

NORTHWEST FIRE SYSTEMS

$2264583^{\text {rd }}$ Ave. S., Bldg D * Kent, WA 98032
Ph: 206.772.7502 * Fax: 206.772.7504
www.nwfiresystems.com LIC \# NORTHFS928CR

EQUIPMENT SUBMITTAL

Macy's Southhill Puyallup, WA

NWSF JOB NO. 05235C

TABLE OF CONTENTS

Section 1 - Pipe and Fittings

Victaulic_T-920_Firelock Outlet
Victaulic_T-922_Firelock Outlet
Wheatland_Sch 10 \& Sch 40 Pipe
Star_Ductile Iron Threaded Fittings (Import)

Section 2 - Hangers and Sway Bracing

Anvil_146_All Thread Rod
Afcon_300_Hanger Ring
Hilti KH-EZ 1 Cocrete Anchor
Tolco Fig 25 Surge Restrainer

Section 5 - Fire Sprinklers

Tyco_TY-B_SR_SSP,SSU,Rec Pend_K=2.8,5.6,8.0
Reliable_G_Fusible_SR_Sprinklers K=5.6

Section 6 - Miscellaneous

VicFlex Braided Flexible Hose

SECTION 1

PIPE AND FITTINGS

Victaulic Mechanical- T^{\circledR} Outlet provides a direct branch connection at any location a hole can be cut in pipe. The hole is cut oversize to receive a "holefinder" locating collar which secures the outlet in position permanently. A pressure responsive gasket seals on the pipe O.D.

Cross-type connections can be achieved by utilizing two upper housings of the same style and size, with the same or differing branch size connections. NOTE: Style 920 and Style 920N housings cannot be mated to each other to achieve a cross connection.
Style 920 and Style 920N Mechanical-T outlets are available with grooved or female threaded outlet. Specify choice on order. Units are supplied painted with plated bolts. Galvanized hous-

STYLES 920 AND 920N

STYLE 920 CROSS ings are available, supplied with plated bolts.
All sizes of Style 920 and 920 N are rated at 500 psi/3450 kPa working pressure on Schedule 10 and 40 carbon steel pipe. They may also be used on high density polyethylene or polybutylene (HDPE) pipe. Pressure ratings on HDPE are dependent on the pipe rating. Contact Victaulic for ratings on other pipe. Style 920 and 920 N are not recommended for use on PVC plastic pipe.
Standard piping practices dictate that the Mechanical-T Styles 920 and 920 N must be installed so that the main and branch connections are a true 90° angle when permanently attached to the pipeline surface.
Additionally, the Vic-Tap II® hole cutting tool, which allows for hole cutting capabilities on pressurized systems, utilizes the Style 920 Mechanical-T in conjunction with the Series 726 Vic-Ball Valve to create the Style 931 Vic-Tap II Mechanical-T unit. See page 8 for further information.

MATERIAL SPECIFICATIONS
Housing/Coating: Ductile iron conforming to ASTM A-536, grade 65-45-12, with orange enamel coating. Ductile iron conforming to ASTM A-395, grade 65-45-15, is available upon special request.

- Optional: Hot dipped galvanized

Gasket: (Specify choice*)

- Grade "E" EPDM

EPDM (Green color code). Temperature range $-30^{\circ} \mathrm{F}$ to $+230^{\circ} \mathrm{F} /-34^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$.
Recommended for cold and hot water service within the specified temperature range plus a variety of dilute acids, oil-free air and many chemical services. UL Classified in accordance with ANSI/NSF 61 for cold $+86^{\circ} \mathrm{F} /+30^{\circ} \mathrm{C}$ and hot $+180^{\circ} \mathrm{F} /+82^{\circ} \mathrm{C}$. NOT RECOMMENDED FOR PETROLEUM SERVICES.

- Grade " T " nitrile

Nitrile (Orange color code). Temperature range $-20^{\circ} \mathrm{F}$ to $+180^{\circ} \mathrm{F} /-29^{\circ} \mathrm{C}$ to $+82^{\circ} \mathrm{C}$.
Recommended for petroleum products, air with oil vapors, vegetable and mineral oils within the specified temperature range. Not recommended for hot water services over $+150^{\circ} \mathrm{F} /+66^{\circ} \mathrm{C}$ or for hot dry air over $+140^{\circ} \mathrm{F} /+60^{\circ} \mathrm{C}$.
*Services listed are General Service Recommendations only. It should be noted that there are services for which these gaskets are not recommended. Reference should always be made to the latest Victaulic Gasket Selection Guide for specific gasket service recommendations and for a listing of services which are not recommended.

Bolts/Nuts: Heat-treated plated carbon steel, trackhead meeting the physical and chemical requirements of ASTM A-449 and physical requirements of ASTM A-183.

JOB/OWNER

System No. \qquad

CONTRACTOR

Submitted By \qquad
ENGINEER
Spec Sect \qquad Para \qquad
Location \qquad Date \qquad Approved \qquad
Date \qquad

Mechanical- ${ }^{\circledR}$ Bolted Branch Outlets

STYLES 920 AND 920N

DIMENSIONS

GROOVED OUTLET

FEMALE THREADED OUTLET

- Provides a direct branch connection at any location where a hole can be cut in the pipe
- A pressure responsive gasket provides the seal
- Request Publication 11.03 for Mechanical-T cross assemblies
- Pressure rated up to $500 \mathrm{psi} / 3450 \mathrm{kPa}$ on steel pipe; also available for use with HDPE pipe
- Sizes from $2 \times 1 / 21 / 50 \times 15 \mathrm{~mm}$ through 8×4 "/200 $\times 100 \mathrm{~mm}$

IMPORTANT NOTES:

Style 920 and Style 920N housings cannot be mated to one another
to achieve cross connections.

Size			Style No. 920 or 920N	Max. Work Pressure$\begin{aligned} & \text { psi } \\ & \text { kPa } \\ & \hline \end{aligned}$	Dimensions							Approx. Weight Each	
Run \times Branch Nominal Size Inches mm					$\begin{array}{\|c\|} \hline \text { Hole } \\ \text { Diameter } \\ +0.13 \\ -0.00 \end{array}$	$\begin{gathered} \mathrm{T}^{* *} \\ \text { Inches } \\ \mathrm{mm} \end{gathered}$	V \ddagger \# Thd. Inches mm		$\begin{gathered} \text { W } \\ \text { Inches } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ \begin{array}{c} \text { Inches } \\ \mathrm{mm} \end{array} \end{gathered}$	$\underset{\substack{\text { Inches } \\ \mathrm{mm}}}{\mathrm{Z}}$	Female Thd. Lbs. kg	Grv. Lbs. kg
$\begin{gathered} 2 \\ 50 \end{gathered}$	\times	$\begin{gathered} 1 / 2(a) \\ 15 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.00 \\ 51 \end{gathered}$	$\begin{gathered} 2.53 \\ 64 \end{gathered}$	-	$\begin{gathered} 1.61 \\ 41 \end{gathered}$	$\begin{aligned} & 5.35 \\ & 136 \\ & \hline \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.1 \\ & 1.5 \end{aligned}$	-
		$\begin{gathered} 3 / 4 \text { (a) } \\ 20 \end{gathered}$	920N	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 1.97 \\ 50 \end{gathered}$	$\begin{gathered} 2.53 \\ 64 \end{gathered}$	-	$\begin{gathered} 1.61 \\ 41 \end{gathered}$	$\begin{aligned} & 5.35 \\ & 136 \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.1 \\ & 1.5 \end{aligned}$	-
		$\begin{aligned} & 1 \text { (a) } \\ & 25 \end{aligned}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 1.85 \\ 47 \end{gathered}$	$\begin{gathered} 2.53 \\ 64 \end{gathered}$	-	$\begin{gathered} 1.61 \\ 41 \end{gathered}$	$\begin{aligned} & 5.35 \\ & 136 \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 1.4 \end{aligned}$	-
		$\begin{gathered} 11 / 4(a) \dagger \\ 32 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.75 \\ & 44.5 \end{aligned}$	$\begin{gathered} 2.05 \\ 52 \end{gathered}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{gathered} 1.61 \\ 41 \end{gathered}$	$\begin{array}{r} 5.35 \\ 136 \\ \hline \end{array}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 1.5 \end{aligned}$
		$\begin{gathered} 11 / 2(a) \dagger \\ 40 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 1.75 \\ 44.5 \end{array}$	$\begin{gathered} 2.03 \\ 52 \end{gathered}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.12 \\ & 79 \end{aligned}$	$\begin{gathered} 1.61 \\ 41 \end{gathered}$	$\begin{aligned} & 5.35 \\ & 136 \\ & \hline \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \\ \hline \end{gathered}$	$\begin{aligned} & 3.6 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 1.5 \end{aligned}$
$\begin{aligned} & 21 / 2 \\ & 65 \end{aligned}$	\times	$\begin{gathered} 1 / 2(a) \\ 15 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.21 \\ 56 \end{gathered}$	$\begin{gathered} 2.74 \\ 70 \end{gathered}$	-	$\begin{gathered} 91.82 \\ 46 \end{gathered}$	$\begin{aligned} & 5.64 \\ & 143 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 70 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.4 \end{aligned}$	-
		$\begin{gathered} 3 / 4(a) \\ 20 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.18 \\ 55 \end{gathered}$	$\begin{gathered} 2.74 \\ 70 \end{gathered}$	-	$\begin{gathered} 1.82 \\ 46 \end{gathered}$	$\begin{gathered} 5.64 \\ 143 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 70 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.4 \end{aligned}$	-
		$\begin{aligned} & 1 \text { (a) } \\ & 25 \end{aligned}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.06 \\ 52 \end{gathered}$	$\begin{gathered} 2.74 \\ 70 \end{gathered}$	-	$\begin{gathered} 1.82 \\ 46 \end{gathered}$	$\begin{gathered} 5.64 \\ 143 \end{gathered}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 2.9 \\ & 1.4 \end{aligned}$	-
		$\begin{gathered} 11 / 4 \dagger(a) \\ 32 \\ \hline \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 1.75 \\ 44.5 \end{array}$	$\begin{gathered} 2.30 \\ 58 \\ \hline \end{gathered}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{gathered} 1.82 \\ 46 \end{gathered}$	$\begin{aligned} & 6.29 \\ & 160 \end{aligned}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 1.5 \end{aligned}$
		$\begin{gathered} 11 / 2 \dagger(a) \\ 40 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{gathered} 2.28 \\ 58 \end{gathered}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 1.82 \\ & 46 \end{aligned}$	$\begin{aligned} & 6.26 \\ & 159 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 3.6 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 1.6 \end{aligned}$
76.1	\times	$\begin{gathered} 1 / 2(a) \\ 15 \end{gathered}$	920	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.22 \\ 56 \end{gathered}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	-	$\begin{gathered} 2.25 \\ 57 \end{gathered}$	$\begin{aligned} & 6.46 \\ & 164 \end{aligned}$	$\begin{gathered} 3.18 \\ 81 \end{gathered}$	$\begin{aligned} & 3.9 \\ & 1.8 \end{aligned}$	-
		$\begin{gathered} 3 / 4 \text { (a) } \\ 20 \\ \hline \end{gathered}$	920	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.19 \\ 56 \end{gathered}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	-	$\begin{gathered} 2.25 \\ 57 \end{gathered}$	$\begin{aligned} & 6.46 \\ & 164 \end{aligned}$	$\begin{gathered} 3.18 \\ 81 \end{gathered}$	$\begin{aligned} & 3.9 \\ & 1.8 \end{aligned}$	-
		$\begin{aligned} & 1 \text { (a) } \\ & 25 \end{aligned}$	920	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.07 \\ 53 \end{gathered}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	-	$\begin{gathered} 2.25 \\ 57 \end{gathered}$	$\begin{aligned} & 6.46 \\ & 164 \end{aligned}$	$\begin{gathered} 3.18 \\ 81 \end{gathered}$	$\begin{aligned} & 3.8 \\ & 1.7 \end{aligned}$	-
		$\begin{gathered} 11 / 4(\mathrm{a}) \\ 32 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.75 \\ & 44.5 \end{aligned}$	$\begin{gathered} 2.30 \\ 58 \end{gathered}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{gathered} 3.31 \\ 84 \end{gathered}$	$\begin{gathered} 1.92 \\ 49 \end{gathered}$	$\begin{aligned} & 6.29 \\ & 160 \end{aligned}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 1.5 \end{aligned}$
		$\begin{gathered} 11 / 2(a) \\ 40 \\ \hline \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{gathered} 2.28 \\ 58 \end{gathered}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{gathered} 3.31 \\ 84 \end{gathered}$	$\begin{gathered} 1.92 \\ 49 \end{gathered}$	$\begin{aligned} & 6.29 \\ & 160 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 1.5 \end{aligned}$
$\begin{gathered} 3 \\ 80 \end{gathered}$	\times	$\begin{gathered} 1 / 2(a) \\ 15 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.52 \\ 64 \end{gathered}$	$\begin{gathered} 3.05 \\ 78 \end{gathered}$	-	$\begin{gathered} 2.28 \\ 58 \end{gathered}$	$\begin{aligned} & 6.15 \\ & 156 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 70 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 1.6 \end{aligned}$	-
		$\begin{gathered} 3 / 4 \text { (a) } \\ 20 \\ \hline \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.49 \\ 63 \end{gathered}$	$\begin{gathered} 3.05 \\ 78 \end{gathered}$	-	$\begin{gathered} 2.28 \\ 58 \end{gathered}$	$\begin{aligned} & 6.15 \\ & 156 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 70 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 1.6 \end{aligned}$	-
		$\begin{gathered} 1 \text { (a) } \\ 25 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.38 \\ 61 \end{gathered}$	$\begin{gathered} 3.06 \\ 78 \end{gathered}$	-	$\begin{gathered} 2.28 \\ 58 \end{gathered}$	$\begin{aligned} & 6.15 \\ & 156 \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.3 \\ & 1.6 \end{aligned}$	-
		$\begin{gathered} 11 / 4(\mathrm{a})+) \\ 32(\mathrm{~b} \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \\ \hline \end{gathered}$	$\begin{aligned} & 1.75 \\ & 44.5 \end{aligned}$	$\begin{gathered} 2.55 \\ 65 \end{gathered}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{gathered} 3.56 \\ 90 \end{gathered}$	$\begin{gathered} 2.28 \\ 58 \end{gathered}$	$\begin{aligned} & 6.15 \\ & 156 \end{aligned}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{aligned} & 3.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 1.8 \end{aligned}$
		$\begin{aligned} & 11 / 2(\mathrm{a}) \dagger \\ & 40(\mathrm{~b}) \end{aligned}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{gathered} 2.78 \\ 71 \end{gathered}$	$\begin{gathered} 3.50 \\ 89 \end{gathered}$	$\begin{gathered} 3.56 \\ 90 \end{gathered}$	$\begin{gathered} 2.28 \\ 58 \end{gathered}$	$\begin{aligned} & 6.15 \\ & 156 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 4.1 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 1.8 \end{aligned}$
		$\begin{gathered} 2 \text { (a) } \\ 50 \\ \hline \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 2.50 \\ 63.5 \end{array}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{gathered} 3.50 \\ 89 \end{gathered}$	$\begin{gathered} 3.56 \\ 90 \end{gathered}$	$\begin{gathered} 2.28 \\ 58 \\ \hline \end{gathered}$	$\begin{aligned} & 6.75 \\ & 172 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{aligned} & 4.9 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 2.1 \end{aligned}$
$\begin{aligned} & 31 / 2 \\ & 90 \end{aligned}$	\times	$\begin{gathered} 2 \\ 50 \end{gathered}$	920N	$\begin{array}{r} 500 \\ 3450 \\ \hline \end{array}$	$\begin{aligned} & 2.50 \\ & 63.5 \end{aligned}$	-	-	$\begin{gathered} 3.75 \\ 95 \\ \hline \end{gathered}$	$\begin{gathered} 2.44 \\ 62 \end{gathered}$	$\begin{gathered} 6.72 \\ 171 \end{gathered}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	-	$\begin{aligned} & 3.8 \\ & 1.8 \end{aligned}$
TABLE CONTINUED ON PG. 3													

www.victaulic.com
VICTAULIC IS A REGISTERED TRADEMARK OF VICTAULIC COMPANY. © 2007 VICTAULIC COMPANY. ALL RIGHTS RESERVED. PRINTED IN THE USA.

Mechanical- T^{\circledR} Bolted Branch Outlets

STYLES 920 AND 920N

grooved outlet

FEMALE THREADED OUTLET

- Provides a direct branch connection at any location where a hole can be cut in the pipe
- A pressure responsive gasket provides the seal
- Request Publication 11.03 for Mechanical-T cross assemblies
- Pressure rated up to $500 \mathrm{psi} / 3450 \mathrm{kPa}$ on steel pipe; also available for use with HDPE pipe
- Sizes from $2 \times 1 / 2 / 2 / 50 \times 15 \mathrm{~mm}$ through 8×4 "/200 $\times 100 \mathrm{~mm}$

IMPORTANT NOTES:

Style 920 and Style 920N housings cannot be mated to one another to achieve cross connections.

		Style No.	Max. Work Pressure	Dimensions							Approx. Weight Each	
Run \times Branch Nominal Size Inches mm		$\begin{gathered} 920 \\ \text { or } \\ 920 \mathrm{~N} \end{gathered}$	$\begin{gathered} \text { psi } \\ \mathrm{kPa} \end{gathered}$	Hole Diameter +0.13 -0.00	$\begin{gathered} \mathrm{T}^{* *} \\ \text { Inches } \\ \text { mm } \end{gathered}$	$V \neq \#$ Thd. Inches mm	V \ddagger Grv. Inches mm	$\begin{gathered} \text { W } \\ \text { Inches } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ \text { Inches } \\ \mathrm{mm} \end{gathered}$	$\underset{\substack{\text { Inches } \\ \mathrm{mm}}}{\mathrm{Z}}$	Female Thd. Lbs. kg	$\begin{aligned} & \text { Grv. } \\ & \text { Lbs. } \\ & \text { kg } \end{aligned}$
TABLE CONTINUED FROM PAGE 2												
$\begin{gathered} 4 \\ 100 \end{gathered}$	$1 / 2 \text { (a) }$	920 N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 3.03 \\ 77 \end{gathered}$	$\begin{gathered} 3.56 \\ 90 \end{gathered}$	-	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.01 \\ & 178 \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.7 \\ & 1.8 \end{aligned}$	-
	$\begin{gathered} 3 / 4(a) \\ 20 \end{gathered}$	920 N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{gathered} 3.56 \\ 90 \end{gathered}$	-	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.01 \\ & 178 \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.7 \\ & 1.8 \end{aligned}$	-
	$\begin{aligned} & 1 \text { (a) } \\ & 25 \end{aligned}$	$\begin{aligned} & 920 \mathrm{~N} \\ & 920 \mathrm{~N} \end{aligned}$	$\begin{gathered} 500 \\ 3450 \\ \hline \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.88 \\ 73 \end{gathered}$	$\begin{gathered} 3.56 \\ 90 \end{gathered}$	-	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.01 \\ & 178 \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.6 \\ & 1.8 \end{aligned}$	-
	$\begin{aligned} & 11 / 4 \text { (a) }+ \\ & 32 \text { (b) } \end{aligned}$		$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.75 \\ & 44.5 \end{aligned}$	$\begin{gathered} 3.08 \\ 78 \end{gathered}$	$\begin{gathered} 3.78 \\ 96 \end{gathered}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.01 \\ & 178 \end{aligned}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 1.8 \end{aligned}$
	$\begin{gathered} 11 / 2(\mathrm{a}) \dagger \\ 40(\mathrm{~b}) \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{gathered} 3.28 \\ 83 \end{gathered}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.01 \\ & 178 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 4.2 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 1.9 \end{aligned}$
	$\begin{gathered} 2(a) \dagger \\ 50 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 2.50 \\ 63.5 \end{array}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{array}{r} 4.00 \\ 102 \end{array}$	$\begin{array}{r} 4.00 \\ 102 \end{array}$	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.01 \\ & 178 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 2.1 \end{aligned}$
	$\begin{gathered} 21 / 2(a)+ \\ 65 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{gathered} 2.88 \\ 73 \end{gathered}$	$\begin{array}{r} 4.00 \\ 102 \\ \hline \end{array}$	$\begin{array}{r} 4.00 \\ 102 \end{array}$	$\begin{gathered} 2.69 \\ 68 \\ \hline \end{gathered}$	$\begin{aligned} & 7.34 \\ & 186 \\ & \hline \end{aligned}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{aligned} & 5.8 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 2.3 \end{aligned}$
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	-	-	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.34 \\ & 186 \end{aligned}$	$\begin{aligned} & 4.63 \\ & 118 \end{aligned}$	-	$\begin{aligned} & 6.4 \\ & 2.9 \end{aligned}$
	$\begin{gathered} 3(\mathrm{a}) \dagger \\ 80 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{gathered} 3.31 \\ 84 \end{gathered}$	$\begin{aligned} & 4.50 \\ & 114 \end{aligned}$	$\begin{aligned} & 4.12 \\ & 105 \end{aligned}$	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.73 \\ & 196 \end{aligned}$	$\begin{aligned} & 5.12 \\ & 130 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 2.9 \end{aligned}$
$108.0 \times$	$\begin{gathered} 11 / 4(\mathrm{a}) \\ 32 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.75 \\ & 44.5 \end{aligned}$	$\begin{gathered} 3.08 \\ 78 \end{gathered}$	$\begin{gathered} 3.78 \\ 96 \end{gathered}$	-	$\begin{gathered} 2.63 \\ 67 \end{gathered}$	$\begin{aligned} & 7.64 \\ & 194 \end{aligned}$	$\begin{gathered} 3.05 \\ 78 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 2.3 \end{aligned}$	-
	$\begin{gathered} 11 / 2(\mathrm{a}) \\ 40 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{gathered} 3.28 \\ 83 \end{gathered}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	-	$\begin{gathered} 2.63 \\ 67 \end{gathered}$	$\begin{aligned} & 7.64 \\ & 194 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 2.3 \end{aligned}$	-
	$\begin{gathered} 2(a) \\ 50 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.50 \\ & 63.5 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	-	$\begin{gathered} 2.63 \\ 67 \end{gathered}$	$\begin{aligned} & 7.64 \\ & 194 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 1.9 \end{aligned}$	-
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{gathered} 2.88 \\ 73 \end{gathered}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{gathered} 2.63 \\ 67 \end{gathered}$	$\begin{aligned} & 7.64 \\ & 194 \end{aligned}$	$\begin{array}{r} 4.29 \\ 109 \end{array}$	$\begin{aligned} & 8.0 \\ & 3.6 \end{aligned}$	-
	$\begin{gathered} 3 \text { (a) } \\ 80 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{gathered} 3.31 \\ 84 \end{gathered}$	$\begin{gathered} 4.50 \\ 114 \end{gathered}$	-	$\begin{gathered} 2.63 \\ 67 \end{gathered}$	$\begin{aligned} & 7.63 \\ & 194 \end{aligned}$	$\begin{aligned} & 4.88 \\ & 124 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 3.0 \end{aligned}$
$\begin{gathered} 5 \\ 125 \end{gathered} \times$	$\begin{gathered} 11 / 2(\mathrm{a})+ \\ 40 \\ \hline \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{aligned} & 4.03 \\ & 102 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 121 \end{aligned}$	$\begin{gathered} 4.75 \\ 121 \end{gathered}$	$\begin{gathered} 3.16 \\ 80 \\ \hline \end{gathered}$	$\begin{aligned} & 9.70 \\ & 246 \\ & \hline \end{aligned}$	$\begin{gathered} 3.69 \\ 94 \end{gathered}$	$\begin{aligned} & 7.4 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 3.4 \end{aligned}$
	$\begin{gathered} 2 \text { (a) } \dagger \\ 50 \\ \hline \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 2.50 \\ 63.5 \end{array}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 121 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 121 \end{aligned}$	$\begin{gathered} 3.16 \\ 80 \end{gathered}$	$\begin{aligned} & 9.70 \\ & 246 \\ & \hline \end{aligned}$	$\begin{gathered} 4.38 \\ 111 \end{gathered}$	$\begin{aligned} & 8.2 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 3.6 \end{aligned}$
	$\begin{gathered} 21 / 2(a)+ \\ 65 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	4.75	4.75	$\begin{gathered} 3.16 \\ 80 \end{gathered}$	$\begin{aligned} & 9.70 \\ & 246 \end{aligned}$	$\begin{aligned} & 4.63 \\ & 118 \end{aligned}$	$\begin{aligned} & 8.3 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 3.6 \end{aligned}$
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	-	-	$\begin{gathered} 4.75 \\ 121 \end{gathered}$	$\begin{gathered} 3.16 \\ 80 \end{gathered}$	$\begin{aligned} & 9.70 \\ & 246 \end{aligned}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	-	$\begin{aligned} & 8.0 \\ & 3.6 \end{aligned}$
	$\begin{gathered} 3 \text { (a) } \dagger \\ 80 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{gathered} 3.81 \\ 97 \end{gathered}$	$\begin{aligned} & 5.00 \\ & 127 \end{aligned}$	$\begin{aligned} & 4.63 \\ & 118 \end{aligned}$	$\begin{gathered} 3.16 \\ 80 \end{gathered}$	$\begin{aligned} & 9.70 \\ & 246 \end{aligned}$	$\begin{aligned} & 5.31 \\ & 135 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 4.0 \end{aligned}$
$133.0 \times$	$\begin{array}{r} 2 \\ \times \quad 50 \\ \hline 3 \\ 80 \\ \hline \end{array}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.50 \\ & 63.5 \end{aligned}$	$\begin{gathered} 3.75 \\ 95 \end{gathered}$	$\begin{array}{r} 4.50 \\ 114 \end{array}$	-	$\begin{gathered} 3.17 \\ 81 \end{gathered}$	$\begin{aligned} & 8.00 \\ & 203 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 3.6 \end{aligned}$	-
		920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{gathered} 3.81 \\ 97 \end{gathered}$	$\begin{aligned} & 5.00 \\ & 127 \end{aligned}$	-	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{aligned} & 9.46 \\ & 240 \end{aligned}$	$\begin{aligned} & 5.31 \\ & 135 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 3.6 \end{aligned}$	-

Mechanical- ${ }^{\circledR}$ Bolted Branch Outlets

STYLES 920 AND 920N

DIMENSIONS

FEMALE THREADED OUTLET

- Provides a direct branch connection at any location where a hole can be cut in the pipe
- A pressure responsive gasket provides the seal
- Request Publication 11.03 for Mechanical-T cross assemblies
- Pressure rated up to $500 \mathrm{psi} / 3450 \mathrm{kPa}$ on steel pipe; also available for use with HDPE pipe
- Sizes from $2 \times 1 / 21 / 50 \times 15 \mathrm{~mm}$ through 8×4 "/200 $\times 100 \mathrm{~mm}$

Size		Style No. 920 or 920N	Max. Work PressurepsikPa	Dimensions							Approx. Weight Each	
Run \times Branch Nominal Size Inches mm				Hole Diameter $+0.13$ -0.00		V \ddagger \# Thd. Inches mm	V \ddagger Grv. Inches mm				Female Thd. Lbs. kg	Grv. Lbs. kg
TABLE CONTINUED FROM PAGE 3												
$139.7 \times$	$11 / 2 \dagger$ 40	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{gathered} 3.78 \\ 96 \end{gathered}$	$\begin{gathered} 4.50 \\ 114 \end{gathered}$	-	$\begin{gathered} 3.30 \\ 84 \end{gathered}$	$\begin{aligned} & 8.23 \\ & 209 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 7.0 \\ & 3.2 \end{aligned}$	-
	$\begin{aligned} & 2 \dagger \\ & 50 \end{aligned}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.50 \\ & 63.5 \end{aligned}$	$\begin{gathered} 3.75 \\ 95 \end{gathered}$	$\begin{gathered} 4.50 \\ 114 \end{gathered}$	-	$\begin{gathered} 3.30 \\ 84 \end{gathered}$	$\begin{aligned} & 8.23 \\ & 209 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{aligned} & 9.0 \\ & 4.1 \end{aligned}$	-
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 4.75 \\ & 121 \end{aligned}$	-	$\begin{gathered} 3.13 \\ 80 \end{gathered}$	$\begin{aligned} & 9.85 \\ & 250 \end{aligned}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{aligned} & 8.8 \\ & 4.0 \end{aligned}$	-
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	-	-	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{gathered} 3.16 \\ 80 \end{gathered}$	$\begin{aligned} & 9.70 \\ & 246 \end{aligned}$	$\begin{aligned} & 5.31 \\ & 135 \end{aligned}$	$\begin{gathered} 11.0 \\ 5.0 \end{gathered}$	-
	$\begin{gathered} 3 \\ 88.9 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{gathered} 3.81 \\ 96.80 \end{gathered}$	$\begin{aligned} & 5.00 \\ & 127 \end{aligned}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{gathered} 3.16 \\ 80 \end{gathered}$	$\begin{aligned} & 9.85 \\ & 250 \end{aligned}$	$\begin{gathered} 5.38 \\ 137 \end{gathered}$	$\begin{gathered} 14.0 \\ 6.4 \end{gathered}$	$\begin{gathered} 14.2 \\ 6.4 \end{gathered}$
$\begin{gathered} 6 \\ 150 \end{gathered}$	$\begin{aligned} & 11 / 4(\mathrm{a}) \\ & 32(\mathrm{~b}) \end{aligned}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 1.75 \\ 44.5 \end{array}$	$\begin{gathered} 4.43 \\ 112 \end{gathered}$	-	-	$\begin{gathered} 3.79 \\ 96 \end{gathered}$	$\begin{aligned} & 9.15 \\ & 232 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	-	$\begin{aligned} & 4.8 \\ & 2.2 \end{aligned}$
	$\begin{gathered} 11 / 2(\mathrm{a}) \dagger \\ 40(\mathrm{~b}) \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{aligned} & 4.40 \\ & 112 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{gathered} 3.79 \\ 96 \end{gathered}$	$\begin{aligned} & 9.15 \\ & 232 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 5.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 2.3 \end{aligned}$
	$\begin{gathered} 2(\mathrm{a}) \dagger \\ 50 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.50 \\ & 63.5 \end{aligned}$	$\begin{gathered} 4.38 \\ 111 \end{gathered}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{gathered} 3.79 \\ 96 \end{gathered}$	$\begin{aligned} & 9.15 \\ & 232 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{aligned} & 6.0 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 2.5 \end{aligned}$
	$\begin{gathered} 21 / 2(a)+ \\ 65 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{array}{r} 4.01 \\ 110 \end{array}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{aligned} & 5.12 \\ & 130 \end{aligned}$	$\begin{gathered} 3.69 \\ 94 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{aligned} & 8.3 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 3.4 \end{aligned}$
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	-	-	$\begin{aligned} & 5.21 \\ & 132 \end{aligned}$	$\begin{gathered} 3.69 \\ 94 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	-	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$
	$\begin{gathered} 3 \text { (a) } \dagger \\ 80 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{array}{r} 4.31 \\ 110 \end{array}$	$\begin{gathered} 5.50 \\ 140 \end{gathered}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{gathered} 3.69 \\ 94 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{aligned} & 5.31 \\ & 135 \end{aligned}$	$\begin{aligned} & 9.9 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$
	$\begin{gathered} 4(a) t \\ 100 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{gathered} 4.50 \\ 114.3 \end{gathered}$	$\begin{gathered} 3.81 \\ 97 \end{gathered}$	$\begin{aligned} & 5.75 \\ & 146 \end{aligned}$	$\begin{gathered} 5.38 \\ 137 \end{gathered}$	$\begin{gathered} 3.69 \\ 94 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{aligned} & 6.25 \\ & 159 \end{aligned}$	$\begin{gathered} 10.1 \\ 4.6 \end{gathered}$	$\begin{gathered} 10.1 \\ 4.6 \end{gathered}$
$159.0 \times$	$11 / 4$ 32	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 1.75 \\ 44.5 \\ \hline \end{array}$	$\begin{gathered} 4.43 \\ 113 \end{gathered}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	-	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 9.40 \\ & 239 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 9.0 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 8.7 \\ & 4.0 \end{aligned}$
	$\begin{gathered} 11 / 2(\mathrm{a}) \\ 40 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{array}{r} 4.41 \\ 112 \end{array}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	-	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 9.40 \\ & 239 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 7.8 \\ & 3.5 \end{aligned}$	-
	$\begin{gathered} 2(a) \\ 50 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 2.50 \\ 63.5 \end{array}$	$\begin{gathered} 4.38 \\ 111 \end{gathered}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	-	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 9.40 \\ & 239 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 3.6 \end{aligned}$	-
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{gathered} 4.38 \\ 111 \end{gathered}$	$\begin{aligned} & 5.50 \\ & 140 \end{aligned}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 9.40 \\ & 239 \end{aligned}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{aligned} & 9.5 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 4.3 \end{aligned}$
	$\begin{gathered} 3 \\ 80 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{aligned} & 4.31 \\ & 110 \end{aligned}$	$\begin{aligned} & 5.50 \\ & 140 \end{aligned}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 9.40 \\ & 239 \end{aligned}$	$\begin{aligned} & 5.31 \\ & 135 \end{aligned}$	$\begin{aligned} & 8.1 \\ & 3.7 \end{aligned}$	$\begin{gathered} 14.0 \\ 6.4 \end{gathered}$
	108.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{gathered} 4.50 \\ 114.3 \end{gathered}$	-	-	$\begin{aligned} & 5.38 \\ & 137 \end{aligned}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 9.40 \\ & 239 \end{aligned}$	$\begin{aligned} & 6.12 \\ & 155 \end{aligned}$	-	$\begin{gathered} 10.0 \\ 4.5 \end{gathered}$
	$\begin{gathered} 4 \\ 100 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{gathered} 4.50 \\ 114.3 \end{gathered}$	$\begin{gathered} 3.81 \\ 96.80 \end{gathered}$	$\begin{aligned} & 5.75 \\ & 146 \end{aligned}$	-	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 9.40 \\ & 239 \end{aligned}$	$\begin{aligned} & 6.25 \\ & 159 \\ & \hline \end{aligned}$	$\begin{gathered} 18.0 \\ 8.2 \\ \hline \end{gathered}$	-
TABLE CONTINUED ON PG. 5												

IMPORTANT NOTES:

Style 920 and Style 920N housings cannot be mated to one another
to achieve cross connections.

