf{h}} \cdot \mathsf{L}_{\mathsf{h}} = \frac{\mathsf{w}_{\mathsf{allow}_1} \cdot \mathsf{L}_{\mathsf{h}}^2}{\mathsf{o}})$ Allowable Distributed Load due to Shear $(V := v_{allow} \cdot D_h = \frac{w_{allow_2} \cdot L_h}{2})$

Factor of Safety

Allowable In-Plane Shear on Camlock (Per LARR/Testing Report)

Minimum Number of Camlocks per Support

Allowable Distributed Load

$$(V_{conn} := V_{all_{cam}} \cdot n_{cam} = \frac{W_{allow_2} \cdot L_h}{2})$$

CHECK: $w_{allow} \ge w_{design} = 1$

SUMMARY: THE ALLOWABLE DISTRIBUTED LOAD IS GREATER THAN THE IMPOSED DISTRIBUTED LOAD. THEREFORE, THE HEADER PANELS ARE ACCEPTABLE FOR TYPICAL LOAD-BEARING OPENING.

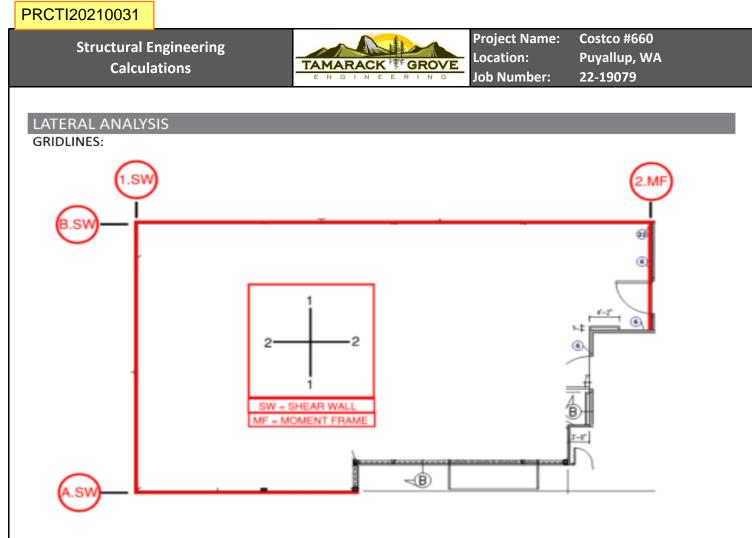
City of Puyallup Development & Permitting Services ISSUED PERMIT	
Building	Planning
Engineering	Public Works
Fire	Traffic

Structural Engineering Calculations

Project Name:Costco #660Location:Puyallup, WAJob Number:22-19079

WALL PANEL ANALYSIS

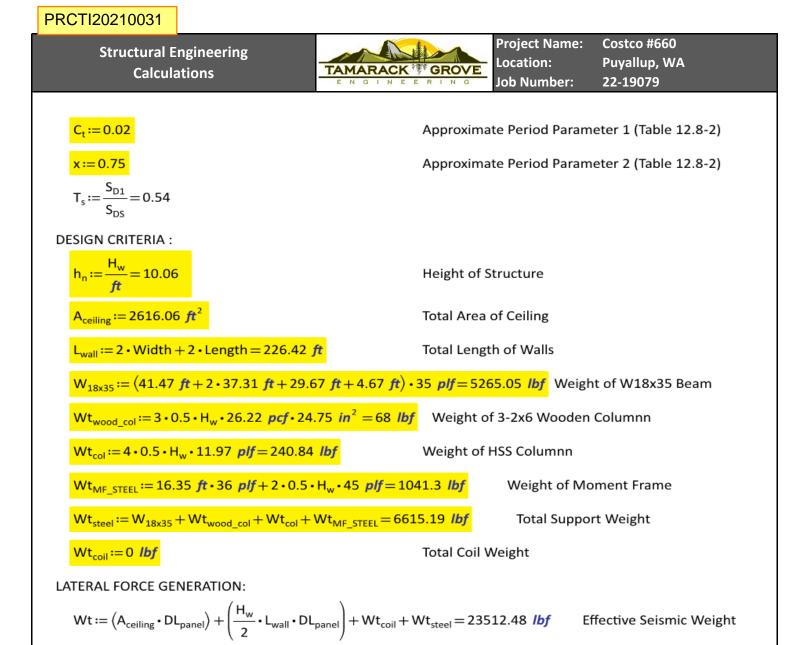
WALL PANEL ANALYSIS	
$H_{w} = 10.06 ft$	Design Height
T _{width_panel} =3.92 <i>ft</i>	Tributary Width of Panel
$T_{width_wall} := \frac{17.94 \ ft}{2} = 8.97 \ ft$	Tributary Width of Ceiling Panel Acting on Wall
AXIAL LOADS:	
w _{design_ceiling} =39.2 <i>plf</i>	Total Axial Load From Ceiling
$v_{max} := max (w_{design_ceiling} \cdot T_{width_wall}, P_{LL}) = 351.62$ <i>lbf</i>	
$p_{design_wall} := \frac{v_{max}}{T_{width_panel}} + DL_{panel} \cdot T_{width_wall} = 130.07 p$	If Ceiling Panel Total Axial Load
H _{all_axial} := 26 <i>ft</i>	Allowable Height for Axial Load (Per LARR/Testing Report)
P _{all_axial} := 1037 <i>plf</i>	Allowable Axial Load (Per LARR/Testing Report)
TRANSVERSE LOADS:	
$w_{wall} := P_{internal} \cdot T_{width_{panel}} = 19.6 \ plf$	Transverse Load on Wall
$m_{max} \coloneqq \frac{w_{wall} \cdot H_w^2}{8} = 247.95 \ ft \cdot lbf$	Maximum Moment
H _{all_trans} := 12.5 <i>ft</i>	Allowable Height for Transverse Load (Per LARR/Testing Report)
P _{all_trans} := 46.3 <i>psf</i> • T _{width_panel} = 181.5 <i>plf</i>	Allowable Transverse Load
	(Per LARR/Testing Report)
$M_{\text{allow}} := \frac{P_{\text{all}_{\text{trans}}} \cdot H_{\text{all}_{\text{trans}}}^2}{8} = 3544.84 \text{ ft} \cdot \text{lbf}$	Allowable Moment
$P_{comb} := \frac{p_{design_wall}}{P_{all_axial}} + \frac{m_{max}}{M_{allow}} = 0.2$	Interaction of Axial and Transverse Loads
CHECK $P_{comb} \le 1 = 1$ $H_{all_axial} \ge H_w = 1$ H_{all_trans}	$n_s \ge H_w = 1$
SUMMARY: USE SPECIFIED WALL PANELS PER PLANS.	
	City of Puyallup Development & Permiting Services /ISSUED PERMIT Building Planning


Planning

Traffic

Building

Fire


Engineering Public Works

EXECUTIVE SUMMARY:

PER ASCE 7 CHAPTER 15, SECTION 15.1.3, "STRUCTURAL ANALYSIS PROCEDURES FOR NONBUILDING STRUCTURES THAT ARE SIMILAR TO BUILDINGS SHALL BE SELECTED IN ACCORDANCE WITH SECTION 12.6.". THUS, PER ASCE 7 SECTION 12.8, THE EQUIVALENT LATERAL FORCE PROCEDURE WILL BE USED. PER ASCE 7 TABLE 12.2-1, THE SEISMIC FORCE-RESISTING SYSTEM SHALL BE "A. BEARING WALL SYSTEM, 17. LIGHT FRAME WALLS WITH SHEAR PANELS OF ALL OTHER MATERIALS."

$R_{p} := 2.0$	Response Modification Factor
$\Omega_0 := 2.0$ DESIGN DATA:	Overstrength Factor
I _e := 1.0	Importance Factor
$S_s := 1.268$ $S_1 := 0.438$ $S_{DS} := 1.014$ $S_{D1} := 0.544$	Mapped Spectral Response Acceleration Parameter at Short Periods Mapped Spectral Response Acceleration Parameter at a Period of 1 s Design Spectral Response Acceleration Parameter at Short Periods Design Spectral Response Acceleration Parameter at a Period of 1 s
T _L :=6	Long-Period Transition Period
F _a :=1.2	Short-Period Site Coefficient Short-Period Site Coefficient Sulding Engineering Fire Coefficient

 $T_a := C_t \cdot h_n^x = 0.113$ Approximate Fundamental Period

NOTE: IF THE STRUCTURE IS 5 STORIES OR LESS ABOVE THE BASE, Ss MAY BE RECALCULATED AS:

$$\begin{split} S_{DS_max} &:= if \left(T_a \leq 0.5, 1, 0.7 \cdot S_{DS} \right) = 1 \\ S_{DS} &:= \min \left(S_{DS_max}, S_{DS} \right) = 1 \\ C_s &:= \frac{S_{DS}}{\left(\frac{R_p}{I_e} \right)} = 0.5 \\ C_{s_max} &:= if \left(T_a \leq T_L, 1.5 \cdot \frac{S_{D1}}{T_a \cdot \left(\frac{R_p}{I_e} \right)}, 1.5 \cdot \frac{S_{D1} \cdot T_L}{T_a^2 \cdot \left(\frac{R_p}{I_e} \right)} \right) = 3.61 \\ Max Sds Value in determination of Cs and Ev (12.8.1.3) \\ Design Spectral Response for Short Period, (g) \\ Seismic Response Coefficient (Sec. 12.8.1.1) \\ (T_a \leq 1.5 \ T_s = 1 \) \\ C_{s_max} &:= if \left(T_a \leq T_L, 1.5 \cdot \frac{S_{D1}}{T_a \cdot \left(\frac{R_p}{I_e} \right)}, 1.5 \cdot \frac{S_{D1} \cdot T_L}{T_a^2 \cdot \left(\frac{R_p}{I_e} \right)} \right) = 3.61 \\ Max imum Coefficient \\ Minimum Coefficient \\ \hline \begin{array}{c} City of Payall \\ Development & Period \\ ISSUED PER \\ \hline \end{array} \end{split}$$

812 LA CASSIA DR. BOISE, IDAHO 83705 (208) 345-8941 PHONE (208) 345-8946 FAX

lanning

Traffic

Fire

Structural Engineering Calculations

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

$$\mathbb{E}_{\text{summation}} = \inf\left(S_{1} \ge 0.6, \frac{0.5 \cdot S_{1}}{\left(\frac{R_{p}}{l_{e}}\right)}, C_{s_\min}\right) = 0.044$$

$$C_{s=\max}(C_{s}, C_{s_\min}) = 0.5$$

$$C_{s} := \min(C_{s}, C_{s_\max}) = 0.5$$

$$V_{p} := C_{s} \cdot Wt = 11756.24 \ lbf$$

$$V_{p_asd} := 0.7 \cdot V_{p} = 8229.37 \ lbf$$

$$W_{design_1} := \frac{V_{p_asd}}{\text{Length}} = 114.82 \ plf$$

$$W_{design_2} := \frac{V_{p_asd}}{\text{Width}} = 198.11 \ plf$$
DIAPHRAGM CHECK (1-1):
Width_{1} := Width = 41.54 \ ft
Length_{1} = 1.73
$$F_{all_1} := \frac{\text{Length}_{1}}{\text{Width}_{1}} = 1.73$$

$$F_{all_1} := 215 \ plf$$
CHECK:
$$F_{all_1} \ge \frac{W_{design_1} \cdot \text{Length}_{1}}{2 \cdot \text{Width}_{1}} = 1$$

$$3/8" \text{ LAG BOLT:}$$

$$D := 0.375 \ in \ p := 1.5 \ in \ C_{D} := 1.6$$

$$V := \frac{W_{design_1} \cdot \text{Length}_{1}}{2} = 4114.68 \ lbf$$

$$S_{lag} := 24 \ in$$

$$N_{lag} := ceil\left(\frac{\text{Width}_{1}}{S_{lag}}\right) = 21$$

$$V_{all_bolt} := C_{D} \cdot \frac{p}{8 \cdot D} \cdot 180 \ lbf = 144 \ lbf$$

$$V_{all_inplane_lag} := N_{lag} \cdot V_{all_bolt} = 3024 \ lbf$$

Minimum Coefficient

Seismic Response Coefficient

Seismic Response Coefficient

Seismic Base Shear

ASD Seismic Base Shear

Distributed Design Load (1-1 Direction)

Distributed Design Load (2-2 Direction)

Width of Diaphragm (1-1)

Length of Diaphragm (1-1)

Aspect Ratio (1-1)

Allowable Diaphragm Capacity (Per LARR/Testing Report)

Lag Bolt Parameter

Max Shear at Diaphram Edge

Spacing of Lag bolt

Number of Lag Bolt Connecting panels

Allowable Shear of Lag Bolt Parallel to Grain (NDS)

Total In-Plane Shear on Lagbolt

City of Puyallup Development & Permitting Services ISSUED PERMIT	
Building	Planning
Engineering	Public Works
Fire	Traffic

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

CHORD FORCE:

$$F_{chord_1} := \frac{\frac{W_{design_1} \cdot Length_1^2}{8}}{Width_1} = 1774.79 \text{ lbf}$$

$$f_{chord_{1}_{1}_{1}} := \frac{F_{chord_{1}}}{0.5 \cdot Length_{1}} = 49.53 \ plf$$

DIAPHRAGM CHECK (2-2):

 $Width_2 := Width = 41.54 ft$

 $Length_2 := Length = 71.67 ft$

 $R_2 := \frac{Width_2}{Length_2} = 0.58$

F_{all_2}:=596 *plf*

CHECK: $F_{all_2} \ge \frac{w_{design_2} \cdot Width_2}{2 \cdot Length_2} = 1$

CAM-LOCK:

$$V := \frac{w_{\text{design}_2} \cdot \text{Width}_2}{2} = 4114.68 \text{ lbf}$$
$$N_{\text{cam}} := \text{ceil}\left(\frac{\text{Length}_2 - 2 \text{ ft}}{48 \text{ in}} + 1\right) = 19$$

FOS := 3

 $V_{all_inplane} := N_{cam} \cdot \frac{1210}{FOS} \ lbf = 7663.33 \ lbf$

CHECK: $V_{all_inplane} \ge V = 1$

Chord Force

Chord Force on 2-2 Shear Walls

Width of Diaphragm (2-2)

Length of Diaphragm (2-2)

Aspect Ratio (2-2)

Allowable Diaphragm Capacity (Per LARR/Testing Report)

Max Shear at Diaphram Edge

Number of Camlocks Connecting panels

Factor of Safety

Allowable In-Plane Shear on Camlock (Per LARR/Testing Report)

Project Name: Costco #660 Puyallup, WA Location: Job Number: 22-19079

CHORD FORCE:

$$\frac{W_{design,2} \cdot Width_{2}^{2}}{1} = 596.22 \text{ lbf} \qquad Max Chord Force$$

$$f_{chord,2,1} := \frac{f_{chord,2}}{0.5 \cdot Width_{2}} = 28.71 \text{ plf} \qquad Chord Force on 1-1 Shear Walls$$
SHEAR WALL CALCULATIONS:

$$L_{1} := Width = 41.54 \text{ ff} \qquad Length of Wall 1 \qquad T_{width_{1},1} := \frac{Length}{2} = 35.84 \text{ ff} \qquad Tributary Width$$

$$f_{1} := \frac{W_{design,2} \cdot T_{width,2}}{L_{1}} = 90.05 \text{ plf} \qquad In-Plane Force on Wall 1$$

$$I_{n} := \frac{W_{design,2} \cdot T_{width,2}}{L_{n}} = 132.73 \text{ plf} \qquad In-Plane Force on Wall A$$

$$f_{n} := \frac{W_{design,2} \cdot T_{width,2}}{L_{n}} = 132.73 \text{ plf} \qquad In-Plane Force on Wall A$$

$$R := \frac{H_{w}}{L_{n}} = 0.32 \qquad Worst Case Shape Ratio$$

$$F_{all_inplane} := 0.5 \cdot 646 \text{ plf} = 323 \text{ plf} \qquad Half of Allowable In-Plane Shear (Per LARR/ Testing Report) for existing wall
CHECK: F_{all_inplane} \ge f_{n} = 1$$

$$I_{a} := Length = 71.67 \text{ ff} \qquad Length of Wall B \qquad T_{width_{n}} := \frac{Width}{L_{0}} = 20.77 \text{ ff} \qquad Tributary Width$$

$$f_{n} := \frac{W_{design,2} \cdot T_{width,2}}{L_{0}} = 0.24 \qquad Worst Case Shape Ratio$$

$$F_{all_inplane} := 0.5 \cdot 646 \text{ plf} = 323 \text{ plf} \qquad In-Plane Force on Wall B \qquad T_{width_{n}} := \frac{W_{int}}{2} = 20.77 \text{ ff} \qquad Tributary Width$$

$$f_{n} := \frac{W_{design,2} \cdot T_{width,3}}{L_{0}} = 0.24 \qquad Worst Case Shape Ratio$$

$$F_{all_inplane} := 0.24 \qquad Worst Case Shape Ratio$$

$$F_{all_inplane} := 646 \text{ plf} \qquad Allowable In-Plane Shear (Per LARR/Testing Report)$$
CHECK: $F_{all_inplane} := 646 \text{ plf} \qquad Allowable In-Plane Shear (Per LARR/Testing Report)$
CHECK: $F_{all_inplane} := 646 \text{ plf} \qquad Allowable In-Plane Shear (Per LARR/Testing Report)$

$$I_{2,MF} := \frac{W_{design,1} \cdot T_{width,2}}{L_{2,MF}} := 251.66 \text{ plf} \qquad In-Plane Force on Frame 2$$

$$I_{2,MF} := \frac{W_{design,1} \cdot T_{width,2}}{L_{2,MF}} := 251.66 \text{ plf} \qquad In-Plane Force on Frame 2$$

$$I_{2,MF} := \frac{W_{design,1} \cdot T_{width,2}}{L_{2,MF}} := \frac{W_{design,1} \cdot T_{width,2}}{L_{2,MF}} := \frac{W_{design,2} \cdot T_{width,2}}{L_{2,MF}} := 251.66 \text{ plf} \qquad In-Plane Force on Frame 2$$

$$I_{2,MF} := \frac{W_{design,1} \cdot T_{width,2}}{L_{2,MF}} := 251.66 \text{ plf} \qquad In-Plane$$

Structural Engineering Calculations

Costco #660 Project Name: Location: Puyallup, WA 22-19079 Job Number:

WIDE FLANGE MOMENT FRAME DESIGN (GRIDLINE B)

DESIGN PARAMETERS:

$$\varphi := 0.75$$

 $L_{MF} := L_{2_MF} = 16.35 ft$

$$f_{MF} := \frac{I_{2}MF}{0.7} = 359.5 \ plf$$

 $T_{width} := \frac{17.89 \ ft}{2} = 8.95 \ ft$

 $f_{B DL} := DL_{panel} \cdot T_{width} = 40.25 plf$

Material Specification Columns: W10X45 Beams: W16X36

MOMENT FRAME TO CEILING CONNECTION

#14 TEK SCREW:

S_{screw}≔3 in

 $n_{screw} \coloneqq 1$

V_{all_screw}:=
$$\frac{n_{screw} \cdot 76 \ \textit{lbf}}{S_{screw}}$$
=364.8 *plf*

L_{conn} := 16.35 ft

$$f_{m_{dist}} := \frac{f_{MF} \cdot L_{MF}}{L_{conn}} = 359.52 \ plf$$

CHECK:

 $f_{m,dist} \leq V_{all,screw} = 1$

LRFD Reduction Factor Length of Moment Frame

Distributed Load on Moment Frame

Tributary Width of Ceiling Panel on Moment Frame

Dead Load of Ceiling Panel on Moment Frame

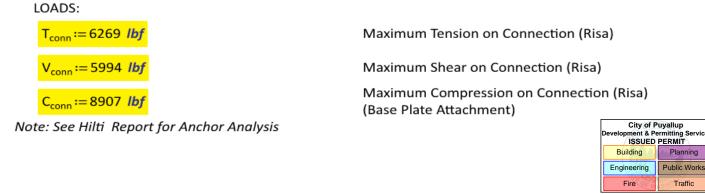
Live Load of Ceiling Panel on Moment Frame

ASTM A992 ASTM A992

Spacing of Screws

Spacing of Screws

Allowable Shear on Screw (ESR-1976)


Length of the Connection

Distributed Load Across Moment Frame Connection

BEAM-COLUMN MOMENT CONNECTION ANALYSIS:

NOTE: SEE RISA CONNECTION REPORT FOR THE BEAM-MOMENT CONNECTION ANALYSIS.

CONNECTION OF MOMENT FRAME TO FLOOR:

Planning

Traffic

Structural Engineering Calculations

Project Name:Costco #660Location:Puyallup, WAJob Number:22-19079

BASE PLATE THICKNESS:

$b_f := 8.02$ in $d_f := 10.1$ in	Column Dimensions
$\lambda := 1$	Normal Weight Concrete Factor
B:=8.25 in N:=13.5 in	Base Plate Dimensions
$n := (B - 0.8 \cdot b_f) \cdot 0.5 = 0.92$ in	
$m := (N - 0.95 \cdot d_f) \cdot 0.5 = 1.95$ in	
$n' := \frac{\sqrt{b_f \cdot d_f}}{4} = 2.25 \text{ in}$	Yield-Line Theory Cantilever Distance From Column Web or Column Flange
$I := max(m, n, \lambda \cdot n') = 2.25$ in	
F _y :=36 <i>ksi</i>	Base Plate Yield Strength
$\phi := 0.9$	LRFD Factor
$t_{min} := I \cdot \sqrt{\frac{2 \cdot C_{conn}}{\phi \cdot F_{y} \cdot B \cdot N}} = 0.16 \text{ in}$	Minimum Thickness of Plate
t _{actual} :=0.5 in	Actual Thickness of Base Plate
CHECK $t_{actual} \ge t_{min} = 1$	

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

PUNCHING SHEAR CAPACITY:

PUNCHING SHEAR CAPACITY:	
f' _c := 3000	Compressive Strength of Concrete (psi)
$\lambda = 1$	Normal Weight Concrete Factor
t _{slab} := 6 in	Thickness of Slab
B = 8.25 in Base Plate Length	N=13.5 <i>in</i> Base Plate Width
b _f =8.02 <i>in</i> Column Dimension along B	d _f =10.1 <i>in</i> Column Dimension along N
$b := b_f + \frac{B - b_f}{2} = 8.14$ <i>in</i> Equivalent Loaded Length	$c := d_f + \frac{N - d_f}{2} = 11.8$ <i>in</i> Equivalent Loaded Width
$\beta := \frac{\max (b, c)}{\min (b, c)} = 1.45$	Ratio of Long Side to Short Side
$d := \frac{t_{slab}}{2} = 3 in$	Assumed Distance to Steel Reinforcement
$\alpha_s := 20$	Assumed Position on Slab Factor
$b_0 := 2 \cdot (b+d) + 2 \cdot (c+d) = 51.87$ in	Effective Perimeter around Baseplate
φ:=0.75	LRFD Shear factor
$v_1 := 4 \cdot \lambda \cdot \sqrt{f'_c} \ psi = 219.09 \ psi$	
$v_2 := \left(2 + \frac{4}{\beta}\right) \cdot \lambda \cdot \sqrt{f'_c} psi = 260.59 psi$	
$\mathbf{v}_3 \coloneqq \left(2 + \frac{\alpha_s \cdot \mathbf{d}}{\mathbf{b}_0} \right) \cdot \lambda \cdot \sqrt{\mathbf{f'}_c} psi = 172.9 psi$	
$v_n := min(v_1, v_2, v_3) \cdot \phi \cdot b_0 \cdot d = 20178.92$ <i>lbf</i>	Two-way Shear Strength of Slab
$P_u := 1.2 \cdot R_{DL_{base}} + 1.6 \cdot R_{LL_{base}} = 9646$ <i>lbf</i>	Factored Load on Slab
CHECK $v_n \ge P_u = 1$	

SUMMARY: USE SPECIFIED STRUCTURAL SUPPORT PER PLANS.