Mechanical- T^{\circledR} Bolted Branch Outlets

STYLES 920 AND 920N

dimensions

GROOVED OUTLET

FEMALE THREADED OUTLET

- Provides a direct branch connection at any location where a hole can be cut in the pipe
- A pressure responsive gasket provides the seal
- Request Publication 11.03 for Mechanical-T cross assemblies
- Pressure rated up to $500 \mathrm{psi} / 3450 \mathrm{kPa}$ on steel pipe; also available for use with HDPE pipe
- Sizes from $2 \times 1 / 21 / 50 \times 15 \mathrm{~mm}$ through 8×4 "/200 $\times 100 \mathrm{~mm}$

Size		Style No. 920 or 920N	Max. Work Pressure psi kPa	Dimensions							Approx. Weight Each	
Run \times Branch Nominal Size Inches mm				Hole Diameter $\begin{aligned} & +0.13 \\ & -0.00 \end{aligned}$		V \ddagger \# Thd. Inches mm	V \ddagger Grv. Inches mm	$\begin{gathered} \text { W } \\ \text { Inches } \end{gathered}$ mm		$\begin{gathered} \text { Z } \\ \text { Inches } \end{gathered}$ mm	Female Thd. Lbs. kg	Grv. Lbs. kg
TABLE CONTINUED FROM PAGE 4												
$165.1 \times$	1 25	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{gathered} 4.56 \\ 116 \end{gathered}$	-	$\begin{gathered} 3.79 \\ 96 \end{gathered}$	$\begin{aligned} & 9.34 \\ & 237 \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 3.6 \end{aligned}$	-
	$\begin{aligned} & 11 / 4 \\ & 32 \end{aligned}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.75 \\ & 44.5 \end{aligned}$	$\begin{gathered} 4.43 \\ 113 \end{gathered}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	-	$\begin{gathered} 3.79 \\ 96 \end{gathered}$	$\begin{aligned} & 9.34 \\ & 237 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$	-
	$\begin{gathered} 11 / 2(a)+ \\ 40 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{array}{r} 4.41 \\ 112 \end{array}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	-	$\begin{gathered} 3.79 \\ 96 \end{gathered}$	$\begin{aligned} & 9.34 \\ & 237 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$	-
	$\begin{gathered} 2(a) \dagger \\ 50 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.50 \\ & 63.5 \end{aligned}$	$\begin{gathered} 4.38 \\ 111 \end{gathered}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	-	$\begin{gathered} 3.79 \\ 96 \end{gathered}$	$\begin{aligned} & 9.34 \\ & 237 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{aligned} & 8.5 \\ & 3.9 \end{aligned}$	-
	$\begin{gathered} 21 / 2 \dagger \\ 65 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{array}{r} 4.01 \\ 110 \end{array}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	-	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{aligned} & 8.6 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 3.4 \end{aligned}$
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{array}{r} 4.01 \\ 110 \end{array}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{aligned} & 5.21 \\ & 132 \end{aligned}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{aligned} & 8.6 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 3.4 \end{aligned}$
	$\begin{gathered} 3(a) \dagger \\ 80 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{gathered} 4.31 \\ 110 \end{gathered}$	$\begin{array}{r} 5.50 \\ 140 \end{array}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{aligned} & 5.31 \\ & 135 \end{aligned}$	$\begin{gathered} 10.2 \\ 4.6 \end{gathered}$	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$
	$\begin{gathered} 4 \text { (a) t } \\ 100 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{gathered} 4.50 \\ 114.3 \end{gathered}$	$\begin{gathered} 3.81 \\ 97 \end{gathered}$	$\begin{aligned} & 5.75 \\ & 146 \end{aligned}$	$\begin{gathered} 5.38 \\ 137 \end{gathered}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{gathered} 6.25 \\ 159 \end{gathered}$	$\begin{gathered} 10.5 \\ 4.8 \end{gathered}$	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$
$\begin{gathered} 8 \\ 200 \end{gathered} \times$	$\begin{gathered} 2(a) \dagger \\ 50 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{gathered} 5.44 \\ 138 \end{gathered}$	$\begin{aligned} & 6.19 \\ & 157 \end{aligned}$	$\begin{gathered} 6.25 \\ 159 \end{gathered}$	$\begin{aligned} & 4.81 \\ & 122 \end{aligned}$	$\begin{gathered} 12.42 \\ 316 \end{gathered}$	$\begin{gathered} 4.50 \\ 114 \end{gathered}$	$\begin{gathered} 11.6 \\ 5.3 \end{gathered}$	$\begin{gathered} 11.6 \\ 5.3 \end{gathered}$
	$\begin{gathered} 21 / 2(a) \dagger \\ 65 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{aligned} & 5.07 \\ & 129 \end{aligned}$	$\begin{aligned} & 6.19 \\ & 157 \end{aligned}$	$\begin{aligned} & 6.19 \\ & 157 \end{aligned}$	$\begin{aligned} & 4.81 \\ & 122 \end{aligned}$	$\begin{gathered} 12.42 \\ 316 \end{gathered}$	$\begin{gathered} 4.50 \\ 114 \end{gathered}$	$\begin{gathered} 11.6 \\ 5.3 \end{gathered}$	$\begin{aligned} & 11.6 \\ & 5.3 \end{aligned}$
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	-	-	$\begin{gathered} 6.25 \\ 159 \end{gathered}$	$\begin{aligned} & 4.81 \\ & 122 \end{aligned}$	$\begin{gathered} 12.42 \\ 316 \end{gathered}$	$\begin{aligned} & 4.56 \\ & 116 \end{aligned}$	-	$\begin{gathered} 11.6 \\ 5.3 \end{gathered}$
	$\begin{gathered} 3(a) \dagger \\ 80 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{array}{r} 5.31 \\ 135 \end{array}$	$\begin{gathered} 6.50 \\ 165 \end{gathered}$	$\begin{aligned} & 6.50 \\ & 165 \end{aligned}$	$\begin{aligned} & 4.81 \\ & 122 \end{aligned}$	$\begin{gathered} 12.42 \\ 316 \end{gathered}$	$\begin{aligned} & 5.31 \\ & 135 \end{aligned}$	$\begin{gathered} 12.6 \\ 5.7 \end{gathered}$	$\begin{gathered} 11.6 \\ 5.3 \end{gathered}$
	$\begin{gathered} 4(a) \dagger \\ 100 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{gathered} 4.50 \\ 114.3 \end{gathered}$	$\begin{aligned} & 4.81 \\ & 122 \end{aligned}$	$\begin{gathered} 6.75 \\ 171 \end{gathered}$	$\begin{aligned} & 6.38 \\ & 162 \end{aligned}$	$\begin{aligned} & 4.81 \\ & 122 \end{aligned}$	$\begin{gathered} 12.42 \\ 316 \end{gathered}$	$\begin{gathered} 6.25 \\ 159 \end{gathered}$	$\begin{gathered} 15.3 \\ 6.9 \\ \hline \end{gathered}$	$\begin{gathered} 12.5 \\ 5.7 \end{gathered}$

** Center of run to engaged pipe end, female threaded outlet only (dimensions approximate).
\dagger Available with grooved or female threaded outlet. Specify choice on order.
\neq Center of run to end of fitting.
\# Female threaded outlets are available to NPT and BSPT specifications.
(a) British Standard female pipe threaded outlet is available as listed. Specify "BSPT" clearly on order. (b)For 76.1 mm threaded outlet, specify $21 / 2^{\prime \prime}$ BSPT clearly on order.

IMPORTANT NOTES:

Style 920 and Style 920N housings cannot be mated to each other to achieve cross connections.

Mechanical-T® Bolted Branch Outlets

STYLES 920 AND 920N

FLOW DATA

Exaggerated for clarity

Flow test data has shown that the total head loss between point (1) and (2) for the Style 920, 920N and 929 Mechanical- ${ }^{\circledR}$ fittings can best be expressed in terms of the pressure difference across the inlet and branch. The pressure difference can be obtained from the relationship below.

C_{v} Values

Values for flow of water at $+60^{\circ} \mathrm{F} /+16^{\circ} \mathrm{C}$ are shown in the table below.

SIZE		Equivalent Length Feet/meter of Pipe		SIZE		Equivalent Length Feet/meter of Pipe	
Nominal Diameter In./mm	Actual Out. Dia. In./mm	Grooved	Female Threaded	Nominal Diameter In./mm	Actual Out. Dia. In./mm	Grooved	Female Threaded
$\begin{aligned} & 1 / 2 \\ & 15 \end{aligned}$	$\begin{gathered} 0.840 \\ 21.3 \end{gathered}$	-	$\begin{aligned} & 2.0 \\ & 0.6 \end{aligned}$	$\begin{gathered} 2 \\ 50 \end{gathered}$	$\begin{gathered} 2.375 \\ 60.3 \end{gathered}$	$\begin{aligned} & 9.0 \\ & 2.7 \end{aligned}$	$\begin{gathered} 10.5 \\ 3.2 \end{gathered}$
$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{aligned} & 1.050 \\ & 26.7 \end{aligned}$	-	$\begin{aligned} & 4.0 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 65 \end{aligned}$	$\begin{aligned} & 2.875 \\ & 73.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 3.4 \end{gathered}$	$\begin{gathered} 12.5 \\ 3.8 \end{gathered}$
$\begin{gathered} 1 \\ 25 \end{gathered}$	$\begin{aligned} & 1.315 \\ & 33.7 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 1.5 \end{aligned}$	$\begin{gathered} 3 \\ 80 \end{gathered}$	$\begin{gathered} 3.500 \\ 88.9 \end{gathered}$	$\begin{gathered} 13.5 \\ 4.1 \end{gathered}$	$\begin{gathered} 15.5 \\ 4.7 \end{gathered}$
$\begin{aligned} & 11 / 4 \\ & 32 \end{aligned}$	$\begin{gathered} 1.660 \\ 42.4 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 1.8 \end{aligned}$	$\begin{gathered} 4 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & 4.500 \\ & 114.3 \\ & \hline \end{aligned}$	$\begin{gathered} 20.0 \\ 6.1 \end{gathered}$	$\begin{gathered} 22.0 \\ 6.7 \end{gathered}$
$\begin{aligned} & 11 / 2 \\ & 40 \end{aligned}$	$\begin{gathered} 1.900 \\ 48.3 \end{gathered}$	$\begin{aligned} & 7.0 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 2.4 \end{aligned}$				

Formulas for C_{V} Values:

$\Delta \mathrm{P}=\frac{\mathrm{Q}^{2}}{\mathrm{C}_{\mathrm{v}}{ }^{2}}$
$Q=C_{v} \times \sqrt{\Delta P}$

Where:

Q = Flow (GPM)
$\Delta P=$ Pressure Drop (psi)
$C_{v}=$ Flow Coefficient

Size		CV	Size		CV	Size		CV
$\begin{aligned} & \text { Nominal } \\ & \text { Size } \\ & \text { Inches/mm } \end{aligned}$	Actual Outside Diameter Inches/mm	Values	$\begin{aligned} & \text { Nominal } \\ & \text { Size } \\ & \text { Inches/mm } \end{aligned}$	Actual Outside Diameter Inches/mm	Values	$\begin{gathered} \text { Nominal } \\ \text { Size } \\ \text { Inches/mm } \end{gathered}$	Actual Outside Diameter Inches/mm	Values
$\begin{aligned} & 1 / 2 \\ & 15 \end{aligned}$	$\begin{gathered} 0.840 \\ 21.3 \end{gathered}$	17	$\begin{aligned} & 11 / 4 \\ & 32 \end{aligned}$	$\begin{aligned} & 1.660 \\ & 42.4 \end{aligned}$	45	$\begin{aligned} & 21 / 2 \\ & 65 \end{aligned}$	$\begin{aligned} & 2.875 \\ & 73.0 \end{aligned}$	135
$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{aligned} & 1.050 \\ & 26.7 \end{aligned}$	21	$\begin{aligned} & 11 / 2 \\ & 40 \end{aligned}$	$\begin{aligned} & 1.900 \\ & 48.3 \end{aligned}$	60	$\begin{gathered} 3 \\ 80 \end{gathered}$	$\begin{gathered} 3.500 \\ 88.9 \end{gathered}$	200
$\begin{gathered} 1 \\ 25 \\ \hline \end{gathered}$	$\begin{array}{r} 1.315 \\ 33.7 \\ \hline \end{array}$	25	$\begin{gathered} 2 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & 2.375 \\ & 60.3 \\ & \hline \end{aligned}$	100	$\begin{gathered} 4 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & 4.500 \\ & 114.3 \\ & \hline \end{aligned}$	400

Mechanical- T^{\circledR} Bolted Branch Outlets

STYLES 920 AND 920N

APPROVED PRESSURE RATINGS
The information provided below is based on the latest listing and approval data at the time of publication. Listings/Approvals are subject to change and/or additions by the approvals agencies. Contact Victaulic for performance on other pipe and the latest listings and approvals.

Run Size		Outlet Size	Pipe	Rated Working Pressures - psi/kPa		
$\begin{gathered} \text { Nominal } \\ \text { Size } \\ \text { Inches/mm } \end{gathered}$	Actual Outside Diameter Inches/mm	Inches/mm	Schedule	UL	ULC	FM
$\begin{aligned} & 21 / 2-6 \\ & 65-150 \end{aligned}$	$\begin{aligned} & 2.875-6.625 \\ & 73.0-168.3 \end{aligned}$	All	10,40	$\begin{aligned} & 400 \\ & 2755 \end{aligned}$	$\begin{aligned} & 400 \\ & 2755 \end{aligned}$	$\begin{gathered} 400 \\ 2755 \end{gathered}$
$\begin{aligned} & 21 / 2-4 \\ & 65-100 \end{aligned}$	$\begin{gathered} 2.875-4.500 \\ 73.0-114.3 \end{gathered}$	All	DF	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{gathered} 300 \\ 2065 \end{gathered}$
$\begin{aligned} & 21 / 2-4 \\ & 65-100 \end{aligned}$	$\begin{gathered} 2.875-4.500 \\ 73.0-114.3 \end{gathered}$	All	SF	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{gathered} 300 \\ 2065 \end{gathered}$
$\begin{gathered} 6 \\ 150 \end{gathered}$	$\begin{aligned} & 6.625 \\ & 168.3 \end{aligned}$	3,4	10	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{aligned} & 250 \\ & 1724 \end{aligned}$
$\begin{gathered} 6 \\ 150 \end{gathered}$	$\begin{aligned} & 6.625 \\ & 168.3 \end{aligned}$	3,4	30,40	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{gathered} 300 \\ 2065 \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ 2065 \\ \hline \end{gathered}$
$\begin{gathered} 8 \\ 200 \end{gathered}$	$\begin{aligned} & 8.625 \\ & 219.1 \end{aligned}$	21/2	10,40	$\begin{gathered} 400 \\ 2755 \end{gathered}$	-	-
$\begin{gathered} 8 \\ 200 \end{gathered}$	$\begin{aligned} & 8.625 \\ & 219.1 \end{aligned}$	3,4	10	$\begin{gathered} 300 \\ 2065 \end{gathered}$	-	$\begin{aligned} & 250 \\ & 1724 \end{aligned}$
$\begin{gathered} 8 \\ 200 \\ \hline \end{gathered}$	$\begin{aligned} & 8.625 \\ & 219.1 \\ & \hline \end{aligned}$	3,4	30,40	$\begin{gathered} 300 \\ 2065 \end{gathered}$	-	$\begin{gathered} 300 \\ 2065 \end{gathered}$

NOTES:
10 refers to Listed/Approved Schedule 10 steel sprinkler pipe.
40 refers to Listed/Approved Schedule 40 steel sprinkler pipe.
DF refers to Listed/Approved Dyna-Flow steel sprinkler pipe manufactured by American Tube Company.
SF refers to Listed/Approved Super-Flo steel sprinkler pipe manufactured by Allied Tube and Conduit Corporation.

VIC-TAP II HOLE CUTTING TOOL FOR 4-8"/100-200 MM CARBON STEEL PIPE

The Vic-Tap II hole cutting tool is designed for use with the Style 931 Vic-Tap II Mechanical-T unit, which is a combination of the Style 920 Mechanical-T and Series 726 Vic-Ball Valve. The Vic-Tap II is capable of tapping into carbon steel pipe systems under pressures up to $500 \mathrm{psi} / 3450 \mathrm{kPa}$.
The Style 931 Vic-Tap II Mechanical-T unit is a full port ball valve which can be mounted on 4 " 100 mm , $5 " / 125 \mathrm{~mm}, 6 " / 150 \mathrm{~mm}$ and $8^{\prime \prime} / 200 \mathrm{~mm}$ diameter pipe. The Style 931 comes with a $21 / 2 / 165 \mathrm{~mm}$ grooved outlet.
The drill motor is an electric motor with ground fault circuit interrupter (GFCI) in accordance with safety codes.
For more information, refer to publication 24.01.

Mechanical-T® Bolted Branch Outlets

STYLES 920 AND 920N

INSTALLATION

Reference should always be made to the I-100 Victaulic Field Installation Handbook for the product you are installing. Handbooks are included with each shipment of Victaulic products for complete installation and assembly data, and are available in PDF format on our website at www.victaulic.com.

WARRANTY

Refer to the Warranty section of the current Price List or contact Victaulic for details.

NOTE

This product shall be manufactured by Victaulic or to Victaulic specifications. All products to be installed in accordance with current Victaulic installation/assembly instructions. Victaulic reserves the right to change product specifications, designs and standard equipment without notice and without incurring obligations.

Victaulic Mechanical- T^{\circledR} Outlet provides a direct branch connection at any location a hole can be cut in pipe. The hole is cut oversize to receive a "holefinder" locating collar which secures the outlet in position permanently. A pressure responsive gasket seals on the pipe O.D.

Cross-type connections can be achieved by utilizing two upper housings of the same style and size, with the same or differing branch size connections. NOTE: Style 920 and Style 920N housings cannot be mated to each other to achieve a cross connection.
Style 920 and Style 920N Mechanical-T outlets are available with grooved or female threaded outlet. Specify choice on order. Units are supplied painted with plated bolts. Galvanized hous-

STYLES 920 AND 920N

STYLE 920 CROSS ings are available, supplied with plated bolts.
All sizes of Style 920 and 920 N are rated at 500 psi/3450 kPa working pressure on Schedule 10 and 40 carbon steel pipe. They may also be used on high density polyethylene or polybutylene (HDPE) pipe. Pressure ratings on HDPE are dependent on the pipe rating. Contact Victaulic for ratings on other pipe. Style 920 and 920 N are not recommended for use on PVC plastic pipe.
Standard piping practices dictate that the Mechanical-T Styles 920 and 920 N must be installed so that the main and branch connections are a true 90° angle when permanently attached to the pipeline surface.
Additionally, the Vic-Tap II® hole cutting tool, which allows for hole cutting capabilities on pressurized systems, utilizes the Style 920 Mechanical-T in conjunction with the Series 726 Vic-Ball Valve to create the Style 931 Vic-Tap II Mechanical-T unit. See page 8 for further information.

MATERIAL SPECIFICATIONS
Housing/Coating: Ductile iron conforming to ASTM A-536, grade 65-45-12, with orange enamel coating. Ductile iron conforming to ASTM A-395, grade 65-45-15, is available upon special request.

- Optional: Hot dipped galvanized

Gasket: (Specify choice*)

- Grade "E" EPDM

EPDM (Green color code). Temperature range $-30^{\circ} \mathrm{F}$ to $+230^{\circ} \mathrm{F} /-34^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$.
Recommended for cold and hot water service within the specified temperature range plus a variety of dilute acids, oil-free air and many chemical services. UL Classified in accordance with ANSI/NSF 61 for cold $+86^{\circ} \mathrm{F} /+30^{\circ} \mathrm{C}$ and hot $+180^{\circ} \mathrm{F} /+82^{\circ} \mathrm{C}$. NOT RECOMMENDED FOR PETROLEUM SERVICES.

- Grade " T " nitrile

Nitrile (Orange color code). Temperature range $-20^{\circ} \mathrm{F}$ to $+180^{\circ} \mathrm{F} /-29^{\circ} \mathrm{C}$ to $+82^{\circ} \mathrm{C}$.
Recommended for petroleum products, air with oil vapors, vegetable and mineral oils within the specified temperature range. Not recommended for hot water services over $+150^{\circ} \mathrm{F} /+66^{\circ} \mathrm{C}$ or for hot dry air over $+140^{\circ} \mathrm{F} /+60^{\circ} \mathrm{C}$.
*Services listed are General Service Recommendations only. It should be noted that there are services for which these gaskets are not recommended. Reference should always be made to the latest Victaulic Gasket Selection Guide for specific gasket service recommendations and for a listing of services which are not recommended.

Bolts/Nuts: Heat-treated plated carbon steel, trackhead meeting the physical and chemical requirements of ASTM A-449 and physical requirements of ASTM A-183.

JOB/OWNER

System No. \qquad

CONTRACTOR

Submitted By \qquad
ENGINEER
Spec Sect \qquad Para \qquad
Location \qquad Date \qquad Approved \qquad
Date \qquad

Mechanical- ${ }^{\circledR}$ Bolted Branch Outlets

STYLES 920 AND 920N

DIMENSIONS

GROOVED OUTLET

FEMALE THREADED OUTLET

- Provides a direct branch connection at any location where a hole can be cut in the pipe
- A pressure responsive gasket provides the seal
- Request Publication 11.03 for Mechanical-T cross assemblies
- Pressure rated up to $500 \mathrm{psi} / 3450 \mathrm{kPa}$ on steel pipe; also available for use with HDPE pipe
- Sizes from $2 \times 1 / 21 / 50 \times 15 \mathrm{~mm}$ through 8×4 "/200 $\times 100 \mathrm{~mm}$

IMPORTANT NOTES:

Style 920 and Style 920N housings cannot be mated to one another
to achieve cross connections.

Size			Style No. 920 or 920N	Max. Work Pressure$\begin{aligned} & \text { psi } \\ & \text { kPa } \\ & \hline \end{aligned}$	Dimensions							Approx. Weight Each	
Run \times Branch Nominal Size Inches mm					$\begin{array}{\|c\|} \hline \text { Hole } \\ \text { Diameter } \\ +0.13 \\ -0.00 \end{array}$	$\begin{gathered} \mathrm{T}^{* *} \\ \text { Inches } \\ \mathrm{mm} \end{gathered}$	V \ddagger \# Thd. Inches mm		$\begin{gathered} \text { W } \\ \text { Inches } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ \begin{array}{c} \text { Inches } \\ \mathrm{mm} \end{array} \end{gathered}$	$\underset{\substack{\text { Inches } \\ \mathrm{mm}}}{\mathrm{Z}}$	Female Thd. Lbs. kg	Grv. Lbs. kg
$\begin{gathered} 2 \\ 50 \end{gathered}$	\times	$\begin{gathered} 1 / 2(a) \\ 15 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.00 \\ 51 \end{gathered}$	$\begin{gathered} 2.53 \\ 64 \end{gathered}$	-	$\begin{gathered} 1.61 \\ 41 \end{gathered}$	$\begin{aligned} & 5.35 \\ & 136 \\ & \hline \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.1 \\ & 1.5 \end{aligned}$	-
		$\begin{gathered} 3 / 4 \text { (a) } \\ 20 \end{gathered}$	920N	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 1.97 \\ 50 \end{gathered}$	$\begin{gathered} 2.53 \\ 64 \end{gathered}$	-	$\begin{gathered} 1.61 \\ 41 \end{gathered}$	$\begin{aligned} & 5.35 \\ & 136 \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.1 \\ & 1.5 \end{aligned}$	-
		$\begin{aligned} & 1 \text { (a) } \\ & 25 \end{aligned}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 1.85 \\ 47 \end{gathered}$	$\begin{gathered} 2.53 \\ 64 \end{gathered}$	-	$\begin{gathered} 1.61 \\ 41 \end{gathered}$	$\begin{aligned} & 5.35 \\ & 136 \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 1.4 \end{aligned}$	-
		$\begin{gathered} 11 / 4(a) \dagger \\ 32 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.75 \\ & 44.5 \end{aligned}$	$\begin{gathered} 2.05 \\ 52 \end{gathered}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{gathered} 1.61 \\ 41 \end{gathered}$	$\begin{array}{r} 5.35 \\ 136 \\ \hline \end{array}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 1.5 \end{aligned}$
		$\begin{gathered} 11 / 2(a) \dagger \\ 40 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 1.75 \\ 44.5 \end{array}$	$\begin{gathered} 2.03 \\ 52 \end{gathered}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.12 \\ & 79 \end{aligned}$	$\begin{gathered} 1.61 \\ 41 \end{gathered}$	$\begin{aligned} & 5.35 \\ & 136 \\ & \hline \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \\ \hline \end{gathered}$	$\begin{aligned} & 3.6 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 1.5 \end{aligned}$
$\begin{aligned} & 21 / 2 \\ & 65 \end{aligned}$	\times	$\begin{gathered} 1 / 2(a) \\ 15 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.21 \\ 56 \end{gathered}$	$\begin{gathered} 2.74 \\ 70 \end{gathered}$	-	$\begin{gathered} 91.82 \\ 46 \end{gathered}$	$\begin{aligned} & 5.64 \\ & 143 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 70 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.4 \end{aligned}$	-
		$\begin{gathered} 3 / 4(a) \\ 20 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.18 \\ 55 \end{gathered}$	$\begin{gathered} 2.74 \\ 70 \end{gathered}$	-	$\begin{gathered} 1.82 \\ 46 \end{gathered}$	$\begin{gathered} 5.64 \\ 143 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 70 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.4 \end{aligned}$	-
		$\begin{aligned} & 1 \text { (a) } \\ & 25 \end{aligned}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.06 \\ 52 \end{gathered}$	$\begin{gathered} 2.74 \\ 70 \end{gathered}$	-	$\begin{gathered} 1.82 \\ 46 \end{gathered}$	$\begin{gathered} 5.64 \\ 143 \end{gathered}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 2.9 \\ & 1.4 \end{aligned}$	-
		$\begin{gathered} 11 / 4 \dagger(a) \\ 32 \\ \hline \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 1.75 \\ 44.5 \end{array}$	$\begin{gathered} 2.30 \\ 58 \\ \hline \end{gathered}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{gathered} 1.82 \\ 46 \end{gathered}$	$\begin{aligned} & 6.29 \\ & 160 \end{aligned}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 1.5 \end{aligned}$
		$\begin{gathered} 11 / 2 \dagger(a) \\ 40 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{gathered} 2.28 \\ 58 \end{gathered}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 1.82 \\ & 46 \end{aligned}$	$\begin{aligned} & 6.26 \\ & 159 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 3.6 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 1.6 \end{aligned}$
76.1	\times	$\begin{gathered} 1 / 2(a) \\ 15 \end{gathered}$	920	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.22 \\ 56 \end{gathered}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	-	$\begin{gathered} 2.25 \\ 57 \end{gathered}$	$\begin{aligned} & 6.46 \\ & 164 \end{aligned}$	$\begin{gathered} 3.18 \\ 81 \end{gathered}$	$\begin{aligned} & 3.9 \\ & 1.8 \end{aligned}$	-
		$\begin{gathered} 3 / 4 \text { (a) } \\ 20 \\ \hline \end{gathered}$	920	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.19 \\ 56 \end{gathered}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	-	$\begin{gathered} 2.25 \\ 57 \end{gathered}$	$\begin{aligned} & 6.46 \\ & 164 \end{aligned}$	$\begin{gathered} 3.18 \\ 81 \end{gathered}$	$\begin{aligned} & 3.9 \\ & 1.8 \end{aligned}$	-
		$\begin{aligned} & 1 \text { (a) } \\ & 25 \end{aligned}$	920	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.07 \\ 53 \end{gathered}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	-	$\begin{gathered} 2.25 \\ 57 \end{gathered}$	$\begin{aligned} & 6.46 \\ & 164 \end{aligned}$	$\begin{gathered} 3.18 \\ 81 \end{gathered}$	$\begin{aligned} & 3.8 \\ & 1.7 \end{aligned}$	-
		$\begin{gathered} 11 / 4(\mathrm{a}) \\ 32 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.75 \\ & 44.5 \end{aligned}$	$\begin{gathered} 2.30 \\ 58 \end{gathered}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{gathered} 3.31 \\ 84 \end{gathered}$	$\begin{gathered} 1.92 \\ 49 \end{gathered}$	$\begin{aligned} & 6.29 \\ & 160 \end{aligned}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 1.5 \end{aligned}$
		$\begin{gathered} 11 / 2(a) \\ 40 \\ \hline \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{gathered} 2.28 \\ 58 \end{gathered}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{gathered} 3.31 \\ 84 \end{gathered}$	$\begin{gathered} 1.92 \\ 49 \end{gathered}$	$\begin{aligned} & 6.29 \\ & 160 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 1.5 \end{aligned}$
$\begin{gathered} 3 \\ 80 \end{gathered}$	\times	$\begin{gathered} 1 / 2(a) \\ 15 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.52 \\ 64 \end{gathered}$	$\begin{gathered} 3.05 \\ 78 \end{gathered}$	-	$\begin{gathered} 2.28 \\ 58 \end{gathered}$	$\begin{aligned} & 6.15 \\ & 156 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 70 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 1.6 \end{aligned}$	-
		$\begin{gathered} 3 / 4 \text { (a) } \\ 20 \\ \hline \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.49 \\ 63 \end{gathered}$	$\begin{gathered} 3.05 \\ 78 \end{gathered}$	-	$\begin{gathered} 2.28 \\ 58 \end{gathered}$	$\begin{aligned} & 6.15 \\ & 156 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 70 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 1.6 \end{aligned}$	-
		$\begin{gathered} 1 \text { (a) } \\ 25 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.38 \\ 61 \end{gathered}$	$\begin{gathered} 3.06 \\ 78 \end{gathered}$	-	$\begin{gathered} 2.28 \\ 58 \end{gathered}$	$\begin{aligned} & 6.15 \\ & 156 \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.3 \\ & 1.6 \end{aligned}$	-
		$\begin{gathered} 11 / 4(\mathrm{a})+) \\ 32(\mathrm{~b} \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \\ \hline \end{gathered}$	$\begin{aligned} & 1.75 \\ & 44.5 \end{aligned}$	$\begin{gathered} 2.55 \\ 65 \end{gathered}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{gathered} 3.56 \\ 90 \end{gathered}$	$\begin{gathered} 2.28 \\ 58 \end{gathered}$	$\begin{aligned} & 6.15 \\ & 156 \end{aligned}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{aligned} & 3.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 1.8 \end{aligned}$
		$\begin{aligned} & 11 / 2(\mathrm{a}) \dagger \\ & 40(\mathrm{~b}) \end{aligned}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{gathered} 2.78 \\ 71 \end{gathered}$	$\begin{gathered} 3.50 \\ 89 \end{gathered}$	$\begin{gathered} 3.56 \\ 90 \end{gathered}$	$\begin{gathered} 2.28 \\ 58 \end{gathered}$	$\begin{aligned} & 6.15 \\ & 156 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 4.1 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 1.8 \end{aligned}$
		$\begin{gathered} 2 \text { (a) } \\ 50 \\ \hline \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 2.50 \\ 63.5 \end{array}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{gathered} 3.50 \\ 89 \end{gathered}$	$\begin{gathered} 3.56 \\ 90 \end{gathered}$	$\begin{gathered} 2.28 \\ 58 \\ \hline \end{gathered}$	$\begin{aligned} & 6.75 \\ & 172 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{aligned} & 4.9 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 2.1 \end{aligned}$
$\begin{aligned} & 31 / 2 \\ & 90 \end{aligned}$	\times	$\begin{gathered} 2 \\ 50 \end{gathered}$	920N	$\begin{array}{r} 500 \\ 3450 \\ \hline \end{array}$	$\begin{aligned} & 2.50 \\ & 63.5 \end{aligned}$	-	-	$\begin{gathered} 3.75 \\ 95 \\ \hline \end{gathered}$	$\begin{gathered} 2.44 \\ 62 \end{gathered}$	$\begin{gathered} 6.72 \\ 171 \end{gathered}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	-	$\begin{aligned} & 3.8 \\ & 1.8 \end{aligned}$
TABLE CONTINUED ON PG. 3													

www.victaulic.com
VICTAULIC IS A REGISTERED TRADEMARK OF VICTAULIC COMPANY. © 2007 VICTAULIC COMPANY. ALL RIGHTS RESERVED. PRINTED IN THE USA.

Mechanical- T^{\circledR} Bolted Branch Outlets

STYLES 920 AND 920N

grooved outlet

FEMALE THREADED OUTLET

- Provides a direct branch connection at any location where a hole can be cut in the pipe
- A pressure responsive gasket provides the seal
- Request Publication 11.03 for Mechanical-T cross assemblies
- Pressure rated up to $500 \mathrm{psi} / 3450 \mathrm{kPa}$ on steel pipe; also available for use with HDPE pipe
- Sizes from $2 \times 1 / 2 / 2 / 50 \times 15 \mathrm{~mm}$ through 8×4 "/200 $\times 100 \mathrm{~mm}$

IMPORTANT NOTES:

Style 920 and Style 920N housings cannot be mated to one another to achieve cross connections.

		Style No.	Max. Work Pressure	Dimensions							Approx. Weight Each	
Run \times Branch Nominal Size Inches mm		$\begin{gathered} 920 \\ \text { or } \\ 920 \mathrm{~N} \end{gathered}$	$\begin{gathered} \text { psi } \\ \mathrm{kPa} \end{gathered}$	Hole Diameter +0.13 -0.00	$\begin{gathered} \mathrm{T}^{* *} \\ \text { Inches } \\ \text { mm } \end{gathered}$	$V \neq \#$ Thd. Inches mm	V \ddagger Grv. Inches mm	$\begin{gathered} \text { W } \\ \text { Inches } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \mathrm{Y} \\ \text { Inches } \\ \mathrm{mm} \end{gathered}$	$\underset{\substack{\text { Inches } \\ \mathrm{mm}}}{\mathrm{Z}}$	Female Thd. Lbs. kg	$\begin{aligned} & \text { Grv. } \\ & \text { Lbs. } \\ & \text { kg } \end{aligned}$
TABLE CONTINUED FROM PAGE 2												
$\begin{gathered} 4 \\ 100 \end{gathered}$	$1 / 2 \text { (a) }$	920 N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 3.03 \\ 77 \end{gathered}$	$\begin{gathered} 3.56 \\ 90 \end{gathered}$	-	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.01 \\ & 178 \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.7 \\ & 1.8 \end{aligned}$	-
	$\begin{gathered} 3 / 4(a) \\ 20 \end{gathered}$	920 N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{gathered} 3.56 \\ 90 \end{gathered}$	-	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.01 \\ & 178 \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.7 \\ & 1.8 \end{aligned}$	-
	$\begin{aligned} & 1 \text { (a) } \\ & 25 \end{aligned}$	$\begin{aligned} & 920 \mathrm{~N} \\ & 920 \mathrm{~N} \end{aligned}$	$\begin{gathered} 500 \\ 3450 \\ \hline \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 2.88 \\ 73 \end{gathered}$	$\begin{gathered} 3.56 \\ 90 \end{gathered}$	-	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.01 \\ & 178 \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 3.6 \\ & 1.8 \end{aligned}$	-
	$\begin{aligned} & 11 / 4 \text { (a) }+ \\ & 32 \text { (b) } \end{aligned}$		$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.75 \\ & 44.5 \end{aligned}$	$\begin{gathered} 3.08 \\ 78 \end{gathered}$	$\begin{gathered} 3.78 \\ 96 \end{gathered}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.01 \\ & 178 \end{aligned}$	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 1.8 \end{aligned}$
	$\begin{gathered} 11 / 2(\mathrm{a}) \dagger \\ 40(\mathrm{~b}) \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{gathered} 3.28 \\ 83 \end{gathered}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.01 \\ & 178 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 4.2 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 1.9 \end{aligned}$
	$\begin{gathered} 2(a) \dagger \\ 50 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 2.50 \\ 63.5 \end{array}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{array}{r} 4.00 \\ 102 \end{array}$	$\begin{array}{r} 4.00 \\ 102 \end{array}$	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.01 \\ & 178 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 2.1 \end{aligned}$
	$\begin{gathered} 21 / 2(a)+ \\ 65 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{gathered} 2.88 \\ 73 \end{gathered}$	$\begin{array}{r} 4.00 \\ 102 \\ \hline \end{array}$	$\begin{array}{r} 4.00 \\ 102 \end{array}$	$\begin{gathered} 2.69 \\ 68 \\ \hline \end{gathered}$	$\begin{aligned} & 7.34 \\ & 186 \\ & \hline \end{aligned}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{aligned} & 5.8 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 2.3 \end{aligned}$
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	-	-	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.34 \\ & 186 \end{aligned}$	$\begin{aligned} & 4.63 \\ & 118 \end{aligned}$	-	$\begin{aligned} & 6.4 \\ & 2.9 \end{aligned}$
	$\begin{gathered} 3(\mathrm{a}) \dagger \\ 80 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{gathered} 3.31 \\ 84 \end{gathered}$	$\begin{aligned} & 4.50 \\ & 114 \end{aligned}$	$\begin{aligned} & 4.12 \\ & 105 \end{aligned}$	$\begin{gathered} 2.69 \\ 68 \end{gathered}$	$\begin{aligned} & 7.73 \\ & 196 \end{aligned}$	$\begin{aligned} & 5.12 \\ & 130 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 2.9 \end{aligned}$
$108.0 \times$	$\begin{gathered} 11 / 4(\mathrm{a}) \\ 32 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.75 \\ & 44.5 \end{aligned}$	$\begin{gathered} 3.08 \\ 78 \end{gathered}$	$\begin{gathered} 3.78 \\ 96 \end{gathered}$	-	$\begin{gathered} 2.63 \\ 67 \end{gathered}$	$\begin{aligned} & 7.64 \\ & 194 \end{aligned}$	$\begin{gathered} 3.05 \\ 78 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 2.3 \end{aligned}$	-
	$\begin{gathered} 11 / 2(\mathrm{a}) \\ 40 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{gathered} 3.28 \\ 83 \end{gathered}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	-	$\begin{gathered} 2.63 \\ 67 \end{gathered}$	$\begin{aligned} & 7.64 \\ & 194 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 2.3 \end{aligned}$	-
	$\begin{gathered} 2(a) \\ 50 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.50 \\ & 63.5 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	-	$\begin{gathered} 2.63 \\ 67 \end{gathered}$	$\begin{aligned} & 7.64 \\ & 194 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 1.9 \end{aligned}$	-
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{gathered} 2.88 \\ 73 \end{gathered}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{gathered} 2.63 \\ 67 \end{gathered}$	$\begin{aligned} & 7.64 \\ & 194 \end{aligned}$	$\begin{array}{r} 4.29 \\ 109 \end{array}$	$\begin{aligned} & 8.0 \\ & 3.6 \end{aligned}$	-
	$\begin{gathered} 3 \text { (a) } \\ 80 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{gathered} 3.31 \\ 84 \end{gathered}$	$\begin{gathered} 4.50 \\ 114 \end{gathered}$	-	$\begin{gathered} 2.63 \\ 67 \end{gathered}$	$\begin{aligned} & 7.63 \\ & 194 \end{aligned}$	$\begin{aligned} & 4.88 \\ & 124 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 3.0 \end{aligned}$
$\begin{gathered} 5 \\ 125 \end{gathered} \times$	$\begin{gathered} 11 / 2(\mathrm{a})+ \\ 40 \\ \hline \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{aligned} & 4.03 \\ & 102 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 121 \end{aligned}$	$\begin{gathered} 4.75 \\ 121 \end{gathered}$	$\begin{gathered} 3.16 \\ 80 \\ \hline \end{gathered}$	$\begin{aligned} & 9.70 \\ & 246 \\ & \hline \end{aligned}$	$\begin{gathered} 3.69 \\ 94 \end{gathered}$	$\begin{aligned} & 7.4 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 3.4 \end{aligned}$
	$\begin{gathered} 2 \text { (a) } \dagger \\ 50 \\ \hline \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 2.50 \\ 63.5 \end{array}$	$\begin{aligned} & 4.00 \\ & 102 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 121 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 121 \end{aligned}$	$\begin{gathered} 3.16 \\ 80 \end{gathered}$	$\begin{aligned} & 9.70 \\ & 246 \\ & \hline \end{aligned}$	$\begin{gathered} 4.38 \\ 111 \end{gathered}$	$\begin{aligned} & 8.2 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 3.6 \end{aligned}$
	$\begin{gathered} 21 / 2(a)+ \\ 65 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	4.75	4.75	$\begin{gathered} 3.16 \\ 80 \end{gathered}$	$\begin{aligned} & 9.70 \\ & 246 \end{aligned}$	$\begin{aligned} & 4.63 \\ & 118 \end{aligned}$	$\begin{aligned} & 8.3 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 3.6 \end{aligned}$
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	-	-	$\begin{gathered} 4.75 \\ 121 \end{gathered}$	$\begin{gathered} 3.16 \\ 80 \end{gathered}$	$\begin{aligned} & 9.70 \\ & 246 \end{aligned}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	-	$\begin{aligned} & 8.0 \\ & 3.6 \end{aligned}$
	$\begin{gathered} 3 \text { (a) } \dagger \\ 80 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{gathered} 3.81 \\ 97 \end{gathered}$	$\begin{aligned} & 5.00 \\ & 127 \end{aligned}$	$\begin{aligned} & 4.63 \\ & 118 \end{aligned}$	$\begin{gathered} 3.16 \\ 80 \end{gathered}$	$\begin{aligned} & 9.70 \\ & 246 \end{aligned}$	$\begin{aligned} & 5.31 \\ & 135 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 4.0 \end{aligned}$
$133.0 \times$	$\begin{array}{r} 2 \\ \times \quad 50 \\ \hline 3 \\ 80 \\ \hline \end{array}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.50 \\ & 63.5 \end{aligned}$	$\begin{gathered} 3.75 \\ 95 \end{gathered}$	$\begin{array}{r} 4.50 \\ 114 \end{array}$	-	$\begin{gathered} 3.17 \\ 81 \end{gathered}$	$\begin{aligned} & 8.00 \\ & 203 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 3.6 \end{aligned}$	-
		920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{gathered} 3.81 \\ 97 \end{gathered}$	$\begin{aligned} & 5.00 \\ & 127 \end{aligned}$	-	$\begin{gathered} 3.00 \\ 76 \end{gathered}$	$\begin{aligned} & 9.46 \\ & 240 \end{aligned}$	$\begin{aligned} & 5.31 \\ & 135 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 3.6 \end{aligned}$	-

Mechanical- ${ }^{\circledR}$ Bolted Branch Outlets

STYLES 920 AND 920N

DIMENSIONS

FEMALE THREADED OUTLET

- Provides a direct branch connection at any location where a hole can be cut in the pipe
- A pressure responsive gasket provides the seal
- Request Publication 11.03 for Mechanical-T cross assemblies
- Pressure rated up to $500 \mathrm{psi} / 3450 \mathrm{kPa}$ on steel pipe; also available for use with HDPE pipe
- Sizes from $2 \times 1 / 21 / 50 \times 15 \mathrm{~mm}$ through 8×4 "/200 $\times 100 \mathrm{~mm}$

Size		Style No. 920 or 920N	Max. Work PressurepsikPa	Dimensions							Approx. Weight Each	
Run \times Branch Nominal Size Inches mm				Hole Diameter $+0.13$ -0.00		V \ddagger \# Thd. Inches mm	V \ddagger Grv. Inches mm				Female Thd. Lbs. kg	Grv. Lbs. kg
TABLE CONTINUED FROM PAGE 3												
$139.7 \times$	$11 / 2 \dagger$ 40	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{gathered} 3.78 \\ 96 \end{gathered}$	$\begin{gathered} 4.50 \\ 114 \end{gathered}$	-	$\begin{gathered} 3.30 \\ 84 \end{gathered}$	$\begin{aligned} & 8.23 \\ & 209 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 7.0 \\ & 3.2 \end{aligned}$	-
	$\begin{aligned} & 2 \dagger \\ & 50 \end{aligned}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.50 \\ & 63.5 \end{aligned}$	$\begin{gathered} 3.75 \\ 95 \end{gathered}$	$\begin{gathered} 4.50 \\ 114 \end{gathered}$	-	$\begin{gathered} 3.30 \\ 84 \end{gathered}$	$\begin{aligned} & 8.23 \\ & 209 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{aligned} & 9.0 \\ & 4.1 \end{aligned}$	-
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 4.75 \\ & 121 \end{aligned}$	-	$\begin{gathered} 3.13 \\ 80 \end{gathered}$	$\begin{aligned} & 9.85 \\ & 250 \end{aligned}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{aligned} & 8.8 \\ & 4.0 \end{aligned}$	-
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	-	-	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{gathered} 3.16 \\ 80 \end{gathered}$	$\begin{aligned} & 9.70 \\ & 246 \end{aligned}$	$\begin{aligned} & 5.31 \\ & 135 \end{aligned}$	$\begin{gathered} 11.0 \\ 5.0 \end{gathered}$	-
	$\begin{gathered} 3 \\ 88.9 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{gathered} 3.81 \\ 96.80 \end{gathered}$	$\begin{aligned} & 5.00 \\ & 127 \end{aligned}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{gathered} 3.16 \\ 80 \end{gathered}$	$\begin{aligned} & 9.85 \\ & 250 \end{aligned}$	$\begin{gathered} 5.38 \\ 137 \end{gathered}$	$\begin{gathered} 14.0 \\ 6.4 \end{gathered}$	$\begin{gathered} 14.2 \\ 6.4 \end{gathered}$
$\begin{gathered} 6 \\ 150 \end{gathered}$	$\begin{aligned} & 11 / 4(\mathrm{a}) \\ & 32(\mathrm{~b}) \end{aligned}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 1.75 \\ 44.5 \end{array}$	$\begin{gathered} 4.43 \\ 112 \end{gathered}$	-	-	$\begin{gathered} 3.79 \\ 96 \end{gathered}$	$\begin{aligned} & 9.15 \\ & 232 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	-	$\begin{aligned} & 4.8 \\ & 2.2 \end{aligned}$
	$\begin{gathered} 11 / 2(\mathrm{a}) \dagger \\ 40(\mathrm{~b}) \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{aligned} & 4.40 \\ & 112 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{gathered} 3.79 \\ 96 \end{gathered}$	$\begin{aligned} & 9.15 \\ & 232 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 5.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 2.3 \end{aligned}$
	$\begin{gathered} 2(\mathrm{a}) \dagger \\ 50 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.50 \\ & 63.5 \end{aligned}$	$\begin{gathered} 4.38 \\ 111 \end{gathered}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{gathered} 3.79 \\ 96 \end{gathered}$	$\begin{aligned} & 9.15 \\ & 232 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{aligned} & 6.0 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 2.5 \end{aligned}$
	$\begin{gathered} 21 / 2(a)+ \\ 65 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{array}{r} 4.01 \\ 110 \end{array}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{aligned} & 5.12 \\ & 130 \end{aligned}$	$\begin{gathered} 3.69 \\ 94 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{aligned} & 8.3 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 3.4 \end{aligned}$
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	-	-	$\begin{aligned} & 5.21 \\ & 132 \end{aligned}$	$\begin{gathered} 3.69 \\ 94 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	-	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$
	$\begin{gathered} 3 \text { (a) } \dagger \\ 80 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{array}{r} 4.31 \\ 110 \end{array}$	$\begin{gathered} 5.50 \\ 140 \end{gathered}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{gathered} 3.69 \\ 94 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{aligned} & 5.31 \\ & 135 \end{aligned}$	$\begin{aligned} & 9.9 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$
	$\begin{gathered} 4(a) t \\ 100 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{gathered} 4.50 \\ 114.3 \end{gathered}$	$\begin{gathered} 3.81 \\ 97 \end{gathered}$	$\begin{aligned} & 5.75 \\ & 146 \end{aligned}$	$\begin{gathered} 5.38 \\ 137 \end{gathered}$	$\begin{gathered} 3.69 \\ 94 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{aligned} & 6.25 \\ & 159 \end{aligned}$	$\begin{gathered} 10.1 \\ 4.6 \end{gathered}$	$\begin{gathered} 10.1 \\ 4.6 \end{gathered}$
$159.0 \times$	$11 / 4$ 32	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 1.75 \\ 44.5 \\ \hline \end{array}$	$\begin{gathered} 4.43 \\ 113 \end{gathered}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	-	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 9.40 \\ & 239 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 9.0 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 8.7 \\ & 4.0 \end{aligned}$
	$\begin{gathered} 11 / 2(\mathrm{a}) \\ 40 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{array}{r} 4.41 \\ 112 \end{array}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	-	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 9.40 \\ & 239 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 7.8 \\ & 3.5 \end{aligned}$	-
	$\begin{gathered} 2(a) \\ 50 \end{gathered}$	920N	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{array}{r} 2.50 \\ 63.5 \end{array}$	$\begin{gathered} 4.38 \\ 111 \end{gathered}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	-	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 9.40 \\ & 239 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 3.6 \end{aligned}$	-
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{gathered} 4.38 \\ 111 \end{gathered}$	$\begin{aligned} & 5.50 \\ & 140 \end{aligned}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 9.40 \\ & 239 \end{aligned}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{aligned} & 9.5 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 4.3 \end{aligned}$
	$\begin{gathered} 3 \\ 80 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{aligned} & 4.31 \\ & 110 \end{aligned}$	$\begin{aligned} & 5.50 \\ & 140 \end{aligned}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 9.40 \\ & 239 \end{aligned}$	$\begin{aligned} & 5.31 \\ & 135 \end{aligned}$	$\begin{aligned} & 8.1 \\ & 3.7 \end{aligned}$	$\begin{gathered} 14.0 \\ 6.4 \end{gathered}$
	108.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{gathered} 4.50 \\ 114.3 \end{gathered}$	-	-	$\begin{aligned} & 5.38 \\ & 137 \end{aligned}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 9.40 \\ & 239 \end{aligned}$	$\begin{aligned} & 6.12 \\ & 155 \end{aligned}$	-	$\begin{gathered} 10.0 \\ 4.5 \end{gathered}$
	$\begin{gathered} 4 \\ 100 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{gathered} 4.50 \\ 114.3 \end{gathered}$	$\begin{gathered} 3.81 \\ 96.80 \end{gathered}$	$\begin{aligned} & 5.75 \\ & 146 \end{aligned}$	-	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{aligned} & 9.40 \\ & 239 \end{aligned}$	$\begin{aligned} & 6.25 \\ & 159 \\ & \hline \end{aligned}$	$\begin{gathered} 18.0 \\ 8.2 \\ \hline \end{gathered}$	-
TABLE CONTINUED ON PG. 5												

IMPORTANT NOTES:

Style 920 and Style 920N housings cannot be mated to one another
to achieve cross connections.

Mechanical- T^{\circledR} Bolted Branch Outlets

STYLES 920 AND 920N

dimensions

GROOVED OUTLET

FEMALE THREADED OUTLET

- Provides a direct branch connection at any location where a hole can be cut in the pipe
- A pressure responsive gasket provides the seal
- Request Publication 11.03 for Mechanical-T cross assemblies
- Pressure rated up to $500 \mathrm{psi} / 3450 \mathrm{kPa}$ on steel pipe; also available for use with HDPE pipe
- Sizes from $2 \times 1 / 21 / 50 \times 15 \mathrm{~mm}$ through 8×4 "/200 $\times 100 \mathrm{~mm}$

Size		Style No. 920 or 920N	Max. Work Pressure psi kPa	Dimensions							Approx. Weight Each	
Run \times Branch Nominal Size Inches mm				Hole Diameter $\begin{aligned} & +0.13 \\ & -0.00 \end{aligned}$		V \ddagger \# Thd. Inches mm	V \ddagger Grv. Inches mm	$\begin{gathered} \text { W } \\ \text { Inches } \end{gathered}$ mm		$\begin{gathered} \text { Z } \\ \text { Inches } \end{gathered}$ mm	Female Thd. Lbs. kg	Grv. Lbs. kg
TABLE CONTINUED FROM PAGE 4												
$165.1 \times$	1 25	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.50 \\ & 38.1 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{gathered} 4.56 \\ 116 \end{gathered}$	-	$\begin{gathered} 3.79 \\ 96 \end{gathered}$	$\begin{aligned} & 9.34 \\ & 237 \end{aligned}$	$\begin{gathered} 2.75 \\ 70 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 3.6 \end{aligned}$	-
	$\begin{aligned} & 11 / 4 \\ & 32 \end{aligned}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.75 \\ & 44.5 \end{aligned}$	$\begin{gathered} 4.43 \\ 113 \end{gathered}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	-	$\begin{gathered} 3.79 \\ 96 \end{gathered}$	$\begin{aligned} & 9.34 \\ & 237 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$	-
	$\begin{gathered} 11 / 2(a)+ \\ 40 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.00 \\ & 50.8 \end{aligned}$	$\begin{array}{r} 4.41 \\ 112 \end{array}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	-	$\begin{gathered} 3.79 \\ 96 \end{gathered}$	$\begin{aligned} & 9.34 \\ & 237 \end{aligned}$	$\begin{gathered} 3.25 \\ 83 \end{gathered}$	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$	-
	$\begin{gathered} 2(a) \dagger \\ 50 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.50 \\ & 63.5 \end{aligned}$	$\begin{gathered} 4.38 \\ 111 \end{gathered}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	-	$\begin{gathered} 3.79 \\ 96 \end{gathered}$	$\begin{aligned} & 9.34 \\ & 237 \end{aligned}$	$\begin{gathered} 3.88 \\ 99 \end{gathered}$	$\begin{aligned} & 8.5 \\ & 3.9 \end{aligned}$	-
	$\begin{gathered} 21 / 2 \dagger \\ 65 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{array}{r} 4.01 \\ 110 \end{array}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	-	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{aligned} & 8.6 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 3.4 \end{aligned}$
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{array}{r} 4.01 \\ 110 \end{array}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{aligned} & 5.21 \\ & 132 \end{aligned}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{gathered} 4.63 \\ 118 \end{gathered}$	$\begin{aligned} & 8.6 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 3.4 \end{aligned}$
	$\begin{gathered} 3(a) \dagger \\ 80 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{gathered} 4.31 \\ 110 \end{gathered}$	$\begin{array}{r} 5.50 \\ 140 \end{array}$	$\begin{aligned} & 5.13 \\ & 130 \end{aligned}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{aligned} & 5.31 \\ & 135 \end{aligned}$	$\begin{gathered} 10.2 \\ 4.6 \end{gathered}$	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$
	$\begin{gathered} 4 \text { (a) t } \\ 100 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{gathered} 4.50 \\ 114.3 \end{gathered}$	$\begin{gathered} 3.81 \\ 97 \end{gathered}$	$\begin{aligned} & 5.75 \\ & 146 \end{aligned}$	$\begin{gathered} 5.38 \\ 137 \end{gathered}$	$\begin{gathered} 3.63 \\ 92 \end{gathered}$	$\begin{gathered} 10.51 \\ 267 \end{gathered}$	$\begin{gathered} 6.25 \\ 159 \end{gathered}$	$\begin{gathered} 10.5 \\ 4.8 \end{gathered}$	$\begin{aligned} & 8.4 \\ & 3.8 \end{aligned}$
$\begin{gathered} 8 \\ 200 \end{gathered} \times$	$\begin{gathered} 2(a) \dagger \\ 50 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{gathered} 5.44 \\ 138 \end{gathered}$	$\begin{aligned} & 6.19 \\ & 157 \end{aligned}$	$\begin{gathered} 6.25 \\ 159 \end{gathered}$	$\begin{aligned} & 4.81 \\ & 122 \end{aligned}$	$\begin{gathered} 12.42 \\ 316 \end{gathered}$	$\begin{gathered} 4.50 \\ 114 \end{gathered}$	$\begin{gathered} 11.6 \\ 5.3 \end{gathered}$	$\begin{gathered} 11.6 \\ 5.3 \end{gathered}$
	$\begin{gathered} 21 / 2(a) \dagger \\ 65 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	$\begin{aligned} & 5.07 \\ & 129 \end{aligned}$	$\begin{aligned} & 6.19 \\ & 157 \end{aligned}$	$\begin{aligned} & 6.19 \\ & 157 \end{aligned}$	$\begin{aligned} & 4.81 \\ & 122 \end{aligned}$	$\begin{gathered} 12.42 \\ 316 \end{gathered}$	$\begin{gathered} 4.50 \\ 114 \end{gathered}$	$\begin{gathered} 11.6 \\ 5.3 \end{gathered}$	$\begin{aligned} & 11.6 \\ & 5.3 \end{aligned}$
	76.1 mm	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 69.9 \end{aligned}$	-	-	$\begin{gathered} 6.25 \\ 159 \end{gathered}$	$\begin{aligned} & 4.81 \\ & 122 \end{aligned}$	$\begin{gathered} 12.42 \\ 316 \end{gathered}$	$\begin{aligned} & 4.56 \\ & 116 \end{aligned}$	-	$\begin{gathered} 11.6 \\ 5.3 \end{gathered}$
	$\begin{gathered} 3(a) \dagger \\ 80 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 3.50 \\ & 88.9 \end{aligned}$	$\begin{array}{r} 5.31 \\ 135 \end{array}$	$\begin{gathered} 6.50 \\ 165 \end{gathered}$	$\begin{aligned} & 6.50 \\ & 165 \end{aligned}$	$\begin{aligned} & 4.81 \\ & 122 \end{aligned}$	$\begin{gathered} 12.42 \\ 316 \end{gathered}$	$\begin{aligned} & 5.31 \\ & 135 \end{aligned}$	$\begin{gathered} 12.6 \\ 5.7 \end{gathered}$	$\begin{gathered} 11.6 \\ 5.3 \end{gathered}$
	$\begin{gathered} 4(a) \dagger \\ 100 \end{gathered}$	920	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{gathered} 4.50 \\ 114.3 \end{gathered}$	$\begin{aligned} & 4.81 \\ & 122 \end{aligned}$	$\begin{gathered} 6.75 \\ 171 \end{gathered}$	$\begin{aligned} & 6.38 \\ & 162 \end{aligned}$	$\begin{aligned} & 4.81 \\ & 122 \end{aligned}$	$\begin{gathered} 12.42 \\ 316 \end{gathered}$	$\begin{gathered} 6.25 \\ 159 \end{gathered}$	$\begin{gathered} 15.3 \\ 6.9 \\ \hline \end{gathered}$	$\begin{gathered} 12.5 \\ 5.7 \end{gathered}$

** Center of run to engaged pipe end, female threaded outlet only (dimensions approximate).
\dagger Available with grooved or female threaded outlet. Specify choice on order.
\neq Center of run to end of fitting.
\# Female threaded outlets are available to NPT and BSPT specifications.
(a) British Standard female pipe threaded outlet is available as listed. Specify "BSPT" clearly on order. (b)For 76.1 mm threaded outlet, specify $21 / 2^{\prime \prime}$ BSPT clearly on order.

IMPORTANT NOTES:

Style 920 and Style 920N housings cannot be mated to each other to achieve cross connections.

Mechanical-T® Bolted Branch Outlets

STYLES 920 AND 920N

FLOW DATA

Exaggerated for clarity

Flow test data has shown that the total head loss between point (1) and (2) for the Style 920, 920N and 929 Mechanical- ${ }^{\circledR}$ fittings can best be expressed in terms of the pressure difference across the inlet and branch. The pressure difference can be obtained from the relationship below.

C_{v} Values

Values for flow of water at $+60^{\circ} \mathrm{F} /+16^{\circ} \mathrm{C}$ are shown in the table below.

SIZE		Equivalent Length Feet/meter of Pipe		SIZE		Equivalent Length Feet/meter of Pipe	
Nominal Diameter In./mm	Actual Out. Dia. In./mm	Grooved	Female Threaded	Nominal Diameter In./mm	Actual Out. Dia. In./mm	Grooved	Female Threaded
$\begin{aligned} & 1 / 2 \\ & 15 \end{aligned}$	$\begin{gathered} 0.840 \\ 21.3 \end{gathered}$	-	$\begin{aligned} & 2.0 \\ & 0.6 \end{aligned}$	$\begin{gathered} 2 \\ 50 \end{gathered}$	$\begin{gathered} 2.375 \\ 60.3 \end{gathered}$	$\begin{aligned} & 9.0 \\ & 2.7 \end{aligned}$	$\begin{gathered} 10.5 \\ 3.2 \end{gathered}$
$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{aligned} & 1.050 \\ & 26.7 \end{aligned}$	-	$\begin{aligned} & 4.0 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 65 \end{aligned}$	$\begin{aligned} & 2.875 \\ & 73.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 3.4 \end{gathered}$	$\begin{gathered} 12.5 \\ 3.8 \end{gathered}$
$\begin{gathered} 1 \\ 25 \end{gathered}$	$\begin{aligned} & 1.315 \\ & 33.7 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 1.5 \end{aligned}$	$\begin{gathered} 3 \\ 80 \end{gathered}$	$\begin{gathered} 3.500 \\ 88.9 \end{gathered}$	$\begin{gathered} 13.5 \\ 4.1 \end{gathered}$	$\begin{gathered} 15.5 \\ 4.7 \end{gathered}$
$\begin{aligned} & 11 / 4 \\ & 32 \end{aligned}$	$\begin{gathered} 1.660 \\ 42.4 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 1.8 \end{aligned}$	$\begin{gathered} 4 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & 4.500 \\ & 114.3 \\ & \hline \end{aligned}$	$\begin{gathered} 20.0 \\ 6.1 \end{gathered}$	$\begin{gathered} 22.0 \\ 6.7 \end{gathered}$
$\begin{aligned} & 11 / 2 \\ & 40 \end{aligned}$	$\begin{gathered} 1.900 \\ 48.3 \end{gathered}$	$\begin{aligned} & 7.0 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 2.4 \end{aligned}$				

Formulas for C_{V} Values:

$\Delta \mathrm{P}=\frac{\mathrm{Q}^{2}}{\mathrm{C}_{\mathrm{v}}{ }^{2}}$
$Q=C_{v} \times \sqrt{\Delta P}$

Where:

Q = Flow (GPM)
$\Delta P=$ Pressure Drop (psi)
$C_{v}=$ Flow Coefficient

Size		CV	Size		CV	Size		CV
$\begin{aligned} & \text { Nominal } \\ & \text { Size } \\ & \text { Inches/mm } \end{aligned}$	Actual Outside Diameter Inches/mm	Values	$\begin{aligned} & \text { Nominal } \\ & \text { Size } \\ & \text { Inches/mm } \end{aligned}$	Actual Outside Diameter Inches/mm	Values	$\begin{gathered} \text { Nominal } \\ \text { Size } \\ \text { Inches/mm } \end{gathered}$	Actual Outside Diameter Inches/mm	Values
$\begin{aligned} & 1 / 2 \\ & 15 \end{aligned}$	$\begin{gathered} 0.840 \\ 21.3 \end{gathered}$	17	$\begin{aligned} & 11 / 4 \\ & 32 \end{aligned}$	$\begin{aligned} & 1.660 \\ & 42.4 \end{aligned}$	45	$\begin{aligned} & 21 / 2 \\ & 65 \end{aligned}$	$\begin{aligned} & 2.875 \\ & 73.0 \end{aligned}$	135
$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{aligned} & 1.050 \\ & 26.7 \end{aligned}$	21	$\begin{aligned} & 11 / 2 \\ & 40 \end{aligned}$	$\begin{aligned} & 1.900 \\ & 48.3 \end{aligned}$	60	$\begin{gathered} 3 \\ 80 \end{gathered}$	$\begin{gathered} 3.500 \\ 88.9 \end{gathered}$	200
$\begin{gathered} 1 \\ 25 \\ \hline \end{gathered}$	$\begin{array}{r} 1.315 \\ 33.7 \\ \hline \end{array}$	25	$\begin{gathered} 2 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & 2.375 \\ & 60.3 \\ & \hline \end{aligned}$	100	$\begin{gathered} 4 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & 4.500 \\ & 114.3 \\ & \hline \end{aligned}$	400

Mechanical- T^{\circledR} Bolted Branch Outlets

STYLES 920 AND 920N

APPROVED PRESSURE RATINGS
The information provided below is based on the latest listing and approval data at the time of publication. Listings/Approvals are subject to change and/or additions by the approvals agencies. Contact Victaulic for performance on other pipe and the latest listings and approvals.