City of Puyallup Development & Permitting Services ISSUED PERMIT	
Building	Planning
Engineering	Public Works
Fire	Traffic

PRCTI20210031	
Structural Engineering Calculations	TAMARACKGROVEProject Name:Costco #660Location:Puyallup, WAJob Number:22-19079
STORY DRIFT CHECK:	
$h := H_w = 10.06 ft$	Height of Column
C _d := 3	Deflection Amplification Factor (Table 12.8-15)
δ _{xe} := 0.456 <i>in</i>	Max Seismic Load Deflection (RISA)
$\Delta_{x_seismic} := \frac{C_{d} \cdot \delta_{xe}}{I_{e}} = 1.37 \text{ in}$	Story Drift of Entire Structure (12.8.6)
$\Delta_{limit_seismic} := 0.025 \cdot h = 3.02 \text{ in}$	Allowable Story Drift (Table 12.12-1)
Check: $\Delta_{\text{limit_seismic}} \ge \Delta_{x_seismic} = 1$	
DEFLECTION:	
$\delta_{\text{allow_beam}} := \frac{L_{\text{MF}}}{180} = 1.09 \text{ in}$	Allowable Beam Deflection
δ _{beam} :=0.028 <i>in</i>	Actual Beam Deflection (RISA)
Check: $\delta_{allow_beam} \ge \delta_{beam} = 1$	

SUMMARY: THE STORY DRIFT OF THE FRAME, IS WITHIN THE ALLOWABLE DISPLACEMENT LIMITS PER CODE, THEREFORE THE STRUCTURE IS ACCEPTABLE TO RESIST IMPOSED LOADS AND DEFLECTIONS.

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

CEILING PANEL TO WALL PANEL CONNECTION (DETAIL 1)

 $H_w = 10.06 ft$

LOADS:

$$P_{\text{internal}} = 5 \text{ psr}$$

$$p_{\text{trans}} := P_{\text{internal}} \cdot \frac{H_{\text{w}}}{2} = 25.15 \text{ plf}$$

$$T_{\text{inplane}} \coloneqq \max(T_1, T_B) \equiv 99.05 \text{ ply}$$

$$f_{max} := max \left(p_{trans}, f_{inplane} \right) = 99.05 \ \textit{plf}$$

3/8" LAG BOLT:

D:=0.375 in

S_{bolt} := 24 *in*

p:=1.5 *in*

 $C_{D} := 1.6$

$$V_{all_bolt_par} := \frac{C_{D} \cdot \frac{p}{8 \cdot D} \cdot 180 \ \textit{lbf}}{S_{bolt}} = 72 \ \textit{plf}$$

$$V_{all_bolt_perp} := \frac{C_{D} \cdot \frac{p}{8 \cdot D} \cdot 110 \ \textit{lbf}}{S_{bolt}} = 44 \ \textit{plf}$$

#14 TEK SCREW:

$$S_{screw} := 12 \text{ in}$$

$$V_{all_screw} := \frac{76 \text{ lbf}}{S_{screw}} = 76 \text{ plf}$$

$$T_{all_screw} := \frac{57 \text{ lbf}}{S_{screw}} = 57 \text{ plf}$$

$$\frac{p_{trans}}{p_{trans}} + \frac{f_{max}}{p_{trans}} = 57 \text{ plf}$$

CHECK

Design Height

Transverse Load on Wall

Transverse Shear Force on Wall-Ceiling Connection

In-Plane Shear Force on Wall-Ceiling Connection

Governing Shear Force on Wall-Ceiling Connection

Lag Bolt Diameter

Spacing of Bolts

Penetration Length of Screw

Load Duration Factor

Allowable Shear on Bolt - Parallel to Grain SPF No.2 (NDS)

Allowable Shear on Bolt - Perp. to Grain SPF No.2 (NDS)

Spacing of Screws

Allowable Shear on Screw (ESR-1976)

Allowable Tension on Screw (ESR-1976)

SUMMARY: THE MAXIMUM FORCE ON THE CONNECTIONS IS LESS THAN THE ALLOWABLE FORCE. THEREFORE, THE ROOF-WALL CONNECTIONS ARE ACCEPTABLE FOR RESISTING IMPOSED LOADS.

City of Puyallup Development & Permitting Services ISSUED PERMIT	
Building	Planning
Engineering	Public Works
Fire	Traffic

812 LA CASSIA DR. BOISE, IDAHO 83705 (208) 345-8941 PHONE (208) 345-8946 FAX

-<1=1

Structural Engineering Calculations

CEILING PANEL TO WALL PANEL CONNECTION (DETAIL 6)

 $H_w = 10.06 ft$

$$\frac{17.89 ft}{2} = 8.95 ft$$

LOADS:

 $LC_3 := DL_{panel} + LL_{panel} = 14.5 \text{ psf}$

 $p_{grav} := LC_3 \cdot T_{width} = 129.7 \ plf$

 $f_{max} := p_{trans} = 25.15 \ plf$

#14 TEK SCREW:

L_{screw} := 1.5 in

 $C_{D} := 1.6$

 $S_{screw} := 6$ in

 $V_{all_screw} \coloneqq \frac{C_{D} \cdot 104.7 \ \textit{lbf}}{S_{screw}} = 335.04 \ \textit{plf}$

$$T_{all_screw} := \frac{C_{D} \cdot 0.95 \text{ in} \cdot 121 \frac{lbf}{in}}{S_{screw}} = 367.84 \text{ plf}$$

 $R_{combined} \coloneqq \frac{p_{trans}}{T_{all_screw}} + \frac{p_{grav}}{V_{all_screw}} = 0.46$

CHECK $R_{combined} \leq 1.0 = 1$

Design Height

Tributary Width of Ceiling on Connection

Load Combination 3: D+(Lr, S, or R)

Force on Wall-Ceiling Connection

Governing Shear Force on Wall-Ceiling Connection

Length of Screws

Load Duration Factor

Spacing of #14 Tek Screw Through Angle

Allowable Shear of #14 TEK (Dowel Bearing Strength - NDS)

Allowable Tension of #14 TEK (NDS)

Combined Stress Ratio for Connection

SUMMARY: THE MAXIMUM FORCE ON THE CONNECTION IS LESS THAN THE ALLOWABLE FORCE. THUS, CEILING-WALL CONNECTION IS ACCEPTABLE FOR RESISTING IMPOSED LOADS.

Structural Engineering Calculations

CEILING PANEL TO WALL PANEL CONNECTION (DETAIL 7)

 $H_w = 10.06 ft$

T_{width} := 3.92 **ft**

LOADS:

 $LC_3 := DL_{panel} + LL_{panel} = 14.5 \text{ psf}$

 $p_{grav} := LC_3 \cdot T_{width} = 56.84 \ plf$

f_{inplane} := f_A = 132.73 *plf*

$$f_{inplane_{res}} := \sqrt{p_{grav}^2 + f_{inplane}^2} = 144.39 \ plf$$

$$f_{max} := max(p_{trans}, f_{inplane res}) = 144.39 plf$$

#14 TEK SCREW:

L_{screw} := 1.5 in

 $C_{D} := 1.6$

S_{screw} := 3 in

$$V_{all_screw} := \frac{76 \ lbf}{S_{screw}} = 304 \ plf$$
$$T_{all_screw} := \frac{57 \ lbf}{S_{screw}} = 228 \ plf$$

 $R_{combined} := \frac{p_{trans}}{T_{all_screw}} + \frac{\sqrt{p_{grav}^{2} + f_{inplane}^{2}}}{V_{all_screw}} = 0.59$

CHECK $R_{combined} \leq 1.0 = 1$

Design Height

Tributary Width of Ceiling on Connection

Load Combination 3: D+(Lr, S, or R)

Force on Wall-Ceiling Connection

In-Plane Shear Force on Wall-Ceiling Connection

Resultant Shear on Tek Screws

Governing Shear Force on Wall-Ceiling Connection

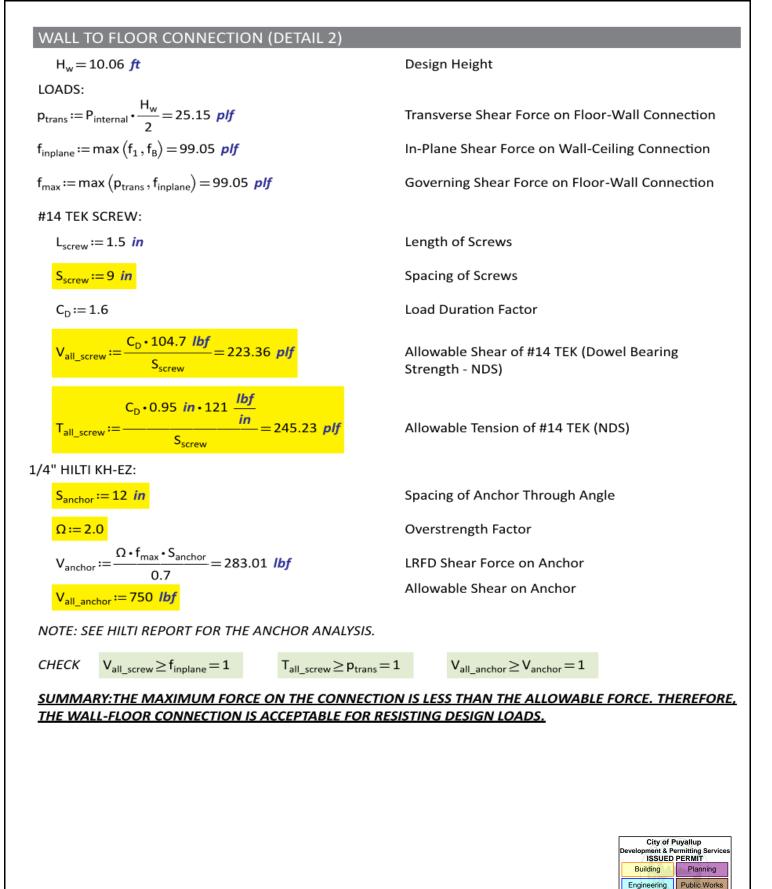
Length of Screws

Load Duration Factor

Spacing of #14 Tek Screw Through Angle

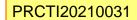
Allowable Shear of #14 TEK (ESR-1976)

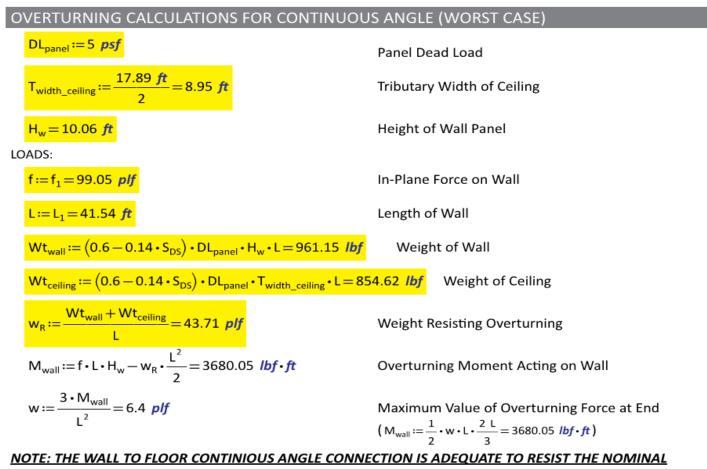
Allowable Tension of #14 TEK (ESR-1976)


Combined Stress Ratio for Connection

<u>SUMMARY: THE MAXIMUM FORCE ON THE CONNECTION IS LESS THAN THE ALLOWABLE FORCE. THUS,</u> <u>CEILING-WALL CONNECTION IS ACCEPTABLE FOR RESISTING IMPOSED LOADS.</u>

City of Puyallup Development & Permitting Services ISSUED PERMIT	
Building	Planning
Engineering	Public Works
Fire	Traffic


Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079


812 LA CASSIA DR. BOISE, IDAHO 83705 (208) 345-8941 PHONE (208) 345-8946 FAX

Traffic

Fire

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

OVERTURNING FORCE.

Calculations

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

SOFTWARE PRINTOUTS (ENERCALC) Project File: 22-19079.ec6 Steel Beam LIC# : KW-06013705, Build:20.22.3.31 TAMARACK GROVE ENGINEERING (c) ENERCALC INC 1983-2022 DESCRIPTION: LONG W18x35 Beam CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : IBC 2018 **Material Properties** Analysis Method Allowable Strength Design Fy : Steel Yield : 50.0 ksi Beam Bracing : Beam bracing is defined as a set spacing over all spans E: Modulus : 29,000.0 ksi Bending Axis : Major Axis Bending Unbraced Lengths First Brace starts at ft from Left-Most support Regular spacing of lateral supports on length of beam = 3.920 ft D(0.08073) L(0.1794 W18x35 Span = 41,470 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load : D = 0.00450, L = 0.010 ksf, Tributary Width = 17.940 ft, (Panel Load) DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.382:1 Maximum Shear Stress Ratio = 0.058:1 Section used for this span Section used for this span W18x35 W18x35 Ma : Applied 63.444 k-ft Va : Applied 6.120 k Mn / Omega : Allowable 165.918 k-ft Vn/Omega : Allowable 106.20 k Load Combination +D+L Load Combination +D+L Location of maximum on span 41.470 ft Span # where maximum occurs Span #1 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward Transient Deflection 0.810 in Ratio = 613 >=240. Max Upward Transient Deflection 0.000 in Ratio = 0 <240.0 Span: 1 : L Only Max Downward Total Deflection 1 334 in Ratio = >=180 Span: 1 : +D+L 373 Max Upward Total Deflection 0.000 in Ratio = <180 0 **Overall Maximum Deflections** Max. "-" Defl Location in Span Max. "+" Defl Location in Span Load Combination Load Combination Span +D+I 0.000 1.3340 20.853 0.0000 Values in KIPS Vertical Reactions Support notation : Far left is # Load Combination Support 1 Support 2 Overall MAXimum 6.120 6.120 Overall MINimum 1.440 1.440 D Only 2.400 2.400 +D+L 6.120 6.120 +D+0.750L 5.190 5.190 +0.60D 1.440 1.440 L Only 3.720 3.720 City of Puvallup ISSUED PERMIT Building Planning Engineering Public Works Fire Traffic 812 LA CASSIA DR. BOISE, IDAHO 83705 (208) 345-8946 FAX (208) 345-8941 PHONE

Calculations

Project Name: Costc Location: Puyal Job Number: 22-19

Costco #660 Puyallup, WA 22-19079

Steel Column					Project	File: 22-19	079.ec6
LIC# : KW-06013705, Build:20.22.3.31	TAMARACK GRO	OVE EN	GINEERING		(c) ENE	RCALC INC	1983-2022
DESCRIPTION: HSS5x5x3/16 Column							
Code References							
Calculations per AISC 360-16, IBC 2018, CBC	2019, ASCE 7-16						
Load Combinations Used : IBC 2018							
General Information							
Steel Section Name : HSS5x5x3/16 Analysis Method : Allowable Strength			all Column Height		0.060 ft		
Analysis Method : Allowable Strength Steel Stress Grade , A500, Grade B, Fy = 46	ksi, Carbon Steel		& Bottom Fixity e condition for deflecti	Top & Bottom on (buckling) al		ns :	
Fy : Steel Yield 46.0 ksi		X-	-X (width) axis :				
E : Elastic Bending Modulus 29,000.0 ksi			Unbraced Length for b -Y (depth) axis :	ouckling ABOU	F Y-Y Axis :	= 10.060 ft	, K = 1.0
			Unbraced Length for t	ouckling ABOU	TX-XAxis	= 10.060 ft	K = 1.0
Applied Loads			Service loads entere	d. Load Factors	will be app	plied for ca	lculations.
Column self weight included : 120.418 lbs * D	ead Load Factor						
AXIAL LOADS	# D = 240 L = 2	1 720	,				
Reaction from Beam: Axial Load at 10.060 DESIGN SUMMARY	ft, D = 2.40, L = 3	5.7201	< C				
Bending & Shear Check Results							
PASS Max. Axial+Bending Stress Ratio =	0.08915		Maximum Load				
Load Combination Location of max.above base	+D+L)ft	Top along Bottom alor			0.0 k 0.0 k	
At maximum location values are	0.0	, n.	Top along	•).0 k	
Pa : Axial	6.240		Bottom alor	ng Y-Y	0	0.0 k	
Pn / Omega : Allowabl Ma-x : Applied	69.999	эк)k-ft	Maximum Load	Deflections .			
Mn-x / Omega : Allowable	13.520		Along Y-Y	0.0 in a	at	0.0ft ab	ove base
Ma-y : Applied		k-ft	for load combir	nation :			
Mn-y / Omega : Allowable	13.520) k-ft	Along X-X	0.0 in a	at	0.0ft al	ove base
PASS Maximum Shear Stress Ratio	0.0	: 1	for load combir	hation :			
Load Combination	0.0						
Location of max.above base At maximum location values are	0.0) ft					
Va : Applied	0.0						
Vn / Omega : Allowable	0.0	к					
Maximum Reactions Axial Reaction	n X-X Axis Reactio	on k	Y-Y Axis Reaction	Note: Onl Mx - End Mor	y non-zero		
Load Combination @ Base	@ Base @ To		@ Base @ Top		@ Top	@ Base	
D Only 2.520							
+D+L 6.240 +D+0.750L 5.310							
+0.60D 1.512							
L Only 3.720 Extreme Reactions							
Axial Reaction	n X-X Axis Reaction	on k	Y-Y Axis Reaction	Mx - End Mor	nents k-ft	My - End	Moments
Item Extreme Value @ Base	@ Base @ To	р	@ Base @ Top	@ Base	@ Top	@ Base	@ Top
Axial @ Base Maximum 6.240 " Minimum 1.512							
Reaction, X-X Axis Base Maximum 2.520							
" Minimum 2.520 Reaction, Y-Y Axis Base Maximum 2.520							
" Minimum 2.520							
Reaction, X-X Axis Top Maximum 2.520 Minimum 2.520							
Reaction, Y-Y Axis Top Maximum 2.520							
Minimum 2.520 Moment, X-X Axis Base Maximum 2.520							
						City of P	yallup mitting Services
						ISSUED	PERMIT
						Building Engineering	Planning Public Works
						Fire	Traffic
							- Auto
812 LA CASSIA DR. BOISE, ID	АНО 83705 (208)	345-8941 PHONE	(208) 34	45-8946	FAX	

Calculations

5.00in

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

Project File: 22-19079.ec6 Steel Column LIC# : KW-06013705, Build:20.22.3.31 TAMARACK GROVE ENGINEERING (c) ENERCALC INC 1983-2022 DESCRIPTION: HSS5x5x3/16 Column Extreme Reactions Mx - End Moments k-ft My - End Moments Axial Reaction X-X Axis Reaction k Y-Y Axis Reaction Item @ Base @ Base @ Top @ Base @ Top @ Base @ Top @ Base @ Top Extreme Value Minimum 2.520 Moment, Y-Y Axis Base Maximum 2.520 Minimum 2.520 Moment, X-X Axis Top Maximum 2.520 2.520 Minimum Moment, Y-Y Axis Top Maximum 2.520 Minimum 2.520 Maximum Deflections for Load Combinations Load Combination Max. X-X Deflection Distance Max. Y-Y Deflection Distance 0.0000 in 0.000 ft 0.000 in D Only 0.000 ft 0.000 ft 0.000 ft +D+L 0.0000 in 0.000 in +D+0.750L 0.0000 in 0.000 ft 0.000 in 0.000 ft +0.60D 0.0000 in 0.000 ft 0.000 in 0.000 ft 0.0000 in 0.000 ft 0.000 in 0.000 ft L Only Sketches 6.1258 6 120 +Y +X 5.00in Load 1

Calculations

Project Name: Location: Job Number:

Costco #660 Puyallup, WA 22-19079

Wood	Column
------	--------

LIC# : KW-06013705, Build:20.22.3.31

TAMARACK GROVE ENGINEERING

Project File: 22-19079.ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: (3) 2x6 (UNIT 4.1)

Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2018

General Information	ation									
Analysis Method	Allowable	Stress Design	1		Wood Section Name	3-2x6				
End Fixities	Top & Bott	tom Pinned			Wood Grading/Manu	f. Graded	d Lumber			
Overall Column H	leight		10.06 ft		Wood Member Type	Sawn				
(Used for nor	n-slender calculat	ions)			Exact Width	4.50 in	Allow Stres	e Modif	ication Eac	fore
Wood Species	Spruce-Pine-F	Fir			Exact Depth	4.50 m 5.50 in		Cv for Be		1.30
Wood Grade	No. 1/No. 2					24.750 in^			ompressio	1.10
Fb +	875.0 psi	Fv	135.0 ps	si	Area			Cv for Te		1.30
Fb -	875.0 psi	Ft	450.0 ps	si	lx ba	62.391 in^	4	Vet Use		1.0
Fc - Prll	1,150.0 psi	Density	26.220 p	cf	ly	41.766 in^	-			
Fc - Perp	425.0 psi								ure Fact	1.0
E : Modulus of El		x-x Bending	v-v Bendina	Axial				lat Use		1.0
	Basic	-			0 kai			ilt-up co		1.0 NDS
	Minimum	1,400.0 510.0	1,400.0 510.0	1,400.				r : Repe		No
	Winningth	510.0	510.0		Brace condition for de		0, 0			
					X-X (width) axis	: Unbrace	ed Length for	r bucklin	ig ABOUT `	Y-Y Axis =
					Y-Y (depth) axis	: Unbrace	ed Length for	r bucklin	Ig ABOUT 2	X-X Axis =
pplied Loads					Service loads	s entered. Lo	ad Factors	will be a	oplied for c	alculations
ESIGN SUMM	rxn from bear IARY	n: Axial Load	d at 10.060 ft, I	D = 2.4(0, L = 3.720 k					
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axis	rxn from bear IARY Check Results	tress Ratio	= 0.485 +D+	59 : 1 ·L	0, L = 3.720 k Maximum SERVICE I Top along Y-1	Lateral Load		along `		0.0 k
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axia Load Co	rxn from bear IARY Check Results al+Bending S	tress Ratio	= 0.485	59 : 1 ·L	Maximum SERVICE I		Bottom			0.0 k 0.0 k
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axia Load Co Governin	rxn from bear IARY Check Results al+Bending S ombination	tress Ratio	= 0.485 +D+ Comp Only, fc/Fe	59 : 1 ·L	Maximum SERVICE I Top along Y-1 Top along X->	0.0 k 0.0 k	Bottom Bottom	n along) n along)		
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axia Load Co Governin Location	rxn from bear IARY Check Results al+Bending S ombination ng NDS Forum	tress Ratio la C base	= 0.485 +D+ Comp Only, fc/Fe	i9 : 1 -L c'	Maximum SERVICE I Top along Y-1 Top along X-> Maximum SERVICE I	0.0 k 0.0 k Load Latera	Bottom Bottom al Deflection	n along ` n along ` ns	x-x	0.0 k
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axis Load Co Governin Location At maxin Applin	rxn from bear IARY Check Results al+Bending S ombination ng NDS Forumin of max.above mum location va ed Axial	tress Ratio la C base	= 0.485 +D+ Comp Only, fc/Fc 0. 6.16	59:1 -L c' .0ft 55k	Maximum SERVICE I Top along Y-1 Top along X-> Maximum SERVICE I Along Y-Y	0.0 k 0.0 k Load Latera 0.0 in a	Bottom Bottom al Deflection	n along ` n along ` 1s		0.0 k
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axis Load Co Governin Location At maxir Applin Applin	rxn from bear ARY Check Results al+Bending S ombination ng NDS Forumin of max.above mum location va ed Axial ed Mx	tress Ratio la C base	= 0.485 +D+ Comp Only, fc/Fe 0. 6.16 0.	59:1 c' .0ft .0k-ft	Maximum SERVICE I Top along Y-1 Top along X-> Maximum SERVICE I Along Y-Y for load combinat	0.0 k 0.0 k Load Latera 0.0 in a tion : n/a	Bottom Bottom al Deflection at 0	n along ` n along ` ns).0 ft a	X-X above base	0.0 k
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axis Load Co Governin Location At maxir Applie Applie Applie	rxn from bear ARY check Results al+Bending S ombination ng NDS Forumi n of max.above mum location va ed Axial ed Mx ed My	tress Ratio la C base	= 0.485 +D+ Comp Only, fc/Fo 0. 6.16 0. 0.	59:1 -L c' .0ft .0k-ft .0k-ft	Maximum SERVICE I Top along Y-1 Top along X-> Maximum SERVICE I Along Y-Y for load combinat Along X-X	0.0 k 0.0 k Load Latera 0.0 in a tion : n/a 0.0 in a	Bottom Bottom al Deflection at 0	n along ` n along ` ns).0 ft a	x-x	0.0 k
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axis Load Co Governin Location At maxir Applie Applie Applie	rxn from bear ARY Check Results al+Bending S ombination ng NDS Forumin of max.above mum location va ed Axial ed Mx	tress Ratio la C base	= 0.485 +D+ Comp Only, fc/Fe 0. 6.16 0.	59:1 -L c' .0ft .0k-ft .0k-ft	Maximum SERVICE I Top along Y-1 Top along X-> Maximum SERVICE I Along Y-Y for load combinat Along X-X for load combinat	0.0 k 0.0 k Load Latera 0.0 in a tion : n/a 0.0 in a tion : n/a	Bottom Bottom al Deflection at 0 at 0	n along ` n along ` ns).0 ft a).0 ft a	X-X above base above base	0.0 k
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axia Load Co Governia Location At maxia Applia Applia Fc : A	rxn from bear ARY check Results al+Bending S ombination ng NDS Forumin of max.above mum location va ed Axial ed Mx ed My Allowable	la (base alues are .	= 0.485 +D+ Comp Only, fc/F 0. 6.16 0. 512.6	59 : 1 -L c' .0 ft .0 k-ft .0 k-ft .0 k-ft .5 psi	Maximum SERVICE I Top along Y-1 Top along X-> Maximum SERVICE I Along Y-Y for load combinat Along X-X	0.0 k 0.0 k Load Latera 0.0 in a tion : n/a 0.0 in a tion : n/a	Bottom Bottom al Deflection at 0 at 0 allowable s	n along ` n along ` ns).0 ft a).0 ft a stresses	X-X above base above base	0.0 k
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axis Load Co Governin Location At maxin Applin Applin Fc : A PASS Maximum	rxn from bear ARY check Results al+Bending S ombination ng NDS Forumin of max.above mum location va ed Axial ed Mx ed My Allowable	la (base alues are .	= 0.485 +D+ Comp Only, fc/F 0. 6.16 0. 512.6	59:1 c' .0ft .0k-ft .0k-ft .5psi .0:1	Maximum SERVICE I Top along Y-1 Top along X-> Maximum SERVICE I Along Y-Y for load combinat Along X-X for load combinat	0.0 k 0.0 k Load Latera 0.0 in a tion : n/a 0.0 in a tion : n/a	Bottom Bottom al Deflection at 0 at 0	n along ` n along ` ns).0 ft a).0 ft a stresses	X-X above base above base	0.0 k
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axis Location At maxin Applie Applie Fc : A PASS Maximum Load Co	rxn from bear IARY Check Results al+Bending S ombination ng NDS Forumin of max.above mum location va ed Axial ed Mx ed My Allowable m Shear Stres ombination	itress Ratio la (base alues are .	= 0.485 +D+ Comp Only, fc/Fc 0. 6.16 0. 512.6 0.	59:1 -L c' .0ft 55k .0k-ft .0k-ft .55psi .0:1 D	Maximum SERVICE I Top along Y-1 Top along X-> Maximum SERVICE I Along Y-Y for load combinat Along X-X for load combinat	0.0 k 0.0 k Load Latera 0.0 in a tion : n/a 0.0 in a tion : n/a	Bottom Bottom al Deflection at 0 at 0 allowable s	n along ` n along ` ns).0 ft a).0 ft a stresses	X-X above base above base	0.0 k
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axis Load Co Governin Location At maxir Applin Applin Fc : A PASS Maximun Load Co Location	rxn from bear ARY Check Results al+Bending S ombination ng NDS Forumin of max.above mum location va ed Axial ed Mx ed My Allowable m Shear Stres ombination n of max.above	itress Ratio la (base alues are .	= 0.485 +D+ Comp Only, fc/Fo 0. 6.16 0. 512.6 0. +0.601 10.06	59:1 -L c' .0ft 55k .0k-ft .0k-ft .55psi .0:1 D	Maximum SERVICE I Top along Y-1 Top along X-> Maximum SERVICE I Along Y-Y for load combinat Along X-X for load combinat	0.0 k 0.0 k Load Latera 0.0 in a tion : n/a 0.0 in a tion : n/a	Bottom Bottom al Deflection at 0 at 0 allowable s	n along ` n along ` ns).0 ft a).0 ft a stresses	X-X above base above base	0.0 k
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axis Load Co Governin Location At maxir Applin Applin Fc : A PASS Maximun Load Co Location	rxn from bear ARY check Results al+Bending S ombination ng NDS Forumin of max.above mum location va ed Axial ed Mx ed My Allowable m Shear Stres ombination n of max.above Design Shear	itress Ratio la (base alues are .	= 0.485 +D+ Comp Only, fc/Fo 0. 6.16 0. 512.6 0. +0.60 10.06 0.	59:1 -L c' .0ft 55k .0k-ft .0k-ft .5psi .0:1 D 50ft	Maximum SERVICE I Top along Y-1 Top along X-> Maximum SERVICE I Along Y-Y for load combinat Along X-X for load combinat	0.0 k 0.0 k Load Latera 0.0 in a tion : n/a 0.0 in a tion : n/a	Bottom Bottom al Deflection at 0 at 0 allowable s	n along ` n along ` ns).0 ft a).0 ft a stresses	X-X above base above base	0.0 k
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axia Load Co Governin Location At maxin Applin Applin Fc : A PASS Maximum Load Co Location Applied Allowabl	rxn from bear IARY Check Results al+Bending S ombination ng NDS Forumin of max.above mum location va ed Axial ed Mx ed My Allowable m Shear Stres ombination n of max.above Design Shear le Shear	itress Ratio la (base alues are . ss Ratio = base	= 0.485 +D+ Comp Only, fc/Fo 0. 6.16 0. 512.6 0. +0.60 10.06 0.	59:1 -L c' .0ft 55k .0k-ft .0k-ft 55psi .0:1 D 50ft .0psi	Maximum SERVICE I Top along Y-1 Top along X-> Maximum SERVICE I Along Y-Y for load combinat Along X-X for load combinat	0.0 k 0.0 k Load Latera 0.0 in a tion : n/a 0.0 in a tion : n/a	Bottom Bottom al Deflection at 0 at 0 allowable s	n along ` n along ` ns).0 ft a).0 ft a stresses	X-X above base above base	0.0 k
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axia Load Co Governin Location At maxin Applin Applin Fc : A PASS Maximum Load Co Location Applied Allowabl	rxn from bear IARY Check Results al+Bending S ombination ng NDS Forumin of max.above mum location va ed Axial ed Mx ed My Allowable m Shear Stres ombination n of max.above Design Shear le Shear	itress Ratio la co base alues are . ss Ratio = base	= 0.485 +D+ Comp Only, fc/Fo 0. 6.16 0. 512.6 0. +0.600 10.06 0. 216.	59:1 -L c' .0ft 55k .0k-ft .0k-ft .0k-ft .0psi .0psi .0psi	Maximum SERVICE I Top along Y-1 Top along X-> Maximum SERVICE I Along Y-Y for load combinat Along X-X for load combinat Other Factors used t	0.0 k 0.0 k Load Latera 0.0 in a tion : n/a tion : n/a tion : n/a	Bottom Bottom al Deflection at 0 allowable s <u>Bending</u>	n along \ n along \ 1 s 0.0 ft a 0.0 ft a stresses <u>Com</u>	X-X above base above base	0.0 k
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axia Load Co Governin Location At maxin Applin Applin Fc : A PASS Maximum Load Co Location Applied Allowabl	rxn from bear IARY Check Results al+Bending S ombination ng NDS Forumin ng NDS Forumin n of max.above mum location va- ed Axial ed My Allowable m Shear Stresson of max.above Design Shear le Shear tion Results	itress Ratio la (base alues are . ss Ratio = base	= 0.485 +D+ Comp Only, fc/Fc 0. 6.16 0. 512.6 0. +0.60 10.06 0. 216.	59 : 1 -L c' .0 ft 55 k .0 k-ft .0 k-ft .0 k-ft .0 k-ft .0 psi .0 psi .0 psi .0 psi	Maximum SERVICE I Top along Y-1 Top along X-> Maximum SERVICE I Along Y-Y for load combinat Along X-X for load combinat Other Factors used t	0.0 k 0.0 k Load Latera 0.0 in a tion : n/a tion : n/a tion : n/a	Bottom Bottom al Deflection at 0 allowable s <u>Bending</u>	n along Y n along Y ns 0.0 ft a 0.0 ft a stresses <u>Com</u>	X-X above base above base s pression Shear Rati	0.0 k
DL and LL DESIGN SUMM Bending & Shear C PASS Max. Axia Load Co Governin Location At maxin Applin Applin Fc : A PASS Maximum Load Co Location Applied Allowabl	rxn from bear IARY Check Results al+Bending S ombination ng NDS Forumin ng NDS Forumin n of max.above mum location va- ed Axial ed My Allowable m Shear Stresson of max.above Design Shear le Shear tion Results	itress Ratio la co base alues are . ss Ratio = base	= 0.485 +D+ Comp Only, fc/Fo 0. 6.16 0. 512.6 0. +0.601 10.06 0. 216.	59 : 1 -L c' .0 ft 55 k .0 k-ft .0 k-ft .5 psi .0 k-ft .0 psi .0 psi .0 psi .0 psi .0 psi	Maximum SERVICE I Top along Y-1 Top along X-> Maximum SERVICE I Along Y-Y for load combinat Along X-X for load combinat Other Factors used t	0.0 k 0.0 k Load Latera 0.0 in a tion : n/a tion : n/a tion : n/a tion calculate	Bottom Bottom at 0 at 0 allowable s <u>Bending</u> <u>M</u> Stress F	n along Y n along Y ns 0.0 ft a 0.0 ft a stresses <u>Com</u>	X-X above base above base s pression Shear Rati	0.0 k <u>Tension</u> ios

+D+0.750L	1.250	0.335		0.3997	PAS	S 0.	0 ft	0.0	P	ASS 1	0.060 ft
+0.60D	1.600	0.268		0.1092	PAS	S 0.	0 ft	0.0	P	ASS 1	0.060 ft
Maximum Reactions								Note: Only non	-zero r	eactions a	re listed.
	X-X Axis R	leaction	k	Y-Y Axis Rea	ction	Axial Reaction	My	- End Moments	k-ft	Mx - End	Moments
Load Combination	@ Base	@ Top		@ Base @	Тор	@ Base	(Base @ To	p qu	@ Base	@ Top
D Only						2.445					
+D+L						6.165					
+D+0.750L						5.235					

City of Puyallup ment & Permitting Services ISSUED PERMIT Building Planning Public Works Engineering Traffic Fire

Calculations

Project Name:Costco #660Location:Puyallup, WAJob Number:22-19079

Wood Column							File: 22-190	
LIC# : KW-06013705, Build:20.22.3.		MARACK GRO	VE ENGINE	ERING		(c) ENE	RCALC INC	1983-202
DESCRIPTION: (3) 2x6	(UNIT 4.1)							
Maximum Reactions						nly non-zero		
Load Combination	X-X Axis Reaction @ Base @ Top	k Y-Y Axis @ Base		Axial Reaction @ Base	n My-End M @Base	oments k-ft @ Top	Mx - End @ Base	
+0.60D	@ 2000 @ .op	6 2000	G . op	1.467	6 2000	8.0p	& 2000	8.0p
L Only				3.720				
Maximum Deflections for								
Load Combination D Only	Max. X-X Deflection D 0.0000 in	0.000ft	Max. Y-Y	Deflection Di 0.000 in	istance 0.000 ft			
+D+L	0.0000 in	0.000ft		0.000 in	0.000 ft			
+D+0.750L	0.0000 in	0.000ft		0.000 in	0.000 ft			
+0.60D	0.0000 in	0.000ft		0.000 in	0.000 ft			
L Only	0.0000 in	0.000ft		0.000 in	0.000 ft			
Sketches								
					6.1304		6.1208	
		1 2 1 100						
		1.0.1.00						
		17.1	+X					
.c	Load	11						
5.50 in		1.1.1.1						
5.5		11111						
47								
				1			8	
	NOT BELIEVE BRANCES						ŝ.	
				*			1	
	+Y							
	3-2x6							
	4.50 1							
	4.50 in							
						F	City of P	wallun
						D	City of Pu evelopment & Per	mitting Serv
							ISSUED F Building	PERMIT Planning
							Engineering	Public Wor
							Fire	Traffic
						L		
812 LA CAS	SIA DR. BOISE, IDAHO	83705 (2	08) 345	-8941 PHO	NE (208)	345-8946	FAX	