Run Size		Outlet Size	Pipe	Rated Working Pressures - psi/kPa		
$\begin{gathered} \text { Nominal } \\ \text { Size } \\ \text { Inches/mm } \end{gathered}$	Actual Outside Diameter Inches/mm	Inches/mm	Schedule	UL	ULC	FM
$\begin{aligned} & 21 / 2-6 \\ & 65-150 \end{aligned}$	$\begin{aligned} & 2.875-6.625 \\ & 73.0-168.3 \end{aligned}$	All	10,40	$\begin{aligned} & 400 \\ & 2755 \end{aligned}$	$\begin{aligned} & 400 \\ & 2755 \end{aligned}$	$\begin{gathered} 400 \\ 2755 \end{gathered}$
$\begin{aligned} & 21 / 2-4 \\ & 65-100 \end{aligned}$	$\begin{gathered} 2.875-4.500 \\ 73.0-114.3 \end{gathered}$	All	DF	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{gathered} 300 \\ 2065 \end{gathered}$
$\begin{aligned} & 21 / 2-4 \\ & 65-100 \end{aligned}$	$\begin{gathered} 2.875-4.500 \\ 73.0-114.3 \end{gathered}$	All	SF	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{gathered} 300 \\ 2065 \end{gathered}$
$\begin{gathered} 6 \\ 150 \end{gathered}$	$\begin{aligned} & 6.625 \\ & 168.3 \end{aligned}$	3,4	10	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{aligned} & 250 \\ & 1724 \end{aligned}$
$\begin{gathered} 6 \\ 150 \end{gathered}$	$\begin{aligned} & 6.625 \\ & 168.3 \end{aligned}$	3,4	30,40	$\begin{gathered} 300 \\ 2065 \end{gathered}$	$\begin{gathered} 300 \\ 2065 \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ 2065 \\ \hline \end{gathered}$
$\begin{gathered} 8 \\ 200 \end{gathered}$	$\begin{aligned} & 8.625 \\ & 219.1 \end{aligned}$	21/2	10,40	$\begin{gathered} 400 \\ 2755 \end{gathered}$	-	-
$\begin{gathered} 8 \\ 200 \end{gathered}$	$\begin{aligned} & 8.625 \\ & 219.1 \end{aligned}$	3,4	10	$\begin{gathered} 300 \\ 2065 \end{gathered}$	-	$\begin{aligned} & 250 \\ & 1724 \end{aligned}$
$\begin{gathered} 8 \\ 200 \\ \hline \end{gathered}$	$\begin{aligned} & 8.625 \\ & 219.1 \\ & \hline \end{aligned}$	3,4	30,40	$\begin{gathered} 300 \\ 2065 \end{gathered}$	-	$\begin{gathered} 300 \\ 2065 \end{gathered}$

NOTES:
10 refers to Listed/Approved Schedule 10 steel sprinkler pipe.
40 refers to Listed/Approved Schedule 40 steel sprinkler pipe.
DF refers to Listed/Approved Dyna-Flow steel sprinkler pipe manufactured by American Tube Company.
SF refers to Listed/Approved Super-Flo steel sprinkler pipe manufactured by Allied Tube and Conduit Corporation.

VIC-TAP II HOLE CUTTING TOOL FOR 4-8"/100-200 MM CARBON STEEL PIPE

The Vic-Tap II hole cutting tool is designed for use with the Style 931 Vic-Tap II Mechanical-T unit, which is a combination of the Style 920 Mechanical-T and Series 726 Vic-Ball Valve. The Vic-Tap II is capable of tapping into carbon steel pipe systems under pressures up to $500 \mathrm{psi} / 3450 \mathrm{kPa}$.
The Style 931 Vic-Tap II Mechanical-T unit is a full port ball valve which can be mounted on 4 " 100 mm , $5 " / 125 \mathrm{~mm}, 6 " / 150 \mathrm{~mm}$ and $8^{\prime \prime} / 200 \mathrm{~mm}$ diameter pipe. The Style 931 comes with a $21 / 2 / 165 \mathrm{~mm}$ grooved outlet.
The drill motor is an electric motor with ground fault circuit interrupter (GFCI) in accordance with safety codes.
For more information, refer to publication 24.01.

Mechanical-T® Bolted Branch Outlets

STYLES 920 AND 920N

INSTALLATION

Reference should always be made to the I-100 Victaulic Field Installation Handbook for the product you are installing. Handbooks are included with each shipment of Victaulic products for complete installation and assembly data, and are available in PDF format on our website at www.victaulic.com.

WARRANTY

Refer to the Warranty section of the current Price List or contact Victaulic for details.

NOTE

This product shall be manufactured by Victaulic or to Victaulic specifications. All products to be installed in accordance with current Victaulic installation/assembly instructions. Victaulic reserves the right to change product specifications, designs and standard equipment without notice and without incurring obligations.

Fire Sprinkler Pipe
 Schedule 10

 Submittal Data Sheet

 Submittal Data Sheet}

FM Approved and Fully Listed Sprinkler Pipe

Wheatland Tube's Schedule 10 steel fire sprinkler pipe is FM Approved and UL® and C-UL Listed.

Wheatland Tube is the only manufacturer with FM Approval on 10 NPS Schedule 10 steel fire sprinkler pipe.

Approvals and Specifications

Schedule 10 meets or exceeds the following standards:

- ASTM A135, Type E, Grade A (Schedule 10, 1-10 NPS)
- NFPA 13 and NFPA 14

Manufacturing Protocols

Schedule 10 is subjected to the toughest possible testing protocols to ensure the highest quality and long-lasting performance.

Finishes and Coatings

Schedule 10 can be ordered in black or hot-dip galvanized to meet FM/UL requirements for dry systems that meet the zinc coating specifications of ASTM A53 or A795.

Schedule 10 receives a proprietary mill coating to ensure a clean, corrosion-resistant surface that outperforms and outlasts standard lacquer coatings. This coating allows the pipe to be easily painted without special preparation.
Every black steel Schedule 10 pipe also receives our MIC SHIELD ${ }^{\text {TM }}$ antimicrobial coating to limit corrosion from microbes on the interior of the pipe.

Product Marking

Each length of Wheatland fire sprinkler pipe is continuously stenciled to show the manufacturer, type of pipe, grade, size and length. Bar coding is acceptable as a supplementary identification method.

SUBMITTAL INFORMATION

```
PROJECT:
```

ENGINEER:

LOCATIONS:

```
CONTRACTOR:
```

SPECIFICATION REFERENCE:

COMMENTS:

DATE:

SYSTEM TYPE:

BLACK
HOT-DIP GALVANIZED

Fire Sprinkler Pipe
 Schedule 10
 Submittal Data Sheet

SCHEDULE 10 WEIGHTS AND DIMENSIONS

NPS	NOMINAL OD		NOMINAL ID		NOMINAL WALL		WT./FT. lbs.	WT./FT. $\mathrm{H}_{2} \mathrm{O}$ FILLED lbs.	PCS./LIFT	WT./LIFT 21' Ibs.	WT./LIFT 24' lbs.	WT./LIFT 25' lbs.	$\begin{gathered} \text { UL } \\ \text { CRR* } \end{gathered}$
	in.	mm	in.	mm	in.	mm							
1	1.315	33.4	1.097	27.9	0.109	2.77	1.405	1.814	70	2065	2360	2459	11.4
11/4	1.660	42.2	1.442	36.6	0.109	2.77	1.807	2.514	61	2315	2645	2756	7.3
$11 / 2$	1.900	48.3	1.682	42.7	0.109	2.77	2.087	3.049	61	2673	3055	3183	5.8
2	2.375	60.3	2.157	54.8	0.109	2.77	2.640	4.222	37	2051	2344	2442	4.7
$21 / 2$	2.875	73.0	2.635	66.9	0.120	3.05	3.354	5.895	30	2226	2544	2651	3.5
3	3.500	88.9	3.260	82.8	0.120	3.05	4.336	7.949	19	1730	1977	2060	2.6
4	4.500	114.3	4.260	108.2	0.120	3.05	5.619	11.789	19	2242	2562	2669	1.6
5	5.563	141.3	5.295	134.5	0.134	3.40	7.780	17.309	13	2124	2427	2529	1.5
6	6.625	168.3	6.357	161.5	0.134	3.40	9.298	23.038	10	1953	2232	2325	1.0
8	8.625	219.1	8.249	209.5	0.188	4.78	16.960	40.086	7	2493	2849	2968	1.7
10**	10.750	273.0	10.374	263.5	0.188	4.78	21.230	57.803	2	892	1019	1062	-

* Calculated using Standard UL CRR formula, UL Fire Protection Directory, Category VIZY. The CRR is a ratio value used to measure the ability of a pipe to withstand corrosion. Threaded Schedule 40 steel pipe is used as the benchmark (value of 1.0).
** 10 NPS Schedule 10 is FM Approved but not UL Listed.

FIG. 3201

90́ Elbow

FIGURE 3201 - 90° ELBOW

Nominal Size	Maximum Working Pressures	Dimension A	Approx. Wt. Each
In. (mm)	PSI (kPa)	In. (mm)	Lbs. (kg)
1	500	1.50	0.62
20	3450	38.10	0.28
$11 / 4$	500	1.75	0.90
32	3450	44.45	0.41
$1 / 2$	500	1.94	1.20
40	3450	49.276	0.54
2	500	2.25	1.85
50	3450	57.15	0.84

A - Working Pressure Ratings are for reference only and based on Sch. 40 pipe. For the latest UL/ULC, and FM pressure ratings versus pipe schedule, please visit anvilintl.com or contact your local Anvil Representative.

MATERIAL SPECIFIGATIONS

Dimensions: ASME B16.3
Material: ASTM A536 Grade 65-45-12
Finish: Black
Threads: NPT per ASME B1.20.1
Agency Approvals: All ductile iron threaded fittings are UL/ULC Listed and FM Approved.

NOTICE: Ductile iron fittings have higher tensile strength than that of steel pipe. Therefore, over tightening can cause damage to pipe threads which may cause leakage. Ductile iron fittings should be tightened approximately three turns beyond hand tight, but no more than four turns.

PROJECT INFORMATION
Project:

Address:	\square Approved as noted
Contractor:	\square Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

SPF/DI-1.15

FIG. 3207R

Reducing Cross

$1 \times 1 \times 2 \times 2$

FIGURE 3207R - REDUGING CROSS

Nominal Size	Max. Working Pressure	Dimensions		Approx. Wt. Each
1×1×2×2		A	B	
In. (mm)	PSI (kPa)	In. (mm)	In. (mm)	Lbs. (kg)
$\begin{aligned} & 1 \frac{1}{4} \times 1 / 1 / 4 \times 1 \times 1 \\ & 32 \times 32 \times 25 \times 25 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.58 \\ & 40.13 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.67 \\ 42.47 \\ \hline \end{array}$	$\begin{aligned} & 1.27 \\ & 0.58 \end{aligned}$
$\begin{aligned} & 11 / 2 \times 1 / 1 / 2 \times 1 \times 1 \\ & 40 \times 40 \times 25 \times 25 \end{aligned}$	$\begin{gathered} 500 \\ 3450 \\ \hline \end{gathered}$	$\begin{array}{r} 1.65 \\ 41.97 \\ \hline \end{array}$	$\begin{aligned} & 1.80 \\ & 45.72 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.48 \\ & 0.67 \\ & \hline \end{aligned}$
$\begin{gathered} 2 \times 2 \times 1 \times 1 \\ 50 \times 50 \times 25 \times 25 \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{gathered} 1.73 \\ 43.94 \end{gathered}$	$\begin{aligned} & 2.02 \\ & 57.30 \end{aligned}$	$\begin{aligned} & 2.10 \\ & 0.95 \end{aligned}$

- Working Pressure Ratings are for reference only and based on Sch. 40 pipe. For the latest UL/ULC, and FM pressure ratings versus pipe schedule, please visit anvilintl.com or contact your local Anvil Representative.

MATERIAL SPECIFICATIONS

Dimensions: ASME B16.3
Material: ASTM A536 Grade 65-45-12
Finish: Black
Threads: NPT per ASME B1.20.1
Agency Approvals: All ductile iron threaded fittings are UL/ULC Listed and FM Approved.

NOTICE: Ductile iron fittings have higher tensile strength than that of steel pipe. Therefore, over tightening can cause damage to pipe threads which may cause leakage. Ductile iron fittings should be tightened approximately three turns beyond hand tight, but no more than four turns.

PROJECT INFORMATION
Project:

Address:	\square Approved as noted
Contractor:	\square Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

DUCTILE IRON THREADED FITTINGS
ANYIL

FIG. 3283

Bushings

For Listings/Approval Details and Limitations, visit our website at www. anvilintl.com or contact an Anvil ${ }^{\ominus}$ Sales Representative.

MATERIAL SPECIFICATIONS

Dimensions: ASME B16.14
Material: ASTM A536 Grade 65-45-12
Finish: Black
Threads: NPT per ASME B1.20.1
Agency Approvals: All ductile iron threaded fittings are UL/ULC Listed and FM Approved.

NOTICE: Ductile iron fittings have higher tensile strength than that of steel pipe. Therefore, over tightening can cause damage to pipe threads which may cause leakage. Ductile iron fittings should be tightened approximately three turns beyond hand tight, but no more than four turns.

Address:	\square
Contractor:	\square

Approved as noted

\square Not approved
Remarks:

Submittal Date:

Notes 1:
Notes 2:
SPF/DI-1.15

FIG. 3224

Cap

FIGURE 3224-GAP

Nominal Size	Maximum Working Pressures	Dimension A	Approx. Wt. Each
In. (mm)	PSI (KPa)	In. (mm)	lbs. (kg)
1	500	1.16	0.32
25	3450	29.46	0.15
$11 / 4$	500	1.28	0.43
$1 / 32$	3450	32.51	0.20
$1 / 2$	500	1.33	0.60
40	3450	33.78	0.27
2	500	1.45	0.91
20	3450	36.83	0.47

A - Working Pressure Ratings are for reference only and based on Sch. 40 pipe. For the latest UL/ULC, and FM pressure ratings versus pipe schedule, please visit anvilintl.com or contact your local Anvil Representative.

For Listings/Approval Details and Limitations, or Listings/Approval Details and Limitation
visit our website at www.anvilintl.com or contact an Anvil ${ }^{\text {S }}$ Sales Representative.

MATERIAL SPECIFICATIONS

Dimensions: ASME B16.3
Material: ASTM A536 Grade 65-45-12
Finish: Black
Threads: NPT per ASME B1.20.1
Agency Approvals: All ductile iron threaded fittings are UL/ULC Listed and FM Approved.

NOTICE: Ductile iron fittings have higher tensile strength than that of steel pipe. Therefore, over tightening can cause damage to pipe threads which may cause leakage. Ductile iron fittings should be tightened approximately three turns beyond hand tight, but no more than four turns.

PROJECT INFORMATION
Project:

Address:	\square Approved as noted
Contractor:	\square Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

SPF/DI-1.15

FIG. 3207

Cross

FIGURE 3207 - GROSS

Nominal Size	Maximum Working Pressure	Dimension A	Approx. Wt. Each
In. (mm)	PS (KP_{0})	In. (mm)	lbs. (kg)
1	500	1.50	0.98
25	3450	38.10	0.44
11/4	500	1.75	1.50
32	3450	44.45	0.68
1/2/	500	1.94	1.90
40	3450	49.27	0.86
2	500	2.25	2.95
50	3450	57.15	1.34

A - Working Pressure Ratings are for reference only and based on Sch. 40 pipe. For the latest UL/ULC, and FM pressure ratings versus pipe schedule, please visit anvilintl.com or contact your local Anvil Representative.

MATERIAL SPECIFICATIONS

Dimensions: ASME B16.3
Material: ASTM A536 Grade 65-45-12
Finish: Black
Threads: NPT per ASME B1.20.1
Agency Approvals: All ductile iron threaded fittings are UL/ULC Listed and FM Approved.

NOTICE: Ductile iron fittings have higher tensile strength than that of steel pipe. Therefore, over tightening can cause damage to pipe threads which may cause leakage. Ductile iron fittings should be tightened approximately three turns beyond hand tight, but no more than four turns.

PROJECT INFORMATION
Project:

Address:	\square Approved as noted
Contractor:	\square Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

DUCTILE IRON THREADED FITTINGS

FIG. 3201R

Reducing 90° Elbow

FIGURE 3201R - REDUCING 90² ELBOW

Nominal Size	Max. Working Pressure』	Dimensions		Approx. Wt. Each
1×2		A	B	
In. (mm)	PSI (kPa)	In. (mm)	In. (mm)	lbs. (kg)
$\begin{aligned} & 1 \times 1 / 2 \\ & 25 \times 15 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.26 \\ & 32.00 \end{aligned}$	$\begin{aligned} & 1.36 \\ & 34.54 \end{aligned}$	$\begin{aligned} & \hline 0.44 \\ & 0.20 \end{aligned}$
$\begin{aligned} & 1 \times 3 / 4 \\ & 25 \times 20 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.37 \\ & 34.79 \end{aligned}$	1.45	$\begin{aligned} & 0.52 \\ & 0.24 \end{aligned}$
$\begin{aligned} & 11 / 4 \times 1 / 2 \\ & 32 \times 15 \end{aligned}$	$\begin{gathered} 500 \\ 34550 \end{gathered}$	$\begin{aligned} & 1.34 \\ & 34.03 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.53 \\ & 38.86 \\ & \hline \end{aligned}$	$\begin{gathered} 0.64 \\ 0.29 \end{gathered}$
$\begin{aligned} & 11 / 4 \times 3 / 4 \\ & 32 \times 20 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{array}{r} 1.45 \\ 36.83 \\ \hline \end{array}$	$\begin{array}{r} 1.62 \\ 47.74 \\ \hline \end{array}$	0.72
$\begin{aligned} & 1 \frac{114 \times 1}{} \\ & 32 \times 25 \\ & \hline \end{aligned}$	$\begin{gathered} 500 \\ 3450 \\ \hline \end{gathered}$	$\begin{aligned} & 1.58 \\ & 4073 \end{aligned}$	$\begin{aligned} & 1.67 \\ & 4241 \end{aligned}$	0.75
$\begin{aligned} & 11 / 2 \times 1 \\ & 40 \times 25 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{gathered} 1.65 \\ 41.91 \end{gathered}$	$\begin{aligned} & 1.80 \\ & 45.72 \end{aligned}$	$\begin{aligned} & 0.92 \\ & 0.42 \end{aligned}$
$\begin{aligned} & 11 / 2 \times 11 / 4 \\ & 40 \times 32 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.82 \\ & 46.22 \end{aligned}$	$\begin{aligned} & 1.88 \\ & 47.75 \end{aligned}$	$\begin{gathered} 1.08 \\ 0.49 \end{gathered}$
$\begin{aligned} & 2 \times 1 / 2 \\ & 50 \times 15 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{array}{r} 1.49 \\ 37.84 \\ \hline \end{array}$	$\begin{aligned} & 1.88 \\ & 47.75 \end{aligned}$	$\begin{gathered} 1.08 \\ \hline 0.49 \end{gathered}$
$\begin{aligned} & 2 \times 3 / 4 \\ & 50 \times 20 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 40.64 \end{aligned}$	$\begin{aligned} & 1.97 \\ & 50.03 \end{aligned}$	$\begin{gathered} 1.24 \\ 0.56 \end{gathered}$
$\begin{gathered} 2 \times 1 \\ 50 \times 25 \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.73 \\ & 43.94 \end{aligned}$	$\begin{aligned} & 2.02 \\ & 57.30 \end{aligned}$	1.40
$\begin{aligned} & 2 \times 1 \frac{114}{4} \\ & 50 \times 32 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{gathered} 1.90 \\ 48.26 \end{gathered}$	$\begin{aligned} & \hline 2.10 \\ & 53.34 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.52 \\ & 0.70 \end{aligned}$
$\begin{aligned} & 2 \times 11 / 2 \\ & 50 \times 40 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 2.02 \\ & 57.30 \end{aligned}$	$\begin{aligned} & 2.16 \\ & 54.86 \end{aligned}$	$\begin{gathered} 1.65 \\ 0.75 \end{gathered}$

© - Working Pressure Ratings are for reference only and based on Sch. 40 pipe. For the latest UL/ULC, and FM pressure ratings versus pipe schedule, please visit anvilintl.com or contact your local Anvil Representative.

MATERIAL SPECIFIGATIONS

Dimensions: ASME B16.3
Material: ASTM A536 Grade 65-45-12
Finish: Black
Threads: NPT per ASME B1.20.1
Agency Approvals: All ductile iron threaded fittings are UL/ULC Listed and FM Approved.

NOTICE: Ductile iron fittings have higher tensile strength than that of steel pipe. Therefore, over tightening can cause damage to pipe threads which may cause leakage. Ductile iron fittings should be tightened approximately three turns beyond hand tight, but no more than four turns.

PROJECT INFORMATION
Project:

Address:	\square
Contractor:	\square

Engineer:

Submittal Date:

Notes 1:
Notes 2:
SPF/DI-1.15

FIG. 3221R

Reducing Coupling

FIGURE 3221R - REDUCING COUPLING

Nominal Size	Maximum Working Pressures	Dimension A	Approx. Wt. Each
In. (mm)	PSI (kPa)	In. (mm)	Lbs. (kg)
$1 \times 1 / 2$	500	1.69	0.39
25×15	3450	42.92	0.18
$1 \times 3 / 4$	500	1.69	0.53
25×20	3450	42.92	0.24

© - Working Pressure Ratings are for reference only and based on Sch. 40 pipe. For the latest UL/ULC, and FM pressure ratings versus pipe schedule, please visit anvilintl.com or contact your local Anvil Representative.

MATERIAL SPECIFIGATIONS

Dimensions: ASME B16.3
Material: ASTM A536 Grade 65-45-12
Finish: Black
Threads: NPT per ASME B1.20.1
Agency Approvals: All ductile iron threaded fittings are UL/ULC Listed and FM Approved.

NOTICE: Ductile iron fittings have higher tensile strength than that of steel pipe. Therefore, over tightening can cause damage to pipe threads which may cause leakage. Ductile iron fittings should be tightened approximately three turns beyond hand tight, but no more than four turns.

PROJECT INFORMATION
Project:

Address:	\square Approved as noted
Contractor:	\square Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

ANVIL

FIG. 3205R

Reducing Tee

FICURE 3205R - REDUCING TEE

Nominal Size	Max. Working Pressure \triangle	Dimensions			Approx. Wt. Each
$1 \times 2 \times 3$		A	B	(
In. (mm)	PSI (kPa)	In. (mm)	In. (mm)	In. (mm)	lbs. (kg)
$\begin{gathered} 1 \times 1 / 2 \times 1 \\ 25 \times 15 \times 25 \\ \hline \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{array}{r} 1.50 \\ 38.10 \\ \hline \end{array}$	$\begin{array}{r} 1.36 \\ 34.54 \\ \hline \end{array}$	$\begin{array}{r} 1.50 \\ 38.10 \\ \hline \end{array}$	$\begin{gathered} 0.64 \\ 0.29 \end{gathered}$
$\begin{gathered} 1 \times 3 / 4 \times 1 \\ 25 \times 20 \times 25 \\ \hline \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 38.10 \end{aligned}$	$\begin{array}{r} 1.45 \\ 36.83 \\ \hline \end{array}$	$\begin{array}{r} 1.50 \\ 38.70 \\ \hline \end{array}$	$\begin{aligned} & 0.73 \\ & 0.33 \end{aligned}$
$\begin{gathered} 1 \times 1 \times 1 / 2 \\ 25 \times 25 \times 15 \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.26 \\ & 32.00 \end{aligned}$	$\begin{aligned} & 1.26 \\ & 32.00 \end{aligned}$	$\begin{aligned} & 1.36 \\ & 34.54 \end{aligned}$	$\begin{aligned} & 0.71 \\ & 0.32 \end{aligned}$
$\begin{gathered} 1 \times 1 \times 3 / 4 \\ 25 \times 25 \times 20 \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.37 \\ & 34.80 \end{aligned}$	$\begin{aligned} & 1.37 \\ & 34.80 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 3683 \end{aligned}$	$\begin{aligned} & 0.76 \\ & 0.34 \end{aligned}$
$\begin{aligned} & 1 \times 1 \times 1 / 1 / 4^{\star} \\ & 25 \times 25 \times 32 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{array}{r} 1.67 \\ 42.47 \end{array}$	$\begin{aligned} & 1.67 \\ & 42.47 \end{aligned}$	$\begin{aligned} & 1.58 \\ & 40.13 \end{aligned}$	$\begin{aligned} & 0.98 \\ & 0.44 \end{aligned}$
$\begin{aligned} & 1 \times 1 \times 1 / 1 / 2^{*} \\ & 25 \times 25 \times 40 \\ & \hline \end{aligned}$	$\begin{gathered} 500 \\ 3450 \\ \hline \end{gathered}$	$\begin{aligned} & 1.80 \\ & 45.72 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.80 \\ & 45.72 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.65 \\ & 47.91 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.16 \\ & 0.53 \end{aligned}$
$\begin{aligned} & 11 / 4 \times 1 \times 1 / 2^{*} \\ & 32 \times 25 \times 15 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{array}{r} 1.34 \\ 34.04 \\ \hline \end{array}$	$\begin{aligned} & 1.26 \\ & 32.00 \end{aligned}$	$\begin{aligned} & 1.53 \\ & 38.86 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.37 \end{aligned}$
$\begin{aligned} & 11 / 4 \times 1 \times 3 / 4 \\ & 32 \times 25 \times 20 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 3683 \end{aligned}$	$\begin{aligned} & 1.37 \\ & 34.80 \end{aligned}$	$\begin{aligned} & 1.62 \\ & 47.15 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.41 \end{aligned}$
$\begin{aligned} & 1 / 4 \times 1 \times 1 \\ & 32 \times 25 \times 25 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{array}{r} 1.58 \\ 40.13 \\ \hline \end{array}$	$\begin{array}{r} 1.50 \\ 38.10 \\ \hline \end{array}$	$\begin{array}{r} 1.67 \\ 42.42 \\ \hline \end{array}$	$\begin{aligned} & 1.00 \\ & 0.45 \\ & \hline \end{aligned}$
$\begin{aligned} & 11 / 4 \times 1 \times 1 \frac{1 / 4}{4} \\ & 32 \times 25 \times 32 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.75 \\ & 44.45 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.67 \\ & 42.42 \end{aligned}$	$\begin{array}{r} 1.75 \\ 44.45 \\ \hline \end{array}$	$\begin{aligned} & 1.08 \\ & 0.49 \end{aligned}$
$\begin{aligned} & 11 / 1 \times 1 \times 11 / 2 \\ & 32 \times 25 \times 40 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.88 \\ & 47.75 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 45.72 \end{aligned}$	$\begin{array}{r} 1.82 \\ 46.22 \\ \hline \end{array}$	$\begin{aligned} & 1.42 \\ & 0.64 \\ & \hline \end{aligned}$
$\begin{aligned} & 1 \frac{1}{4} \times 1 \frac{11 / 4}{1 / 2} 2 \\ & 32 \times 32 \times 15 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & \hline 1.34 \\ & 34.04 \end{aligned}$	$\begin{array}{r} 1.34 \\ 34.04 \\ \hline \end{array}$	$\begin{array}{r} \hline 1.53 \\ 38.86 \\ \hline \end{array}$	$\begin{aligned} & 0.86 \\ & 0.39 \end{aligned}$

MATERIAL SPECIFICATIONS

Dimensions: ASME B16.3
Material: ASTM A536 Grade 65-45-12
Finish: Black
Threads: NPT per ASME B1.20.1
Agency Approvals: All ductile iron threaded fittings are UL/ULC Listed and FM Approved.

NOTICE: Ductile iron fittings have higher tensile strength than that of steel pipe. Therefore, over tightening can cause damage to pipe threads which may cause leakage. Ductile iron fittings should be tightened approximately three turns beyond hand tight, but no more than four turns.

FIGURE 3205R - REDUCING TEE

Nominal Size	Max. Working Pressure \triangle	Dimensions			Approx. Wt. Each
1 $\times 2 \times 3$		A	B	(
In. (mm)	PS((kP0)	In. (mm)	In. (mm)	In. (mm)	lbs. (kg)
$11 / 4 \times 1 / 4 x^{3 / 4}$ $32 \times 32 \times 20$	500	$\begin{aligned} & 1.45 \\ & 3683 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 3683 \end{aligned}$	1.62	0.92
1114 $\times 1 \frac{11 / 4}{} \times 1$	500	1.58	1.58	1.67	0.95
$32 \times 32 \times 25$	3450	40.13	40.13	42.42	0.43
$11 / 4 \times 1 / 1 / \times 11 / 2^{*}$	500	1.88	1.88	1.82	1.45
$32 \times 32 \times 40$	3450	47.75	47.75	46.22	0.66

Working Pressure Ratings are for reference only and based on Sch. 40 pipe. For the latest UL/ULC, and FM pressure ratings versus pipe schedule, please visit anvilintl.com or contact your local Anvil Representative.

* Part supplied as "Bull Head Tee"

PROJECT INFORMATION
APPROVAL STAMP
Project:

Address:	\square
Contractor:	\square

Engineer:

Submittal Date:

Notes 1:

Notes 2:
SPF/DI-1.15

DUCTILE IRON THREADED FITTINGS
ANYIL눈

FIG. 3205R

Reducing Tee

FIGURE 3205R - REDUCING TEE

Nominal Size	Max. Working Pressure \triangle	Dimensions			Approx. Wt. Each
$1 \times 2 \times 3$		A	B	(
In. (mm)	PSI (kPa)	In. (mm)	In. (mm)	In. (mm)	Lbs. (kg)
$\begin{gathered} 1 \frac{11 / 4 \times 1 \frac{11 / 4}{} \times 2^{*}}{32 \times 32 \times 50} \\ \hline \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & \hline 2.10 \\ & 53.34 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.10 \\ & 53.34 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.90 \\ 48.26 \\ \hline \end{array}$	$\begin{aligned} & 1.75 \\ & 0.79 \end{aligned}$
$\begin{aligned} & 1 / 2 \times 1 \times 1 / 2 \\ & 40 \times 25 \times 15 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.41 \\ & 35.81 \end{aligned}$	$\begin{aligned} & 1.34 \\ & 34.04 \end{aligned}$	$\begin{aligned} & 1.66 \\ & 42.16 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.43 \end{aligned}$
$\begin{aligned} & 11 / 2 \times 1 \times 3 / 4 \\ & 40 \times 25 \times 20 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{array}{r} 1.52 \\ 38.67 \\ \hline \end{array}$	$\begin{aligned} & 1.37 \\ & 34.80 \end{aligned}$	$\begin{aligned} & 1.75 \\ & 44.45 \end{aligned}$	$\begin{aligned} & 1.14 \\ & 0.52 \end{aligned}$
$\begin{aligned} & 1 / 2 \times 1 \times 1 \\ & 40 \times 25 \times 25 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{array}{r} 1.65 \\ 47.97 \\ \hline \end{array}$	$\begin{aligned} & 1.50 \\ & 38.10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.80 \\ & 45.72 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 0.53 \end{aligned}$
$\begin{aligned} & 11 / 2 \times 1 \times 11 / 4 \\ & 40 \times 25 \times 32 \end{aligned}$	$\begin{aligned} & \hline 500 \\ & 3450 \end{aligned}$	$\begin{array}{r} 1.82 \\ 46.23 \\ \hline \end{array}$	$\begin{gathered} 1.67 \\ 42.42 \\ \hline \end{gathered}$	$\begin{array}{r} 1.88 \\ 47.75 \\ \hline \end{array}$	$\begin{aligned} & 1.34 \\ & 0.61 \\ & \hline \end{aligned}$
$\begin{aligned} & 11 / 2 \times 1 \times 11 / 2 \\ & 40 \times 25 \times 40 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.94 \\ & 49.28 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 45.72 \end{aligned}$	$\begin{aligned} & 1.94 \\ & 49.28 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 0.66 \end{aligned}$
$11 / 2 \times 1 \frac{1}{4} \times 1 / 2$ $40 \times 32 \times 15$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{array}{r} 1.41 \\ 35.87 \end{array}$	$\begin{aligned} & 1.34 \\ & 34.04 \end{aligned}$	$\begin{aligned} & 1.66 \\ & 4276 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 0.48 \end{aligned}$
$11 / 2 \times 1 \frac{1}{4} \times 3 / 4$ $40 \times 32 \times 20$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{array}{r} 1.52 \\ 38.67 \\ \hline \end{array}$	$\begin{array}{r} 1.45 \\ 36.83 \\ \hline \end{array}$	$\begin{aligned} & 1.75 \\ & 44.45 \end{aligned}$	$\begin{gathered} 1.15 \\ 0.5 \\ \hline \end{gathered}$
$\begin{aligned} & 11 / 2 \times 11 / 4 \times 1 \\ & 40 \times 32 \times 25 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.65 \\ & 47.97 \end{aligned}$	$\begin{aligned} & 1.58 \\ & 40.13 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 45.72 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.57 \end{aligned}$
$\begin{gathered} 1 \frac{1}{2} \times 1 \frac{11 / 4}{} \times 2^{*} \\ 40 \times 32 \times 50 \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 2.16 \\ & 54.86 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.10 \\ & 53.34 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.02 \\ & 57.30 \end{aligned}$	$\begin{aligned} & 1.90 \\ & 0.86 \end{aligned}$
$\begin{gathered} 11 / 2 \times 1 \frac{1}{2} \times 1 / 2 \\ 40 \times 40 \times 15 \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{array}{r} 1.41 \\ 35.81 \\ \hline \end{array}$	$\begin{array}{r} 1.41 \\ 35.87 \\ \hline \end{array}$	$\begin{aligned} & 1.16 \\ & 29.46 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.15 \\ & 0.52 \end{aligned}$
$\begin{gathered} 11 / 2 \times 1 \frac{1}{2} \times 3 / 4 \\ 40 \times 40 \times 20 \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.52 \\ & 38.61 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.52 \\ & 38.61 \end{aligned}$	$\begin{aligned} & 1.75 \\ & 44.45 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.24 \\ & 0.56 \end{aligned}$
$\begin{aligned} & 1 / 1 / 2 \times 1 / 1 / 2 \times 1 \\ & 40 \times 40 \times 25 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{gathered} 1.65 \\ 41.91 \end{gathered}$	$\begin{array}{r} 1.65 \\ 47.97 \\ \hline \end{array}$	$\begin{aligned} & 1.80 \\ & 45.72 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 0.59 \end{aligned}$
$\begin{gathered} 11 / 2 \times 1 \frac{11 / 2}{} \times 1 \frac{11 / 4}{40 \times 40 \times 32} \\ \hline \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.82 \\ & 46.23 \end{aligned}$	$\begin{aligned} & 1.82 \\ & 46.23 \end{aligned}$	$\begin{aligned} & 1.88 \\ & 47.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.48 \\ & 0.67 \\ & \hline \end{aligned}$

FIGURE 3205R - REDUCING TEE

Nominal Size	Max. Working Pressurea	Dimensions			Approx. Wt. Each
1×2×3		A	B	C	
In. (mm)	PSI (kPa)	In. (mm)	In. (mm)	In. (mm)	Lbs. (kg)
$\begin{aligned} & \hline 1 / 2 \times 1 \frac{11 / 2 \times 2^{*}}{} 40 \times 40 \times 50 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & \hline 2.16 \\ & 54.86 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.16 \\ & 54.86 \end{aligned}$	$\begin{aligned} & 2.02 \\ & 57.30 \end{aligned}$	$\begin{aligned} & 1.98 \\ & 0.90 \end{aligned}$
$\begin{gathered} 2 \times 1 \times 2 \\ 50 \times 25 \times 50 \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{array}{r} 2.25 \\ 57.15 \\ \hline \end{array}$	$\begin{aligned} & \hline 2.02 \\ & 51.31 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.25 \\ & 57.15 \end{aligned}$	2.15
$\begin{aligned} & 2 \times 11 / 4 \times 2 \\ & 50 \times 32 \times 50 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & \hline 2.25 \\ & 57.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.10 \\ & 53.34 \end{aligned}$	$\begin{aligned} & \hline 2.25 \\ & 57.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.30 \\ & 1.04 \\ & \hline \end{aligned}$
$\begin{aligned} & 2 \times 11 / 2 \times 1 / 2 \\ & 50 \times 40 \times 15 \end{aligned}$	$\begin{gathered} 500 \\ 3450 \end{gathered}$	$\begin{aligned} & 1.49 \\ & 37.85 \end{aligned}$	$\begin{aligned} & 1.41 \\ & 35.81 \end{aligned}$	$\begin{aligned} & 1.88 \\ & 47.75 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 0.68 \end{aligned}$
$\begin{aligned} & 2 \times 11 / 2 \times 3 / 4 \\ & 50 \times 40 \times 20 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 40.64 \end{aligned}$	$\begin{aligned} & 1.52 \\ & 38.67 \end{aligned}$	$\begin{aligned} & 1.97 \\ & 50.04 \end{aligned}$	1.62
$\begin{aligned} & 2 \times 1 / 1 / 2 \times 1 \\ & 50 \times 40 \times 25 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.73 \\ & 43.94 \end{aligned}$	1.65	$\begin{aligned} & 2.02 \\ & 57.31 \\ & \hline \end{aligned}$	1.64
$\begin{aligned} & 2 \times 11 / 2 \times 1 / 1 / 4 \\ & 50 \times 40 \times 32 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.90 \\ & 48.26 \end{aligned}$	$\begin{aligned} & 1.82 \\ & 46.23 \end{aligned}$	$\begin{aligned} & \hline 2.10 \\ & 53.34 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.80 \\ & 0.82 \end{aligned}$
$\begin{gathered} 2 \times 11 / 2 \times 11 / 2 \\ 50 \times 40 \times 40 \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 2.02 \\ & 57.31 \end{aligned}$	$\begin{aligned} & 1.94 \\ & 4928 \end{aligned}$	$\begin{aligned} & 2.16 \\ & 54.86 \\ & \hline \end{aligned}$	$\begin{gathered} 2.00 \\ 0.91 \end{gathered}$
$\begin{aligned} & 2 \times 1 \frac{1}{2} \times 2 \\ & 50 \times 40 \times 50 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 2.25 \\ & 57.15 \end{aligned}$	$\begin{aligned} & 2.16 \\ & 54.86 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.25 \\ & 57.15 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.35 \\ & 1.07 \\ & \hline \end{aligned}$
$\begin{gathered} 2 \times 2 \times 1 / 2 \\ 50 \times 50 \times 15 \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.49 \\ & 37.85 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.49 \\ 37.85 \\ \hline \end{array}$	$\begin{aligned} & 1.88 \\ & 47.75 \end{aligned}$	$\begin{array}{r} 1.60 \\ 0.73 \end{array}$
$\begin{gathered} 2 \times 2 \times 3 / 4 \\ 50 \times 50 \times 20 \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 40.64 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.60 \\ & 40.64 \end{aligned}$	$\begin{aligned} & 1.97 \\ & 50.04 \end{aligned}$	$\begin{array}{r} 1.68 \\ 0.76 \end{array}$
$\begin{gathered} 2 \times 2 \times 1 \\ 50 \times 50 \times 25 \end{gathered}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{gathered} 1.73 \\ 43.94 \end{gathered}$	$\begin{array}{r} 1.73 \\ 43.94 \\ \hline \end{array}$	$\begin{gathered} 2.02 \\ 51.31 \end{gathered}$	$\begin{aligned} & 1.85 \\ & 0.84 \end{aligned}$
$\begin{aligned} & 2 \times 2 \times 1 \frac{1}{4} \\ & 50 \times 50 \times 32 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{array}{r} 1.90 \\ 44.45 \\ \hline \end{array}$	$\begin{aligned} & 1.90 \\ & 42.42 \end{aligned}$	$\begin{aligned} & 2.10 \\ & 44.45 \\ & \hline \end{aligned}$	$\begin{gathered} 2.04 \\ 0.93 \end{gathered}$
$\begin{aligned} & 2 \times 2 \times 1 / 2 \\ & 50 \times 50 \times 40 \end{aligned}$	$\begin{aligned} & 500 \\ & 3450 \end{aligned}$	$\begin{aligned} & 2.02 \\ & 44.45 \end{aligned}$	$\begin{aligned} & 2.02 \\ & 42.42 \end{aligned}$	$\begin{aligned} & 2.16 \\ & 44.45 \\ & \hline \end{aligned}$	$\begin{gathered} 2.18 \\ 0.99 \end{gathered}$

A Working Pressure Ratings are for reference only and based on Sch. 40 pipe. For the latest UL/ULC, and FM pressure ratings versus pipe schedule, please visit anvilintl.com or contact your local Anvil Representative.

* Part supplied as "Bull Head Tee"

FIG. 3205

Straight Tee

FIGURE 3205 - STRAIGHT TEE

Nominal Size	Maximum Working Pressure a	Dimension A	Approx. W. Each
In. (mm)	PSI ((Pa)	In. (mm)	Lbs. (kg)
1	500	1.50	0.85
25	3450	38.10	0.39
$1 / 14$	500	1.75	1.22
32	3450	44.45	0.55
$1 / 2$	500	1.94	1.55
40	3450	49.27	0.70
2	500	2.25	2.45
50	3450	57.15	1.11

- - Working Pressure Ratings are for reference only and based on Sch. 40 pipe. For the latest UL/ULC, and FM pressure ratings versus pipe schedule, please visit anvilintl.com or contact your local Anvil Representative.

MATERIAL SPECIFICATIONS

Dimensions: ASME B16.3
Material: ASTM A536 Grade 65-45-12
Finish: Black
Threads: NPT per ASME B1.20.1
Agency Approvals: All ductile iron threaded fittings are UL/ULC Listed and FM Approved.

NOTICE: Ductile iron fittings have higher tensile strength than that of steel pipe. Therefore, over tightening can cause damage to pipe threads which may cause leakage. Ductile iron fittings should be tightened approximately three turns beyond hand tight, but no more than four turns.

PROJECT INFORMATION
Project:

Address:	\square Approved as noted
Contractor:	\square Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

SPF/DI-1.15

SECTION 2
 HANGERS AND SWAY BRACING

Size Range: $1 / 4^{\prime \prime}$ through $1 / 2^{\prime \prime}$ Stocked in six, ten, and twelve foot lengths. Other even foot lengths can be furnished to order.
Material: Carbon steel or Stainless Steel Gr 304
Threads: National Coarse (USS), rod threaded complete length.
Finish: \square Plain or \square Zinc Plated (Hot-Dip Galvanized optional)
Maximum Temperature: $650^{\circ} \mathrm{F}$.
Ordering: Specify rod diameter and length, figure number, name and finish.
Note: The acceptability of galvanized coatings at temperatures above $450^{\circ} \mathrm{F}$ is at the discretion of the end user.

FIG. 146:
LOADS (LBS) • WEIGHTS (LBS) • DIMENSIONS (IN)

Rod Size A	Threads per Inch	Max Load 650° F	Weight per Ft.
$1 / 4$	20	240	0.12
$3 / 8$	16	730	0.30
$1 / 2$	13	1,350	0.53
$5 / 8$	11	2,160	0.84
$3 / 4$	10	3,230	1.20
$7 / 8$	9	4,480	1.70
1	8	5,900	2.30
$11 / 4$	7	9,500	3.60
$11 / 2$	6	13,800	5.10

Note: Other rod sizes available upon request. Class 2 fit is available upon request.

PROJECT INFORMATION
Project:

Address:	\square Approved as noted
Contractor:	\square Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

PH-1.15
P.O. Box 3365 South El Monte, CA 91733 626.444.0541

Fax 626.444.3887 www. Afcon.org

300

RING HANGER

1 thru 4 inch pipe LISTED FOR STEEL/CPVC

$1 / 2 \& 3 / 4$ inch pipe
5 thru 8 inch pipe

SIZE - ROD- $3 / 8^{\prime \prime}$ or 1/2"
SIZE - SYSTEM PIPE - $1 / 2^{\prime \prime}$ thru $8^{\prime \prime}$
MATERIAL - Carbon Steel, Mil. Galvanized to G-90 spec.
LISTING/APPROVAL -

NFPA 13									
PIPE						ROD	$\mathbf{1}$ WT.	5 WT.+250	UL TEST LOAD
1	$3 / 8$	30.75	403.75	750					
$11 / 4$	$3 / 8$	43.95	469.75	750					
$11 / 2$	$3 / 8$	54.15	520.75	750					
2	$3 / 8$	76.95	634.75	750					
$21 / 2$	$3 / 8$	118.35	841.75	850					
3	$3 / 8$	162.30	1061.50	1050					
4	$3 / 8$	246.00	1480.00	1500					
5	$1 / 2$	349.45	1996.75	2000					
6	$1 / 2$	476.35	2631.75	2650					
8	$1 / 2$	711.00	3805.00	4050					

OSHPD OPA-0601 See Website.
CONFORMS WITH: Federal Specification WW-H-171E, Type 10.
Manufacturers Standardization Society ANSI/MSS-SP-58 Type 10.
MAXIMUM TEMPERATURE - $650^{\circ} \mathrm{F}$.
FUNCTION - Pipe hanger component of an $\boldsymbol{A F C O N}$ hanger.
To support steel, CPVC or copper pipe.
INSTALLATION - Per NFPA 13, 13R, 13D, these instructions and the CPVC or copper pipe manufacturers instructions.
FEATURES -

* Sized and listed exclusively for use with \#310 Surge Restrainer.
* Band edge is offset for EASY pipe insertion.
* Custom fit swivel nut for better retention in ring.

ORDERING - Part \#, pipe size.

HILTI TECHNICAL BULLETIN

Date; February 28, 2018

Subject: KWIK HUS-EZ 3/8 X 2-1/8 I 1/2

Hilti has introduced a new version of the KWIK HUS-EZ I anchor. The KWIK HUS-EZ $3 / 8^{\prime \prime} \times 21 / 2^{\prime \prime} \mid 1 / 2^{\prime \prime}$ anchor is a $3 / 8$-in. diameter screw anchor with an internally threaded head for attachment of $1 / 2$-in. diameter threaded rods. The tables below provide installation parameters and design load data in Normal Weight Concrete and Lightweight Concrete Over Metal Deck. The anchor is also approved by Factory Mutual for sprinkler pipe up to 8 -in. in diameter. This product will be included in the next revision of ESR-3027.

The design tables in Tables 2 to 6 are Hilti Simplified Design Tables. The load values were developed using the design parameters and variables that are expected to be included in ESR-3027 and the equations of ACI 318-14 Chapter 17. For a detailed explanation of the Hilti Simplified Design Tables, refer to section 3.1.8 of Hilti Product Technical Guide Vol. 2 Ed. 17. Tables 7 to 11 are based on Canadian Limit State Design. Table 12 contains allowable loads for installations in Hollow Core Concrete Panels.

Figure 1 - KWIK HUS-EZ 3/8" X $21 / 2$ " ${ }^{1 / 2 \prime}{ }^{\prime \prime}$

Figure 2 - KWIK HUS-EZ anchor installation details

Table 1 - KWIK HUS EZ I installation specifications

Setting information	Symbol	Units	Nominal anchor diameter
			$3 / 8$
Nominal bit diameter	$\mathrm{d}_{\text {bit }}$	in.	$3 / 8$
Nominal embedment	$\mathrm{h}_{\text {nom }}$	in.	$2-1 / 8$
Effective embedment	$\mathrm{h}_{\text {ef }}$	in.	1.54
Minimum hole depth	h_{o}	in.	$2-3 / 8$
Minimum Base Material Thickness	$\mathrm{h}_{\text {min }}$	in.	$3-5 / 8$
Installation torque	$\mathrm{T}_{\text {inst }}$	ft. -lb.	40
Wrench size	-	in.	$3 / 4$
Hilti impact setting tools	-	-	SID 4-A22/18-A and SIW 22/18-A
Insert diameter	-	in.	$1 / 2$

Table 2 - Hilti KWIK HUS-EZ I design strength with concrete / pullout failure in uncracked concrete ${ }^{1,2,3,4}$

Nominal anchor diameter in.	Nominal embed. depth in. (mm)	Tension - $\phi \mathrm{N}_{\mathrm{n}}$				Shear - $\phi \mathrm{V}_{\mathrm{n}}$			
		$\begin{gathered} \mathbf{f}_{\mathrm{c}}=2500 \\ \text { psi } \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{f}^{\prime}=3000 \\ \text { psi } \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=4000 \\ \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=6000 \\ \text { psi } \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}}=2500 \\ \text { psi } \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=3000 \\ \text { psi } \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=4000 \\ \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}}=6000 \\ \text { psi } \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$
$3 / 8$	2-1/8	1,490	1,630	1,885	2,305	1,605	1,755	2,030	2,485
	(54)	(6.6)	(7.3)	(8.4)	(10.3)	(7.1)	(7.8)	(9.0)	(11.1)

Table 3 - Hilti KWIK HUS-EZ I design strength with concrete / pullout failure in cracked concrete ${ }^{1,2,3,4,5}$

Nominal anchor diameter in.	Nominal embed. depth in. (mm)	Tension - $\phi \mathrm{N}_{\mathrm{n}}$				Shear - $\phi \mathrm{V}_{\mathrm{n}}$			
		$\begin{gathered} \hline \mathrm{f}_{\mathrm{c}=2500}^{\mathrm{psi}} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{f}^{\prime}=3000 \\ \mathrm{psi} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}=}=4000 \\ \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}=}=6000 \\ \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{f}^{\prime} \mathrm{c}=2500 \\ \mathrm{psi} \\ (17.2 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}=3000}^{\mathrm{psi}} \\ (20.7 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}=400}=4000 \\ \mathrm{psi} \\ (27.6 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}}^{\mathrm{c}=6000} \\ \mathrm{psi} \\ (41.4 \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$
3/8	2-1/8	1,055	1,155	1,335	1,635	1,135	1,245	1,435	1,760
	(54)	(4.7)	(5.1)	(5.9)	(7.3)	(5.0)	(5.5)	(6.4)	(7.8)

1 See Section 3.1.8.6 of Hilti Product Technical Guide Ed. 17 to convert design strength value to ASD value.
2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
3 Tabulated values are for a single anchor with a minimum edge distance $2-3 / 4$ inches and minimum spacing of $4-5 / 8$ inches. Compare table value to the steel value in Table 4. The lesser of the values is to be used for the design.
4 Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength by λ_{a} as follows:
For sand-lightweight, $\lambda_{a}=0.68$. For all-lightweight, $\lambda_{a}=0.60$.
5 Tabular values are for static loads only. For seismic tension loads, multiply cracked concrete tabular values by $\alpha_{N, s e i s}=0.75$:
No reduction needed for seismic shear. See Section 3.1.8.7 of Hilti Product Technical Guide Ed 17 for additional information on seismic applications.
Table 4-Steel design strength for Hilti KWIK HUS-EZ I anchors ${ }^{1,2,6}$

Nominal anchor diameter in.	Nominal internal thread diameter in.	Tensile ${ }^{3}$ $\phi N_{\mathbf{s a}}$ $\mathbf{l b}(\mathbf{k N})$	Shear ${ }^{4}$ $\phi V_{\mathbf{s a}}$ $\mathbf{l b}(\mathbf{k N})$	Seismic Shear ${ }^{5}$ $\phi \mathbf{V}_{\mathbf{s a}}$ $\mathbf{l b}(\mathbf{k N})$
$3 / 8$	$1 / 2-13$	5,990	1,130	1,130
	UNC	(26.6)	(5.0)	(5.0)

1 See Section 3.1.8.6 of Hilti Product Technical Guide Ed. 17 to convert design strength value to ASD value.
2 Hilti KWIK HUS-EZ I anchors are to be considered brittle steel elements.
3 Tensile $\phi N_{s a}=\phi A_{s e, N} f_{\text {uta }}$ as noted in ACI 318-14 Ch. 17.
4 Shear values determined by static shear tests with $\phi V_{s a}<\phi 0.60 A_{s e, V} f_{u t a}$ as noted in ACI 318-14 Ch. 17.
5 Seismic shear values determined by seismic shear tests with $\phi V_{\text {sa }} \leq \phi 0.60 A_{\text {se, }} f_{u t a}$ as noted in ACl 318-14 Ch. 17. See Section 3.1.8.7 of Hilti Product Technical Guide Ed 17 for additional information on seismic applications.
6 Values are for threaded rod or insert with $\mathrm{F}_{\mathrm{u}} \geq 125 \mathrm{ksi}$. For use with inserts with Fu less than 125 ksi multiply the shear values by the ratio of Fu of insert and 125 ksi .

Table 5 - Hilti KWIK HUS-EZ I in the soffit of uncracked lightweight concrete over metal deck 1,2,3,4,5,6

Nominal anchor diameter in.	Nominal internal thread diameter in.	Nominal embed. depth in. (mm)	Installation in lower flute				Installation in upper flute			
			Tension - $\phi \mathrm{N}_{\mathrm{n}}$		Shear - $\phi V_{\text {n }}$		Tension - $\phi \mathrm{N}_{\mathrm{n}}$		Shear - ϕV_{n}	
			$\begin{gathered} \mathbf{f}^{\prime}=3000 \\ \text { psi } \\ (20.7 \\ \text { MPa) } \\ \text { lb (kN) } \end{gathered}$	$\begin{gathered} \mathrm{f}^{\prime} \mathrm{c}=4000 \\ \text { psi } \\ (27.6 \\ \text { MPa) } \\ \text { lb (kN) } \end{gathered}$	$\begin{gathered} \mathbf{f}^{\prime}= \\ 3000 \mathrm{psi} \\ (20.7 \\ \text { MPa) } \\ \text { lb }(\mathbf{k N}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{f}^{\prime} \mathrm{c}= \\ 4000 \mathrm{psi} \\ (27.6 \\ \text { MPa) } \\ \text { lb (kN) } \end{gathered}$	$\begin{gathered} \mathbf{f}^{\prime} \mathrm{c}= \\ 3000 \\ \text { psi } \\ (20.7 \\ \text { MPa) } \\ \text { lb (kN) } \end{gathered}$	$\begin{gathered} \mathrm{f}^{\prime} \mathrm{c}= \\ 4000 \\ \mathrm{psi} \\ (27.6 \\ \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathbf{f}^{\prime} \mathrm{c}= \\ 3000 \\ \mathrm{psi} \\ (20.7 \\ \text { MPa) } \\ \text { lb (kN) } \end{gathered}$	$\begin{gathered} \mathrm{f} \mathrm{c}= \\ 4000 \\ \mathrm{psi} \\ (27.6 \\ \text { MPa) } \\ \text { lb }(\mathrm{kN}) \end{gathered}$
3/8	$1 / 2-13$ UNC	$\begin{gathered} 2-1 / 8 \\ (54) \end{gathered}$	$\begin{aligned} & 1,225 \\ & (5.4) \end{aligned}$	$\begin{gathered} 1,415 \\ (6.3) \end{gathered}$	$\begin{gathered} 1,565 \\ (7.0) \end{gathered}$	$\begin{gathered} 1,565 \\ (7.0) \end{gathered}$	$\begin{gathered} 1,895 \\ (8.4) \end{gathered}$	$\begin{gathered} 2,190 \\ (9.7) \end{gathered}$	$\begin{aligned} & 2,400 \\ & (10.7) \end{aligned}$	$\begin{aligned} & 2,400 \\ & (10.7) \end{aligned}$

Table 6 - Hilti KWIK HUS-EZ I in the soffit of cracked lightweight concrete over metal deck 1,2,3,4,5,6

Nominal anchor diameter in.	Nominal internal thread diameter in.	Nominal embed. depth in. (mm)	Installation in lower flute				Installation in upper flute			
			Tension - $\phi \mathrm{N}{ }^{7}$		Shear - $\phi \mathrm{V}_{\mathrm{n}} \mathrm{T}^{7,8}$		Tension - $\phi \mathrm{N}_{\mathrm{n}}{ }^{7}$		Shear - $\phi \mathrm{V}_{\mathrm{n}}{ }^{7,8}$	
			$\begin{gathered} \mathbf{f}^{\prime}=3000 \\ \text { psi } \\ (20.7 \\ \text { MPa) } \\ \text { lb (kN) } \end{gathered}$	$\begin{gathered} \mathbf{f}^{\prime}=4000 \\ \text { psi } \\ (27.6 \\ \text { MPa) } \\ \text { lb (kN) } \end{gathered}$	$\begin{gathered} \mathbf{f}^{\prime} \mathrm{c}= \\ 3000 \mathrm{psi} \\ (20.7 \\ \mathrm{MPa} \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathbf{f}^{\prime} \mathrm{c}= \\ 4000 \mathrm{psi} \\ (27.6 \\ \text { MPa) } \\ \text { lb (kN) } \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{f}^{\prime}= \\ 3000 \\ \mathrm{psi} \\ (20.7 \\ \text { MPa) } \\ \text { lb (kN) } \end{gathered}$	$\begin{gathered} \hline \mathrm{f}^{\prime}= \\ 4000 \\ \mathrm{psi} \\ (27.6 \\ \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathbf{f}^{\prime}= \\ 3000 \\ \mathrm{psi} \\ (20.7 \\ \text { MPa) } \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{f}^{\prime} \mathrm{c}= \\ 4000 \\ \mathrm{psi} \\ (27.6 \\ \mathrm{MPa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
3/8	$1 / 2-13$ UNC	$\begin{gathered} 2-1 / 8 \\ (54) \end{gathered}$	$\begin{aligned} & 855 \\ & (3.8) \end{aligned}$	$\begin{aligned} & 985 \\ & (4.4) \end{aligned}$	$\begin{aligned} & 1,565 \\ & (7.0) \end{aligned}$	$\begin{aligned} & 1,565 \\ & (7.0) \end{aligned}$	$\begin{gathered} 1,325 \\ (5.9) \end{gathered}$	$\begin{aligned} & 1,530 \\ & (6.8) \end{aligned}$	$\begin{gathered} 2400 \\ (10.7) \end{gathered}$	$\begin{aligned} & 2,400 \\ & (10.7) \end{aligned}$

1 See Section 3.1.8.6 of Hilti Product Technical Guide Ed. 17 to convert design strength value to ASD value.
2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
3 Tabular value is for one anchor per flute. Minimum spacing along the length of the flute is 6-3/8 inches.
4 Tabular values are lightweight concrete and no additional reduction factor is needed.
5 No additional reduction factors for spacing or edge distance need to be applied.
6 Comparison of the tabular values to the steel strength is not necessary. Tabular values control.
7 Tabular values are for static loads only. For seismic conditions $\alpha_{N, \text { seis }}=0.75$.
8 For seismic shear, an additional factor must be applied to the cracked concrete tabular values for seismic conditions: $\alpha_{\mathrm{V}, \text { seis }},=0.85$ See Section 3.1.8.6 of Hilti Product Technical Guide Ed. 17 for additional information on seismic applications.

Figure 3 - Installations of KWIK HUS EZ I (KH-EZ I) in soffit of concrete over metal deck assemblies

Canadian Limit State Design

Limit State Design of anchors is described in the provisions of CSA A23.3-14 Annex D for post -installed anchors tested and assessed in accordance with ACI 355.2 for mechanical anchors and ACI 355.4 for adhesive anchors. Tables 7 to 11 of this section contains the Limit State Design tables with factored characteristic loads that are based on the loads that are expected to be published in ESR-3027. The factored resistance tables have characteristic design loads that are prefactored by the applicable reduction factors for a single anchor with no anchor-to-anchor spacing or edge distance adjustments for the convenience of the user of this document. All the figures in the previous ACI 318-14 Chapter 17 design section are applicable to Limit State Design and the tables will reference these figures.

For a detailed explanation of the tables developed in accordance with CSA A23.3-14 Annex D, refer to Section 3.1.8 of the Hilti Product Technical Guide Ed. 17.

Table 7 - Hilti KWIK HUS-EZ I carbon steel screw anchor factored resistance with concrete / pullout failure in uncracked concrete ${ }^{1,2,3,4,5}$

			Tension - N_{r}				Shear - Vr			
Nominal anchor diameter in.	Nominal anchor diameter in.	Nominal embed. in. (mm)	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=20 \\ \mathrm{MPa} \\ (2,900 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=25 \\ \mathrm{MPa} \\ (3,625 \\ \mathrm{psi}) \\ \mathbf{l b}^{(\mathrm{kN})} \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=30 \\ \mathrm{MPa} \\ (4,350 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=40 \\ \mathrm{MPa} \\ (5,800 \\ \mathrm{psi}) \\ \mathrm{lb}^{(\mathrm{kN})} \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=20 \\ \mathrm{MPa} \\ (2,900 \\ \mathrm{psi}) \\ \mathrm{lb}^{(\mathrm{kN})} \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=25 \\ \mathrm{MPa} \\ (3,625 \\ \mathrm{psi}) \\ \mathbf{l b}^{(\mathrm{kN})} \end{gathered}$	$\begin{gathered} \mathrm{f}^{\prime} \mathrm{c}=30 \\ \mathrm{MPa} \\ (4,350 \\ \mathrm{psi}) \\ \left.\mathrm{lb}^{(\mathrm{kN}}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}}=40 \\ \mathrm{MPa} \\ (5,800 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
3/8	$\begin{array}{r} 3 / 8 \\ (9.5) \\ \hline \end{array}$	$\begin{gathered} 2-1 / 8 \\ (54) \\ \hline \end{gathered}$	$\begin{gathered} 1,595 \\ (7.1) \end{gathered}$	$\begin{gathered} 1,785 \\ (7.9) \end{gathered}$	$\begin{gathered} 1,955 \\ (8.7) \end{gathered}$	$\begin{aligned} & 2,260 \\ & (10.0) \end{aligned}$	$\begin{gathered} 1,595 \\ (7.1) \end{gathered}$	$\begin{gathered} 1,785 \\ (7.9) \end{gathered}$	$\begin{gathered} 1,955 \\ (8.7) \end{gathered}$	$\begin{aligned} & 2,260 \\ & (10.0) \end{aligned}$

Table 8 - Hilti KWIK HUS-EZ I carbon steel screw anchor factored resistance with concrete / pullout failure in cracked concrete ${ }^{1,2,3,4,5}$

			Tension - N_{r}				Shear - Vr			
Nominal anchor diameter in.	Nominal anchor diameter in.	Nominal embed. in. (mm)	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=20 \\ \mathrm{MPa} \\ (2,900 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathbf{f}^{\prime}=25 \\ \text { MPa } \\ (3,625 \\ \text { psi) } \\ \text { lb (kN) } \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=30 \\ \mathrm{MPa} \\ (4,350 \\ \mathrm{psi}) \\ \mathrm{lb}^{(\mathrm{kN})} \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}}=40 \\ \mathrm{MPa} \\ (5,800 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}=}=20 \\ \mathrm{MPa} \\ (2,900 \\ \mathrm{psi}) \\ \mathrm{lb}^{2}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=25 \\ \mathrm{MPa} \\ (3,625 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=30 \\ \mathrm{MPa} \\ (4,350 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}}=40 \\ \mathrm{MPa} \\ (5,800 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
3/8	$\begin{gathered} \hline 3 / 8 \\ (9.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2-1 / 8 \\ (54) \end{gathered}$	$\begin{aligned} & 1,120 \\ & (5.0) \end{aligned}$	$\begin{aligned} & 1,250 \\ & (5.6) \end{aligned}$	$\begin{gathered} 1,370 \\ (6.1) \end{gathered}$	$\begin{aligned} & 1,580 \\ & (7.0) \end{aligned}$	$\begin{aligned} & \hline 1,120 \\ & (5.0) \end{aligned}$	$\begin{aligned} & 1,250 \\ & (5.6) \end{aligned}$	$\begin{gathered} 1,370 \\ (6.1) \end{gathered}$	$\begin{aligned} & 1,580 \\ & (7.0) \end{aligned}$

1 See Section 3.1.8.6 of Hilti Product Technical Guide Ed 17 to convert design strength value to ASD value.
2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
3 Tabulated values are for a single anchor with a minimum edge distance of 70 mm (2-3/4 inches) and minimum spacing of 117 mm ($4-5 / 8$ inches). Compare table value to the steel value in Table 9. The lesser of the values is to be used for the design.
4 Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength by λ_{a} as follows: For sand-lightweight, $\lambda_{a}=0.68$. For all-lightweight, $\lambda_{a}=0.60$.
5 Tabular values are for static loads only. For seismic tension loads, multiply cracked concrete tabular values by $\alpha_{N, \text { seis }}=0.75$:
No reduction needed for seismic shear. See Section 3.1.8.7 of Hilti Product Technical Guide Ed 17 for additional information on seismic applications.

Table 9 - Steel resistance for Hilti KWIK HUS-EZ I carbon steel screw anchor $1,2,6$

Nominal anchor diameter in.	Internal thread diameter (UNC)	$\begin{gathered} \text { Tensile }^{3} \\ \mathbf{N}_{\text {sar }} \\ \text { lb (kN) } \end{gathered}$	Shear ${ }^{4}$ $V_{\text {sar }}$ lb (kN)	Seismic Shear ${ }^{5}$ $V_{\text {sar,eq }}$ lb (kN)
3/8	$\begin{aligned} & 1 / 2-13 \\ & \text { UNC } \end{aligned}$	5,515	1,040	1,040
		(24.5)	(4.6)	(4.6)

1 See Section 3.1.8.6 of Hilti Product Technical Guide Ed 17 to convert factored resistance value to ASD value.
2 Hilti KWIK HUS-EZ I carbon steel screw anchors are to be considered brittle steel elements.
3 Tensile $N_{\text {sar }}=A_{\text {se, } \mathrm{N}} \phi_{\mathrm{s}} f_{\text {uta }} R$ as noted in CSA A23.3-14 Annex D.
4 Shear determined by static shear tests with $V_{s a r}<0.6 A_{s e, v} \phi_{s} f_{u t a} R$ as noted in CSA A23.3-14 Annex D.
5 Seismic shear values determined by seismic shear tests with $V_{\text {sar,eq }} \leq 0.60 A_{s e, v} \phi_{s} f_{u t a} R$ as noted in CSA A23.3-14 Annex D.
See Section 3.1.8.7 of Hilti Product Technical Guide Ed17 for additional information on seismic applications.
6 Values are for threaded rod or insert with $\mathrm{F}_{\mathrm{u}} \geq 125 \mathrm{ksi}$. For use with inserts with Fu less than 125 ksi multiply the shear values by the ratio of Fu of insert and 125 ksi .