+D+0.750L

+0.60D

L Only

4.669

1.295

3.347

4.669 1.295

3.347

Structural Engineering

Calculations

Project Name: Costo Location: Puya Job Number: 22-19

Costco #660 Puyallup, WA 22-19079

Steel Beam							P	roject File	e: 22-1907	9.ec6
IC# : KW-06013705, Build:20.22.3.31			AMARACK	GROVE	ENGINEE	RING	(c) ENERC	ALC INC 19	83-202
DESCRIPTION: MID W18	3x35 Bea	am								
ODE REFERENCES										
alculations per AISC 360-16,	IBC 201	8, CBC 2019	ASCE 7	-16						
oad Combination Set : IBC 20	018									
aterial Properties										
Analysis Method Allowable Str	ength Des	ign				Fy : Steel Yield	d :	50.0 ksi		
Beam Bracing : Beam bracing			pacing o	ver all s	spans	E: Modulus :		00.0 ksi		
Bending Axis : Major Axis Be	ending									
braced Lengths										
First Brace starts at ft from Left-N Regular spacing of lateral suppor			920 ft							
+	-		D(0.0	8073 <u>)</u> L	(0.1794)		,			-
* * *	×	×	×		×	×××	,	<	×	Ť
* * *	ĸ	×	×		×	× ×	,	*	×	ð
				W18x3	15					۸
			Spi	an = 37.	310 ft					
										-
		ded to loading		Midth	- 17.040		T detero min	ne applie	ed for calcu	auon
Uniform Load : D = 0.0				Width	= 17.940			be applie	d for calcu	auon
Uniform Load : D = 0.0				Width	= 17.940					
Uniform Load : D = 0.0	00450, L	= 0.010 ksf,							esign OK 0.052	
Uniform Load : D = 0.0	00450, L	= 0.010 ksf,	Tributary		ximum S) ft, (Panel Load)			esign OK	: 1
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress Ra Section used for this span Ma : Applied	00450, L atio =	= 0.010 ksf, 0 W1	Tributary	Ма	ximum S) ft, (Panel Load) Shear Stress Ratio = tion used for this span Va : Applied			esign OK 0.052 W18x35 5.506	: 1 k
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress Ra Section used for this span Ma : Applied Mn / Omega : Alla	00450, L atio =	= 0.010 ksf, 0 W1 5	Tributary .310 : 1 8x35 1.354 k-ft 5.918 k-ft	Ма	ximum S Sect) ft, (Panel Load) Shear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowabl			esign OK 0.052 W18x35 5.506 106.20	: 1 k k
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress Ra Section used for this span Ma : Applied	00450, L atio =	= 0.010 ksf, 0 W1 5	Tributary .310 : 1 8x35 1.354 k-ft	Ма	ximum S Sect Load) ft, (Panel Load) Shear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowabl I Combination	e		esign OK 0.052 W18x35 5.506 106.20 +D+L	: 1 k k
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress Ra Section used for this span Ma : Applied Mn / Omega : Alla	o0450, L atio = owable	= 0.010 ksf, 0 W1 5 165	Tributary .310 : 1 8x35 1.354 k-ft 5.918 k-ft +D+L	Ма	ximum S Sect Load Loca) ft, (Panel Load) Shear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowabl	e an		esign OK 0.052 W18x35 5.506 106.20	: 1 k k
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress Ri Section used for this span Ma : Applied Mn / Omega : Allo Load Combination Span # where maximum occu	o0450, L atio = owable	= 0.010 ksf, 0 W1 5 165	Tributary .310 : 1 8x35 1.354 k-ft 5.918 k-ft	Ма	ximum S Sect Load Loca) ft, (Panel Load) Shear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowabl I Combination tion of maximum on sp	e an		esign OK 0.052 W18x35 5.506 106.20 +D+L 0.000	: 1 k k
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress Ri Section used for this span Ma : Applied Mn / Omega : Allo Load Combination	oo450, L atio = owable urs	= 0.010 ksf, 0 W1 5 165	Tributary .310 : 1 8x35 1.354 k-ft 5.918 k-ft +D+L an # 1	Ma	ximum S Sect Load Loca) ft, (Panel Load) Shear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowabl I Combination tion of maximum on sp	e an		esign OK 0.052 W18x35 5.506 106.20 +D+L 0.000	: 1 k k
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress R Section used for this span Ma : Applied Mn / Omega : Alle Load Combination Span # where maximum occu Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection	atio = owable urs effection ction	= 0.010 ksf, 0 W1 5 165 Spi 0.531 in 0.000 in	.310 : 1 8x35 1.354 k-ft 5.918 k-ft +D+L an # 1 Ratio = Ratio =	Ma 842 0	ximum S Sect Load Loca Spar >=240. <240.0) ft, (Panel Load) 6hear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowabl I Combination tion of maximum on sp n # where maximum oc Span: 1 : L Only	e an		esign OK 0.052 W18x35 5.506 106.20 +D+L 0.000	: 1 k k
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress Ri Section used for this span Ma : Applied Mn / Omega : Alle Load Combination Span # where maximum occu Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflect	atio = owable urs effection ction ion	= 0.010 ksf, 0 W1 : 5 16: 5 0.531 in 0.000 in 0.874 in	7.310 : 1 8x35 1.354 k-ft 5.918 k-ft +D+L an # 1 Ratio = Ratio = Ratio =	Ma 842 0 512	ximum S Sect Loca Spar >=240. <240.0 >=180) ft, (Panel Load) Shear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowabl I Combination tion of maximum on sp n # where maximum oc	e an		esign OK 0.052 W18x35 5.506 106.20 +D+L 0.000	: 1 k k
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress Ri Section used for this span Ma : Applied Mn / Omega : Alle Load Combination Span # where maximum occu Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflect Max Upward Total Deflection Max Upward Total Deflection	oo450, L atio = owable urs effection ction	= 0.010 ksf, 0 W1 5 165 Spi 0.531 in 0.000 in	7.310 : 1 8x35 1.354 k-ft 5.918 k-ft +D+L an # 1 Ratio = Ratio = Ratio =	Ma 842 0	ximum S Sect Load Loca Spar >=240. <240.0) ft, (Panel Load) 6hear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowabl I Combination tion of maximum on sp n # where maximum oc Span: 1 : L Only	e an		esign OK 0.052 W18x35 5.506 106.20 +D+L 0.000	: 1 k k
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress Ri Section used for this span Ma : Applied Mn / Omega : Alle Load Combination Span # where maximum occu Maximum Deflection Max Downward Transient Deflect Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection	atio = owable urs effection ction jons	= 0.010 ksf, 0 W1 5 16: 5 16 16 16 16 16 16 16 16 16 16 16 16 16	Tributary .310 : 1 8x35 1.354 k-ft +D+L an # 1 Ratio = Ratio = Ratio = Ratio =	Ma 842 0 512 0	ximum S Sect Load Loca Spar >=240. <240.0 >=180 <180	9 ft, (Panel Load) Shear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowable I Combination tion of maximum on span # where maximum oc Span: 1 : L Only Span: 1 : +D+L	e an curs	D	esign OK 0.052 W18x35 5.506 106.20 +D+L 0.000 Span # 1	: 1 k k
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress Ri Section used for this span Ma : Applied Mn / Omega : Alle Load Combination Span # where maximum occu Maximum Deflection Max Downward Transient Deflect Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection Verall Maximum Deflection Load Combination	atio = owable urs effection ction jon Span	= 0.010 ksf, 0 W1 5 163 Spi 0.531 in 0.000 in 0.874 in 0.000 in Max. "-" Defl	Tributary .310 : 1 8x35 1.354 k-ft +D+L an # 1 Ratio = Ratio = Ratio = Ratio = Location ir	Ma 842 0 512 0	ximum S Sect Load Loca Spar >=240. <240.0 >=180 <180) ft, (Panel Load) 6hear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowabl I Combination tion of maximum on sp n # where maximum oc Span: 1 : L Only	e an curs	D	esign OK 0.052 W18x35 5.506 106.20 +D+L 0.000 Span # 1	t 1 k ft
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress R Section used for this span Ma : Applied Mn / Omega : Alle Load Combination Span # where maximum occu Maximum Deflection Max Downward Transient Deflect Max Downward Transient Deflect Max Downward Total Deflection Max Downward Total Deflection Verall Maximum Deflection +D+L	atio = owable urs effection ction jons	= 0.010 ksf, 0 W1 5 16: 5 16 16 16 16 16 16 16 16 16 16 16 16 16	Tributary .310 : 1 8x35 1.354 k-ft +D+L an # 1 Ratio = Ratio = Ratio = Ratio = Location ir	Ma 842 0 512 0 512 0 512 0 512	ximum S Sect Load Loca Spar >=240. <240.0 >=180 <180 Load C) ft, (Panel Load) chear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowabl I Combination tion of maximum on sp n # where maximum oc Span: 1 : L Only Span: 1 : +D+L Combination	e an curs Max.	"+" Defl 0.0000	esign OK 0.052 W18x35 5.506 106.20 +D+L 0.000 Span # 1	: 1 k k
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress R Section used for this span Ma : Applied Mn / Omega : Alle Load Combination Span # where maximum occu Maximum Deflection Max Downward Transient Deflect Max Downward Transient Deflect Max Downward Total Deflection Max Downward Total Deflection Verall Maximum Deflection +D+L ertical Reactions	ooduurs atio = owable urs aflection ction jons Span 1	= 0.010 ksf, 0 W1 5 163 Spi 0.531 in 0.000 in 0.874 in 0.000 in Max. "-" Defl 0.8740	Tributary .310 : 1 8x35 1.354 k-ft +D+L an # 1 Ratio = Ratio = Ratio = Ratio = Location ir	Ma 842 0 512 0 512 0 512 0 512	ximum S Sect Load Loca Spar >=240. <240.0 >=180 <180 Load C	9 ft, (Panel Load) Shear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowable I Combination tion of maximum on span # where maximum oc Span: 1 : L Only Span: 1 : +D+L	e an curs Max.	D	esign OK 0.052 W18x35 5.506 106.20 +D+L 0.000 Span # 1	t 1 k ft
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress R Section used for this span Ma : Applied Mn / Omega : Alle Load Combination Span # where maximum occu Maximum Deflection Max Downward Transient Deflect Max Downward Transient Deflect Max Downward Total Deflection Max Downward Total Deflection Verall Maximum Deflection +D+L Entical Reactions Load Combination	ood450, L atio = owable urs effection ction ion Span 1 Support 1	= 0.010 ksf, 0 W1 5 165 0.531 in 0.000 in 0.874 in 0.000 in Max. "-" Defl 0.8740 Support 2	Tributary .310 : 1 8x35 1.354 k-ft +D+L an # 1 Ratio = Ratio = Ratio = Ratio = Location ir	Ma 842 0 512 0 512 0 512 0 512	ximum S Sect Load Loca Spar >=240. <240.0 >=180 <180 Load C) ft, (Panel Load) chear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowabl I Combination tion of maximum on sp n # where maximum oc Span: 1 : L Only Span: 1 : +D+L Combination	e an curs Max.	"+" Defl 0.0000	esign OK 0.052 W18x35 5.506 106.20 +D+L 0.000 Span # 1	t 1 k ft
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress Ra Section used for this span Ma : Applied Mn / Omega : Alla Load Combination Span # where maximum occu Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflect Max Upward Total Deflection Max Upward Total Deflection Verall Maximum Deflection Load Combination +D+L Entical Reactions Overall MAXimum	ovable urs effection ction jon Span 1 Support 1 5.506	= 0.010 ksf, 0 W1 5 16 5 16 5 16 5 16 5 16 5 5 16 5 5 5 5	Tributary .310 : 1 8x35 1.354 k-ft +D+L an # 1 Ratio = Ratio = Ratio = Ratio = Location ir	Ma 842 0 512 0 512 0 512 0 512	ximum S Sect Load Loca Spar >=240. <240.0 >=180 <180 Load C) ft, (Panel Load) chear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowabl I Combination tion of maximum on sp n # where maximum oc Span: 1 : L Only Span: 1 : +D+L Combination	e an curs Max.	"+" Defl 0.0000	esign OK 0.052 W18x35 5.506 106.20 +D+L 0.000 Span # 1	t 1 k ft
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress Ri Section used for this span Ma : Applied Mn / Omega : Alle Load Combination Span # where maximum occu Maximum Deflection Max Downward Transient Deflect Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection Verall Maximum Deflection +D+L Entical Reactions Overall MAXimum Overall MAXimum Overall MINimum	ovable urs effection ction 5506 1.295	= 0.010 ksf, 0 W1 5 16 Sp 0.531 in 0.000 in 0.874 in 0.000 in Max. "-" Defl 0.8740 Support 2 5.506 1.295	Tributary .310 : 1 8x35 1.354 k-ft +D+L an # 1 Ratio = Ratio = Ratio = Ratio = Location ir	Ma 842 0 512 0 512 0 512 0 512	ximum S Sect Load Loca Spar >=240. <240.0 >=180 <180 Load C) ft, (Panel Load) chear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowabl I Combination tion of maximum on sp n # where maximum oc Span: 1 : L Only Span: 1 : +D+L Combination	e an curs Max.	"+" Defl 0.0000	esign OK 0.052 W18x35 5.506 106.20 +D+L 0.000 Span # 1	: 1 k ft
Uniform Load : D = 0.0 ESIGN SUMMARY Maximum Bending Stress Ra Section used for this span Ma : Applied Mn / Omega : Alla Load Combination Span # where maximum occu Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflect Max Upward Total Deflection Max Upward Total Deflection Verall Maximum Deflection Load Combination +D+L Entical Reactions Overall MAXimum	ovable urs effection ction jon Span 1 Support 1 5.506	= 0.010 ksf, 0 W1 5 16 5 16 5 16 5 16 5 16 5 5 16 5 5 5 5	Tributary .310 : 1 8x35 1.354 k-ft +D+L an # 1 Ratio = Ratio = Ratio = Ratio = Location ir	Ma 842 0 512 0 512 0 512 0 512	ximum S Sect Load Loca Spar >=240. <240.0 >=180 <180 Load C) ft, (Panel Load) chear Stress Ratio = tion used for this span Va : Applied Vn/Omega : Allowabl I Combination tion of maximum on sp n # where maximum oc Span: 1 : L Only Span: 1 : +D+L Combination	e an curs Max.	"+" Defl 0.0000	esign OK 0.052 W18x35 5.506 106.20 +D+L 0.000 Span # 1	t 1 k ft

Calculations

Project Name: Costco Location: Puyall Job Number: 22-190

Costco #660 Puyallup, WA 22-19079

Steel Beam					Project File	e: 22-19079.ec6
LIC# : KW-06013705, Build:20			ROVE ENGINEERING		(c) ENERC	ALC INC 1983-202
DESCRIPTION: W1	18x35 Beam (BF	RIDGE BEAM)				
ODE REFERENCI			-			
Calculations per AISC 3 _oad Combination Set :		CBC 2019, ASCE 7-16	6			
aterial Properties						
Analysis Method Allowa		n ed as a set spacing ove	r all spans	Fy : Steel Yield : E: Modulus :	50.0 ksi 29,000.0 ksi	
Bending Axis : Major		a as a set spacing ove		E. modulus .	20,000.0 (3)	
nbraced Lengths						
First Brace starts at 4.0 ft Regular spacing of lateral						
D(2.1	159) L(3.347)	D(0.01773)	D(2.159) L(3.347)	
× ×	×	×	×	×	×	××
× ×	×	*	*	×	×	× *
A			V18x35			
l		Span	= 29.670 ft			
1						
pplied Loads			Service lo	ads entered. Load Fac	tors will be applie	d for calculation
Beam self weight ca	lculated and adde	ed to loading				
		7 k @ 23.480 ft, (React Tributary Width = 1.0 ft		beamy		
Uniform Load : ESIGN SUMMARY	D = 0.01773 k/ft,			bouility	D	esign OK
Uniform Load : ESIGN SUMMARY Maximum Bending St	D = 0.01773 k/ft,	Tributary Width = 1.0 ft	t, (parafet wall) Maximum Shea	r Stress Ratio =	D	0.060:1
Uniform Load : ESIGN SUMMARY	D = 0.01773 k/ft, tress Ratio = span	Tributary Width = 1.0 f	t, (parafet wall) Maximum Shea Section u Va	r Stress Ratio = used for this span : Applied	D	
Uniform Load : ESIGN SUMMARY Maximum Bending St Section used for this Ma : Appl Mn / Ome	D = 0.01773 k/ft, tress Ratio = span	Tributary Width = 1.0 ft 0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft	t, (parafet wall) Maximum Shea Section u Va Vn	r Stress Ratio = used for this span : Applied /Omega : Allowable	D	0.060 : 1 W18x35 6.409 k 106.20 k
Uniform Load : ESIGN SUMMARY Maximum Bending St Section used for this Ma : Appl Mn / Ome Load Combination	D = 0.01773 k/ft, tress Ratio = span ied ega : Allowable	Tributary Width = 1.0 ft 0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L	t, (parafet wall) Maximum Shea Section u Va Vn Load Cor Location	r Stress Ratio = used for this span : Applied /Omega : Allowable nbination of maximum on span	D	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft
Uniform Load : ESIGN SUMMARY Maximum Bending St Section used for this Ma : Appl Mn / Ome Load Combination Span # where maximum	D = 0.01773 k/ft, tress Ratio = span ied ega : Allowable	Tributary Width = 1.0 ft 0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft	t, (parafet wall) Maximum Shea Section u Va Vn Load Cor Location	r Stress Ratio = used for this span : Applied /Omega : Allowable nbination	D	0.060 : 1 W18x35 6.409 k 106.20 k +D+L
Uniform Load : ESIGN SUMMARY Maximum Bending St Section used for this Ma : Appl Mn / Ome Load Combination Span # where maximu Maximum Deflection Max Downward Trans	D = 0.01773 k/ft, tress Ratio = span ied ega : Allowable um occurs sient Deflection	Tributary Width = 1.0 ft 0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 1,	t, (parafet wall) Maximum Shea Section u Va Vn Load Cor Location Span # w	r Stress Ratio = used for this span : Applied /Omega : Allowable nbination of maximum on span here maximum occurs	D	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft
Uniform Load : ESIGN SUMMARY Maximum Bending St Section used for this : Ma : Appl Mn / Ome Load Combination Span # where maximum Maximum Deflection Max Downward Trans Max Upward Transier	D = 0.01773 k/ft, tress Ratio = span ied aga : Allowable um occurs sient Deflection ht Deflection	Tributary Width = 1.0 ft 0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 1, 0.000 in Ratio = 1,	t, (parafet wall) Maximum Shea Section t Va Vn Load Cor Location Span # w 481 >=240. 0 <240.0 Sp	r Stress Ratio = ised for this span : Applied /Omega : Allowable nbination of maximum on span here maximum occurs pan: 1 : L Only	D	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft
Uniform Load : ESIGN SUMMARY Maximum Bending St Section used for this : Ma : Appl Mn / Ome Load Combination Span # where maximu Maximum Deflection Max Downward Trans	D = 0.01773 k/ft, tress Ratio = span ied aga : Allowable um occurs sient Deflection nt Deflection Deflection	Tributary Width = 1.0 ft 0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 1, 0.000 in Ratio = 1,	t, (parafet wall) Maximum Shea Section t Va Vn Load Cor Location Span # w 481 >=240. 0 <240.0 Sp	r Stress Ratio = used for this span : Applied /Omega : Allowable nbination of maximum on span here maximum occurs	D	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft
Uniform Load : ESIGN SUMMARY Maximum Bending St Section used for this : Ma : Appl Mn / Ome Load Combination Span # where maximum Maximum Deflection Max Downward Transier Max Downward Total Max Upward Total Deflection	D = 0.01773 k/ft, tress Ratio = span ied ega : Allowable um occurs sient Deflection ht Deflection peflection eflection flections	Tributary Width = 1.0 ft 0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 1, 0.000 in Ratio = 1, 0.458 in Ratio = 0,000 in Ratio = 1, 0.000 in	t, (parafet wall) Maximum Shea Section U Va Vn Load Cor Location Span # w 481 >=240. 0 <240.0 Sp 778 >=180 Sp 0 <180	r Stress Ratio = used for this span : Applied /Omega : Allowable nbination of maximum on span there maximum occurs pan: 1 : L Only pan: 1 : +D+L		0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft Span # 1
Uniform Load : DESIGN SUMMARY Maximum Bending St Section used for this s Ma : Appl Mn / Ome Load Combination Span # where maxim Maximum Deflection Max Downward Transier Max Downward Transier Max Downward Total Max Upward Total Deflection Max Upward Total Deflection Max Downward Total Deflection Max Downward Total Deflection Max Upward Total Deflection Max Upward Total Deflection	D = 0.01773 k/ft, tress Ratio = span ied ga : Allowable um occurs sient Deflection nt Deflection Deflection eflection flections Span M	0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 0.458 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 38.233 k-ft	t, (parafet wall) Maximum Shea Section t Va Vn Load Cor Location Span # w 481 >=240. 0 <240.0 Sp 778 >=180 Sp 0 <180 pan Load Comt	r Stress Ratio = used for this span : Applied /Omega : Allowable nbination of maximum on span there maximum occurs pan: 1 : L Only pan: 1 : +D+L	Max. "+" Defl	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft Span # 1 Location in Spa
Uniform Load : ESIGN SUMMARY Maximum Bending St Section used for this : Ma : Appl Mn / Ome Load Combination Span # where maximum Maximum Deflection Max Downward Transier Max Downward Transier Max Downward Total Max Upward Total Deflection Max Upward Total Deflection Max Downward Total Max Upward Total Deflection Max Upward Total Deflection	D = 0.01773 k/ft, tress Ratio = span ied ega : Allowable um occurs sient Deflection ht Deflection peflection eflection flections	0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.4577 14.92	t, (parafet wall) Maximum Shea Section t Va Vn Load Corr Span # w 481 >=240. 0 <240.0 Sp 778 >=180 Sp 0 <180 pan Load Comt 20	r Stress Ratio = ised for this span : Applied /Omega : Allowable nbination of maximum on span here maximum occurs pan: 1 : L Only pan: 1 : +D+L	Max. "+" Defl 0.0000	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft Span # 1 Location in Spa
Uniform Load : ESIGN SUMMARY Maximum Bending St Section used for this : Ma : Appl Mn / Ome Load Combination Span # where maximu Maximum Deflection Max Downward Transier Max Downward Transier Max Downward Total Max Upward Total Deflection Max Upward Total Deflection Max Downward Total Max Downward Total Deflection Max Downward Total Deflection Max Downward Total Deflection Max Upward Total Deflection	D = 0.01773 k/ft, tress Ratio = span ied ga : Allowable um occurs sient Deflection nt Deflection Deflection eflection flections Span M	0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.4577 14.92	t, (parafet wall) Maximum Shea Section t Va Vn Load Cor Location Span # w 481 >=240. 0 <240.0 Sp 778 >=180 Sp 0 <180 pan Load Comt	r Stress Ratio = ised for this span : Applied /Omega : Allowable nbination of maximum on span here maximum occurs pan: 1 : L Only pan: 1 : +D+L	Max. "+" Defl	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft Span # 1 Location in Spa
Uniform Load : ESIGN SUMMARY Maximum Bending St Section used for this : Ma : Appl Mn / Ome Load Combination Span # where maximum Maximum Deflection Max Downward Transier Max Downward Transier Max Downward Total Max Upward Total Deflections Max Upward Total Deflections Max Upward Total Deflections Max Upward Total Deflections Max Upward Total Deflections Load Combination +D+L Entical Reactions Load Combination Overall MAXimum	D = 0.01773 k/ft, tress Ratio = span ied ega : Allowable um occurs sient Deflection th Deflection offlection flections 1 Support 1 6.409	0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.458 in Ratio = 0.4577 14.92 Support 2 6.168	t, (parafet wall) Maximum Shea Section t Va Vn Load Corr Span # w 481 >=240. 0 <240.0 Sp 778 >=180 Sp 0 <180 pan Load Comt 20	r Stress Ratio = ised for this span : Applied /Omega : Allowable nbination of maximum on span here maximum occurs pan: 1 : L Only pan: 1 : +D+L	Max. "+" Defl 0.0000	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft Span # 1 Location in Spa
Uniform Load : ESIGN SUMMARY Maximum Bending St Section used for this : Ma : Appl Mn / Ome Load Combination Span # where maximu Maximum Deflection Max Downward Transier Max Downward Transier Max Downward Transier Max Downward Total Max Upward Total Deflections Max Upward Total Deflections Max Upward Total Deflections Hore Combination +D+L Ertical Reactions Load Combination	D = 0.01773 k/ft, tress Ratio = span ied aga : Allowable um occurs sient Deflection th Deflection peflection flections 1 Support 1	0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.458 in Ratio = 0.4577 14.92 Support 2	t, (parafet wall) Maximum Shea Section t Va Vn Load Corr Span # w 481 >=240. 0 <240.0 Sp 778 >=180 Sp 0 <180 pan Load Comt 20	r Stress Ratio = ised for this span : Applied /Omega : Allowable nbination of maximum on span here maximum occurs pan: 1 : L Only pan: 1 : +D+L	Max. "+" Defl 0.0000	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft Span # 1
Uniform Load : ESIGN SUMMARY Maximum Bending St Section used for this : Ma : Appl Mn / Ome Load Combination Span # where maximu Maximum Deflection Max Downward Transier Max Downward Transier Max Downward Total Max Upward Transier Max Downward Total Max Upward Total De Verall Maximum Deflections Load Combination +D+L Entical Reactions Overall MAXimum Overall MINimum D Only +D+L	D = 0.01773 k/ft, tress Ratio = span ied aga : Allowable um occurs sient Deflection th Deflection beflection flections flections 1 Support 1 6.409 1.793 2.989 6.409	0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.458 in Ratio = 0.4577 14.92 Support 2 6.168 1.736 2.894 6.168	t, (parafet wall) Maximum Shea Section t Va Vn Load Corr Span # w 481 >=240. 0 <240.0 Sp 778 >=180 Sp 0 <180 pan Load Comt 20	r Stress Ratio = ised for this span : Applied /Omega : Allowable nbination of maximum on span here maximum occurs pan: 1 : L Only pan: 1 : +D+L	Max. "+" Defl 0.0000	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft Span # 1 Location in Spa
Uniform Load : ESIGN SUMMARY Maximum Bending St Section used for this : Ma : Appl Mn / Ome Load Combination Span # where maximu Maximum Deflection Max Downward Transier Max Upward Transier Max Upward Transier Max Upward Total Deflections Max Upward Total Deflections Max Upward Total Deflections Max Upward Total Deflections Max Upward Total Deflections Load Combination +D+L Ertical Reactions Load Combination Overall MAXimum Overall MINimum D Only	D = 0.01773 k/ft, tress Ratio = span ied aga : Allowable um occurs sient Deflection nt Deflection offlection flections 1 Support 1 6.409 1.793 2.989	0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.4577 14.92 Support 2 6.168 1.736 2.894	t, (parafet wall) Maximum Shea Section t Va Vn Load Corr Span # w 481 >=240. 0 <240.0 Sp 778 >=180 Sp 0 <180 pan Load Comt 20	r Stress Ratio = ised for this span : Applied /Omega : Allowable nbination of maximum on span here maximum occurs pan: 1 : L Only pan: 1 : +D+L	Max. "+" Defl 0.0000	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft Span # 1 Location in Spa
Uniform Load : DESIGN SUMMARY Maximum Bending St Section used for this : Ma : Appl Mn / Ome Load Combination Span # where maximum Maximum Deflection Max Downward Transier Max Downward Transier Max Downward Transier Max Downward Total Deflection Max Downward Total Max Upward Total Deflection Max Downward Total Max Upward Total Deflection Max Downward Total Max Upward Total Deflection Max Downward Total Max Downward Total Downward Total Donly +D+L +D+0.750L	D = 0.01773 k/ft, tress Ratio = span ied aga : Allowable um occurs sient Deflection th Deflection eflection flections Span M 1 Support 1 6.409 1.793 2.989 6.409 5.554	0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.4577 14.92 Support 2 6.168 1.736 2.894 6.168 5.349	t, (parafet wall) Maximum Shea Section t Va Vn Load Corr Span # w 481 >=240. 0 <240.0 Sp 778 >=180 Sp 0 <180 pan Load Comt 20	r Stress Ratio = ised for this span : Applied /Omega : Allowable nbination of maximum on span here maximum occurs pan: 1 : L Only pan: 1 : +D+L	Max. "+" Defl 0.0000	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft Span # 1 Location in Spa 0.000
Uniform Load : DESIGN SUMMARY Maximum Bending St Section used for this : Ma : Appl Mn / Ome Load Combination Span # where maximum Maximum Deflection Max Downward Transier Max Downward Transier Max Downward Transier Max Downward Transier Max Downward Total Deflection Max Downward Total Deflection HINING Downward Total Deflection HINING HINI	D = 0.01773 k/ft, tress Ratio = span ied aga : Allowable um occurs sient Deflection th Deflection eflection flections Span M 1 Support 1 6.409 1.793 2.989 6.409 5.554 1.793	0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.4577 14.92 Support 2 6.168 1.736 2.894 6.168 5.349 1.736	t, (parafet wall) Maximum Shea Section t Va Vn Load Corr Span # w 481 >=240. 0 <240.0 Sp 778 >=180 Sp 0 <180 pan Load Comt 20	r Stress Ratio = ised for this span : Applied /Omega : Allowable nbination of maximum on span here maximum occurs pan: 1 : L Only pan: 1 : +D+L	Max. "+" Defl 0.0000 Values in KIPS	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft Span # 1 Location in Spa 0.000 City of Puyallup opment & Permitting Ser
Uniform Load : DESIGN SUMMARY Maximum Bending St Section used for this : Ma : Appl Mn / Ome Load Combination Span # where maximum Maximum Deflection Max Downward Transier Max Downward Transier Max Upward Transier Max Upward Total Deflection Max Downward Total Max Upward Total Deflection Max Upward Total Deflection Max Downward Transier Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection Max Combination +D+L Load Combination Overall MAXimum Overall MAXimum Overall MINimum D Only +D+L +D+0.750L +0.60D	D = 0.01773 k/ft, tress Ratio = span ied aga : Allowable um occurs sient Deflection th Deflection eflection flections Span M 1 Support 1 6.409 1.793 2.989 6.409 5.554 1.793	0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.4577 14.92 Support 2 6.168 1.736 2.894 6.168 5.349 1.736	t, (parafet wall) Maximum Shea Section t Va Vn Load Corr Span # w 481 >=240. 0 <240.0 Sp 778 >=180 Sp 0 <180 pan Load Comt 20	r Stress Ratio = ised for this span : Applied /Omega : Allowable nbination of maximum on span here maximum occurs pan: 1 : L Only pan: 1 : +D+L	Max. "+" Defl 0.0000 Values in KIPS	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft Span # 1 Location in Spa 0.000
Uniform Load : DESIGN SUMMARY Maximum Bending St Section used for this : Ma : Appl Mn / Ome Load Combination Span # where maximum Maximum Deflection Max Downward Transier Max Downward Transier Max Upward Transier Max Upward Total Deflection Max Downward Total Max Upward Total Deflection Max Upward Total Deflection Max Downward Transier Max Upward Total Deflection Max Upward Total Deflection Max Upward Total Deflection Max Combination +D+L Load Combination Overall MAXimum Overall MAXimum Overall MINimum D Only +D+L +D+0.750L +0.60D	D = 0.01773 k/ft, tress Ratio = span ied aga : Allowable um occurs sient Deflection th Deflection eflection flections Span M 1 Support 1 6.409 1.793 2.989 6.409 5.554 1.793	0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.4577 14.92 Support 2 6.168 1.736 2.894 6.168 5.349 1.736	t, (parafet wall) Maximum Shea Section t Va Vn Load Corr Span # w 481 >=240. 0 <240.0 Sp 778 >=180 Sp 0 <180 pan Load Comt 20	r Stress Ratio = ised for this span : Applied /Omega : Allowable nbination of maximum on span here maximum occurs pan: 1 : L Only pan: 1 : +D+L	Max. "+" Defl 0.0000 Values in KIPS	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft Span # 1 Location in Spa 0.000 City of Puyallup poment & Permitting Ser ISSUED PERMIT Suiding Plannin
Uniform Load : ESIGN SUMMARY Maximum Bending St Section used for this : Ma : Appl Mn / Ome Load Combination Span # where maximum Maximum Deflection Max Downward Transier Max Downward Transier Max Downward Transier Max Downward Total Deflection Max Downward Total Max Upward Total Deflection Max Downward Total Downward Total Downward Total Downward Total Downward Total Max Downward Total Max Upward Total Downward Total Downward Total Max Downward Total Max Upward Total Downward Total Down	D = 0.01773 k/ft, tress Ratio = span ied aga : Allowable um occurs sient Deflection th Deflection eflection flections Span M 1 Support 1 6.409 1.793 2.989 6.409 5.554 1.793	0.230 : 1 W18x35 38.233 k-ft 165.918 k-ft +D+L Span # 1 0.240 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.458 in Ratio = 0.000 in Ratio = 0.4577 14.92 Support 2 6.168 1.736 2.894 6.168 5.349 1.736	t, (parafet wall) Maximum Shea Section t Va Vn Load Corr Span # w 481 >=240. 0 <240.0 Sp 778 >=180 Sp 0 <180 pan Load Comt 20	r Stress Ratio = ised for this span : Applied /Omega : Allowable nbination of maximum on span here maximum occurs pan: 1 : L Only pan: 1 : +D+L	Max. "+" Defl 0.0000 Values in KIPS	0.060 : 1 W18x35 6.409 k 106.20 k +D+L 0.000 ft Span # 1 Location in Spa 0.000 City of Puyallup opment & Permitting Ser ISSUED PERMIT Milding Plannin

Calculations

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

Project File: 22-19079.ec6 Steel Beam LIC# : KW-06013705, Build:20.22.3.31 TAMARACK GROVE ENGINEERING (c) ENERCALC INC 1983-2022 DESCRIPTION: CORNER W18x35 Beam CODE REFERENCES Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : IBC 2018 Material Properties Analysis Method Allowable Strength Design Fy : Steel Yield : 50.0 ksi Beam Bracing : Beam bracing is defined as a set spacing over all spans E: Modulus : 29,000.0 ksi Bending Axis : Major Axis Bending Unbraced Lengths First Brace starts at ft from Left-Most support Regular spacing of lateral supports on length of beam = 3.920 ft D(0.02916) L(0.06480) W18x35 Span = 4.670 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load : D = 0.00450, L = 0.010 ksf, Tributary Width = 6.480 ft, (Panel Load) DESIGN SUMMARY Design OK Maximum Shear Stress Ratio = 0.003:1 Maximum Bending Stress Ratio = 0.002:1 W18x35 Section used for this span Section used for this span W18x35

Ma : Applied	0.352 k-ft	Va : Applied	0.3011 k
Mn / Omega : Allowable	165.918 k-ft	Vn/Omega : Allowable	106.20 k
Load Combination	+D+L	Load Combination Location of maximum on span	+D+L 4.670 ft
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Maximum Deflection			
Max Downward Transient Deflection	0.000 in Ratio = 0	<240.0	
Max Upward Transient Deflection	0.000 in Ratio = 0	<240.0 Span: 1 : L Only	
Max Downward Total Deflection	0.000 in Ratio = 597834	>=180 Span: 1 : +D+L	
Max Upward Total Deflection	0.000 in Ratio = 0	<180	

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
+D+L	1	0.0001	2.348		0.0000	0.000
Vertical Reactions			Suppor	t notation : Far left is #	Values in KIPS	
Load Combination	Support 1	Support 2				
Overall MAXimum	0.301	0.301				
Overall MINimum	0.090	0.090				
D Only	0.150	0.150				
+D+L	0.301	0.301				
+D+0.750L	0.263	0.263				
+0.60D	0.090	0.090				
L Only	0.151	0.151				

Calculations

Project Name: Location: Job Number:

Costco #660 Puyallup, WA 22-19079

Steel Column									Project	File: 22-19	9079.ec6
DESCRIPTION: H		Column	TAMARA	CK GROV	/E EN	IGINEERING			(c) ENE	ERCALC INC	1983-2022
ode References											
Calculations per AISC oad Combinations Us			19, ASCE	7-16							
eneral Information											
Steel Section Name Analysis Method : Steel Stress Grade Fy : Steel Yield E : Elastic Bending Mode	Allowable Si , A500, Grad 4		si, Carbon	n Steel	Top Brac X	-X (width) ax Unbraced Lo -Y (depth) ax	xity for deflection tis : ength for b kis :	Top & Botton on (buckling) uckling ABO uckling ABO	along colum UT Y-Y Axis	= 11.560 f	
oplied Loads						Service loa	ads entered	d. Load Facto	ors will be ap	plied for ca	alculations
Column self weight i AXIAL LOADS Reaction from W					39.	L = 3.571 k				-	
ESIGN SUMMARY	EXEL Douin	, Mai Loud at	11.000 10,	0.1		2 0.0771	·				
Sending & Shear Che	ck Resulte										
PASS Max. Axial+Be		Ratio =		0.1062	: 1	Maxin	num Load	Reactions .			
Load Combin				+D+L			op along X			0.0 k	
	ax.above base location values			0.0	π		ottom alon op along Y	•		0.0 k 0.0 k	
Pa : Axi				6.848	k		op along 1 lottom alon			0.0 k	
Pn / On	nega : Allowabl	4		64.503	k			0		0.0 11	
Ma-x : A	Applied			0.0	k-ft			Deflections			
Mn-x / C	Omega : Allowa	able		13.520	k-ft	Along	Y-Y ad combin	0.0 in	at	0.0ft a	bove bas
Ma-y : / Mn-y / 0	Applied Omega : Allowa	able		0.0 13.520		Along	X-X	0.0 in	at	0.0ft a	bove bas
	-					for lo	ad combin	ation :			
PASS Maximum Sh		atic		0.0	: 1						
Load Combin	nation nax.above base	-		0.0 0.0	ft						
At maximum	location values										
Va:Ap Vn / O	oplied mega : Allowab	le		0.0 0.0							
aximum Reactions								Note: O	nly non-zero	reactions	are listed.
		Axial Reaction	X-X Axis			Y-Y Axis R		Mx - End M	loments k-ft	My - End	d Moment
Load Combination		@ Base	@ Base	@ Top		@ Base	@ Top	@ Base	@ Top	@ Base	@ Top
D Only		3.277									
+D+L +D+0.750L		6.848 5.956									
+0.60D		1.966									
L Only		3.571									
treme Reactions											
		Axial Reaction	X-X Axis			Y-Y Axis F			oments k-ft		
	Extreme Value	-	@ Base	@ Top)	@ Base	@ Top	@ Base	@ Top	@ Base	@ Top
xial @ Base "	Maximum Minimum	6.848 1.966									
Reaction, X-X Axis Base		3.277									
"	Minimum	3.277									
Reaction, Y-Y Axis Base	Maximum Minimum	3.277 3.277									
Reaction, X-X Axis Top	Maximum	3.277									
"	Minimum	3.277									
Reaction, Y-Y Axis Top	Maximum	3.277									
" Noment, X-X Axis Base	Minimum Maximum	3.277 3.277									
		0.211									
										Development &	Puyallup Permitting Ser D PERMIT Planning Public Wo

Calculations

Project Name: Costco #660 Puyallup, WA Job Number: 22-19079

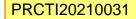
6.7104

Steel Column

Project File: 22-19079.ec6 LIC# : KW-06013705, Build:20.22.3.31 TAMARACK GROVE ENGINEERING (c) ENERCALC INC 1983-2022

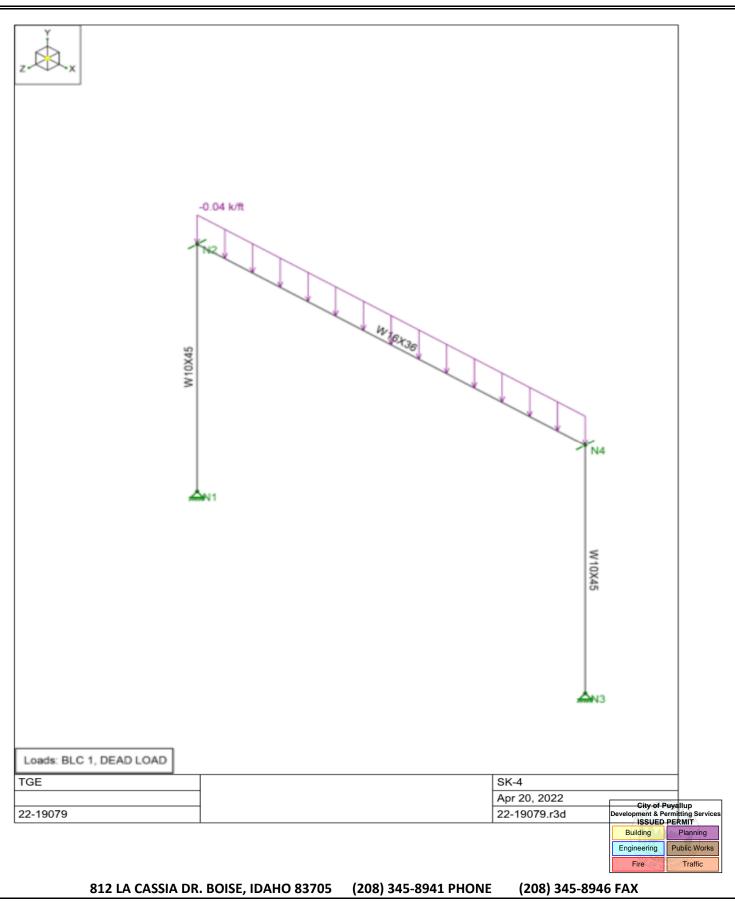
DESCRIPTION: HSS5x5x3/16 Column

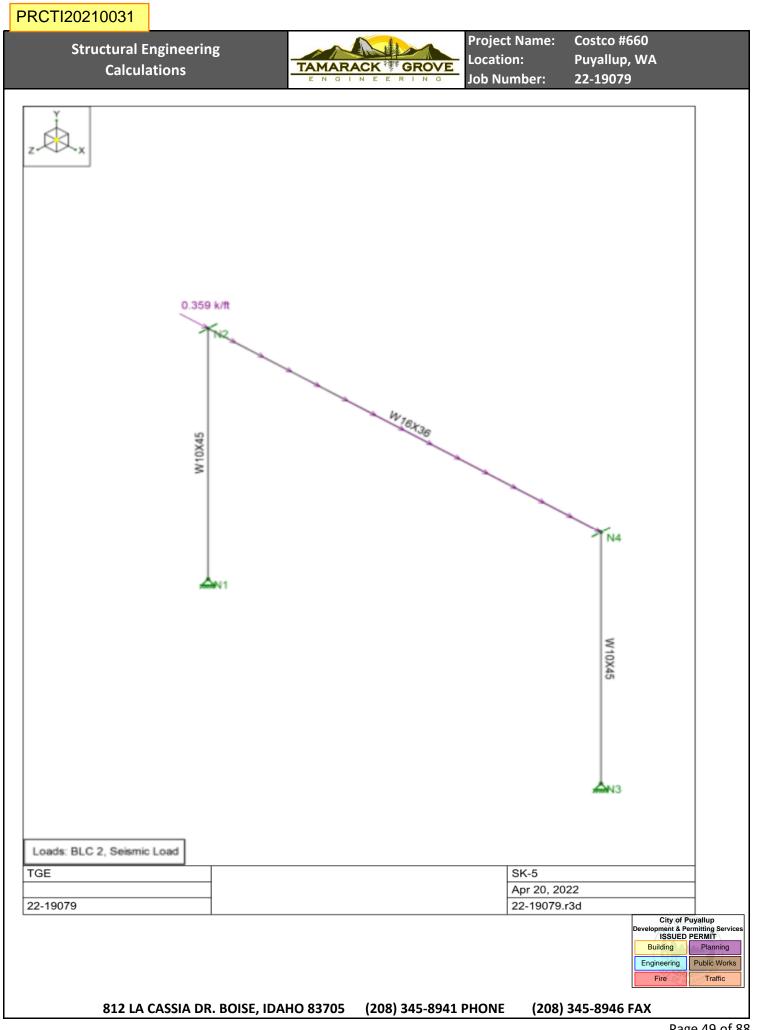
	A	xial Reaction	X-X Axis	Reaction	k	Y-Y Axis Reaction	Mx - End M	oments k-ft	My - End	Moments
tem	Extreme Value	@ Base	@ Base	@ Top		@ Base @ Top	@ Base	@ Top	@ Base	@ Top
"	Minimum	3.277								
Moment, Y-Y Axis Base	 Maximum 	3.277								
	Minimum	3.277								
Moment, X-X Axis Top	Maximum	3.277								
	Minimum	3.277								
Moment, Y-Y Axis Top	Maximum	3.277								
	Minimum	3.277								

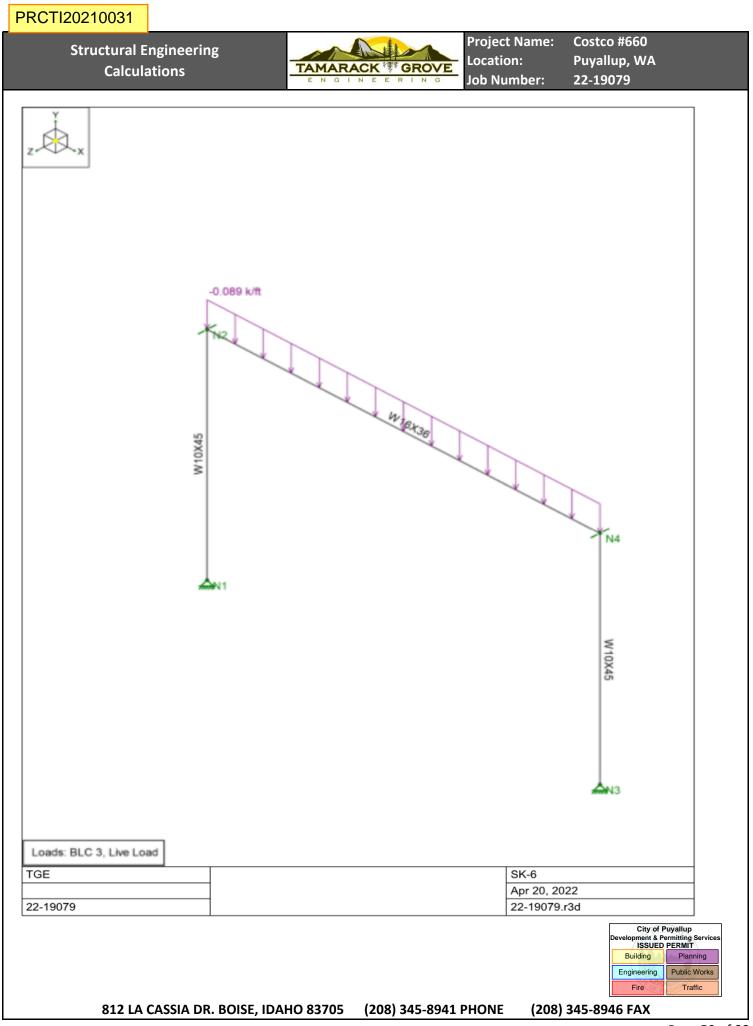

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance	
D Only	0.0000 in	0.000 ft	0.000 in	0.000 ft	
+D+L	0.0000 in	0.000 ft	0.000 in	0.000 ft	
+D+0.750L	0.0000 in	0.000 ft	0.000 in	0.000 ft	
+0.60D	0.0000 in	0.000 ft	0.000 in	0.000 ft	
L Only	0.0000 in	0.000 ft	0.000 in	0.000 ft	
Sketches					

8.710


Calculations




Project Name: Co Location: Pu Job Number: 22

Costco #660 Puyallup, WA 22-19079

SOFTWARE PRINTOUTS (RISA)

PRCTI20210031					
	Engineering ations			Project Name Location: Job Number:	: Costco #660 Puyallup, WA 22-19079
	Company : TGE Designer : Job Number : 22-190 Model Name :)79			4/20/2022 12:06:02 PM Checked By :
	roperties [ksi] G [ksi] Nu 9000 11154 0.3	Therm. Coeff. [1 0.65		ity [k/ft³] Yield .49 50	
Hot Rolled Steel S Label 1 BEAM 2 COLUMN	ection Sets Shape W16X36 W10X45	Beam Wide	gn List Materi Flange A992 Flange A992	2 Typical	Area [in²]lyy [in⁴]lzz [in⁴]J [in⁴]10.624.54480.54513.353.42481.51
Hot Rolled Steel D Label	esign Parameters Shape COLUMN COLUMN	Length [ft] 10.06 10.06	Lb y-y [ft]	Lb z-z [ft]	Lcomp top [ft] Function Lbyy Lateral Lbyy Lateral
2 M3 3 M4 Node Coordinates	BEAM	16.35	1.96	13.223	1.96 Lateral
Label 1 N1 2 N2 3 N3 4 N4	X [ft] 0 0 16.35 16.35	Y [ft] 0 10.06 0 10.06	Z [0 0 0 0		Detach From Diaphragm
1 DEAD	escription LOAD	Category DL EL		Y Gravity -1	Distributed 1 1
3 Live Member Distribute	Load d Loads (BLC 1 : DEAD	LL LOAD)	anitudo [k/ft E ko	of k ff/ft]Stort Loo	ation [(ft, %)]End Location [(ft, %)]
1 M4 Y Member Distribute	-0.04 d Loads (BLC 2 : Seism	ic Load)	-0.04		0 %100
1 M4 X	on Start Magnitude [k/ft, F, 0.36 od Loads (BLC 3 : Live L		gnitude [k/ft, F, ks 0.36	sf, k-ft/ft]Start Loca	ation [(ft, %)]End Location [(ft, %)] 0 %100
Member LabelDirection	-0.089	ksf, k-ft/ft]End Ma	gnitude [k/ft, F, ks -0.089	sf, k-ft/ft]Start Loca	ation [(ft, %)]End Location [(ft, %)] 0
De 1 SEISM 2 SEISM	escription MIC DRIFT(+) MIC DRIFT(-) flection 1	Solve P-Delta Y Y Yes Y	BLC Factor DL 1 DL 1 DL 1 DL 1	BLC Factor EL 1 EL -1	BLCFactorBLCFactorLL0.75LL0.75
RISA-3D Version 19		[22-19	079.r3d]		City of Puyallup Development & Permitting Gervices /ISSUED PERMIT Building Planning Engineering Public Works Fire of Traffic
812 LA	CASSIA DR. BOISE, ID	AHO 83705 (2	208) 345-8941	PHONE (20	8) 345-8946 FAX

Structural Engineering Calculations

Costco #660 Project Name: Puyallup, WA Location: Job Number: 22-19079

IRISA

Company : TGE Designer

Job Number : 22-19079 Model Name :

4/20/2022 12:06:02 PM Checked By :

Load Combinations (Continued)

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
4	Deflection 2	Yes	Y	LL	1						
5	Deflection 3	Yes	Y	DL	1	LL	1				
6	IBC 16-1	Yes	Y	DL	1.4						
7	IBC 16-2 (a)	Yes	Y	DL	1.2	LL	1.6	LLS	1.6	RLL	0.5
8	IBC 16-2 (b)	Yes	Y	DL	1.2	LL	1.6	LLS	1.6		
9	IBC 16-3 (a)	Yes	Y	DL	1.2	RLL	1.6	LL	0.5	LLS	1
10	IBC 16-5	Yes	Y	DL	1.2	EL	1	LL	0.5	LLS	1
11	IBC 16-7	Yes	Y	DL	0.9	EL	1				
12	IBC 16-5	Yes	Ý	DL	1.2	Om*EL	1	LL	0.5	LLS	1
13	IBC 16-7	Yes	Ý	DL	0.9	Om*EL	1				