Table 10 - Hilti KWIK HUS-EZ I in the soffit of uncracked lightweight concrete over metal deck 1,2,3,4,5,6

Nominal anchor diameter in.	Nominal internal thread diameter in.	Nominal embed. depth in. (mm)	Installation in lower flute				Installation in upper flute			
			Tension - N_{r}		Shear - V_{r}		Tension- N_{r}		Shear - V_{r}	
			$\begin{gathered} \mathbf{f}_{\mathrm{c}}=20 \\ \mathrm{MPa} \\ (2,900 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=30 \\ \mathrm{MPa} \\ (4,350 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=20 \\ \mathrm{MPa} \\ (2,900 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}}=30 \\ \mathrm{MPa} \\ (4,350 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=20 \\ \mathrm{MPa} \\ (2,900 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}}=30 \\ \mathrm{MPa} \\ (4,350 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=20 \\ \mathrm{MPa} \\ (2,900 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=30 \\ \mathrm{MPa} \\ (4,350 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$
	1/2-13	2-1/8	1,205	1,475	1,440	1,440	1,865	2,280	2,210	2,210
	UNC	(54)	(5.4)	(6.6)	(6.4)	(6.4)	(8.3)	(10.1)	(9.8)	(9.8)

Table 11 - Hilti KWIK HUS-EZ I in the soffit of cracked lightweight concrete over metal deck 1,2,3,4,5,6

Nominal anchor diameter in.	Nominal internal thread diameter in.	Nominal embed. depth in. (mm)	Installation in lower flute				Installation in upper flute			
			Tension - N_{r}		Shear - V_{r}		Tension - N_{r}		Shear - V_{r}	
			$\begin{gathered} \mathrm{f}_{\mathrm{c}}=20 \\ \mathrm{MPa} \\ (2,900 \\ \mathrm{psi}) \\ \mathrm{lb} \text { (kN) } \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}}=30 \\ \text { MPa } \\ (4,350 \\ \mathrm{psi}) \\ \mathrm{lb} \text { (kN) } \end{gathered}$	$\begin{gathered} \mathbf{f}^{\prime}=20 \\ \mathrm{MPa} \\ (2,900 \\ \mathrm{psi}) \\ \mathrm{lb}^{2}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}=}=30 \\ \text { MPa } \\ (4,350 \\ \mathrm{psi}) \\ \mathrm{lb}^{2}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}}=20 \\ \mathrm{MPa} \\ (2,900 \\ \mathrm{psi}) \\ \mathrm{lb} \text { (kN) } \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}}=30 \\ \mathrm{MPa} \\ (4,350 \\ \mathrm{psi}) \\ \mathrm{lb}^{2}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{c}}=20 \\ \mathrm{MPa} \\ (2,900 \\ \mathrm{psi}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{c}=30} \mathbf{~ M P a} \\ \mathrm{MPa} \\ (4,350 \\ \mathrm{psi}) \\ \mathrm{lb} \quad(\mathrm{kN}) \end{gathered}$
	1/2-13	2-1/8	845	1,030	1,440	1,440	1,305	1,595	2,210	2,210
	UNC	(54)	(3.8)	(4.6)	(6.4)	(6.4)	(5.8)	(7.1)	(9.8)	(9.8)

1 See Section 3.1.9.4 of Hilti Product Technical Guide Ed 17 to convert design strength value to ASD value.
2 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
3 Tabular value is for one anchor per flute across the flute. Minimum spacing along the length of the flute is the greater of $1.5 \times$ flute width or $45 / 8$ inches.
4 Tabular value is for lightweight concrete and no additional reduction factor is needed.
5 No additional reduction factors for spacing or edge distance need to be applied.
6 Comparison of the tabular values to the steel strength is not necessary. Tabular values control.
7 Tabular values are for static loads only. For seismic conditions $\alpha_{N, \text { seis }}=0.75$
8 For seismic shear, an additional factor must be applied to the cracked concrete tabular values for seismic conditions: $\alpha_{v, s e i s},=0.85$
See Section 3.1.8.6 of Hilti Product Technical Guide Ed. 17 for additional information on seismic applications.

Table 12 - Hilti KWIK HUS-EZ I allowable stress tension design values for installation into hollow core concrete panels ${ }^{1,2}$

Hanger rod size	Minimum effective embedment $h_{\text {ef }}$ in.	Allowable Tension Load ${ }^{3}$ lb.	Ultimate Tension Load lb.
1/2-13 UNC	1-1/8	435	1750

Figure 4 - Installation of KWIK HUS-EZ I (KH-EZ I) in hollow core concrete panels

1 The admissible anchor location must be established to prevent damage to the prestressed cable during the drilling process. Verify the location and height of the cable with the hollow core plank supplier to confirm admissible anchor location.
2 Minimum compressive strength of prestressed concrete is 7,000 psi. Published ultimate loads represent the average results conducted in local base materials. Due to variations in materials and dimensional configurations, on-site testing is required to determine the actual performance.
3 Allowable loads calculated with a factor of safety of 4

Please feel free to contact our Engineering Technical Services department for more information or any questions.

Hilti Engineering Technical Services - United States (877) 749-6337 toll free hnatechnicalservices@hilti.com

Hilti Engineering Technical Services - Canada (800) 363-4458 toll free

CATechnicalServices@hilti.com

Fig. 25 - Surge Restrainer
Size Range - One size fits $3 / 4^{\prime \prime}$ thru 2" pipe.
Material - Pre-Galvanized Steel
Function - Designed to be used in conjunction with TOLCO® Band Hangers to restrict the upward movement of piping as it occurs during sprinkler head activation or earthquake type activity. The surge restrainer is easily and efficiently installed by snapping into a locking position on the band hanger. This product is intended to satisfy the requirements as indicated in the National Fire Protection Association NFPA 13, 2010 edition, 9.2.3.4.4.1 and 9.2.3.4.4.4 Can be used to restrain either steel pipe or CPVC plastic Pipe.
Approvals - Underwriters' Laboratories Listed only when used with TOLCO band hangers Fig. 2, 2NFPA and 200, in the USA (UL) and Canada (cUL).
Finish - Pre-Galvanized
Order By - Figure number and TOLCO band hanger, size from 3/4" thru 2".
Patent \#5,344,108

SECTION 5
 FIRE SPRINKLERS

Series TY-B - 2.8, 5.6, and 8.0 K-factor Upright, Pendent, and Recessed Pendent Sprinklers Standard Response, Standard Coverage

General Description

The TYCO Series TY-B 2.8, 5.6, and 8.0 K-factor, Upright, Pendent, and Recessed Pendent Sprinklers described in herein are standard response, standard coverage, decorative 5 mm glass bulb-type spray sprinklers. They are designed for use in light, ordinary, or extra-hazard commercial occupancies such as banks, hotels, shopping malls, factories, refineries, and chemical plants.
The TY-B Recessed Pendent Sprinkler, where applicable, is intended for use in areas with a finished ceiling. It uses a two-piece Style 10 ($1 / 2 \mathrm{in}$. NPT) or Style 40 (3/4 in. NPT) Recessed Escutcheon. The Recessed Escutcheon provides $1 / 2 \mathrm{in} .(12,7 \mathrm{~mm})$ of recessed adjustment or up to $3 / 4 \mathrm{in}$. $(19,1 \mathrm{~mm})$ of total adjustment from the flush pendent position. The adjustment provided by the Recessed Escutcheon reduces the accuracy to which the fixed pipe drops to the sprinklers must be cut.
Corrosion-resistant coatings, where applicable, are utilized to extend the life of copper alloy sprinklers beyond what would be obtained when exposed to corrosive atmospheres. Although corrosion-resistant coated sprinklers have passed the standard corrosion tests of the applicable approval agencies, the testing is not representative of all possible corrosive atmospheres. Consequently,

IMPORTANT

Refer to Technical Data Sheet TFP2300 for warnings pertaining to regulatory and health information.
Always refer to Technical Data Sheet TFP700 for the "INSTALLER WARNING" that provides cautions with respect to handling and installation of sprinkler systems and components. Improper handling and installation can permanently damage a sprinkler system or its components and cause the sprinkler to fail to operate in a fire situation or cause it to operate prematurely.
it is recommended that the end-user be consulted about the suitability of these coatings for any given corrosive environment. The effects of ambient temperature, concentration of chemicals, and gas/chemical velocity, should be considered as a minimum, along with the corrosive nature of the chemical to which the sprinklers will be exposed.
An intermediate level version of the Series TY-B Pendent Sprinkler can be obtained by utilizing the Series TY-B Pendent Sprinkler in combination with the Model S2 Shield.

NOTICE

The Series TY-B 2.8, 5.6, and 8.0 K-factor, Upright, Pendent, and Recessed Pendent Sprinklers described herein must be installed and maintained in compliance with this document, as well as with the applicable standards of the National Fire Protection Association (NFPA), in addition to the standards of any other authorities having jurisdiction. Failure to do so may impair the performance of these devices.
The owner is responsible for maintaining their fire protection system and devices in proper operating condition. Contract the installing contractor or product manufacturer with any questions.
NFPA 13 prohibits installation of $1 / 2$ in. NPT sprinklers with K-factors greater than 5.6 in new construction. They are intended for retrofit in existing sprinkler systems only.

Sprinkler Identification Numbers (SIN)

TY1151 . . . Upright 2.8K, 1/2 in. NPT TY1251 . . .Pendent 2.8K, 1/2 in. NPT TY3151 . . . Upright 5.6K, 1/2 in. NPT TY3251 . . .Pendent 5.6K, 1/2 in. NPT TY4151 . . . Upright 8.0K, 3/4 in. NPT TY4251 . . .Pendent 8.0K, 3/4 in. NPT TY4851 . . . Upright 8.0K, 1/2 in. NPT TY4951 . . .Pendent 8.0K, 1/2 in. NPT

Technical Data

Approvals

UL and C-UL Listed
FM, LPCB, VdS, and NYC Approved
Refer to Table A for complete approval information, including corrosion-resistant status.

Maximum Working Pressure

Refer to Table B
Discharge Coefficient
$\mathrm{K}=2.8 \mathrm{GPM} / \mathrm{psi}^{1 / 2}\left(40,3 \mathrm{LPM} / \mathrm{bar}^{1 / 2}\right)$
$\mathrm{K}=5.6 \mathrm{GPM} / \mathrm{psi}^{1 / 2}\left(80,6 \mathrm{LPM} / \mathrm{bar}^{1 / 2}\right)$
$\mathrm{K}=8.0 \mathrm{GPM} / \mathrm{psi}^{1 / 2}\left(115,2 \mathrm{LPM} / \mathrm{bar}^{1 / 2}\right)$

Temperature Ratings

Refer to Table A

Finishes

Sprinkler: Refer to Table C
Recessed Escutcheon: Signal or Pure White, Grey Aluminum, Jet Black, Chrome Plated, or Natural Brass

Physical Characteristics

Frame
Bronze
Button . Brass/Copper
Sealing Assembly . .Beryllium Nickel w/TEFLON
Bulb
Glass
Compression Screw Bronze
Deflector . Copper
Bushing ($\mathrm{K}=2.8$) Bronze
CEILING PLATE

FIGURE 6
SERIES TY-B RECESSED PENDENT SPRINKLER ASSEMBLY WITH TWO-PIECE 3/4 INCH TOTAL ADJUSTMENT STYLE 40 RECESSED ESCUTCHEON 8.0 K-FACTOR, 3/4 IN. NPT

FIGURE 7 W-TYPE 6 SPRINKLER WRENCH

Design Criteria

The TYCO Series TY-B 2.8, 5.6, and 8.0 K-factor, Upright, Pendent, and Recessed Pendent Sprinklers are intended for fire protection systems designed in accordance with the standard installation rules recognized by the applicable Listing or Approval agency, such as UL Listing based on the requirements of NFPA 13 and FM Approval based on the requirements of the FM Global Loss Prevention Data Sheets. Use only the Style 10 or 40 Recessed Escutcheon, as applicable, for recessed pendent installations.

Installation

The TYCO Series TY-B 2.8, 5.6, and 8.0 K-factor, Upright, Pendent, and Recessed Pendent Sprinklers must be installed in accordance with this section.

General Instructions

Do not install any bulb type sprinkler if the bulb is cracked or there is a loss of liquid from the bulb. With the sprinkler held horizontally, a small air bubble should be present. The diameter of the air bubble is approximately $1 / 16 \mathrm{in}$. $(1,6 \mathrm{~mm})$ for the $135^{\circ} \mathrm{F}\left(57^{\circ} \mathrm{C}\right)$ to $3 / 32 \mathrm{in}$. $(2,4 \mathrm{~mm})$ for the $360^{\circ} \mathrm{F}\left(182^{\circ} \mathrm{C}\right)$ temperature ratings.
A leak-tight $1 / 2$ in. NPT sprinkler joint should be obtained by applying a minimum-to-maximum torque of 7 to $14 \mathrm{lb}-\mathrm{ft}(9,5$ to $19,0 \mathrm{~N} \cdot \mathrm{~m}$). Obtain a leak-tight $3 / 4 \mathrm{in}$. NPT sprinkler joint by applying a minimum to maximum

K	Sprinkler Type	Temperature Rating	Bulb Liquid Color	Sprinkler Finish ${ }^{8}$								
				Natural Brass	Chrome Plated	Polyester ${ }^{\text {c }}$	Poly-Stainless ${ }^{\text {c }}$	Lead Coated	Wax Coated	$\begin{gathered} \text { Wax-Over- } \\ \text { Lead } \\ \text { Coated } \end{gathered}$		
$\begin{gathered} 2.8 \\ 1 / 2 \mathrm{in} . \\ \text { NPT } \end{gathered}$	Upright (TY1151) and Pendent (TY1251) Figure 1	$135^{\circ} \mathrm{F}\left(57^{\circ} \mathrm{C}\right)$	Orange	1, 2, 3			N/A	$N / A^{\text {d }}$				
		$155^{\circ} \mathrm{F}\left(68^{\circ} \mathrm{C}\right)$	Red									
		$175^{\circ} \mathrm{F}\left(79^{\circ} \mathrm{C}\right)$	Yellow									
		$200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$	Green									
		$286^{\circ} \mathrm{F}\left(141^{\circ} \mathrm{C}\right)$	Blue									
		$360^{\circ} \mathrm{F}\left(182^{\circ} \mathrm{C}\right)$	Mauve	1, 2								
$\begin{gathered} 5.6 \\ 1 / 2 \mathrm{in} . \\ \text { NPT } \end{gathered}$	Upright (TY3151) and Pendent (TY3251) Figure 2	$135^{\circ} \mathrm{F}\left(57^{\circ} \mathrm{C}\right)$	Orange	1, 2, 3, 4, 5, 6, 7			1, 2	1, 2, 3, 5	1, 2, 3, 5	1, 2, 3, 5		
		$155^{\circ} \mathrm{F}\left(68^{\circ} \mathrm{C}\right)$	Red									
		$175^{\circ} \mathrm{F}\left(79^{\circ} \mathrm{C}\right)$	Yellow									
		$200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$	Green									
		$286^{\circ} \mathrm{F}\left(141^{\circ} \mathrm{C}\right)$	Blue				$1^{\text {b }}, 2^{\text {b }}, 3^{\text {b }}, 5^{\text {b }}$		$1^{\text {b }}, 2^{\text {b }}, 3^{\text {b }}, 5^{\text {b }}$			
		$360^{\circ} \mathrm{F}\left(182^{\circ} \mathrm{C}\right)$	Mauve				N/A					
	Recessed Pendent (TY3251) ${ }^{\text {a }}$ Figure 5	$135^{\circ} \mathrm{F}\left(57^{\circ} \mathrm{C}\right)$	Orange	1, 2, 3, 4, 5				1, 2	N/A			
		$155^{\circ} \mathrm{F}\left(68^{\circ} \mathrm{C}\right)$	Red									
		$175^{\circ} \mathrm{F}\left(79^{\circ} \mathrm{C}\right)$	Yellow									
		$200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$	Green									
		$286^{\circ} \mathrm{F}\left(141^{\circ} \mathrm{C}\right)$	Blue		1, 2							
$\begin{gathered} 8.0 \\ 3 / 4 \mathrm{in.} . \\ \text { NPT } \end{gathered}$	Upright (TY4151) and Pendent (TY4251) Figure 3	$135^{\circ} \mathrm{F}\left(57^{\circ} \mathrm{C}\right)$	Orange	1, 2, 3, 4, 5, 6, 7			1, 2	1, 2, 5		1, 2, 5		
		$155^{\circ} \mathrm{F}\left(68^{\circ} \mathrm{C}\right)$	Red				1,2,35					
		$175^{\circ} \mathrm{F}\left(79^{\circ} \mathrm{C}\right)$	Yellow									
		$200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$	Green									
		$286^{\circ} \mathrm{F}\left(141^{\circ} \mathrm{C}\right)$	Blue				$1^{\text {b }}, 2^{\text {b }}, 3^{\text {b }}, 5^{\text {b }}$		$1^{\text {b }}, 2^{\text {b }}$, $5^{\text {b }}$			
		$360^{\circ} \mathrm{F}\left(182^{\circ} \mathrm{C}\right)$	Mauve						/A			
		$135^{\circ} \mathrm{F}\left(57^{\circ} \mathrm{C}\right)$	Orange									
	Recessed	$155^{\circ} \mathrm{F}\left(68^{\circ} \mathrm{C}\right)$	Red		2, 3,4							
	Pendent (TY4251) ${ }^{\text {a }}$	$175^{\circ} \mathrm{F}\left(79^{\circ} \mathrm{C}\right)$	Yellow		, $3,4,5$			1, 2		N/A		
	Figure 6	$200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$	Green									
		$286^{\circ} \mathrm{F}\left(141^{\circ} \mathrm{C}\right)$	Blue		1, 2							
		$135^{\circ} \mathrm{F}\left(57^{\circ} \mathrm{C}\right)$	Orange									
	Upright	$155^{\circ} \mathrm{F}\left(68^{\circ} \mathrm{C}\right)$	Red									
	and	$175^{\circ} \mathrm{F}\left(79^{\circ} \mathrm{C}\right)$	Yellow									
${ }^{1 / 2 \mathrm{in}} \mathrm{NPT}$	Pendent	$200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$	Green		, $, 3,4,5$,		N/A		N/A			
	Figure 4	$286{ }^{\circ} \mathrm{F}\left(141^{\circ} \mathrm{C}\right)$	Blue									
		$360^{\circ} \mathrm{F}\left(182^{\circ} \mathrm{C}\right)$	Mauve									
NOTES												
1. Listed	by Underwrite	Laboratories, Inc.										
2. Listed	by Underwrite	Laboratories, Inc. fo	ruse in Ca	ada (C-UL).								
3. Appro	oved by FM Glo	al (FM Approvals).	俍	(cul).								
4. Appro	oved by the Los	Prevention Certitica	ion Board (L	PCB Ref. No.	07k/03).							
5. Appro	oved by the City	of New York under M	A 354-01-E	,	,							
6. VdS A	Approved. (For	etails, contact Johns	Controls,	Enschede, N	herlands, Tel.	31-53-428-4444	/ Fax 31-53-428-3377)					
7. Appro	oved by the Los	Prevention Certifica	ion Board (L	PCB Ref. No.	94a/05)							
8. Wher	e Polyester Coa	ed, Lead Coated, Wa	d Coated, a	d Wax-over-L	d Wax-over-Le	rinklers are note	to be UL and C-UL Lis klers are noted to be FM	sted, the sprin	lers are UL and C	UL Listed as		
Corro	sion-Resistant sion-Resistant	Sprinklers. Where Le prinklers.	Coated,	ax Coated, a	Wax-over-Le	ad Coated Sprin	klers are noted to be FM	Approved, the	sprinklers are F	Approved as		
a. Instal	led with Style 1	(1/2 in. NPT) or Style	40 (3/4 in.	PT) $3 / 4 \mathrm{in}$. To	adjustment	Recessed Escut	heon, as applicable					
b. $150^{\circ} \mathrm{F}$	($66^{\circ} \mathrm{C}$) maximu	m ceiling temperatur										
c. Frame	e and deflector	nly										
d. $\operatorname{Not} A$	Applicable (N/A)											

TABLE A

K	Type	Sprinkler Finish					
		Natural Brass	Chrome Plated	Polyester ${ }^{1}$	Lead Coated	Wax Coated	Wax-Over-Lead Coated
$\begin{gathered} 2.8 \\ 1 / 2 \mathrm{in} . \\ \text { NPT. } \end{gathered}$	$\begin{aligned} & \text { Upright (TY1151) } \\ & \text { and } \\ & \text { Pendent (TY1251) } \end{aligned}$	175 psi (12,1 bar)			N/A ${ }^{3}$		
$\begin{gathered} 5.6 \\ 1 / 2 \mathrm{in} . \\ \text { NPT } \end{gathered}$	\qquad Upright (TY3151) and Pendent (TY3251) Recessed Pendent (TY3251)	$\begin{gathered} 250 \mathrm{psi}(17,2 \mathrm{bar})^{2} \\ \text { or } \\ 175 \mathrm{psi}(12,1 \mathrm{bar}) \end{gathered}$					
8.0	$\begin{aligned} & \text { Upright (TY4151) } \\ & \text { and } \\ & \text { Pendent (TY4251) } \end{aligned}$	175 psi (12,1 bar)					
	Recessed Pendent (TY4251)	175 psi (12,1 bar)			N/A		
$\begin{aligned} & 8.0 \\ & 1 / 2 \mathrm{in} . \\ & \text { NPT. } \end{aligned}$	$\begin{aligned} & \text { Upright (TY4851) } \\ & \text { and } \\ & \text { Pendent (TY4951) } \end{aligned}$	175 psi (12,1 bar)					

NOTES

1. Frame and deflector only
2. The maximum working pressure of 250 psi (17,2 bar) only applies to the Listing by Underwriters Laboratories, Inc. (UL), the Listing by Underwriters Laboratories, Inc. for use in Canada (C-UL), and the Approval by the City of New York.
3. Not Applicable (N/A)

TABLE B
SERIES TY-B UPRIGHT AND PENDENT SPRINKLERS MAXIMUM WORKING PRESSURE
torque of 10 to $20 \mathrm{lb}-\mathrm{ft}$ (13,4 to $26,8 \mathrm{~N} \cdot \mathrm{~m}$). Higher levels of torque may distort the sprinkler inlet and cause leakage or impairment of the sprinkler.
Do not attempt to compensate for insufficient adjustment in the escutcheon plate by under- or over-tightening the sprinkler. Re-adjust the position of the sprinkler fitting to suit.

Series TY-B Upright and Pendent Sprinklers Installation

The Series TY-B Upright and Pendent Sprinklers must be installed in accordance with the following instructions:
Step 1. Install pendent sprinklers in the pendent position. Install upright sprinklers in the upright position.

Step 2. With pipe thread sealant applied to the pipe threads, handtighten the sprinkler into the sprinkler fitting.

Step 3. Tighten the sprinkler into the sprinkler fitting using only the W-Type 6 Sprinkler Wrench (Ref. Figure 7). For wax-coated sprinklers, use an 8 or 10 in . adjustable wrench. With reference to Figure 1 to 4 , apply the W-Type 6 Recessed Sprinkler Wrench or an adjustable wrench, as applicable, to the sprinkler wrench flats.

Wax Coated Sprinklers

When installing wax-coated sprinklers with an adjustable wrench, take care to prevent damage to the wax coating on the sprinkler wrench flats or frame arms and, consequently, exposure of bare metal to the corrosive environment:

- Open the jaws of the wrench sufficiently wide to pass over the wrench flats without damaging the wax coating.
- Before wrench tightening the sprinkler, adjust the jaws of the wrench to contact only the sprinkler wrench flats.
- After wrench tightening the sprinkler, loosen the wrench jaws before removing the wrench.

After Installation

After installation, complete the following:

- Inspect the sprinkler wrench flats and frame arms and retouch (repair) the wax coating whenever the coating has been damaged and bare metal is exposed.
- Retouch the wax coating on the wrench flats by gently applying a heated $1 / 8$ inch diameter steel rod to the damaged areas of wax, to smooth it back over areas where bare metal is exposed.

NOTICE

Only retouching of the wax coating applied to the wrench flats and frame arms is permitted, and the retouching is to be performed only at the time of the initial sprinkler installation.
The steel rod should be heated only to the point it can begin to melt the wax, and appropriate precautions need to be taken when handling the heated rod in order to prevent the installer from being burned.

Series TY-B Recessed Pendent
 Sprinklers

The Series TY-B Recessed Pendent Sprinklers must be installed in accordance with the following instructions:

Step 1. After installing the Style 10 or 40 Mounting Plate, as applicable, over the sprinkler threads and with pipe thread sealant applied to the pipe threads, hand-tighten the sprinkler into the sprinkler fitting.

Step 2. Tighten the sprinkler into the sprinkler fitting using only the W-Type 7 Recessed Sprinkler Wrench (Ref. Figure 8). With reference to Figure 3 or 4, apply the W-Type 7 Recessed Sprinkler wrench to the sprinkler wrench flats.
Step 3. After the ceiling is installed or the finish coat is applied, slide on the Style 10 or 40 Closure over the Series TY-B Recessed Pendent Sprinkler and push the Closure over the Mounting Plate until its flange contacts the ceiling.

Care and Maintenance

The TYCO Series TY-B 2.8, 5.6, and 8.0 K-factor, Upright, Pendent, and Recessed Pendent Sprinklers must be maintained and serviced in accordance with this section.
Before closing a fire protection system main control valve for maintenance work on the fire protection system that it controls, obtain permission to shut down the affected fire protection system from the proper authorities and notify all personnel who may be affected by this action.
The owner must assure that the sprinklers are not used for hanging any objects and that the sprinklers are only cleaned by means of gently dusting with a feather duster; otherwise, nonoperation in the event of a fire or inadvertent operation may result.
Absence of an escutcheon, which is used to cover a clearance, may delay the time to sprinkler operation in a fire situation.
Sprinklers which are found to be leaking or exhibiting visible signs of corrosion must be replaced.

Automatic sprinklers must never be painted, plated, coated, or otherwise altered after leaving the factory. Modified sprinklers must be replaced. Sprinklers that have been exposed to corrosive products of combustion, but have not operated, should be replaced if they cannot be completely cleaned by wiping the sprinkler with a cloth or by brushing it with a soft bristle brush.
Care must be exercised to avoid damage to the sprinklers before, during, and after installation. Sprinklers damaged by dropping, striking, wrench twist/slippage, or the like, must be replaced. Also, replace any sprinkler that has a cracked bulb or that has lost liquid from its bulb. Refer to the Installation Section.

The owner is responsible for the inspection, testing, and maintenance of their fire protection system and devices in compliance with this document, as well as with the applicable standards of the National Fire Protection Association,(e.g., NFPA 25), in addition to the standards of any other authorities having jurisdiction. Contact the installing contractor or product manufacturer with any questions.
Automatic sprinkler are recommended to be inspected, tested, and maintained by a qualified Inspection Service in accordance with local requirements and/or national codes.

NOTES

. Only available on TY3151, TY3251, TY4151, and TY4251.
2. Eastern Hemisphere sales only
3. Available in only $8.0 \mathrm{~K}, 155^{\circ} \mathrm{F}\left(68^{\circ} \mathrm{C}\right)$ or $200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$; requires lead time to manufacture.
4. Available only for 8.0 K-factor TY4151 and TY4251 for use in deluge systems ("OPEN" indicates sprinkler assembly without glass bulb, button, and sealing assembly).

TABLE C

SERIES TY-B UPRIGHT AND PENDENT SPRINKLERS
 PART NUMBER SELECTION

Limited Warranty

For warranty terms and conditions, visit www.tyco-fire.com.

Ordering Procedure

Contact your local distributor for availability. When placing an order, indicate the full product name and Part Number (P / N).

Sprinkler Assemblies with
 NPT Thread Connections

Specify: Series TY-B (specify SIN), (specify K-factor), (specify Upright or Pendent) Sprinkler with (specify) temperature rating, (specify) finish or coating, P/N (Refer to Table C)

Recessed Escutcheon

Specify: Style (10 or 40) Recessed Escutcheon with (specify*) finish, P/N (specify*)

* Refer to Technical Data Sheet TFP770

Sprinkler Wrenches

Specify: W-Type 6 Sprinkler Wrench, P/N 56-000-6-387
Specify: W-Type 7 Sprinkler Wrench, P/N 56-850-4-001

Wax Sticks (for retouching wrench-

 damaged wax coating)Specify: (specify color, below) Colorcoded Wax Sticks for retouching (specify temperature rating) tempera-ture-rated Series TY-B Sprinklers, P/N (specify)
Black for $135^{\circ} \mathrm{F}\left(57^{\circ} \mathrm{C}\right)$. P/N 56-065-1-135
Red for $155^{\circ} \mathrm{F}\left(68^{\circ} \mathrm{C}\right)$. P/N 56-065-1-155
Yellow for $175^{\circ} \mathrm{F}\left(79^{\circ} \mathrm{C}\right)$. P/N 56-065-1-175
Blue for $200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$
and $286^{\circ} \mathrm{F}\left(141^{\circ} \mathrm{C}\right) \ldots$. P/N 56-065-1-
286
Note: Each wax stick is suitable for retouching up to 25 sprinklers.
The wax used for $286^{\circ} \mathrm{F}\left(141^{\circ} \mathrm{C}\right)$ sprinklers is the same as for $200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$ sprinklers. Therefore, the $286^{\circ} \mathrm{F}\left(141^{\circ} \mathrm{C}\right.$) sprinkler is limited to the same maximum ceiling temperature as the $200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$ sprinkler which is $150^{\circ} \mathrm{F}\left(66^{\circ} \mathrm{C}\right)$.

Product Description

The Reliable Model G Automatic Sprinkler utilizes the center strut solder in compression principle of construction. The fusible alloy is captured in the cylinder of the solder capsule by a stainless steel ball. When the fusible alloy melts, the ball moves into the cylinder allowing the cylinder to fall away from the sprinkler. When this happens, the lever is released to spring free from the sprinkler so that all of the operating parts clear from the waterway allowing the deflector to distribute the discharging water.
Except for the parts in the cylinder as mentioned above, the sprinkler components are made from copper based alloys for maximum corrosion protection. Lead plated, wax coated or wax over lead plated sprinklers are available for specially severe environments. Chrome plated sprinklers are available for decorative purposes.
All sprinklers are individually hydrostatically tested.
All sprinklers are identified as to their fusing point by markings that appear on several of the operating parts and by an identifying color that appears on the frame.

Sprinkler Types

Standard Upright - This deflector configuration is normally used with exposed piping installations. Water is distributed laterally and downward in a wide pattern approximating a hemisphere which is completely and uniformly filled with water in the form of small drops or spray. At a sprinkler height of 10 feet (3 m), a circular area of approximately 20 feet (6.1 m) in diameter is covered by the water discharged at the minimum pressure.
Standard Pendent - This deflector configuration is normally used where the space above the piping is not adequate or where a concealed piping installation is employed. The discharge characteristics of the standard pendent are virtually identical to the standard upright as described above.
Large and Small Orifice-By varying the orifice size, a large or small orifice sprinkler is created that will distribute as much as 40% more water or 65% less water than the normal $1 / 2^{\prime \prime}$ (15 mm) orifice sprinkler. These sprinklers are identified by the orifice size that is stamped in the base of the sprinkler and by the pintle that extends from the deflector-the exception is the large orifice sprinkler with the $3 / 4$ " NPT ($\mathrm{R}^{3} / 4$) inlet thread where the size of the inlet is sufficient to classify this sprinkler as one having a larger than standard orifice.

Conventional-This deflector configuration is used primarily in those countries where the LPC installation rules have precedence. The sprinkler is designed to distribute a portion of its water discharge upward against the ceiling with the balance downward. It may be installed in either the upright or the pendent position. Sprinklers with conventional deflectors are available with orifice sizes corresponding to light, ordinary and extra-high hazard installations.