Envelope Node Reactions - Overstrength or Capacity Limit

	Node Label		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N4	max	0	13*	0	13*	0	13*	0	13*	0	13*	0	13*
2		min	0	12*	0	12*	0	12*	0	12*	0	12*	0	12*
3	N2	max	0	13*	0	13*	0	13*	0	13*	0	13*	0	13*
4		min	0	12*	0	12*	0	12*	0	12*	0	12*	0	12*
5	N1	max	-5.762	12*	-5.585	12*	0	13*	0	13*	0	13*	0	13*
6		min	-5.846	13*	-6.269	13*	0	12*	0	12*	0	12*	0	12*
7	N3	max	-5.909	13*	8.907	12*	0	13*	0	13*	0	13*	0	13*
8		min	<mark>-5.994</mark>	12*	8.212	13*	0	12*	0	12*	0	12*	0	12*
9	Totals:	max	-11.756	13*	3.321	12*	0	13*						
10		min	-11.756	12*	1.943	13*	0	12*						

Envelope Beam Deflections

	Member Label	Span		Location [ft]	y' [in]	(n) L'/y' Ratio	LC
1	M4	1	max	0.681	-0.001	NC	6
2		1	min	4.088	-0.028	6898	10

Envelope Member Section Forces Member Sec LC y Shear[k] Axial[k] LC z Shear[k] LC Torque[k-ft] LC y-y Moment[k-ft] LC 5.798 -0.294 M1 max 2.465 1 8 13' 0 0 11 1 0 11 11 13* 2 7 0 3 3 3 min -6.269 0 3 2 max 2.328 8 5.798 13' 0 11 0 11 0 11 -0.294 4 min |-6.371 13* 7 0 з 0 3 0 3 5 3 max 2.192 8 5.798 13 0 11 0 11 0 11 min -6.474 6 -0.2947 3 3 0 3 13* 0 0 7 4 max 2.055 8 5.798 13* 0 11 0 11 0 11 8 0 min |-6.576 -0.2940 3 3 13* 7 0 3 9 5 max 1.919 8 5.798 13' 0 11 0 11 0 11 10 min -6.679 13* -0.294 7 0 3 0 3 0 3 M3 11 8.36 12* -0.096 3 0 11 0 11 0 11 1 max 12 0.624 -6.059 12' 0 3 0 3 0 3 min 3 2 13 11 11 11 max 8.497 12* -0.096 3 0 0 0 14 0.731 -6.059 12* 0 3 0 3 0 3 min 4 15 3 max 8.634 12* -0.096 3 0 11 0 11 0 11 12' 16 min 0.731 4 -6.059 0 3 0 3 0 3 17 8.77 12* 11 11 0 11 -0.096 0 0 4 max 3 18 0.731 4 -6.059 12* 0 3 0 3 0 3 min 19 11 0 0 12 -0.0960 11 11 5 max 8.907 3 20 0.731 4 -6.059 12* 0 3 0 3 0 3 min 21 M4 max 0.294 8 1.919 8 0 11 0 11 0 11 City of Puyallup RISA-3D Version 19 [22-19079.r3d]

ISSUED PERMIT Page 2 Planning Building Engineering Public Works Fire Traffic

812 LA CASSIA DR. BOISE, IDAHO 83705 (208) 345-8946 FAX (208) 345-8941 PHONE

LC

11

3

8

13*

8

13*

8

13*

8

13*

3

12*

3

12*

3

12*

3

12*

11

3

8

z-z Moment[k-ft]

0

0

0.739

-14.581

1.478

-29.162

2.217

-43.742

2.955

-58.323

-0.961

-60.953

-0.721

-45.715

-0.481

-30.477

-0.24

-15.238

0

0

2.955

Structural Engineering Calculations

Project Name: Costco #660 Location: Puyallup, WA 22-19079 Job Number:

IRISA

Company : TGE Designer : Job Number : 22-19079 Model Name :

4/20/2022 12:06:02 PM Checked By : _

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[k]	LC	y Shear[k]	LC	z Shear[k]	LC	Torque[k-ft]	LC	y-y Moment[k-ft]	LC	z-z Moment[k-ft]	LC
22			min	-2.867	11	-3.059	11	0	3	0	3	0	3	-28.729	11
23		2	max	0.294	8	0.959	8	0	11	0	11	0	11	-0.952	3
24			min	-1.397	11	-3.339	11	0	3	0	3	0	3	-16.508	10
25		3	max	0.294	8	0	9	0	11	0	11	0	11	-1.43	11
26			min	0.072	11	-3.623	10	0	3	0	3	0	3	-4.887	7
27		4	max	1.626	10	-0.312	3	0	11	0	11	0	11	13.941	11
28			min	0.096	3	-4.18	10	0	3	0	3	0	3	-2.927	7
29		5	max	3.096	10	-0.624	3	0	11	0	11	0	11	31.335	10
30			min	0.096	3	-4.737	10	0	3	0	3	0	3	0.961	3

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shear Check	Loc[ft]	Dir	LC	phi*Pnc [k]	phi*Pnt [k]	phi*Mn y-y [k-ft]	phi*Mn z-z [k-ft]	Cb	Eqn
1	M1	W10X45	0.289	10.06	13*	0.055	10.06	У	13*	458.993	598.5	76.125	205.875	1.667	H1-1b
2	M3	W10X45	0.305	0	12*	0.057	10.06	У	12*	458.993	598.5	76.125	205.875	1.667	H1-1b
3	M4	W16X36	0.136	16.35	10	0.034	16.35	У	10	265.715	477	40.5	240	2.194	H1-1b

			Development & P	Puyallup termitting Services	
RISA-3D Version 19	[22-	-19079.r3d]	Building Engineering Fire	PERMIT Planning Public Works Traffic	Page 3
812 LA CASSIA DR. BC	DISE, IDAHO 83705	(208) 345-8941 PHONE	(208) 345-8	946 FAX	

Structural Engineering Calculations

Project Name: Costco #660 Puyallup, WA Location: Job Number: 22-19079

IRISA

Company : TGE Designer : Job Number : 22-19079 Model Name :

4/20/2022 12:07:29 PM Checked By : ____

Node Displacements (By Combination)

	LC	Node Label	X [in]	Y [in]	Z [in]	X Rotation [rad]	Y Rotation [rad]	Z Rotation [rad]
1	2	N1	0	0	0	0	0	5.005e-3
2	2	N2	-0.456	-0.002	0	0	0	1.049e-3
3	2	N3	0	0	0	0	0	4.864e-3
4	2	N4	-0.456	0.001	0	0	0	1.363e-3

RISA-3D Version 19	[22-19	079.r3d]		Pag
			Development & F	Puyallup Permitting Services
			Building	Planning
			Engineering	Public Works
			Fire	Traffic
812 LA CASSIA DR. I	BOISE, IDAHO 83705	(208) 345-8941 PHONE	(208) 345-894	6 FAX

Calculations

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

SOFTWARE PRINTOUTS (RISA CONNECTION)

RISA Connection version 12.0.2

04.20.2022

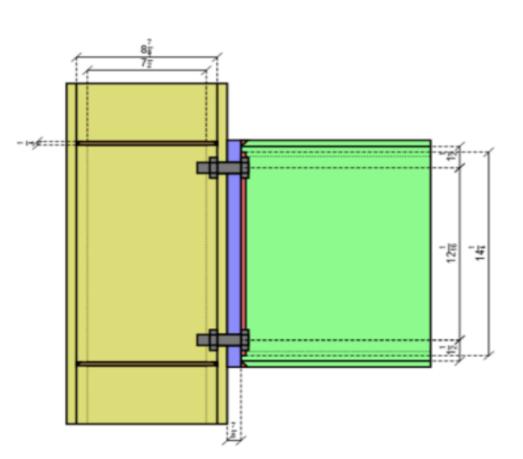
Global Parameters - Description:

Project Title	22-19079
Company	TGE
Designer Job Number	
Job Number	22-19079
Notes	

Global Parameters - Solution:

Design Method	AISC 15th (360-16): LRFD
Bolt Group Analysis Method	Center of Rotation
Weld Analysis Method	Elastic
Consider Bolt Hole Deformation?	Yes
Check Rotational Ductility?	Yes
Check Weld Filler Metal Matching?	Yes
Full Shear Eccentricity Considered?	No
Panel-Zone Shear Deformation Considered?	No
Check Weld Base Material Thickness?	Yes
Reduce Available Bolt Strength by Prying Effects Factor Q?	No

Development & P	Puyallup ermitting Services PERMIT	
Building	Planning	Page 1 of 7
Engineering	Public Works	Page 1 of 7
Fire	Traffic	


Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

Column/Beam Flush End Plate Moment

Connection

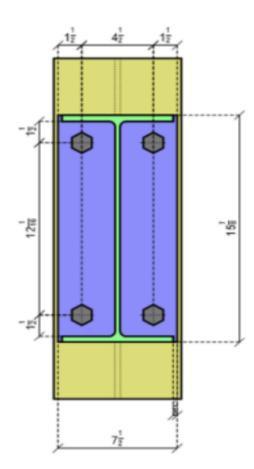
M4 I - M1: 2D Views Report

Side view

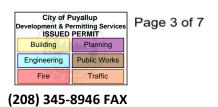
continued on next page ...

812 LA CASSIA DR. BOISE, IDAHO 83705 (208) 345-8941 PHONE

Calculations



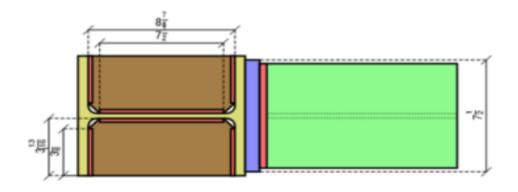
Project Name: Location: Job Number:


Costco #660 Puyallup, WA 22-19079

M4 I - M1: 2D Views Report (continued):

Front view

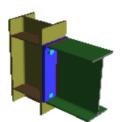
continued on next page


812 LA CASSIA DR. BOISE, IDAHO 83705 (208) 345-8941 PHONE

Project Name: Costco #660 Location: Puyallup, WA 22-19079 Job Number:

M4 I - M1: 2D Views Report (continued):

Top view


Structural Engineering Calculations

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

LRFD

M4 I - M1: LRFD Results Report

				Connection
Material Properties:				
Column	W10X45	A992	F _y = 50.00 ksi	F _u = 65.00 ksi
Beam	W16X36	A992	F _y = 50.00 ksi	F _u = 65.00 ksi
Plate	P0.88x7.50x15. 90	A36	F _y = 36.00 ksi	F _u = 58.00 ksi
Transverse	P0.25x3.83x8.8	A36	F _v = 36.00 ksi	F _u = 58.00 ksi
Stiffener	6		,	-
Input Data:				
Shear Load	-6.6	58 kips	User Input Shear L	oad
Moment	-58	.32 kips-ft	User Input Momen	nt
Axial Load	-5.8	35 kips	User Input Axial Fo	orce (tension)
Puf_c	42.	32 kips	Required Flange Fo	orce (compression)
Puf_t	48.	16 kips	Required Flange Fo	orce (tension)
Top Column Dist	0 in		User Input Top Col	lumn Dist
Column Force	-6.6	57 kips	User Input Column	Force
Story Shear	-5.8	30 kips	User Input Story SI	hear

Governing LC: 3D - 13* - IBC 16-7

Column/Beam Flush End Plate Moment

Note: Unless specified, all code references are from AISC 360-16

Limit State	Required	Available	Unity Check	Result
Geometry Restrictions at Column				PASS
Bolt Shear Strength	6.68 kips	35.78 kips	0.19	PASS
Bolt Bearing on Column	6.68 kips	35.78 kips	0.19	PASS
Bolt Bearing on Plate at Column	6.68 kips	35.78 kips	0.19	PASS
Beam Web Weld Strength				PASS
Beam Flange Weld Strength				PASS
Bolt Moment Strength (no prying)	48.16 kips	53.03 kips	0.91	PASS
Verify Bolt Prying Assumption				PASS
End Plate Flexural Yielding	60.21 kips	126.79 kips	0.47	PASS
End Plate Shear Yielding	60.21 kips	141.75 kips	0.42	PASS
End Plate Shear Rupture	60.21 kips	131.32 kips	0.46	PASS
Column Flexural Yielding	60.21 kips	90.72 kips	0.66	PASS
Column Web Yielding	48.16 kips	65.32 kips	0.74	PASS
Column Web Buckling	42.32 kips	70.94 kips	0.60	PASS
Column Web Crippling	42.32 kips	68.58 kips	0.62	PASS
Column Panel Zone Shear	51.04 kips	95.44 kips	0.53	PASS

Page 5 of 7

Project Name:CosLocation:PuyJob Number:22-3

Costco #660 Puyallup, WA 22-19079

M4 I - M1: Members Report

Column/Beam Flush End Plate Moment Connection

Column	W10X45	
Material		
Name	A992	Material name
Fy	50.00 ksi	Minimum yield stress of material
Fu	65.00 ksi	Minimum tensile stress of material
E	29000.00 ksi	Modulus of elasticity
Member Properties		
b _f	8 in	Flange width
d	10 1/8 in	Overall depth
t _w	3/8 in	Web thickness
t _f	5/8 in	Flange thickness
а	13.30 in ²	Area
k _{des}	1 1/8 in	Kdes
k _{det}	1 5/16 in	Kdet
k ₁	13/16 in	К1
Hole		
Hole type	Standard	
D _x	13/16 in	Hole width
Dy	13/16 in	Hole height
R	1	Number of rows of holes
c	1	Number of holes per row
R _s	3 in	Row Spacing
C,	3 in	Column Spacing
Beam	W16X36	
Material		
Name	A992	Material name
Fy	50.00 ksi	Minimum yield stress of material
Fu	65.00 ksi	Minimum tensile stress of material
E	29000.00 ksi	Modulus of elasticity
Member Properties		
b _f	7 in	Flange width
d	15 7/8 in	Overall depth
t _w	5/16 in	Web thickness
t _f	7/16 in	Flange thickness
а	10.60 in ²	Area
k _{des}	13/16 in	Kdes
k _{det}	1 1/8 in	Kdet
	3/4 in	KI
k ₁	5/4 111	VT

Page 6 of 7

Project Name: Cost Location: Puya Job Number: 22-1

Costco #660 Puyallup, WA 22-19079

M4 I - M1: Connection Properties Report

Column/Beam Flush End Plate Moment Connection

Connection Title	M4 I - M1
Connection Type	Column/Beam Flush End Plate Moment Connection
onnection Category	
Tension Side	Тор
Bolt Pattern	2 Bolts
Transverse Stiffeners	Yes
Web Doublers	No
oading (LRFD)	
Custom?	No
Shear Load	-6.68 kips
Axial Load	-5.85 kips
Moment Load	-58.32 kips-ft
Top Column Dist	0 in
Column Force	-6.67 kips
Story Shear	-5.80 kips
omponents	
Column Section	W10X45
Material	A992
Hole Type	STD
Beam Section	W16X36
Material	A992
Plate Section	P0.88x7.50x15.90
Material	A36
Thickness	7/8 in
Width	7 1/2 in
Depth	15 7/8 in
Hole Type	STD
Transverse Stiffener Section	P0.25x3.83x8.86
Material	A36
	36.00 ksi
Fy Fu	58.00 ksi
E	29000.00 ksi
Full Depth Stiffener	Yes
Thickness	
Width	1/4 in 2 12/16 in
	3 13/16 in
Depth Column Bolts	8 7/8 in 2 /4" Crown A N
Column Bolts	3/4" Group A-N
Column Bolts	Group A-N
Diameter, in.	3/4"
Beam Web Weld	E70
Type	CJP
Beam Flange Weld	E70
Туре	CJP
Transverse Stiffener Weld	E70
Туре	CJP
ssembly	
Plate Beam Clearance	1/4 in
Column Bolts Flange Pitch	1 1/2 in
Compression Bolts Flange Pitch	1 1/2 in
Column Bolts Horz Edge Dist	1 1/2 in
Column Bolts Horizontal Gage	4 1/2 in

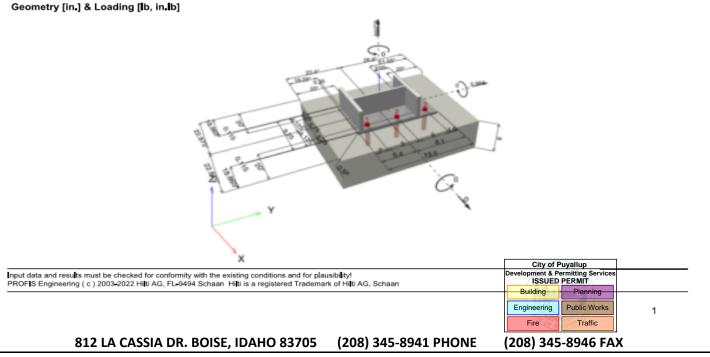
Page 7 of 7

Calculations

Project Name: Co Location: Pu Job Number: 22

Costco #660 Puyallup, WA 22-19079

SOFTWARE PRINTOUTS (ANCHOR)


Hilti PROFIS Engineering 3.0.77

Company:		Page:	1
Address:		Specifier:	
Phone Fax:		E-Mail:	
Design:	Drafts_Wide-Flange-MF	Date:	4/20/2022
Fastening point:	wide flange MF		

Specifier's comments:

1 Input data		
Anchor type and diameter:	Kwik Bolt TZ2 - CS 3/4 (3 3/4) hnom2	
tem number:	2210312 KB-TZ2 3/4x6 1/4	
Effective embedment depth:	h _{ef,act} = 3.750 in., h _{nom} = 4.500 in.	
Material:	Carbon Steel	
Evaluation Service Report:	ESR-4266	
ssued Valid:	12/17/2021 12/1/2023	
Proof:	Design Method ACI 318-14 / Mech	
Stand-off instal ation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.	
Anchor plate ^R :	$\mathbf{I}_{\mathrm{x}} \times \mathbf{I}_{\mathrm{y}} \times \mathrm{t}$ = 8.250 in. x 13.500 in. x 0.500 in.; (Recommended)	ded plate thickness: not calculated)
Profile:	W shape (AISC), W10X45; (L x W x T x FT) = 10.100 in.	x 8.020 in. x 0.350 in. x 0.620 in.
Base material:	cracked concrete, 3000, $f_{\rm c}$ = 3,000 psi; h = 6.000 in.	
Installation:	hammer drilled hole, Installation condition: Dry	
Reinforcement:	tension: condition B, shear: condition B; no supplementa	splitting reinforcement present
Seismic loads (cat. C, D, E, or F)	edge reinforcement: none or < No. 4 bar Tension load: yes (17.2.3.4.3 (d)) Shear load: yes (17.2.3.5.3 (c))	

^R - The anchor calculation is based on a rigid anchor plate assumption.

Calculations

Project Name: Location: Job Number:

Hilti PROFIS Engineering 3.0.77

www.hilti.com				
Company:		Page:		2
Address:		Specifier:		
Phone Fax:		E-Mail:		
Design:	Drafts_Wide-Flange-MF	Date:		4/20/2022
Fastening point:	wide flange MF			
1.1 Design results				
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	N = 6,269; V _x = 0; V _y = 5,994;	yes	99


 $M_x = 0; M_y = 0; M_z = 0;$

21	oad	case/F	Resulting	anchor	forces

Anchor reactions [Ib]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	1,546	999	0	999
2	1,045	999	0	999
3	543	999	0	999
4	1,546	999	0	999
5	1,045	999	0	999
6	543	999	0	999

 max_concrete compressive strain:
 - [‰]

 max_concrete compressive stress:
 - [psi]

 resulting tension force in (x/y)=(0.000/-1.350):
 6,269 [lb]

 resulting compression force in (x/y)=(0.000/0.000):
 0 [lb]

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [I b]	Capacity 🕈 N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	1,546	19,009	9	OK
Pullout Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	6,269	9,049	70	OK

* highest loaded anchor **anchor group (anchors in tension)

nput data and results must be checked for conformity with the existing conditions and for plac			
PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademar	k of Hitu AG, Schaan	City of Puyallup	
		Development & Permitting Services ISSUED PERMIT	2
		Building Planning	2
		Engineering Public Works	
		Fire Traffic	
812 LA CASSIA DR. BOISE, IDAHO 83705	(208) 345-8941 PHONE	(208) 345-8946 FAX	

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

Hilti PROFIS Engineering 3.0.77

Company: Address: Phone I Fax:	1			Page: Specifier: E-Mail:	
Design: Fastening point:	Drafts_W wide flan	/ide-Flange-MF ge MF		Date:	4/20/2022
3.1 Steel Strength					
N _{sa} = ESR value	refer to ICC-E	ES ESR-4266			
$\phi N_{sa} \ge N_{ua}$		able 17.3.1.1			
Variables					
A _{se,N} [in. ²]	f _{uta} [psi]				
0.24	105,904	_			
Calculations					
N _{sa} [b]					
25,345					
Results					
N _{sa} [I b]	φ _{steel}	∲nonduct∎e	φ Ν _{sa} [I b]	N _{ua} [I b]	
25,345	0.750	1.000	19,009	1,546	

812 LA CASSIA DR. BOISE, IDAHO 83705	(208) 345-8941 PHONE	(208) 345-8946 FAX	
		Engineering Public Works	
		Development & Permitting Services ISSUED PERMIT Building Planning	3
nput data and results must be checked for conformity with the existing conditions and for plau PROFIS Engineering (c) 2003–2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademar		City of Puyallup	

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

Hilti PROFIS Engineering 3.0.77

www.hilti.com

Company:		Page:	4
Address:		Specifier:	
Phone Fax:		E-Mail:	
Design:	Drafts_Wide-Flange-MF	Date:	4/20/2022
Fastening point:	wide flange MF		

3.2 Concrete Breakout Failure

$N_{cbg} = \begin{pmatrix} A_{Nc} \\ \overline{A_{Nc}} \end{pmatrix} \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{b}$	ACI 318-14 Eq. (17.4.2.1b)
$\phi N_{cbg} \ge N_{ua}$	ACI 318-14 Table 17.3.1.1
A _{Nc} see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	
$A_{Nc0} = 9 h_{ef}^2$	ACI 318-14 Eq. (17.4.2.1c)
$\psi_{\text{ec,N}} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{\text{ef}}}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.2.5b)
$\Psi_{\text{cp,N}} = \text{MAX}\left(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.7b)
$N_{b} = K_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5}$	AC 318-14 Eq. (17.4.2.2a)

Variables

h _{ef} [in.]	e _{c1.N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	Ψ _{c,N}
3.750	0.000	1.600	20,000	1.000
c _{ac} [in.]	k _c	λ	f _c [psi]	
10_000	21	1.000	3,000	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ _{ec1,N}	$\Psi_{ec2,N}$	$\Psi_{ed,N}$	$\psi_{cp,N}$	N _b [I b]
361.25	126.56	1.000	0.779	1.000	1.000	8,353
Results						
N _{cbg} [lb]	φ _{concrete}	$\phi_{seismic}$	ф _{nonducti} e	φ N _{cbg} [b]	N _{ua} [b]	
18,562	0.650	0.750	1.000	9,049	6,269	-

Input data and results must be checked for conformity with the existing conditions and for plau PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademar			
		City of Puyaltup Development & Permitting Services (SSUED PERMIT Building Planning Engineering Public Works	4
812 LA CASSIA DR. BOISE, IDAHO 83705	(208) 345-8941 PHONE	Fire Traffic (208) 345-8946 FAX	

Project Name: Cos Location: Puy Job Number: 22-

Costco #660 Puyallup, WA 22-19079

Hilti PROFIS Engineering 3.0.77

www.hiiti.com			
Company:		Page:	5
Address:		Specifier:	
Phone Fax:		E-Mail:	
Design:	Drafts_Wide-Flange-MF	Date:	4/20/2022
Fastening point:	wide flange MF		

4 Shear load

	Load V _{ua} [b]	Capacity 🕈 V _n [Ib]	Utilization $\beta_{\rm V} = V_{\rm ua} / \Phi V_{\rm n}$	Status
Steel Strength*	999	8,977	12	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	5,994	33,378	18	OK
Concrete edge failure in direction y+**	5,994	9,781	62	OK

* highest loaded anchor **anchor group (relevant anchors)

4.1 Stee Strength

$V_{sa,eq}$	= ESR value	refer to ICC-ES ESR-4266
φ V _{stee}		ACI 318-14 Table 17.3.1.1

Variables

A _{se,V} [in. ²]	f _{uta} [psi]	$\alpha_{ m V,seis}$	
0_24	105,904	1.000	
Calculations			
V _{sa,eq} [b]			
13,811			
Results			
V 1 61	φ	φ	

V _{sa,eq} [b]	Φ _{stee}	[∲] nonductile	∳V _{sa,eq} [I b]	V _{ua} [lb]
13,811	0.650	1.000	8,977	999

nput data and results must be checked for conformity with the existing conditions and for plausibility!					
PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Tradema	rk of Hi t i AG, Schaan	City of Puyallup			
		Development & Permitting Services /ISSUED PERMIT Building Planning Engineering Public Works Fire Traffic	5		
812 LA CASSIA DR. BOISE, IDAHO 83705	(208) 345-8941 PHONE	(208) 345-8946 FAX			

Calculations

Project Name:Costco #660Location:Puyallup, WAJob Number:22-19079

Hilti PROFIS Engineering 3.0.77

ompany: ddress:				Page: Specifier:		
hone Fax:	I			E-Mail:		
esign: astening point:	Drafts_W wide fland	ide-Flange-MF		Date:		4/20/20
L2 Pryout Strength	1					
$V_{cpg} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc}} \right) \right]$	$\frac{1}{n} \psi_{ec,N} \psi_{ed,N} \psi_{c,N}$	$\Psi_{cp,N} N_b$	ACI 318-14 I	Eq. (17.5.3.1b)		
$\phi V_{cpg} \ge V_{ua}$	0,	-	ACI 318-14	Table 17.3.1.1		
A _{Nc} see ACI 318	-14, Section 17.4.2.	1, Fig. R 17.4.2.1(b))			
Nc0 ef			ACI 318-14 I	Eq. (17.4.2.1c)		
$\Psi_{ec,N} = \left(\frac{1}{1 + \frac{2e_{N}}{3h_{e}}}\right)$	$\left(\frac{1}{1}\right) \leq 1.0$		ACI 318-14 I	Eq. (17.4.2.4)		
$\Psi_{ed,N} = 0.7 + 0.3$	$\left(\frac{c_{a,min}}{1.5h_{ef}}\right) \le 1.0$		ACI 318-14 I	Eq. (17.4.2.5b)		
$\Psi_{cp,N} = MAX \left(\frac{c_{a,mi}}{c_{ac}} \right)$	$\left(\frac{1.5h_{ef}}{c_{\infty}}\right) \leq 1.0$		ACI 318-14 I	Eq. (17.4.2.7b)		
$N_b = k_c \lambda_a \sqrt{f_c}$	h _{ef} ^{1.5}		ACI 318-14 I	Eq. (17.4.2.2a)		
Variables						
k _{cp}	h _{ef} [in.]	e _{c1.N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]		
2	3.750	0.000	0.000	20.000		
Ψ _{c,N}	c _{ac} [in.]	k _c	λ	ŕ _c [psi]		
1.000	10.000	21	1.000	3,000		
Calculations						
A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ _{ec1,N}	Ψ _{ec2.N}	$\Psi_{ed,N}$	$\Psi_{cp,N}$	N _ь [lb]
361,25	126,56	1,000	1.000	1.000	1.000	8,353
Results						
V _{cpg} [I b]	φ _{concrete}	$\phi_{seismic}$	ф _{nonductie}	φ V _{cpg} [I b]	V _{ua} [I b]	
47.683	0.700	1.000	1.000	33,378	5,994	-

Input data and results must be checked for conformity with the existing conditions and for plau				
PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademar	k of Hill AG, Schaan	City of P	uyallup	
		Development & Pe ISSUED		<u> </u>
		Building	Planning	ь
		Engineering	Public Works	
		Fire	Traffic	
812 LA CASSIA DR. BOISE, IDAHO 83705	(208) 345-8941 PHONE	(208) 345-8	8946 FAX	

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

┣━┫║┖╼╌┲╼║

Hilti PROFIS Engineering 3.0.77

www.hilti.com

Company:		Page:	7
Address:		Specifier:	
Phone Fax:		E-Mail:	
Design:	Drafts_Wide-Flange-MF	Date:	4/20/2022
Fastening point:	wide flange MF		

4.3 Concrete edge failure in direction y+

$V_{cbg} = \left(\frac{A_{Vc}}{A_{Vc0}}\right) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} \Psi_{parallel,V} V_{b}$	ACI 318-14 Eq. (17.5.2.1b)
$\phi V_{cbg} \ge V_{ua}$	ACI 318-14 Table 17.3.1.1
A _{Vc} see ACI 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b)	
$A_{vc0} = 4.5 c_{a1}^2$	ACI 318-14 Eq. (17.5.2.1c)
$\Psi_{ec,V} = \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}}\right) \le 1.0$	ACI 318-14 Eq. (17.5.2.5)
$\Psi_{ed,V} = 0.7 + 0.3 \left(\frac{c_{a2}}{1.5 c_{a1}} \right) \le 1.0$	ACI 318-14 Eq. (17.5.2.6b)
$\Psi_{h,V} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-14 Eq. (17.5.2.8)
$V_{\rm b} = \left(7 \left(\frac{l_{\rm e}}{d_{\rm a}}\right)^{0.2} \sqrt{d_{\rm a}}\right) \lambda_{\rm a} \sqrt{f_{\rm c}} c_{\rm a1}^{1.5}$	ACI 318-14 Eq. (17.5.2.2a)

Variables

 c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	$\Psi_{c,V}$	h _a [in.]
13.333	20.000	0.000	1.000	6.000
l _e [in.]	λa	d _a [in .]	f _c [psi]	Ψ para∎el,∨
3.750	1.000	0.750	3,000	1.000

Calculations

A _{vc} [in. ²]	A _{Vc0} [in. ²]	$\Psi_{ec,V}$	$\psi_{ed,V}$	$\Psi_{h,V}$	V _b [I b]
274.50	800.00	1.000	1.000	1.826	22,304
Results					
V _{cbg} [İ b]	ф _{concrete}	$\phi_{seismic}$	ф _{поnductite}	φ V _{cbg} [I b]	V _{ua} [lb]
13,973	0.700	1.000	1.000	9,781	5,994

5 Combined tension and shear loads

β _N	β _V	ζ	Utilization β _{N.V} [%]	Status
0.693	0.613	5/3	99	OK

 $\beta_{\mathsf{NV}} = \beta_{\mathsf{N}}^{\varsigma} + \beta_{\mathsf{V}}^{\varsigma} <= 1$

Input data and results must be checked for conformity with the existing conditions and for plau PROFIS Engineering (c) 2003–2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademar		City of Puyallup Development & Permitting Services ISSUED PERMIT Building Planning	
812 LA CASSIA DR. BOISE, IDAHO 83705	(208) 345-8941 PHONE	Engineering Public Works Fire Traffic (208) 345-8946 FAX	

Calculations

Project Name: (Location: I Job Number: 2

Costco #660 Puyallup, WA 22-<u>19079</u>____

Hilti PROFIS Engineering 3.0.77

www.hiiti.com

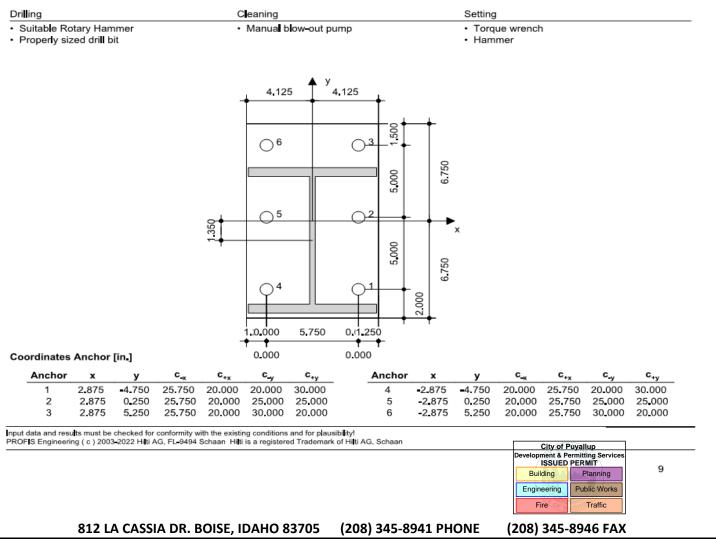
Company:		Page:	8
Address:		Specifier:	
Phone Fax:		E-Mail:	
Design:	Drafts_Wide-Flange-MF	Date:	4/20/2022
Fastening point:	wide flange MF		

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential
 concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout
 or pryout strength governs.
- · Refer to the manufacturer's product literature for cleaning and installation instructions.
- · For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-14, Chapter 17, Section 17.2.3.4.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.2.3.4.3 (b), Section 17.2.3.4.3 (c), or Section 17.2.3.4.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.2.3.5.3 (a), Section 17.2.3.5.3 (b), or Section 17.2.3.5.3 (c).
- Section 17.2.3.4.3 (b) / Section 17.2.3.5.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the control ing design strength. Section 17.2.3.4.3 (c) / Section 17.2.3.5.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.2.3.4.3 (d) / Section 17.2.3.5.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by ω₀.
- Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 318-14, Section 17-8-1.

Fastening meets the design criteria!

Input data and results must be checked for conformity with the existing conditions and for plat PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Tradema			
		City of Puyallup Development & Permiting Services /ISSUED PERMIT Building Planning Engineering Public Works Fire Contraction	8
812 LA CASSIA DR. BOISE, IDAHO 83705	(208) 345-8941 PHONE	(208) 345-8946 FAX	


Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

Hilti PROFIS Engineering 3.0.77

Company: Address:		Page: Specifier:	
Phone Fax:	1	E-Mail:	
Design:	Drafts_Wide-Flange-MF	Date:	4/20/2022
Fastening point:	wide flange MF		
7 Installation da	ta		
		Anchor type and diameter: Kwik Bolt TZ2 - CS	3/4 (3 3/4)
		hnom2	
Profile: W shape (AIS0 0.350 in. x 0.620 in.	C), W10X45; (L x W x T x FT) = 10.100 in. x 8.020 in. x	Item number: 2210312 KB-TZ2 3/4x6 1/4	
Hole diameter in the fi	xture: d _f = 0.812 in.	Maximum installation torque: 1,324 in.b	
Plate thickness (input)	: 0.500 in.	Hole diameter in the base material: 0.750 in	
Recommended plate t	hickness: not calculated	Hole depth in the base material: 4.750 in.	
Drilling method: Hamn Cleaning: Manual clea required.	ner dri∎ed ning of the dri∎ed hole according to instructions for use is	Minimum thickness of the base material: 6.000	in.

Hilti KB-TZ2 stud anchor with 4.5 in embedment, 3/4 (3 3/4) hnom2, Carbon steel, installation per ESR-4266

7.1 Recommended accessories

Calculations

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

Hilti PROFIS Engineering 3.0.77

www.hiti.com

10
4/20/2022

8 Remarks; Your Cooperation Duties

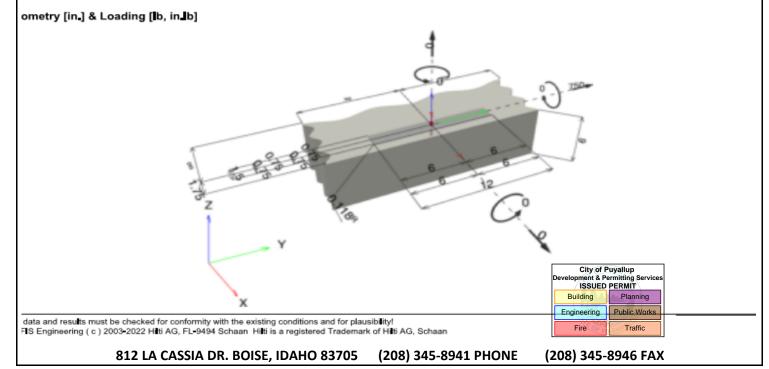
- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

812 LA CASSIA DR. BOISE	, IDAHO 83705	(208) 345-8941 PHONE	(208) 345-8946 FAX	
			ISSUED PERMIT Building Planning Engineering Public Works	10
Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003–2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan			City of Puyallup Development & Permitting Services	

PR	СТ	120	21	003	31
----	----	-----	----	-----	----

Project Name: Location: Job Number:

Costco #660 Puyallup, WA 22-19079


ti PROFIS Engineering 3.0.76

w.hilti.com npany: ress: ne I Fax:		Page: Specifier: E-Mail:	
ign: tening point:	WALL TO FLOOR	Date:	4/1/2
secifier's comment	is:		

nput data

nput data		
ichor type and diameter:	KWIK HUS-EZ (KH-EZ) 1/4 (1 5/8)	
m number:	423473 KH-EZ 1/4"x1 7/8"	
fective embedment depth:	h _{ef.act} = 1.180 in., h _{nom} = 1.625 in.	
aterial:	Carbon Stee	
aluation Service Report:	ESR-3027	
ued Valid:	1/1/2021 12/1/2021	
pof:	Design Method AC 318-14 / Mech	
and-off instal ation:	e _b = 0.000 in. (no stand-off); t = 0.118 in.	
chor plate ^R :	I _x x I _y x t = 1.500 in. x 12.000 in. x 0.118 in.; (Rec	ommended plate thickness: not calculated)
ofile:	no profile	
ise material:	cracked concrete, 3000, $f_c = 3,000$ psi; h = 6.000) in.
station:	hammer drilled hole, Installation condition: D	ry
inforcement:	tension: condition B, shear: condition B; no supp	emental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar	
ismic loads (cat. C, D, E, or F)	Tension load: yes (17.2.3.4.3 (d))	
	Shear load: yes (17.2.3.5.3 (c))	

The anchor calculation is based on a rigid anchor plate assumption.

PRCTI20210031						
	Engineering Ilations	TAMARA E N G I		Project Name: Location: Job Number:	: Costco #660 Puyallup, W 22-19079	
ti PROFIS Engineer	ring 3.0.76					
u bilti o om						
w.hilti.com			Pa	ige:		
ress: ne I Fax:			Sp	oecifier: Mail:		
ign:				ate:		4/1/2
tening point:	WALL TO FLOOR					
Design results	ristics		Foreco (lb) / Momon	to fin lb1	Reiemie	May Litil Anchor
	ription pination 1		Forces [I b] / Momen N = 0; V _x = 0; V _y =		Seismic yes	Max. Util. Anchor 91
			$M_x = 0; M_y = 0; M_y$,	
Load case/Result	ing anchor force	s			∮ ^y	
chor reactions [ib]	Compression)					
nsion force: (+Tension, -C Anchor Tension		Shear force x	Shear force y			
1 0	750	0	750			
x. concrete compressive x. concrete compressive ulting tension force in (x/y ulting compression force ichor forces are calculate	stress: y)=(0.000/0.000): 0 in (x/y)=(0.000/0.000): 0		or p l ate.			
	L	.oad N _{ua} [I b]	Capacity 🕈	N _n [İ b] Uti l izat	ion $β_N = N_{ua}/Φ N_r$	Status
eel Strength*		N/A	N/A		N/A	N/A
out Strength*		N/A	N/A	λ.	N/A	N/A
ncrete Breakout Failure*	*	N/A	N/A	λ.	N/A	N/A
ighest loaded anchor *	*anchor group (anchors i	n tension)				
				E	City of Puyallup opment & Permitting Services / ISSUED PERMIT Building Planning gineering Public Works	
data and results must be checker FIS Engineering (c) 2003-2022 I					Fire Traffic	
812 L/	A CASSIA DR. BOISE, I	DAHO 83705	(208) 345-8941	PHONE (20	8) 345-8946 FAX	ĸ

TAMARACK 👫 GROVE N GI

Project Name: Costco #660 Location: Puyallup, WA 22-19079 Job Number:

ti PROFIS Engineering 3.0.76

v hilti com			
npany:		Page:	
ress:		Specifier:	
ne Fax:		E-Mail:	
ign:		Date:	4/1/2
tening point:	WALL TO FLOOR		

Shear load

	Load V _{ua} [lb]	Capacity ∳ V _n [lb]	Utilization $\beta_v = V_{ua} / \Phi V_n$	Status
eel Strength*	750	837	90	OK
∋el failure (with lever arm)*	N/A	N/A	N/A	N/A
yout Strength**	750	828	91	ок
ncrete edge failure in direction x+**	750	847	89	ок

ighest loaded anchor **anchor group (relevant anchors)

Stee Strength

a.eq	= ESR value	refer to ICC-ES ESR-3027
V _{stee}	= ESR value ≥ V _{ua}	AC 318-14 Table 17.3.1.1

riables

A _{se,V} [in. ²]	f _{uta} [psi]	$\alpha_{V,seis}$
0.05	125,000	0.900

culations

V_{sa,eq} [lb] 1,395

suts

V _{st}	_{a,eq} [lb]	φ _{steel}	ф _{попductile}	∲V _{sa,eq} [Ib]	V _{ua} [b]
1	,395	0.600	1.000	837	750

	City of Puyallup Development & Permitting Services ISSUED PERMIT	
	Building	Planning
data and results must be checked for conformity with the existing conditions and for plausibility!	Engineering Pu	ublic Works
FIS Engineering (c) 2003-2022 Hiti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan	Fire	Traffic
812 LA CASSIA DR. BOISE, IDAHO 83705 (208) 345-8941 PHONE	(208) 345-8	946 FAX

812 LA CASSIA DR. BOISE, IDAHO 83705 (208) 345-8941 PHONE

Project Name: Location: Job Number: 22-19079

Costco #660

Puyallup, WA

ti PROFIS Engineering 3.0.76

v hilti com

winnu com				
npany:	-	Page:		_
ress:		Specifier:		
ne Fax:		E-Mail:		
ign:		Date:	4	/1/2
tening point:	WALL TO FLOOR			

Pryout Strength

$_{p} = k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc}} \right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-14 Eq. (17.5.3.1a)
$V_{cp} \ge V_{ua}$	AC 318-14 Table 17.3.1.1
see AC 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	
$_{\rm lc0}$ = 9 $h_{\rm ef}^2$	ACI 318-14 Eq. (17.4.2.1c)
$_{ed,N} = 0.7 + 0.3 \left(\frac{c_{e,min}}{1.5 h_{ef}} \right) \le 1.0$	AC 318-14 Eq. (17.4.2.5b)
$_{\text{sp,N}} = \text{MAX}\left(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.7b)
$= k_c \lambda_a \sqrt{f_c h_{ef}^{1.5}}$	AC 318-14 Eq. (17.4.2.2a)

riables

k _{cp}	h _{ef} [in.]	c _{a,min} [in.]	Ψ _{c,N}		
1	1.180	1.750	1.000	-	
c _{ac} [in.]	k _c	λ	ŕ _c [psi]	_	
2.000	17	1.000	3,000	_	
culations					
A _{Nc} [in. ²]	A _{No0} [in. ²]	$\Psi_{ed,N}$	$\Psi_{cp,N}$	N _b [b]	
12.46	12.53	0.997	1.000	1,194	
sults					
V _{cp} [b]	¢ concrete	ф _{seismic}	∲ _{nonductile}	φ V _{cp} [I b]	V _{ua} [lb]
1,183	0.700	1.000	1.000	828	750

	City of P Development & Po ISSUED Building		
data and results must be checked for conformity with the existing conditions and for plausibility! FIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan	Engineering	Public Works	
	Fire (208) 345-	8946 FAX	

Costco #660 Project Name: Location: Puyallup, WA Job Number: 22-19079

ti PROFIS Engineering 3.0.76

<i>w</i> .hilti.com	
npany:	P
ress:	S
ne Fax:	E

WALL TO FLOOR

Page: Specifier: E-Mail: Date:

4/1/2

Concrete edge failure in direction x+

$_{b} = \begin{pmatrix} A_{Vc} \\ A_{Vc} \end{pmatrix} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parslel,V} V_{b}$	ACI 318-14 Eq. (17.5.2.1a)
$V_{cb} \ge V_{ua}$	AC 318-14 Table 17.3.1.1
see AC 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b)	
$_{c0} = 4.5 c_{a1}^2$	ACI 318-14 Eq. (17.5.2.1c)
$_{\rm ed,V} = 0.7 + 0.3 \left(\frac{c_{\rm s2}}{1.5 c_{\rm s1}} \right) \le 1.0$	ACI 318-14 Eq. (17.5.2.6b)
$h_{\rm NV} = \sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-14 Eq. (17.5.2.8)
$= \left(7 \left(\frac{I_e}{d_a}\right)^{0.2} \sqrt{d_a}\right) \lambda_a \sqrt{f_c} c_{a1}^{1.5}$	ACI 318-14 Eq. (17.5.2.2a)

iriables

ign: tening point:

c _{a1} [in.]	c _{a2} [in.]	Ψ c,V	h _a [in.]	e [in.]
1.750	-	1.000	6.000	1.180
λ	d _a [in.]	f _c [psi]	Ψ parallet, V	
1.000	0.250	3,000	2.000	
lculations				
A _{vc} [in. ²]	A _{vc0} [in. ²]	Ψ _{ed.V}	$\Psi_{h,V}$	V _b [I b]

1.000

13.78

13.78

suts					
V _{cb} [b]	¢ concrete	$\phi_{seismic}$	ф _{попductile}	φ V _{cb} [I b]	V _{ua} [lb]
1,211	0.700	1.000	1.000	847	750

1.000

605

	City of Puyallup Development & Permitting Services ISSUED PERMIT	
	Building Planning	
data and results must be checked for conformity with the existing conditions and for plausibility! FIS Engineering (c) 2003-2022 Hiti AG, FL-9494 Schaan Hilti is a registered Trademark of Hiti AG, Schaan	Engineering Public Works Fire Traffic	
812 LA CASSIA DR. BOISE, IDAHO 83705 (208) 345-8941 PHONE	(208) 345-8946 FAX	

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

ti PROFIS Engineering 3.0.76

v hilti com

winnu com			
npany:	-	Page:	
ress:		Specifier:	
ne Fax:		E-Mail:	
ign:		Date:	4/1/2
tening point:	WALL TO FLOOR		

Warnings

he anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, OTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered – the nchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculat ne minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The roof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for greement with the existing conditions and for plausibility!

condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential oncrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pulse r pryout strength governs.

tefer to the manufacturer's product literature for cleaning and installation instructions.

or additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/

In anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-14, Chapter 17, Section 7.2.3.4.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the ase, the connection design (tension) shall satisfy the provisions of Section 17.2.3.4.3 (b), Section 17.2.3.4.3 (c), or Section 17.2.3.4.3 (d). The onnection design (shear) shall satisfy the provisions of Section 17.2.3.5.3 (a), Section 17.2.3.5.3 (b), or Section 17.2.3.5.3 (c),

iection 17.2.3.4.3 (b) / Section 17.2.3.5.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductil ielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.2.3.4.3 (c) / Section 17.2.3.5. b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the nchors by a non-yielding attachment. Section 17.2.3.4.3 (d) / Section 17.2.3.5.3 (c) waive the ductility requirements and require the design trength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increas $y \omega_0$.

tilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions (MPII). Reference ACI 18-14, Section 17.8.1.