Application and Installation

Standard sprinklers are used in fixed fire protection systems: Wet, Dry, Deluge or Preaction. Care must be exercised that the orifice sizes, temperature ratings, deflector styles and sprinkler spacings are in accordance with the latest published standards of the National Fire Protection Association or the approving authority having jurisdiction.
The sprinklers must be installed with the Reliable Model D Sprinkler Wrench. Any other type of wrench may damage the sprinkler.
The approvals or listings of Reliable Automatic Sprinklers by major approving organizations are shown in the tabulated list provided on the back of this bulletin.
*Patent No. 4,440,234

Technical Data

Sprinkler Type	"K" Factor		Sprinkler Height	Approvals	Sprinkler Identification Number (SIN)	
	US	Metric				
					SSU	SSP
Standard-Upright (SSU) and Pendent (SSP) Deflectors Marked to Indicate Position	5.62	81.0	$27 / 8^{\prime \prime}(73 \mathrm{~mm})$	1, 2, 3, 4, 5, 6, 7	R1025	R1015
1/2" (15 mm) Standard Orifice with $1 / 2{ }^{\prime \prime}$ NPT (R1/2) Thread						
7/17' ${ }^{\prime \prime}$ (11 mm) Small Orifice with $1 / 2^{\prime \prime}$ NPT (R1/2) Thread	4.24	61.0	$27 / 8^{\prime \prime}(73 \mathrm{~mm})$	1, 3, 7	R1023	R1013
$3 / 8(10 \mathrm{~mm})$ Small Orifice with $1 / 2^{\prime \prime}$ NPT (R1/2) Thread	2.82	40.6	$27 / 8^{\prime \prime}(73 \mathrm{~mm})$	1,2,3,7	R1021	R1011
$5 / 16^{\prime \prime}(8 \mathrm{~mm})$ Small Orifice with $1 / 2^{\prime \prime}$ NPT (R1/2) Thread	1.98	28.5	$27 / 8^{\prime \prime}(73 \mathrm{~mm})$	1, 3, 7	R1022	R1012
17/32' $\left(20 \mathrm{~mm}\right.$) Large Orifice with $1 / 2^{\prime \prime}$ NPT (R1/2) Thread	7.96	114.7	$27 / 8^{\prime \prime}(73 \mathrm{~mm})$	1, 2, 3, 7	R1026	R1016
$17 / 32^{\prime \prime}(20 \mathrm{~mm})$ Large Orifice with $3 / 4{ }^{\prime \prime}$ NPT ($\mathrm{R}^{3} / 4$) Thread	8.20	118.2	215/16" $(75 \mathrm{~mm})$	1, 2, 3, 7	R1027	R1017
20 mm XHH with 20 mm Thread	8.20	$\begin{gathered} 118.2 \\ 59.1 \end{gathered}$	75.4 mm	4,5,6	R1027	R1017
10 mm XLH with 10 mm Thread	4.10		73 mm	4, 5, 6	R1024	R1014
Conventional-Installed in Upright or Pendent Position	4.10	59.1				
10 mm XLH with 10mm Thread			73 mm	5		
15 mm Standard Orifice with (R1⁄2) Thread	5.62	81.0	73 mm	4, 5, 6	R1075	
$20 \mathrm{~mm} \mathrm{XHH} \mathrm{with} \mathrm{(R3/4)} \mathrm{Thread}$	8.20	118.2	75.4 mm	4,5		

Temperature Ratings

Classification	Sprinkler Rating		Maximum Ambient Temperature		$\begin{aligned} & \text { Frame }{ }^{(1)} \text { Color } \end{aligned}$
	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	
Ordinary	135	57	100	38	Black
Ordinary	165	74	100	38	Uncolored
Intermediate	212	100	150	66	White
High	286	141	225	107	Blue

(1) Frame color does not apply to painted or plated sprinklers-Use sprinkler rating as identified on operating parts.

Maintenance

Model G Sprinklers should be inspected quarterly and the sprinkler system maintained in accordance with NFPA 25. Do not clean sprinklers with soap and water, ammonia or any other cleaning fluids. Remove any sprinkler that has been painted (other than factory applied) or damaged in any way. A stock of spare sprinklers should be maintained to allow quick replacement of damaged or operated sprinklers. Prior to installation, sprinklers should be maintained in the original cartons and packaging until used to minimize the potential for damage to sprinklers that would cause improper operation or non-operation. Use only the Model D Sprinkler Wrench for sprinkler removal and installation. Any other type of wrench may damage the sprinkler.

(1) Other colors and finishes are available. Consult factory for details.
(2) UL listed and NYC MEA Approved only.
(3) $212^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right)$ brown wax may be used on $286^{\circ} \mathrm{F}\left(141^{\circ} \mathrm{C}\right)$ sprinklers when maximum ambient temperatures do not exceed $150^{\circ} \mathrm{F}$ $\left(66^{\circ} \mathrm{C}\right)$. UL Listed, FM Approved, NYC MEA 258-93-E.

Approval Organizations

1. Underwriters Laboratories, Inc.
2. Factory Mutual Research Corporation
3. Underwriters' Laboratories of Canada
4. Loss Prevention Council
5. Pleniere Assemblee
6. Verband der Schadenversicherer eV
7. N.Y.C. BS\&A No. 587-75-SA
8. N.Y.C. MEA 258-93-E

Ordering Information Specify

1. Model G
2. Deflector

- Upright
- Pendent
- Conventional

3. Nominal Orifice
4. Inlet Thread
5. Temperature Rating

6 . Finish

The equipment presented in this bulletin is to be installed in accordance with the latest pertinent Standards of the National Fire Protection Association, Factory Mutual Research Corporation, or other similar organizations and also with the provisions of governmental codes or ordinances whenever applicable.
Products manufactured and distributed by Reliable have been protecting life and property for over 80 years, and are installed and serviced by the most highly qualified and reputable sprinkler contractors located throughout the United States, Canada and foreign countries.

(800) 431-1588	Sales Offices
(800) 848-6051	Sales Fax
(914) 668-3470	Corporate Offices
www.reliablesprinkler.com	Internet Address

Revision lines indicate updated or new data. EG. Printed in U.S.A. 4/03 P/N 9999970005

SECTION 6

MISCELLANEOUS

Series AH2

Series AH2-CC

1.0 PRODUCT DESCRIPTION

Available Sizes by Component

Series AH2 1"/DN25 ID Braided Hose: 31, 36, 48, 60, 72"/790, 915, 1220, 1525, 1830 mm. Note: length includes adapter nipple and 5.75 "/140 mm straight reducer.
Series AH2-CC 1"/DN25 ID Braided Hose: 31, 36, 48, 60, 72"/790, 915, 1220, 1525, 1830 mm .
Note: length includes captured coupling and 5.75"/140 mm straight reducer.

Connections

- From Branchline
- $3 / 4$ " $/ 20 \mathrm{~mm}$ BSPT female thread (VdS only)
- $11 / 4 " / 32 \mathrm{~mm}$ BSPT female thread (LPCB only)
- $1 " / 25 \mathrm{~mm}$ NPT or BSPT female Thread
- $1 " / 25 \mathrm{~mm}$ Grooved IGS (refer to Submittal 10.54 for additional IGS connections)
- No. 116 CPVC Adapter (1"/25mm Female CPVC Socket x 1"/25mm Grooved IGS)
- No. 142 Welded Outlet
- Style 922 Outlet-T
- Style 920N Mechanical-T Outlet
- No. 65 Grooved End of Run Fitting
- Hose Inlet
- 1 " $/ 25 \mathrm{~mm}$ Grooved IGS
- $1 " / 25 \mathrm{~mm}$ NPT or BSPT male thread
- 3/4"/20mm BSPT male thread (VdS only)
- $1 \frac{1}{4} / 4 / 32 \mathrm{~mm}$ BSPT male thread (LPCB only)

ALWAYS REFER TO ANY NOTIFICATIONS AT THE END OF THIS DOCUMENT REGARDING PRODUCT INSTALLATION, MAINTENANCE OR SUPPORT.

System No.		Location	
Submitted By		Date	

Spec Section		Paragraph	
Approved		Date	

victaulic.com

1.0 PRODUCT DESCRIPTION (CONTINUED)

- Sprinkler Reducer

- Sprinkler Connection: $1 / 2$ " and $3 / 4 " / 15 \mathrm{~mm}$ and 20 mm NPT or BSPT female thread
- Straight Lengths: 5.75 ", 9 ", 13 "/140mm, $230 \mathrm{~mm}, 330 \mathrm{~mm}$
- 90° Elbows
- Standard Short
- Low Profile Short
- Standard Long
- Low Profile Long
(Short elbows typically used with concealed sprinklers. Long elbows typically used with recessed pendent sprinklers)

Brackets

- Style AB2 for suspended and hard-lid ceilings and sidewalls, allows for vertical sprinkler adjustment, and installation before most ceiling tiles in place
- Style AB3 for surface mount applications, wood, metal and block walls, or ceilings
- Style AB4 for hard-lid ceilings with hat furring channel grid systems, allows for vertical sprinkler adjustment
- Style AB5 for hard-lid ceilings and sidewalls, allows for vertical sprinkler adjustment
- Style AB7 for suspended and hard-lid ceilings
- Style AB7 Adjustable for suspended and hard-lid ceilings
- Style AB10 for Armstrong® TechZone ${ }^{\text {TM }}$ ceilings
- Style AB11 for lay-in panel suspended t-grid ceilings or drywall suspended t-grid ceilings, allows for low profile installations (use only with 90° low profile elbows)
- Style AB12 for suspended and hard-lid ceilings, allows for vertical sprinkler adjustment, and allows for low profile installation down to 4"/100mm.
- Style ABBA bracket for suspended, exposed, and hard-lid ceilings
- Style ABMM bracket for surface mount and stand off-mount applications, wood, metal and block walls, or ceilings and hard-lid ceilings
- Strut channel and pipe clamp, not supplied by Victaulic

Maximum Working Temperature

- $225^{\circ} \mathrm{F} / 107^{\circ} \mathrm{C}$
- $150^{\circ} \mathrm{F} / 65^{\circ} \mathrm{C}$ (No. 116 CPVC Adapter)

Maximum Working Pressure

- 200 psi/1375 kPa (FM Approval)
- 175 psi/1206 kPa (cULus Listed)
- 1600 kPa/232 psi (VdS/LPCB Approved)
- 1.4 MPa (CCCf Approved)
- 175 psi/1206 kPa (No. 116 CPVC Adapter)

Minimum Bend Radius

- 7"/178mm (FM/CCCf Approval)
- 2"/51 mm (cULus Listed)
- 3 "/76.2 mm (VdS/LPCB Approved)

1.0 PRODUCT DESCRIPTION (CONTINUED)

Maximum Allowable Sprinkler K-Factors

- FM (1⁄2"/15 mm reducer) K5.6/8,1 (S.I.), (3/4"/20 mm reducer) K14.0/20,2 (S.I.)
- cULus (1⁄2"/15 mm reducer) K8.0/11,5 (S.I.), (3/4"/20 mm reducer) K14.0/20,2 (S.I.)
- VdS/LPCB (1⁄2"/15 mm reducer) K5.6/8,1 (S.I.), ($3 / 4 / 4 / 20 \mathrm{~mm}$ reducer) K8.0/11,5 (S.I.)

2.0 CERTIFICATION/LISTINGS

NOTE

- The VicFlex Series AH2 Hose has been tested and evaluated by Spears® for acceptable use with Spears® CPVC Products and is therefore covered under the Spears® FlameGuard® Installer Protection Plan.

3.0 SPECIFICATIONS - MATERIAL

Series AH2:

Flexible Hose: 300-series Stainless Steel
Collar/Weld Fitting: 300-series Stainless Steel
Gasket Seal: Victaulic EPDM
Isolation Ring: Nylon
Nut and Nipple: Carbon Steel, Zinc-Plated
Reducer ($1 / 2 \mathrm{~L} / 15 \mathrm{~mm}$ or $3 / 4 \mathrm{~m} / 20 \mathrm{~mm}$): Carbon Steel, Zinc-Plated
Low Profile Elbows: Ductile Iron, Zinc-Plated
Brackets: Carbon Steel, Zinc-Plated
Series AH2-CC:
Flexible Hose: 300-series Stainless Steel
Collar/Weld Fitting: 300-series Stainless Steel
Gasket Seal: Victaulic EPDM
Isolation Ring: Nylon
Coupling Retainer Ring: Polyethelene
Nut: Carbon Steel, Zinc-Plated
Reducer ($1 / 2 \mathrm{~L} / 15 \mathrm{~mm}$ or $3 / 4 \mathrm{~m} / 20 \mathrm{~mm}$): Carbon Steel, Zinc-Plated
Low Profile Elbows: Ductile Iron, Zinc-Plated
Housing: Ductile iron conforming to ASTM A 536, Grade 65-45-12. Ductile iron conforming to ASTM A 395, Grade 65-45-15, is available upon special request.

Coupling Housing Coating:

- Orange enamel (North America, Asia Pacific).
- Red enamel (Europe).
- Hot dipped galvanized.

Gasket: ${ }^{1}$
Grade "E" EPDM (Type A)
FireLock EZ products have been Listed by Underwriters Laboratories Inc., Underwriters Laboratories of Canada Limited, and Approved by Factory Mutual Research for wet and dry (oil free air) sprinkler services within the rated working pressure.
1 Services listed are General Service Guidelines only. It should be noted that there are services for which these gaskets are not compatible. Reference should always be made to the latest Victaulic Gasket Selection Guide for specific gasket service guidelines and for a listing of services which are not compatible.
Bolts/Nut: Zinc electroplated carbon steel, trackhead meeting the physical and chemical requirements of ASTM A 449 and physical requirements of ASTM A 183.
Linkage: CrMo Alloy Steel zinc electroplated per ASTM B633 Zn/Fe 5, Type III Finish
No. 116 Adapter Fitting: CPVC and Brass
Seal: Victaulic EPDM

4.0 DIMENSIONS

Product Details - Series AH2 Braided Hose

Item	Description
1	Flexible Hose
2	Isolation Ring
3	Gasket
4	Nut
5	Adapter Nipple
6	Braid
7	Collar/Weld Fitting
8	Sleeve
9	Reducer

Hose Length Dimensions

Hose Length inches mm	A inches mm	B inches mm
31	25.3	31
790	641	790
36	31.3	36
915	794	915
48	42.3	48
1219	1073	1220
60	54.3	60
1525	1378	1525
72	66.3	72
1830	1683	1830

Series AH2-CC Braided Hose

Item	Description
1	Flexible Hose
2	Isolation Ring
3	Gasket
4	Nut
5	Captured Coupling
6	Braid
7	Collar/Weld Fitting
8	Sleeve
9	Reducer

Hose Length inches mm	A inches mm	B inches mm
31	24.5	29.8
790	622	757
36	29.5	34.8
915	749	884
48	41.5	46.8
1219	1054	1189
60	53.5	58.8
1525	1359	1494
72	65.5	70.8
1830	1664	1798

10.855839 Rev AK Updated 03/2021 © 2021 Victaulic Company. All rights reserved.

4.0 DIMENSIONS (CONTINUED)

Standard Reducer

5.75 "/140 mm straight reducer

Optional Reducers

NOTE

- The Short 90° elbow reducer is typically used with concealed sprinklers while the longer 90 elbow is typically used in the installation of recessed pendent sprinklers.
- FM/VdS Approved only.

Low Profile

Short 90° elbow reducer

Long 90° elbow reducer

NOTE

- Style AB11: When low profiles elbows are with the Style AB11 bracket, the Low Profile Short Elbow is typically used with concealed sprinklers while the Low Profile Long Elbow is typically used in the installation of recessed pendent sprinklers.

No. 116 CPVC Adapter

NOTES

- E to E is 3.0 " $/ 76.0 \mathrm{~mm}$
- The No. 116 CPVC Adapter has 2 ft . (0.6 m) EQL of 1" Schedule 40 pipe.

4.1 DIMENSIONS

VicFlex Brackets

Style AB2

- Suspended Ceilings
- Hard-Lid Ceilings

Item	Description
1	24 "/610 mm or 48"/1219 mm Square Bar
2	Patented Vertically Adjustable Center Bracket
3	End Bracket

NOTE

- Both sizes FM/VdS/LPCB Approved, cULus listed

Style AB3

- Surface Mount Applications
- FM/LPCB Approved

Style AB4

- Hard-Lid Ceilings with Hat furring channel grid system

Item	Description
1	24 "/610 mm or 48"/1219 mm Square Bar
2	Patented Vertically Adjustable Center Bracket
3	End Bracket for Hat Furring Channel

NOTE

- Both sizes FM/VdS/LPCB Approved, cULus listed.

4.2 DIMENSIONS

VicFlex Brackets

Style AB5

- Hard-Lid Ceilings

Item	Description
1	24 "/610 mm or 48"/1219 mm Square Bar
2	Patented Vertically Adjustable Center Bracket
3	End Bracket

NOTE

- Both sizes FM/VdS/LPCB Approved, cULus listed.

Style AB7

- Suspended Ceilings
- Hard-Lid Ceilings

Item	Description
1	$24 / / 610 \mathrm{~mm}$ or 48"/1219 mm Square Bar
2	Patented 1-Bee2 ${ }^{\circledR}$ Center Bracket
3	End Bracket

NOTE

- Both sizes FM/VdS/LPCB Approved.

Style AB7 Adjustable

- Suspended Ceilings
- Hard-Lid Ceilings

Item Description 1 700 mm or 1400 mm Square Bar 2 ${\text { Patented 1-Bee2 }{ }^{\circledR} \text { Center Bracket }}^{\text {End Bracket (adjustable) }}$ 3 NOTE - Both sizes FM/VdS/LPCB Approved.

- Both sizes FM/VdS/LPCB Approved.

4.3 DIMENSIONS

VicFlex Brackets

Style AB10

- Suspended ceilings
- Armstrong ${ }^{\circledR}$ TechZone ${ }^{\text {TM }}$

Item	Description
1	$6 " / 152 \mathrm{~mm}$ Square Bar
2	Patented 1-Bee2 ${ }^{\circledR}$ Center Bracket
3	End Bracket

NOTE

- FM/VdS/LPCB Approved, cULus listed.

Style AB11

- Suspended ceilings
- Hard-Lid ceilings

Item	Description
1	24 "/610 mm or 48"/1219 mm Square Bar
2	Patented 1-Bee2 ${ }^{\circledR}$ Center Bracket
3	End Bracket

NOTE

- FM/VdS Approved, cULus listed.

Style AB12

- Suspended ceilings
- Hard-Lid ceilings

Item	Description
1	Style AB12 Bracket Body
2	\#2 Square Drive Set Screw

note

- FM/VdS Approved.

4.3 DIMENSIONS (CONTINUED)

VicFlex Brackets

Style ABBA

- Floor-above mount
- Cantilever mount
- Temporary mount in exposed ceilings

Item	Description
1	Style ABBA Mounting Plate
2	Style ABBA Square Bar
3	Cap Screw, Serated Flange, M6 $\times 1 \times 20$, T25 Torx Drive Recessed
4	Style ABMM Bracket Body
5	Cap Screw, Serated Flange, M6 $\times 1 \times 15.24$, T25 Torx Drive Recessed

NOTE

- FM Approved.

Style ABMM

- Surface mount
- Stand-off mount

Item	Description
1	Style ABMM Bracket Body
2	Cap Screw, Serated Flange, M6 $\times 1 \times 15.24$,
T25 Torx Drive Recessed	

NOTE

- FM Approved.

4.4 DIMENSIONS

Clearances

Series AH2 Braided Hose and Style AB2 Bracket

Hose Clearance Chart								
	Straight Reducer						Long Elbow	Short Elbow
	$\underset{3 / 4^{\prime \prime}}{\text { V2707 }}$ Max Recess inches mm	V3802 ½" Max Recess inches mm	$\begin{gathered} \text { V2707 } \\ \hline 1407 \end{gathered}$ Max Recess inches mm	$\begin{gathered} \text { V3802 } \\ 1 / 21 \end{gathered}$ Max Recess inches mm	V2707 3/4" Max Recess inches mm	V3802$1 / 22^{2}$ Max Recess inches mm	V2707$3 / 4 "$ Max Recess inches mm	V3802$1 / 22^{2}$ Max Recess inches mm
"R" Minimum Bend Radius	$\begin{aligned} & 2.0 \\ & 50 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 80 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 175 \end{aligned}$			
"A" Minimum Required Installation Space	$\begin{aligned} & 8.6 \\ & 218 \end{aligned}$	$\begin{aligned} & 10.1 \\ & 269 \end{aligned}$	$\begin{gathered} 9.6 \\ 244 \end{gathered}$	$\begin{aligned} & 11.1 \\ & 281 \end{aligned}$	$\begin{aligned} & 13.6 \\ & 345 \end{aligned}$	$\begin{aligned} & 15.1 \\ & 383 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 147 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 147 \end{aligned}$

Note

- Variations of ceiling grids, sprinkler heads, brackets, and hoses are permitted but may result in clearance differences from the figures above.

4.5 DIMENSIONS

Clearances

Series AH2 Braided Hose and Style AB2 Bracket

Hose Clearance Chart									
	Straight Reducer								
	$\begin{gathered} \text { V2707 } \\ 3 / 4 \text { I I } 20 \mathrm{~mm} \\ \text { Max Recess" } \\ \text { inches } \\ \text { mm } \end{gathered}$	$\begin{gathered} \text { V3802 } \\ 1 / 2 \text { I I } 13 \mathrm{~mm} \\ \text { Max Recess } \\ \text { inches } \\ \text { mm } \end{gathered}$		$\begin{gathered} \text { V2707 } \\ 3 / 4 \text { I } 20 \mathrm{~mm} \\ \text { Max Recess } \\ \text { inches } \\ \text { mm } \end{gathered}$	```V3802 1/2" \| 13 mm Max Recess inches mm```		```V2707 3/4" \| 20mm Max Recess inches mm```	```V3802 1/2" \| 13 mm Max Recess inches mm```	
"R" Minimum Bend Radius	$\begin{aligned} & 2.0 \\ & 50 \\ & \hline \end{aligned}$			$\begin{aligned} & 3.0 \\ & 80 \end{aligned}$			$\begin{aligned} & \hline 7.0 \\ & 175 \end{aligned}$		
"A" Minimum Required Installation Space	$\begin{aligned} & 6.2 \\ & 158 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 193 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 155 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 183 \end{aligned}$	$\begin{aligned} & 8.6 \\ & 218 \end{aligned}$	$\begin{gathered} 7.1 \\ 180 \end{gathered}$	$\begin{aligned} & 11.2 \\ & 285 \end{aligned}$	$\begin{aligned} & 12.6 \\ & 320 \end{aligned}$	$\begin{aligned} & 11.1 \\ & 282 \end{aligned}$

Hose Clearance Chart			
	Long Elbow		Short Elbow
	V2707 $3 / 4$ I I 20 mm Max Recess inches mm	V2709 $3 / 4$ I 120 mm Sidewall inches mm	V3802 $1 / 2$ I I 13 mm Max Recess inches mm
"R" Minimum Bend Radius		-	
"A" Minimum Required Installation Space	$\begin{aligned} & 3.3 \\ & 84 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 91 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 84 \end{aligned}$

NOTE

- Variations of ceiling grids, sprinkler heads, brackets, and hoses are permitted but may result in clearance differences from the figures above.

4.6 DIMENSIONS

Clearances

Series AH2 Braided Hose and Style AB4 Bracket

Hose Clearance Chart								
	Straight Reducer						Long Elbow	Short Elbow
	V2707 3/4" Max Recess inches mm	V3802 $1 / 2{ }^{1}$ Max Recess inches mm	V2707 3/4" Max Recess inches mm	V3802 $1 / 22^{\prime \prime}$ Max Recess inches mm	V2707 3/4" Max Recess inches mm	V3802 $1 / 2 \mathrm{M}$ Max Recess inches mm	V2707 3/4" Max Recess inches mm	V3802 $1 / 2$ " Max Recess inches mm
"R" Minimum Bend Radius	$\begin{aligned} & 2.0 \\ & 50 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 50 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 80 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 80 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 175 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 175 \end{aligned}$	-	
"A" Minimum Required Installation Space	$\begin{aligned} & 8.8 \\ & 224 \end{aligned}$	$\begin{aligned} & 10.2 \\ & 259 \end{aligned}$	$\begin{gathered} 9.8 \\ 249 \end{gathered}$	$\begin{aligned} & 11.2 \\ & 285 \end{aligned}$	$\begin{aligned} & 13.8 \\ & 351 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 386 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 203 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 150 \end{aligned}$

NOTE
Variations of ceiling grids, sprinkler heads, brackets, and hoses are permitted but may result in clearance differences from the figures above.

4.7 DIMENSIONS

Clearances

Series AH2 Braided Hose and Style AB5 Bracket

Hose Clearance Chart									
	Straight Reducer								
	$\begin{gathered} \text { "V2707 } \\ 3 / 4 " \mid 20 \mathrm{~mm} \\ \text { Max Recess" } \\ \text { inches } \\ \text { mm } \end{gathered}$	$\begin{gathered} \text { V3802 } \\ 1 / 2 \text { I I } 13 \mathrm{~mm} \\ \text { Max Recess } \\ \text { inches } \\ \mathrm{mm} \end{gathered}$	V2709 $3 / 4$ " I 20 mm Sidewall inches mm	$\begin{gathered} \text { V2707 } \\ 3 / 4^{\prime \prime} 120 \mathrm{~mm} \\ \text { Max Recess } \\ \text { inches } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \text { V3802 } \\ 1 / 2 \text { I I }^{2} 13 \mathrm{~mm} \\ \text { Max Recess } \\ \text { inches } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \text { V2709 } \\ 3 / 4 \text { I I } 20 \mathrm{~mm} \\ \text { Sidewall } \\ \text { inches } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \text { V2707 } \\ 3 / 4 \text { I I } 20 \mathrm{~mm} \\ \text { Max Recess } \\ \text { inches } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \text { V3802 } \\ 1 / 2 \mathrm{I} ~ I ~ \\ \text { Max Recess } \\ \text { inches } \\ \text { mm } \end{gathered}$	V2709 $3 / 4$ I 20 mm Sidewall inches mm
"R" Minimum Bend Radius	$\begin{aligned} & 2.0 \\ & 50 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 80 \end{aligned}$			$\begin{aligned} & \hline 7.0 \\ & 175 \end{aligned}$		
"A" Minimum Required Installation Space	$\begin{aligned} & 6.0 \\ & 158 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 196 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 155 \end{aligned}$	$\begin{gathered} 7.0 \\ 178 \end{gathered}$	$\begin{gathered} 8.7 \\ 221 \end{gathered}$	$\begin{gathered} 7.1 \\ 180 \end{gathered}$	$\begin{aligned} & 11.0 \\ & 279 \end{aligned}$	$\begin{aligned} & 12.7 \\ & 323 \end{aligned}$	$\begin{aligned} & 11.1 \\ & 282 \end{aligned}$

Hose Clearance Chart					
	Long Elbow			Low-Profile Long Elbow	Short Elbow
	$\begin{gathered} \text { V2707 } \\ 3 / 4 \text { I } 20 \mathrm{~mm} \\ \text { Max Recess } \\ \text { inches } \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} \text { V3802 } \\ 1 / 2 \text { I I } 13 \mathrm{~mm} \\ \text { Max Recess } \\ \text { inches } \\ \text { mm } \end{gathered}$	```V2709 3/4" \| 20mm Sidewall inches mm```	```V3802 1/2" \| 13 mm Max Recess inches mm```	$\begin{gathered} \text { V3802 } \\ 1 / 2 \mathrm{I} ~ I ~ \\ \text { Max Recess } \\ \text { Mans } \\ \text { inches } \\ \mathrm{mm} \end{gathered}$
"R" Minimum Bend Radius	-				
"A" Minimum Required Installation Space	$\begin{aligned} & 3.5 \\ & 89 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 124 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 91 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 74 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 84 \end{aligned}$

note

- Variations of ceiling grids, sprinkler heads, brackets, and hoses are permitted but may result in clearance differences from the figures above.

4.8 DIMENSIONS

Clearances

Series AH2 Braided Hose and Style AB11 Bracket (LOW PROFILE SOLUTION)

Hose Clearance Chart		
	Low-Profile Long Elbow	Low-Profile Short Elbow
	V2707 $3 / 4 " ~ I ~ 20 ~ m m ~$ Max Recess" inches mm	V3802 $1 / 2 " ~ I ~ 13 ~ m m ~$ Max Recess inches mm
"A" Minimum Required Installation Space	4.0	

NOTE

- Variations of ceiling grids, sprinkler heads, brackets, and hoses are permitted but may result in clearance differences from the figures above.

4.9 DIMENSIONS

Clearances

Style AB12 and ABBA Bracket

Suspended Ceiling Grid with Recessed Sprinkler with Low Profile Short Elbow

Suspended Ceiling Grid with Recessed Sprinkler and Straight 5.75"/140 mm Reducer

Dimension		Low Profile Short Elbow		Low Profile Long Elbow		Standard Short Elbow		Standard Long Elbow		Standard Straight Reducer	
		$3 / 4 " / 19 \mathrm{~mm}$ Recessed* inches mm	Concealed inches mm	$3 / 4 " / 19 \mathrm{~mm}$ Recessed inches mm	Concealed inches mm	$3 / 4 " / 19 \mathrm{~mm}$ Recessed inches mm	Concealed inches mm	$3 / 4 / 19 \mathrm{~mm}$ Recessed inches mm	Concealed inches mm	$3 / 4 " / 19 \mathrm{~mm}$ Recessed inches mm	Concealed inches mm
A	Minimum Required Installation Space	$\begin{gathered} 4.0 \\ 101.6 \end{gathered}$	$\begin{gathered} 5.5 \\ 139.7 \end{gathered}$	$\begin{gathered} 5.6 \\ 142.2 \end{gathered}$	$\begin{gathered} 7.2 \\ 182.9 \end{gathered}$	$\begin{gathered} 5.9 \\ 149.9 \end{gathered}$	$\begin{gathered} 7.5 \\ 190.5 \end{gathered}$	$\begin{gathered} 7.7 \\ 195.6 \end{gathered}$	$\begin{gathered} 9.3 \\ 236.2 \end{gathered}$	$\begin{gathered} 15.0 \\ 381.0 \end{gathered}$	$\begin{gathered} 16.6 \\ 421.6 \end{gathered}$
B	Distance from Top of Typical Ceiling Tile to Bottom of Gate	$\begin{gathered} 0.5 \\ 12.7 \end{gathered}$	$\begin{gathered} 2.0 \\ 50.8 \end{gathered}$	$\begin{gathered} 1.5 \\ 38.1 \end{gathered}$	$\begin{gathered} 3.0 \\ 76.2 \end{gathered}$						

* Adjustability will be limited

Style ABMM Bracket

Stand-off Dimensions

4.10 DIMENSIONS

Clearances

Style AB3 and ABMM Bracket

Surface Mount Application with Recessed Sprinkler

Hose Clearances																				
Dimension	inches mm			inches mm			inches mm		inches mm	inches mm	inches mm			inches mm			inches mm		inches mm	inches mm
Wall Thickness "A"	$\begin{gathered} 2 \\ 50 \\ \hline \end{gathered}$			$\begin{gathered} 4 \\ 100 \\ \hline \end{gathered}$			$\begin{gathered} \hline 6 \\ 150 \\ \hline \end{gathered}$		$\begin{gathered} \hline 8 \\ 200 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 250 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 50 \\ \hline \end{gathered}$			$\begin{gathered} 4 \\ 100 \\ \hline \end{gathered}$			$\begin{gathered} 6 \\ 150 \\ \hline \end{gathered}$		$\begin{gathered} 8 \\ 200 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 250 \\ \hline \end{gathered}$
Outlet Length "B"	$\begin{array}{\|c\|} \hline 5.75 \\ 146.1 \end{array}$	$\begin{gathered} 9 \\ 228.6 \end{gathered}$	$\begin{gathered} 13 \\ 330.2 \end{gathered}$	$\begin{gathered} 5.75 \\ 146.1 \end{gathered}$	$\begin{gathered} 9 \\ 228.6 \end{gathered}$	$\begin{gathered} 13 \\ 330.2 \end{gathered}$	$\begin{gathered} 9 \\ 228.6 \end{gathered}$	$\begin{gathered} 13 \\ 330.2 \end{gathered}$	$\begin{gathered} 13 \\ 330.2 \end{gathered}$	$\begin{gathered} 13 \\ 330.2 \end{gathered}$	$\begin{gathered} \hline 5.75 \\ 146.1 \end{gathered}$	$\begin{gathered} 9 \\ 228.6 \end{gathered}$	$\begin{gathered} 13 \\ 330.2 \end{gathered}$	$\begin{gathered} 5.75 \\ 146.1 \end{gathered}$	$\begin{gathered} 9 \\ 228.6 \end{gathered}$	$\begin{gathered} 13 \\ 330.2 \end{gathered}$	$\begin{gathered} 9 \\ 228.6 \end{gathered}$	$\begin{gathered} 13 \\ 330.2 \end{gathered}$	$\begin{gathered} 13 \\ 330.2 \end{gathered}$	$\begin{gathered} 13 \\ 330.2 \end{gathered}$
Hose Clearance "C"	$\begin{aligned} & 11.6 \\ & 294 \end{aligned}$	$\begin{aligned} & 14.8 \\ & 376 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.8 \\ & 478 \end{aligned}$	$\begin{gathered} 9.6 \\ 243 \end{gathered}$	$\begin{aligned} & 12.8 \\ & 325 \end{aligned}$	16.8 427	$\begin{aligned} & 10.8 \\ & 275 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.8 \\ & 376 \end{aligned}$	$\begin{aligned} & 12.8 \\ & 325 \end{aligned}$	$\begin{aligned} & 10.8 \\ & 275 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.6 \\ & 319 \end{aligned}$	15.8 402	19.8 503	10.6 268	$\begin{aligned} & 13.8 \\ & 351 \end{aligned}$	$\begin{aligned} & 17.8 \\ & 452 \end{aligned}$	$\begin{aligned} & 11.8 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.8 \\ & 402 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.8 \\ & 351 \end{aligned}$	$\begin{aligned} & 11.8 \\ & 300 \\ & \hline \end{aligned}$
Bend Radius "R"						$\begin{gathered} 7 \\ 175 \end{gathered}$										$\begin{gathered} 8 \\ 200 \end{gathered}$				

NOTE

- Variations of ceiling grids, sprinkler heads, brackets, and hoses are permitted but may result in clearance differences from the figures above.