Fastening meets the design criteria!

	ISSUED	FERINI	
	Building	Planning	
data and results must be checked for conformity with the existing conditions and for plausibility!	Engineering	Public Works	
FIS Engineering (c) 2003-2022 Hiti AG, FL-9494 Schaan Hitti is a registered Trademark of Hitti AG, Schaan	Fire	Traffic	

812 LA CASSIA DR. BOISE, IDAHO 83705 (208) 345-8941 PHONE (208) 345-8946 FAX

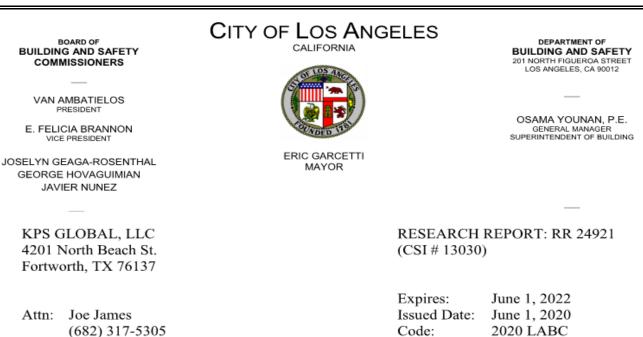
City of Puyallup elopment & Permitting Services

PRCTI20210031										
Structural E Calcul	ations		ī	E N G I	ACK N E	GI E R I	ROVE N G	Project Name: Location: Job Number:	Costco #660 Puyallup, WA 22-19079	
ti PROFIS Engineeri	ng 3.0.70	6								
npany:	_						Pa	ige:		
ress:							Sp	ecifier:		
ne Fax: ign:								Mail: nte:		4/1/2
tening point:	WALL TO	FLOOR					00			-0.02
nstallation data										
							Anch 5/8)	or type and diamete	r: KWIK HUS-EZ (KI	+EZ) 1/4 (1
ofile: no profile							tem	number: 423473 KH	EZ 1/4"x1 7/8"	
le diameter in the fixture: o	l _f = 0.375 ir	n.					Maxir	mum insta ll ation toro	ue: 216 in. I b	
ate thickness (input): 0.118	in .						Hole	diameter in the base	e material: 0.250 in.	
commended plate thicknes		ulated						depth in the base m		
illing method: Hammer drill saning: Manual cleaning of quired.		ho l e acco	ding to ir	nstruction	s for ι	use is	Minin	num thickness of the	base material: 3.25	0 in.
ti KH-EZ screw anchor with	h 1.625 in e	embedmen	t, 1/4 (1 s	5/8), Carb	on st	eel, ins	talation	per ESR-3027		
Recommended accesso	ries									
ling suitable Rotary Hammer			eaning	blow-out p				• Torque w		
^י roper l y sized dri∎ bit				0.75075	, 0	⊢				
				പ	6,000	6.000	-•			
					6,000	6.000	x			
ordinates Anchor [in.]				0.750		Ţ				
	6	6			~				City of Puyallup	
Anchor x y 1 0.000 0.000		c _{*x} 1.750	с_ _у -	с _{*у}	-				Iopment & Permitting Services	
data and results must be checked f FIS Engineering (c) 2003-2022 Hit 812 LA		Schaan Hi l ti	is a register	ed Tradema	rk of Hill	ti AG, Scl			Public Works Fire Traffic 345-8946 FAX	

PRCTI202100)31				
	ural Engineering Calculations	TAMARACK GROVE	Project Name: Location: Job Number:	Costco #660 Puyallup, WA 22-19079	
ti PROFIS Engir	neering 3.0.76				
v hilti com					
npany: ress: ne I Fax: ign:		Pag Spe E-M Date	ecifier: 1ai l :		4/1/2
tening point:	WALL TO FLOOR				
Remarks: You	r Cooperation Dutie				

In y and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas are ecurity regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly omplied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Noreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to ompliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norm not permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific pplication.

'ou must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the egular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not u ne AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each ase by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged dat r programs, arising from a culpable breach of duty by you.


	City of Puyallup Development & Permitting Services / ISSUED PERMIT Building Planning
data and results must be checked for conformity with the existing conditions and for plausibility! FIS Engineering (c) 2003-2022 Hitli AG, FL-9494 Schaan Hilti is a registered Trademark of Hitli AG, Schaan	Engineering Public Works Fire Traffic
812 LA CASSIA DR. BOISE, IDAHO 83705 (208) 345-8941 PHONE	(208) 345-8946 FAX

PRCTI20210031

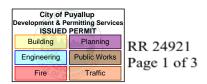
Structural Engineering Calculations TAMARACK GROVE

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

TESTING REPORT OR LARR

GENERAL APPROVAL –Renewal, Clerical Modification and Technical Modification – KPS Global - Wood-Frame and Insul-Frame Wall and Ceiling Panels for Walk-in Coolers and Freezers for Indoor and Outdoor use.

DESCRIPTION


KPS Global, prefabricated wall and ceiling panels consist of minimum 3¹/₂-inch wood or urethane lumber frames with 26 gage steel and a core of urethane foam. The panels utilize "cam-lock" devices to hold them together.

The wood Frame Panels are made of S-P-F No. 2 or better, while the Insul-Frame panels are made of moulded urethane foam having a density of 10.3 pounds per cubic foot. Fusion frame panels are made of moulded urethane foam having a density of 5.25 pounds per cubic foot with a wood or non-wood structural backing. The urethane foam is Dow or BASF Class 1 foam.

Flame spread and smoke developed ratings per ASTM E-84 of 25 or less and 450 or less respectively.

KPS Global-Wood Frame, Insul-Frame and Fusion Frame fabricated walk-in coolers and freezers constructed of panels described above are approved with the following requirements:

1. Height to width ratio of units are as indicated in Table 2 and Table 4.

KPS Global

RE: Wall and Ceiling Panels for Walk-in Coolers and Freezers

- 2. No permanent loads, equipment or storage loads shall be carried by the ceiling panels with the exception for the evaporator. If evaporator is supported from the top panel, it must be accounted for in calculations for ceiling panel loads. For equipment loads, calculations demonstrating that the applied loads are less than the maximum allowable loads must be submitted to the structural plan check section for each project. The calculations must be prepared by a California registered Civil Engineer or Architect.
- 3. The panels shall be considered combustible and may be used only in areas where combustible materials are permitted by the Code.
- 4. An approved fire retardant roof covering shall be placed over the panels when used as an exterior roof panel.
- 5. The panels shall be fabricated in a shop of a licensed Type I fabricator approved by the Los Angeles City Building Department. Fabrication in unlicensed shops will invalidate this approval. If piping or other utilities are in the walls or ceilings a type II fabricators license is required.

DISCUSSION

The report is in compliance with the 2020 Los Angeles City Building Code.

The clerical modifications are to change the contact information and update this report to 2020 LABC.

The technical modifications are to modify the 26 gage steel, add Fusion Frame Panels and add Tables 3 and 4.

The approval is based on tests.

Addressee to whom this Research Report is issued is responsible for providing copies of it, <u>complete with any attachments indicated</u>, to architects, engineers and builders using items approved herein in design or construction which must be approved by Department of Building and Safety Engineers and Inspectors.

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

KPS Global

RE: Wall and Ceiling Panels for Walk-in Coolers and Freezers

This general approval of an equivalent alternate to the Code is only valid where an engineer and/or inspector of this Department has determined that all conditions of this Approval have been met in the project in which it is to be used.

DAVID CHANG, Chief Engineering Research Section 201 N. Figueroa St., Room 880 Los Angeles, CA 90012 Phone- 213-202-9812 Fax- 213-202-9943

DC RR24921/MSWord2013 R24921 06/09/2020 TLB2000099 2603.4

Attachment: Span Chart (4 page)

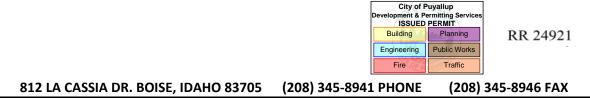


TABLE 1

LARR 24921

Structural Engineering Calculations

Project Name: Location: Job Number:

Costco #660 Puyallup, WA 22-19079

Sheet Number 147 of 147

-	_		-		IT.	Ŧ	17	11	-		_	-	_		-	1.0	-	_				_					-	147	- `		14/	_		
					t55 MPF	200 MP	1010	007=7	F	.118	10'-9"		9'-8"	.2.101	0-71	Fc=18ne	at at	S	9,-5"	8,-3"	9-10.	12-2"			2, 1992	3, 2017								
					140 MPH	180 MPH	0110		1	.116	12'-2'		10'-6"	11'-4"	1-01	7-01	0.2-	8-11	10,-10	9:-7	11-8.11	13-8			August 2, 1992	August 3, 2017								
		Susts	160		Hdw S21	HEIN 091	5129		10.10	.011	13.8.		115-	12'-4"			-9-10	10.9	12'-5"	10'-8"	13'-0"	15:1"	No.		Date:	Rev:								
		ASCE 7-05/10 EXP. C, ≤15' OAH 3sec Gusts	Design based on deflection criteria: U/180		100 NPH 110 MPH 115 MPH 125 MPH 140 MPH 155 MPH	150 MPH [60 MPH]80 MPH 200 MPH	6.07	Do not use 2 1/2" panels outdoors	10.01	-01	14'-8"	Do not use 2 1/2" panels outdoors	12'-1"	13-0	t	5-01	1.01	10.7	-	114"	11-21	+ +	Enginopring Bulletin No : 000	haine		٦								
l _v	OUTDOOR	C, ≤15' O	eflection o	S - PSF	T Helv D	40 MPH	-	/2" panels		_	15-5"	/2" panels	-	13'-6"	+	4	-10'-3"	_		-	14'-6"	+-	- unit	6	Chart									
WALLS	Ø	5/10 EXP.	ased on d	LIVE LOADS - PSF	O MPH 11	Hem OFI Hem DEI	-	ot use 2.1			19-1-	ot use 2 1	-	14-5	+	۰.	11'.2"	-	-		15-6"	+	- in o	Allifa	Panel Snan Chart									
		ASCE 7-0	Design b	3		EI HAW OZI	-	Dog	-0.4.	_	12-0.	Don	-	15-0"	+	-	1 11.10	_	-	_	16-2" 1	+ +	ů	5	Pan									
						115 MPH 12(2				17-11* 1		-	15'-8" 1	t.				-	-	16-11- 14				à									
					05 HdW 58	HdW 011	ATIONAN	1100100	1 411 411	_	18'-9' 17		-	16'-3" 19	+	DENSITY	1		-	_	17-6 16	+			CI OBAI									
	INDOOR	Den	L/180		58	1		15".2"	-	_	26'-0"* 18	16:7	_	23'-5" 16	+-		10,.5" 17			_	26-0-17					1								
-	INI				┢	100	-			_	8-7" 26	4	_	7-1° 23	÷	=	C-2* 16	-	7-2" 25	_	7-4" 26	-												
		36			┢	8	+		ł	-9-9	93 _*		-	7-6"	÷.	-	C.C.	_	_	-	11-1		1341	-						1				
		Includes 2 PSF for Membrane or Standing Seam Roof	L/240			ua	2	55	C. 51-	-1L	9-7-	51	7-2"	6-0- 9-8-	t.	-	T.8"	1-19	7-10"	_	8-2-	+	Wind counsils moved in the table are for V and for V as required by the analyzable huilding roots ediane (2000):1124.		/	EN	GI	EER	-					
		- Standing	n criteria:			5	2	els cuttion	-0.4		107	els outdoo	7-7*	8-7-	+-	-1	5.5	6-7	8'-11"	-	9-1-5	+-+	do edition	1	Side	CH II		2007	1	CML HOOM		6.9		
TOPS/CEILINGS	OUTDOOR	mbrane o	Design based on deflection criteria: L/240	LIVE LOADS - PSF		ş	8	Do not use 2 1/2" panels outdoors		8-3-	-7-01	Do not use 2 1/2" panels outdoors	8:-2*	93.			6'-10"	2-3"	95"	7:7	.01-B	11'-1"	uddino co		PROFE.	S	• {	2. 2.		2		00		
TOPS/C		SF for Mc	n based o	LIVE LO/		5	2	O NOT USE		_	113"	o not use		10-0	_	_	7:-4"	19 18	10-1	82-	-601		t obtable		0	ERE	SI	03R			1			
		adudes 21	Desig			40	2		ö		12'-1"	ă		11-01	+-	-	-G-18		11'-0"		6-6		a hv the a									/		
		1			L	20	8		1 0 T	_	0" 13'-2"		-	12'-1"	+.	-	- B'-11"	-			13-2		an indiana			~						`		
	NOR	•=	8		L	02	+		1/1 1/1	-		*c		3" 13-8" or 16.5"	+-	-۱	7 10.7			-	0. 15-0.	-	d for V	3		"MAX SPAN IS BASED ON MANUFACTURING LIMITATION								
	INDOOR	Def	1/180			-		20 17'-6"	-	32 17-7	0 20'-9"	.8E1 0	-	32 19'-3"	÷	72		32 16-2"	-	-	40 21'-0"	H	N A	6		TURING L								
	┝	зS	_	_		10		2012	_		4.0.4	2.5 2		0.4	+	⊣≿				_	4.0 4.5 4.5		able are f			MANUFAC								
PANELS	ŀ	553	ожи	лна	138	AA9	1	-916	210.2	2 4	2	21/2	31/2"	4 8	, :	HIGH DE	-912	4	5	31/2"	÷ 6	5	t off the t			ASED ON								
		SS	зиж	ЭІН	L NI	жs	CO AMC		.3	£0.03			·96	_	10	INSULFRAME/HIGH C		.25(0.0	-ef	92	e6 07	neede no			SPAN IS B								
			н	SIN	ы		COOM			ALUM				GALV		INSUL		ALUM			GALV		wind a			"MAX S								
6	-																										I	B	opme IS Buildi	ent & SSUE ing ering	D PE	allup itting S RMIT Planni ublic W Traffi	ng orks	
A	D	R.	вс	DIS	δE,	ID,	A۲	10	8	37	05		(2	208	;) :	34	5-8	89 [,]	41	PH	ON	E		(20	8)	34	י 5-3	894			X			L

Page 83 of 88

Project Name:CosLocation:PuyJob Number:22-3

Costco #660 Puyallup, WA 22-19079

LARR 24921 TABLE 2

KPS Global

Racking Shear - Based on PFS Load Test Report # 05-37A <u>Maximum</u> <u>Allowable Shear Load of Wood Framed Panels</u>

Height to Width Ratio	Allowable Shear PLF					
4 To 1	160					
3 To 1	161					
2 To 1	179					
1 ½ To 1	246					
1 To 1	333					
½ To 1	646					

KPS Global

Compressive Load - Based on PFS Test Report # 05-37B

Maximum Allowable Vertical Load of Wood Framed Panels

Panel Thickness (Inches)	Panel Height (Feet)	Allowable Vertical Load (PLF)
3 1/2	12	2080
3 1/2	17	1946
3 1/2	22	1033
5	16	2779
5	21	1582
5	26	1037

KPS Global

Racking Shear - Based on PFS Load Test Report # 05-37A

Maximum Allowable Shear Load of Insul-Frame Panels

Height to Width Ratio	Allowable Shear PLF
4 To 1	56
3 To 1	65
2 To 1	88
1 ½ To 1	108
1 To 1	136
1/2 To 1	208

KPS Global

Compressive Load - Based on PFS Test Report # 05-37B

Maximum Allowable Vertical Load of Insul-Frame Panels

Panel Thickness (Inches)	Panel Height (Feet)	Allowable Vertical Load (PLF)
3 1/2	12	920
3 1/2	17	714
3 1/2	22	603
5	16	1048
5	21	800
5	26	623

City of Puyallup Development & Permitting Service ISSUED PERMIT						
Building	Planning					
Engineering	Public Works					
Fire	Traffic					

Structural Engineering

Calculations

Project Name:Costco #660Location:Puyallup, WAJob Number:22-19079

DOWEL BEARING STRENGTH

DOWEL BEARING STRENGTH IN WOOD - NDS

VARIABLE	VALUE	UNITS	DEFINITION		
Screw #	14				
L	1.5	in.	Total Screw Length		
t _{skin}	26		Skin Gauge		
t _{angle}	18		Angle Gauge		
	SPF		Wood Type		
D	0.196	in.	Diameter. D = Dr for reduced body fasteners (see Table L3)		
F _{em}	3350	psi	Dowel Bearing Strength of Main Member		
F _{es}	61850	psi	Dowel Bearing Strength of Side Member		
Κ _ð	1	N/A	1+(0.25*(ϑ/90)) where ϑ is maximum angle to grain for any member		
t _{skin}	0.0179		Skin Thickness		
t _{angle}	0.0474		Angle Thickness		
Т	0.484		Tapered Length		
L _m	0.9507	in.	Bearing Length in Main Member, L - t _{skin} - t _{angle} - T		
Ls	0.0474	in.	Dowel Bearing Length in Side Member		
F _{yb}	70000	psi	Dowel Bending Yield Strength		
R _e	0.05416		Fem/Fes		
R _t	20.05696		Lm/Ls		
k ₁	0.44826	2403	$\sqrt{R_e + 2R_e^2 (1 + R_t + R_t^2) + R_t^2 R_e^3} - R_e (1 + R_t)$		
			$(1+R_e)$ $2E_{\rm ob}(1+2R_e)D^2$		
k ₂ 0.662695038 $-1 + \sqrt{2(1+R_e) + \frac{2F_{yb}(1+2R_e)D^2}{3F_{em}l_m^2}}$					
k ₃	21.9825	9487	$-1 + \sqrt{\frac{2(1+R_e)}{R_e} + \frac{2F_{yb}(2+R_e)D^2}{3F_{em}l_s^2}}$		

REDUCTION TERM, R _d (0.25<=D<=1)					
R _{d1}	4	Reduction Term for I m and I s			
R _{d2}	3.6	Reduction Term for II			
R _{d3}	3.2	Reduction Term for III s , III m , and IV			
REDUCTION TERM, R _d (D<0.25)					
R _d 2.46 Reduction Term for all Yield Modes					

City of P Development & Po ISSUED	
Building	Planning
Engineering	Public Works
Fire OF V	Traffic

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

YIELD LIMIT STATES YEILD MODE SHEAR (LBF) EQUATION FAILURE MECHANISM $\frac{Dl_m F_{em}}{R_d}$ 253.75 Bearing Failure of Main Member 1 m $\frac{Dl_s F_{es}}{R_d}$ 233.58 Bearing Failure of Side Member 1, $\frac{k_1 D l_s F_{es}}{R_d}$ II 104.71 Fastener Rotation $\frac{k_2 D l_m F_{em}}{(1 + R_e) R_d}$ 111 m 159.52 Double Bolt Bends $\frac{k_3 D l_s F_{em}}{(2+R_e)R_d}$ III s 135.39 Double Bolt Bends $\frac{D^2}{R_d} \sqrt{\frac{2F_{em}F_{yb}}{3(1+R_e)}}$ IV 190.17 Two Double Bolt Bends

REFERENCE DESIGN VALUE (LBF) 104.7

REFERENCE DESIGN VALUE (LBF) 2.0

City of Puyallup Development & Permitting Services ISSUED PERMIT					
Building	Planning				
Engineering	Public Works				
Fire	Traffic				

Project Name: Cost Location: Puya Job Number: 22-1

Costco #660 Puyallup, WA 22-19079____

HILL PHOENIX REPORT

PRCTI20210031

Structural Engineering Calculations

Project Name: Costco #660 Location: Puyallup, WA Job Number: 22-19079

Connection Tests

Small scale connection assemblies were built to evaluate the following:

Config #

- Wall-to-Wall: In Plane Shear
- 2 Wall-to-Wall: Out of Plane Shear
- 3 Wall-to-Wall: Tension
- 4 Wall-to-Roof: In Plane Shear cam and pin locks; lag screw
- 5 Wall-to-Roof: Out of Plane Shear cam and pin locks; lag screw
- 6 Wall-to-Roof: Uplift Connection cam and pin locks; lag screw
- 7 Wall-to-Floor: Out of Plane Shear

Testing was performed by applying loads to failure. Table 3 below, documents the average ultimate load per connector. Results of the connection tests are contained within Appendix E.

> Table 3 Connection Tests

Ultimate Failure Loa								Loads (lbs)		
	Wall to Wall			Wall to Roof				Wall to Floor		
	Config. 1	Config. 2	Config. 3	Conf	īg. 4	Conf	fig. 5	Cont	fig. 6	Config. 7
	Cam-Lock	Cam-Lock	Cam-Lock	Cam-Lock	Lags	Cam-Lock	Lags	Cam-Lock	Lags	Wood Strip
Average Ultimate load per connector	1210	2345	984	1010	856	1324	881	785	1809	1160

	Terrapin Testing		Structural Insulated Pa Roof and Wall Panels	nel Tests	
	Orig. Issue Date: 2011-04-1 Revision Date: 2011-04-14 Revision #: 0.0	4 Approval: RWC	Report No. TT 511002	Page 6 of 83	
				City of Puyallup Development & Permitting Servic /ISSUED PERMIT Building Planning Engineering Public Works Fire	
812 LA CASSIA DR. E	30ISE, IDAHO 83705	(208) 345-89	41 PHONE (208) 345-8946 FAX	