4.11 DIMENSIONS

BRANCHLINE CLEARANCES

Series AH2 Braided Hose with Style 922 threaded outlet
Series AH2-CC Braided Hose with Style 922 grooved outlet

Hose Clearance Chart						
Dimension		inches mm				
R	Minimum	3	4	5	6	7
	Bend Radius	80	100	125	150	175
A	Min.	9.4	10.4	11.4	12.4	13.4
	Min.	238	263	289	314	339

Hose Clearance Chart						
Dimension		inches mm				
R	Minimum	3	4	5	6	7
	Bend Radius	80	100	125	150	175
A	Min	7.7	8.7	9.7	10.7	11.7
	Min.	197	222	247	273	298

4.12 DIMENSIONS

BRANCHLINE CLEARANCES

Series AH2 Braided Hose with female threaded outlet

Hose Clearance Chart						
Dimension		inches mm				
R	Minimum	3	4	5	6	7
	Bend Radius	80	100	125	150	175
A	Min.	9.4	10.4	11.4	12.4	13.41
	Min.	239	264	290	315	341

Series AH2-CC Braided Hose with grooved outlet

Hose Clearance Chart							
Dimension		Minches inches mm					
R	Minimum	4	5	6	7		
	Bend Radius	80	100	125	150	175	
A	Min.	8.1	9.1	10.1	11.1	12.1	
		205	231	256	281	307	

5.0 PERFORMANCE - FRICTION LOSS DATA

©(UL) us Series AH2 and AH2-CC Braided Hoses with Straight 5.75 " $/ 140 \mathrm{~mm}$ Reducers Style AB2, AB4, AB5 and AB10 Brackets

Hose	Reducer		UL	
Length inches mm	Type	Nominal Outlet Size inches DN	Equivalent Length of 1 "/33.7mm Sch. 40 pipe feet meters	Max Bends
$\begin{gathered} 31 \\ 790 \end{gathered}$	Straight	$1 / 2$	$\begin{gathered} \hline 15.0 \\ 4.6 \end{gathered}$	3
$\begin{gathered} 31 \\ 790 \end{gathered}$	Straight	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 16.0 \\ 4.9 \end{gathered}$	4
$\begin{gathered} 31 \\ 790 \end{gathered}$	Straight	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 19.0 \\ 5.8 \end{gathered}$	3
$\begin{gathered} 31 \\ 790 \end{gathered}$	Straight	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 20.0 \\ 6.1 \end{gathered}$	4
$\begin{gathered} 36 \\ 915 \end{gathered}$	Straight	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 18.0 \\ 5.5 \end{gathered}$	3
$\begin{gathered} 36 \\ 915 \end{gathered}$	Straight	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 21.0 \\ 6.4 \end{gathered}$	5
$\begin{gathered} 36 \\ 915 \end{gathered}$	Straight	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 21.0 \\ 6.4 \end{gathered}$	3
$\begin{gathered} 36 \\ 915 \end{gathered}$	Straight	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 23.0 \\ 7.0 \\ \hline \end{gathered}$	5
$\begin{gathered} 48 \\ 1220 \end{gathered}$	Straight	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 21.0 \\ 6.4 \end{gathered}$	3
$\begin{gathered} 48 \\ 1220 \end{gathered}$	Straight	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 32.0 \\ 9.8 \end{gathered}$	8
$\begin{gathered} 48 \\ 1220 \end{gathered}$	Straight	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 26.0 \\ 7.9 \\ \hline \end{gathered}$	3
$\begin{gathered} 48 \\ 1220 \end{gathered}$	Straight	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{aligned} & 37.0 \\ & 11.3 \end{aligned}$	8
$\begin{gathered} 60 \\ 1525 \end{gathered}$	Straight	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 27.0 \\ 8.2 \end{gathered}$	3
$\begin{gathered} 60 \\ 1525 \end{gathered}$	Straight	$1 / 2$ DN15	$\begin{aligned} & 46.0 \\ & 14.0 \end{aligned}$	10
$\begin{gathered} 60 \\ 1525 \end{gathered}$	Straight	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 27.0 \\ 8.2 \end{gathered}$	3
$\begin{gathered} 60 \\ 1525 \end{gathered}$	Straight	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{aligned} & 46.0 \\ & 14.0 \\ & \hline \end{aligned}$	10
$\begin{gathered} 72 \\ 1830 \\ \hline \end{gathered}$	Straight	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 31.0 \\ 9.4 \\ \hline \end{gathered}$	3
$\begin{gathered} 72 \\ 1830 \end{gathered}$	Straight	$1 / 2$ DN15	$\begin{aligned} & 55.0 \\ & 16.8 \end{aligned}$	12
$\begin{gathered} 72 \\ 1830 \end{gathered}$	Straight	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 30.0 \\ 9.1 \\ \hline \end{gathered}$	3
$\begin{gathered} 72 \\ 1830 \end{gathered}$	Straight	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{aligned} & 60.0 \\ & 18.3 \\ & \hline \end{aligned}$	12

5.0 PERFORMANCE - FRICTION LOSS DATA (CONTINUED)

(나) us Series AH2 and AH2-CC Braided Hose with 90° Low Profile Elbows Style AB11 VicFlex Bracket

Hose	Reducer		UL	
Length inches mm	Type	Nominal Outlet Size inches DN	Equivalent Length of 1"/33.7mm Sch. 40 pipe feet meters	Max Bends
$\begin{gathered} 31 \\ 790 \end{gathered}$	LP Elbow	$\begin{gathered} \text { 1/2 } \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 18.0 \\ 5.5 \end{gathered}$	3
$\begin{gathered} 31 \\ 790 \end{gathered}$	LP Elbow	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 24.0 \\ 7.3 \end{gathered}$	4
$\begin{gathered} 31 \\ 790 \end{gathered}$	LP Elbow	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 21.0 \\ 6.4 \end{gathered}$	3
$\begin{gathered} 31 \\ 790 \end{gathered}$	LP Elbow	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 24.0 \\ 7.3 \end{gathered}$	4
$\begin{gathered} 36 \\ 915 \end{gathered}$	LP Elbow	1/2 DN15	$\begin{gathered} 19.0 \\ 5.8 \end{gathered}$	3
$\begin{gathered} 36 \\ 915 \end{gathered}$	LP Elbow	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 26.0 \\ 7.9 \end{gathered}$	5
$\begin{array}{r} 36 \\ 915 \\ \hline \end{array}$	LP Elbow	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 23.0 \\ 7.0 \\ \hline \end{gathered}$	3
$\begin{gathered} 36 \\ 915 \end{gathered}$	LP Elbow	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 28.0 \\ 8.5 \end{gathered}$	5
$\begin{gathered} 48 \\ 1220 \end{gathered}$	LP Elbow	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 23.0 \\ 7.0 \end{gathered}$	3
$\begin{gathered} 48 \\ 1220 \end{gathered}$	LP Elbow	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{aligned} & 43.0 \\ & 13.1 \end{aligned}$	8
$\begin{gathered} 48 \\ 1220 \end{gathered}$	LP Elbow	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 30.0 \\ 9.1 \end{gathered}$	3
$\begin{gathered} 48 \\ 1220 \end{gathered}$	LP Elbow	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{aligned} & 42.0 \\ & 12.8 \end{aligned}$	8
$\begin{gathered} 60 \\ 1525 \\ \hline \end{gathered}$	LP Elbow	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 28.0 \\ 8.5 \end{gathered}$	3
$\begin{gathered} 60 \\ 1525 \end{gathered}$	LP Elbow	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{aligned} & 49.0 \\ & 14.9 \end{aligned}$	10
$\begin{gathered} 60 \\ 1525 \end{gathered}$	LP Elbow	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 31.0 \\ 9.4 \end{gathered}$	3
$\begin{gathered} 60 \\ 1525 \end{gathered}$	LP Elbow	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{aligned} & 50.0 \\ & 15.2 \end{aligned}$	10
$\begin{gathered} 72 \\ 1830 \\ \hline \end{gathered}$	LP Elbow	$\begin{gathered} 1 / 2 \\ \text { DN15 } \\ \hline \end{gathered}$	$\begin{gathered} 31.0 \\ 9.4 \\ \hline \end{gathered}$	3
$\begin{gathered} 72 \\ 1830 \end{gathered}$	LP Elbow	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{aligned} & 65.0 \\ & 19.8 \end{aligned}$	12
$\begin{gathered} 72 \\ 1830 \end{gathered}$	LP Elbow	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{aligned} & 36.0 \\ & 11.0 \end{aligned}$	3
$\begin{gathered} 72 \\ 1830 \\ \hline \end{gathered}$	LP Elbow	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{aligned} & 63.0 \\ & 19.2 \\ & \hline \end{aligned}$	12

5.0 PERFORMANCE - FRICTION LOSS DATA (CONTINUED)

Series AH2 and AH2-CC Braided Hoses Equivalent Length Design Guide

Equivalent length values at various numbers of 90 degree bends at 2 " $/ 51 \mathrm{~mm}$ center line bend radius

Length inches mm	Nominal Outlet Size inches DN	1 Bend feet meters	2 Bends feet meters	Bends feet meters	4 Bends feet meters	5 Bends feet meters	6 Bends feet meters	7 Bends feet meters	8 Bends feet meters	Bends feet meters	10 Bends feet meters	11 Bends feet meters	12 Bends feet meters
$\begin{gathered} 31 \\ 790 \end{gathered}$	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 11.0 \\ 3.4 \end{gathered}$	$\begin{gathered} 13.0 \\ 4.0 \\ \hline \end{gathered}$	$\begin{gathered} 15.0 \\ 4.6 \\ \hline \end{gathered}$	$\begin{gathered} 16.0 \\ 4.9 \end{gathered}$	-	-	-	-	-	-	-	-
$\begin{gathered} 31 \\ 790 \end{gathered}$	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 12.0 \\ 3.7 \end{gathered}$	$\begin{gathered} 14.0 \\ 4.3 \end{gathered}$	$\begin{gathered} 19.0 \\ 5.8 \end{gathered}$	$\begin{gathered} 20.0 \\ 6.1 \end{gathered}$	-	-	-	-	-	-	-	-
$\begin{gathered} 36 \\ 915 \end{gathered}$	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 14.0 \\ 4.3 \end{gathered}$	$\begin{gathered} 16.0 \\ 4.9 \end{gathered}$	$\begin{gathered} 18.0 \\ 5.5 \end{gathered}$	$\begin{gathered} 19.0 \\ 5.8 \end{gathered}$	$\begin{gathered} 21.0 \\ 6.4 \end{gathered}$	-	-	-	-	-	-	-
$\begin{gathered} 36 \\ 915 \end{gathered}$	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 17.0 \\ 5.2 \end{gathered}$	$\begin{gathered} 19.0 \\ 5.8 \end{gathered}$	$\begin{gathered} 21.0 \\ 6.4 \end{gathered}$	$\begin{gathered} 22.0 \\ 6.7 \end{gathered}$	$\begin{gathered} 23.0 \\ 7.0 \end{gathered}$	-	-	-	-	-	-	-
$\begin{gathered} 48 \\ 1220 \\ \hline \end{gathered}$	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 18.0 \\ 5.5 \\ \hline \end{gathered}$	$\begin{gathered} 19.0 \\ 5.8 \\ \hline \end{gathered}$	$\begin{gathered} 21.0 \\ 6.4 \\ \hline \end{gathered}$	$\begin{gathered} 23.0 \\ 7.0 \\ \hline \end{gathered}$	$\begin{gathered} 25.0 \\ 7.6 \\ \hline \end{gathered}$	$\begin{gathered} 27.0 \\ 8.2 \\ \hline \end{gathered}$	$\begin{gathered} 30.0 \\ 9.1 \\ \hline \end{gathered}$	$\begin{gathered} 32.0 \\ 9.8 \\ \hline \end{gathered}$	-	-	-	-
$\begin{gathered} 48 \\ 1220 \end{gathered}$	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 21.0 \\ 6.4 \end{gathered}$	$\begin{gathered} 24.0 \\ 7.3 \end{gathered}$	$\begin{gathered} 26.0 \\ 7.9 \end{gathered}$	$\begin{gathered} 28.0 \\ 8.5 \end{gathered}$	$\begin{gathered} 31.0 \\ 9.4 \end{gathered}$	$\begin{aligned} & 33.0 \\ & 10.1 \end{aligned}$	$\begin{aligned} & 35.0 \\ & 10.7 \end{aligned}$	$\begin{aligned} & 37.0 \\ & 11.3 \end{aligned}$	-	-	-	-
$\begin{gathered} 60 \\ 1525 \end{gathered}$	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 21.0 \\ 6.4 \end{gathered}$	$\begin{gathered} 24.0 \\ 7.3 \end{gathered}$	$\begin{gathered} 27.0 \\ 8.2 \end{gathered}$	$\begin{gathered} 30.0 \\ 9.1 \\ \hline \end{gathered}$	$\begin{gathered} 32.0 \\ 9.8 \\ \hline \end{gathered}$	$\begin{aligned} & 35.0 \\ & 10.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 37.0 \\ & 11.3 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 12.2 \end{aligned}$	$\begin{aligned} & 43.0 \\ & 13.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 46.0 \\ & 14.0 \end{aligned}$	-	-
$\begin{gathered} 60 \\ 1525 \end{gathered}$	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 23.0 \\ 7.0 \end{gathered}$	$\begin{gathered} 25.0 \\ 7.6 \end{gathered}$	$\begin{gathered} 27.0 \\ 8.2 \end{gathered}$	$\begin{gathered} 29.0 \\ 8.8 \end{gathered}$	$\begin{gathered} 32.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 34.0 \\ & 10.4 \end{aligned}$	$\begin{aligned} & 37.0 \\ & 11.3 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 12.2 \end{aligned}$	$\begin{aligned} & 43.0 \\ & 13.1 \end{aligned}$	$\begin{aligned} & 46.0 \\ & 14.0 \end{aligned}$	-	-
$\begin{gathered} 72 \\ 1830 \end{gathered}$	$\begin{gathered} 1 / 2 \\ \text { DN15 } \end{gathered}$	$\begin{gathered} 27.0 \\ 8.2 \end{gathered}$	$\begin{gathered} 29.0 \\ 8.8 \end{gathered}$	$\begin{gathered} 31.0 \\ 9.4 \end{gathered}$	$\begin{aligned} & 34.0 \\ & 10.4 \end{aligned}$	$\begin{aligned} & 37.0 \\ & 11.3 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 12.2 \end{aligned}$	$\begin{aligned} & 43.0 \\ & 13.1 \end{aligned}$	$\begin{aligned} & 46.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 48.0 \\ & 14.6 \end{aligned}$	$\begin{aligned} & 50.0 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 52.0 \\ & 15.8 \end{aligned}$	$\begin{aligned} & 55.0 \\ & 16.8 \end{aligned}$
$\begin{gathered} 72 \\ 1830 \end{gathered}$	$\begin{gathered} 3 / 4 \\ \text { DN20 } \end{gathered}$	$\begin{gathered} 26.0 \\ 7.9 \end{gathered}$	$\begin{gathered} 28.0 \\ 8.5 \end{gathered}$	$\begin{gathered} 30.0 \\ 9.1 \end{gathered}$	$\begin{aligned} & 33.0 \\ & 10.1 \end{aligned}$	$\begin{aligned} & 37.0 \\ & 11.3 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 12.2 \end{aligned}$	$\begin{aligned} & 44.0 \\ & 13.4 \end{aligned}$	$\begin{aligned} & 48.0 \\ & 14.6 \end{aligned}$	$\begin{aligned} & 51.0 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 54.0 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 57.0 \\ & 17.4 \end{aligned}$	$\begin{aligned} & 60.0 \\ & 18.3 \end{aligned}$

NOTES:

- Values for use with 5.75 " 140 mm straight reducers.
- The values in this table are provided by the manufacturer for reference only. For friction loss data in accordance with the UL Certification, please refer to pages 19 and 20 of this publication.

How to use this Design Guide:

- For some systems, it may be advantageous for the designer to calculate the system hydraulics using shorter equivalent lengths associated with fewer than the maximum allowable number of bends. In this case, the designer may select a design number of bends for the job and use the associated equivalent length from the design guide to determine the system hydraulics.
- It is possible that the actual installed condition of some of the flexible drops may have more bends than the designer selected. When this happens, the design guide may be used to find equivalent lengths based on the actual installed number of bends for particular sprinkler installations. The system hydraulics can be recalculated using actual equivalent lengths to verify the performance of the system.

5.1 PERFORMANCE - FRICTION LOSS DATA

Series AH2 and AH2-CC Braided Hoses
Style AB2, AB3, AB4, AB5, AB7, AB7 Adj., AB8, AB10, AB12, ABBA and ABMM VicFlex Brackets

Length of Stainless Steel Flexible Hose inches mm	K-Factor Imperial S.I.	Outlet Size inches mm type	Equivalent Length of 1 "/33.7 mm Sch. 40 Pipe feet meters	Maximum Number of 90° Bends at 7 " $/ 178 \mathrm{~mm}$ Bend Radius
$\begin{gathered} 31 \\ 790 \end{gathered}$	$\begin{aligned} & 5.6 \\ & 8.1 \end{aligned}$	$1 / 2$ 15 Straight $1 / 2$ 15 90° Elbow	$\begin{gathered} 13.8 \\ 4.2 \\ \hline 23.5 \\ 7.1 \end{gathered}$	2
$\begin{gathered} 36 \\ 915 \end{gathered}$	$\begin{aligned} & 5.6 \\ & 8.1 \end{aligned}$	$1 / 2$ 15 Straight $1 / 2$ 15 90° Elbow	$\begin{gathered} 16.6 \\ 5.1 \\ \hline 25.6 \\ 7.8 \end{gathered}$	2
$\begin{gathered} 48 \\ 1220 \end{gathered}$	$\begin{aligned} & 5.6 \\ & 8.1 \end{aligned}$	$1 / 2$ 15 Straight $1 / 2$ 15 90° Elbow	$\begin{gathered} 23.4 \\ 7.1 \\ \hline 30.7 \\ \hline 9.3 \end{gathered}$	3
$\begin{gathered} 60 \\ 1525 \end{gathered}$	$\begin{aligned} & 5.6 \\ & 8.1 \end{aligned}$	$1 / 2$ 15 Straight $1 / 2$ 15 90° Elbow	$\begin{gathered} 30.2 \\ 9.2 \\ \hline 35.9 \\ 10.9 \end{gathered}$	4
$\begin{gathered} 72 \\ 1830 \end{gathered}$	$\begin{aligned} & 5.6 \\ & 8.1 \end{aligned}$	$1 / 2$ 15 Straight $1 / 2$ 15 90° Elbow	$\begin{aligned} & 37.0 \\ & 11.3 \\ & \hline \\ & \hline 41.1 \\ & 12.5 \end{aligned}$	4
$\begin{gathered} 31 \\ 790 \end{gathered}$	$\begin{gathered} 8.0 \\ 11.5 \end{gathered}$	$3 / 4$ 20 Straight $3 / 4$ 20 90° Elbow	$\begin{gathered} 16.8 \\ 5.1 \\ \hline 16.8 \\ 5.1 \end{gathered}$	2
$\begin{gathered} 36 \\ 915 \end{gathered}$	$\begin{gathered} 8.0 \\ 11.5 \end{gathered}$	$3 / 4$ 20 Straight $3 / 4$ 20 90° Elbow	$\begin{gathered} 20 \\ 6.0 \\ \hline 19.7 \\ 6.0 \end{gathered}$	2
$\begin{gathered} 48 \\ 1220 \end{gathered}$	$\begin{gathered} 8.0 \\ 11.5 \end{gathered}$	$3 / 4$ 20 Straight $3 / 4$ 20 90° Elbow	$\begin{gathered} 27.8 \\ 8.4 \\ \hline 26.6 \\ 8.1 \end{gathered}$	3

FM NOTES:

- The Series AH2 hose has been tested and Approved by FM Global for use in wet, dry and preaction systems per NFPA 13, 13R, and 13D and FM data sheets 2-0, 2-5, and 2-8. FM 1637 standard for safety include, but are not limited to, pressure cycling, corrosion resistance, flow characterisitics, vibration resistance, leakage, mechanical and hydrostatic strength.
- EXAMPLE: A 48 -inch hose installed with two 30° bends and two 90° bends is permitted and considered equivalent to the data in the table shown above. In this example, the total number of degrees is 240°, which is less than the allowable 270°.
5.1 PERFORMANCE - FRICTION LOSS DATA (CONTINUED)

Series AH2 and AH2-CC Braided Hoses
Style AB2, AB3, AB4, AB5, AB7, AB7 Adj., AB8, AB10, AB12, ABBA and ABMM VicFlex Brackets

Length of Stainless Steel Flexible Hose inches mm	K-Factor Imperial S.I.	Outlet Size inches mm type	Equivalent Length of 1 "/33.7 mm Sch. 40 Pipe feet meters	Maximum Number of 90° Bends at 7 " $/ 178 \mathrm{~mm}$ Bend Radius
$\begin{gathered} 60 \\ 1525 \end{gathered}$	$\begin{gathered} 8.0 \\ 11.5 \end{gathered}$	$3 / 4$ 20 Straight $3 / 4$ 20 90° Elbow	$\begin{aligned} & 35.7 \\ & 10.9 \\ & \hline 33.6 \\ & 10.2 \end{aligned}$	4
$\begin{gathered} 72 \\ 1830 \end{gathered}$	$\begin{gathered} 8.0 \\ 11.5 \end{gathered}$	$3 / 4$ 20 Straight $3 / 4$ 20 90° Elbow	$\begin{aligned} & 43.5 \\ & 13.2 \\ & \hline 40.6 \\ & 12.2 \end{aligned}$	4
$\begin{gathered} 31 \\ 790 \end{gathered}$	$\begin{aligned} & 11.2 \\ & 16.1 \end{aligned}$	$3 / 4$ 20 Straight $3 / 4$ 20 90° Elbow	$\begin{gathered} 16.5 \\ 5.0 \\ \hline 17.8 \\ 5.4 \end{gathered}$	2
$\begin{gathered} 36 \\ 915 \end{gathered}$	$\begin{aligned} & 11.2 \\ & 16.1 \end{aligned}$	$3 / 4$ 20 Straight $3 / 4$ 20 90° Elbow	$\begin{gathered} 19.5 \\ 5.9 \\ \hline 20.7 \\ 6.3 \end{gathered}$	2
$\begin{gathered} 48 \\ 1220 \end{gathered}$	$\begin{aligned} & 11.2 \\ & 16.1 \end{aligned}$	$3 / 4$ 20 Straight $3 / 4$ 20 90° Elbow	$\begin{gathered} 26.7 \\ 8.1 \\ \hline 27.9 \\ 8.5 \end{gathered}$	3
$\begin{gathered} 60 \\ 1525 \end{gathered}$	$\begin{aligned} & 11.2 \\ & 16.1 \end{aligned}$	$3 / 4$ 20 Straight $3 / 4$ 20 90° Elbow	$\begin{gathered} 33.9 \\ 10.3 \\ \hline 35 \\ 10.7 \end{gathered}$	4
$\begin{gathered} 72 \\ 1830 \end{gathered}$	$\begin{aligned} & 11.2 \\ & 16.1 \end{aligned}$	$3 / 4$ 20 Straight $3 / 4$ 20 90° Elbow	$\begin{aligned} & 41.3 \\ & 12.5 \\ & \hline 42.2 \\ & 12.8 \end{aligned}$	4
$\begin{gathered} 31 \\ 790 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 20.2 \end{aligned}$	$3 / 4$ 20 Straight $3 / 4$ 20 90° Elbow	$\begin{gathered} 14.9 \\ 4.5 \\ \hline 15.5 \\ 4.72 \end{gathered}$	2

FM NOTES:

- The Series AH2 hose has been tested and Approved by FM Global for use in wet, dry and preaction systems per NFPA 13, 13R, and 13D and FM data sheets $2-0,2-5$, and $2-8$. FM 1637 standard for safety include, but are not limited to, pressure cycling, corrosion resistance, flow characterisitics, vibration resistance, leakage, mechanical and hydrostatic strength.
- EXAMPLE: A 48 -inch hose installed with two 30° bends and two 90° bends is permitted and considered equivalent to the data in the table shown above. In this example, the total number of degrees is 240°, which is less than the allowable 270°.

5.1 PERFORMANCE - FRICTION LOSS DATA (CONTINUED)

Series AH2 and AH2-CC Braided Hoses

Style AB2, AB3, AB4, AB5, AB7, AB7 Adj., AB8, AB10, AB12, ABBA and ABMM VicFlex Brackets

Length of Stainless Steel Flexible Hose inches mm	K-Factor Imperial S.I.	Outlet Size inches mm type	Equivalent Length of 1 "/33.7 mm Sch. 40 Pipe feet meters	Maximum Number of 90° Bends at 7 " $/ 178 \mathrm{~mm}$ Bend Radius
$\begin{gathered} 36 \\ 915 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 20.2 \end{aligned}$	$3 / 4$ 20 Straight $3 / 4$ 20 90° Elbow	$\begin{gathered} 19.4 \\ 5.9 \\ \hline 19.6 \\ 5.9 \end{gathered}$	2
$\begin{gathered} 48 \\ 1220 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 20.2 \end{aligned}$	$3 / 4$ 20 Straight $3 / 4$ 20 90° Elbow	$\begin{gathered} 30.3 \\ 9.2 \\ \hline \\ \hline 29.5 \\ 8.9 \end{gathered}$	3
$\begin{gathered} 60 \\ 1525 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 20.2 \end{aligned}$	$3 / 4$ 20 Straight $3 / 4$ 20 90° Elbow	$\begin{aligned} & 33.9 \\ & 10.3 \\ & \hline 34.1 \\ & 10.4 \end{aligned}$	4
$\begin{gathered} 72 \\ 1830 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 20.2 \end{aligned}$	$3 / 4$ 20 Straight $3 / 4$ 20 90° Elbow	$\begin{aligned} & 37.5 \\ & 11.4 \\ & \hline \\ & \hline 38.6 \\ & 11.7 \end{aligned}$	4

FM NOTES:

- The Series AH2 hose has been tested and Approved by FM Global for use in wet, dry and preaction systems per NFPA 13, 13R, and 13D and FM data sheets 2-0, 2-5, and 2-8. FM 1637 standard for safety include, but are not limited to, pressure cycling, corrosion resistance, flow characterisitics, vibration resistance, leakage, mechanical and hydrostatic strength.
- EXAMPLE: A 48 -inch hose installed with two 30° bends and two 90° bends is permitted and considered equivalent to the data in the table shown above. In this example, the total number of degrees is 240°, which is less than the allowable 270°.

5.2 PERFORMANCE - FRICTION LOSS DATA

Series AH2 Braided Hose with 90° Low Profile Elbows
Style AB5, AB11, AB12, ABBA and ABMM VicFlex Bracket

Length of Stainless Steel Flexible Hose inches mm	K-Factor Imperial S.I.	Outlet Size inches mm	Equivalent Length of 1 "/33.7mm Sch. 40 Pipe feet meters	Maximum Number of 90° Bends at 7 " $/ 178 \mathrm{~mm}$ Bend Radius
$\begin{gathered} 31 \\ 790 \end{gathered}$	$\begin{aligned} & 5.6 \\ & 8.1 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 15 \end{aligned}$	$\begin{gathered} 13.7 \\ 4.2 \end{gathered}$	2
$\begin{gathered} 36 \\ 915 \end{gathered}$	$\begin{aligned} & 5.6 \\ & 8.1 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 15 \end{aligned}$	$\begin{gathered} 17.0 \\ 5.2 \\ \hline \end{gathered}$	2
$\begin{gathered} 48 \\ 1220 \\ \hline \end{gathered}$	$\begin{aligned} & 5.6 \\ & 8.1 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 15 \end{aligned}$	$\begin{gathered} 25.0 \\ 7.6 \\ \hline \end{gathered}$	3
$\begin{gathered} 60 \\ 1525 \end{gathered}$	$\begin{aligned} & 5.6 \\ & 8.1 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 15 \end{aligned}$	$\begin{aligned} & 33.0 \\ & 10.1 \end{aligned}$	4
$\begin{gathered} 72 \\ 1830 \end{gathered}$	$\begin{aligned} & 5.6 \\ & 8.1 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 15 \end{aligned}$	$\begin{aligned} & 41.1 \\ & 12.5 \end{aligned}$	4
$\begin{gathered} 31 \\ 790 \\ \hline \end{gathered}$	$\begin{gathered} 8.0 \\ 11.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3 / 4 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 13.6 \\ 4.14 \\ \hline \end{array}$	2
$\begin{gathered} 36 \\ 915 \end{gathered}$	$\begin{gathered} 8.0 \\ 11.5 \end{gathered}$	$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{gathered} 16.9 \\ 5.2 \end{gathered}$	2
$\begin{gathered} 48 \\ 1220 \\ \hline \end{gathered}$	$\begin{gathered} 8.0 \\ 11.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3 / 4 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} 27.8 \\ 8.5 \\ \hline \end{gathered}$	3
$\begin{gathered} 60 \\ 1525 \end{gathered}$	$\begin{gathered} 8.0 \\ 11.5 \end{gathered}$	$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{gathered} 32.6 \\ 9.9 \end{gathered}$	4
$\begin{gathered} 72 \\ 1830 \end{gathered}$	$\begin{gathered} 8.0 \\ 11.5 \end{gathered}$	$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{aligned} & 40.6 \\ & 12.4 \end{aligned}$	4
$\begin{gathered} 31 \\ 790 \end{gathered}$	$\begin{aligned} & 11.2 \\ & 16.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{gathered} 13.7 \\ 4.2 \end{gathered}$	2
$\begin{gathered} 36 \\ 915 \end{gathered}$	$\begin{aligned} & 11.2 \\ & 16.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{gathered} 17.0 \\ 5.2 \\ \hline \end{gathered}$	2
$\begin{gathered} 48 \\ 1220 \end{gathered}$	$\begin{aligned} & 11.2 \\ & 16.1 \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{gathered} 24.9 \\ 7.6 \end{gathered}$	3
$\begin{gathered} 60 \\ 1525 \end{gathered}$	$\begin{aligned} & 11.2 \\ & 16.1 \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{aligned} & 32.9 \\ & 10.0 \end{aligned}$	4
$\begin{gathered} 72 \\ 1830 \end{gathered}$	$\begin{aligned} & 11.2 \\ & 16.1 \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{aligned} & 40.9 \\ & 12.5 \end{aligned}$	4
$\begin{gathered} 31 \\ 790 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 20.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{gathered} 13.5 \\ 4.1 \\ \hline \end{gathered}$	2
$\begin{gathered} 36 \\ 915 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{gathered} 16.8 \\ 5.1 \end{gathered}$	2
$\begin{gathered} 48 \\ 1220 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{gathered} 24.7 \\ 7.5 \end{gathered}$	3
$\begin{gathered} 60 \\ 1525 \end{gathered}$	$\begin{array}{r} 14.0 \\ 20.2 \\ \hline \end{array}$	$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{array}{r} 32.7 \\ 9.9 \\ \hline \end{array}$	4
$\begin{gathered} 72 \\ 1830 \end{gathered}$	$\begin{array}{r} 14.0 \\ 20.2 \\ \hline \end{array}$	$\begin{aligned} & 3 / 4 \\ & 20 \end{aligned}$	$\begin{aligned} & 40.7 \\ & 12.4 \\ & \hline \end{aligned}$	4

FM NOTES:

- The Series AH2 hose has been tested and Approved by FM Global for use in wet, dry and preaction systems per NFPA 13, 13R, and 13D and FM data sheets 2-0, 2-5, and 2-8. FM 1637 standard for safety include, but are not limited to, pressure cycling, corrosion resistance, flow characterisitics, vibration resistance, leakage, mechanical and hydrostatic strength
- EXAMPLE: A 48 -inch hose installed with two 30° bends and two 90° bends is permitted and considered equivalent to the data in the table shown above. In this example, the total number of degrees is 240°, which is less than the allowable 270°.

5.3 PERFORMANCE - FRICTION LOSS DATA

VdS Series AH2 and AH2-CC Braided Hose
Style AB2, AB4, AB5, AB7, AB7 Adj., AB8, AB10, AB11 and AB12 Brackets

Length of Stainless Steel Flexible Hose mm inches	Outlet Size DN inches	Equivalent Length of steel pipe according to EN 10255 DN 25 ($33,7 \times 3,25$) meters feet	Maximum Number of 90° Bends at 3"/76.2 mm Bend Radius
$\begin{gathered} 790 \\ 31 \end{gathered}$	$\begin{gathered} \text { DN15 } \\ 1 / 2 \\ \text { DN20 } \\ 3 / 4 \end{gathered}$	$\begin{gathered} 5.5 \\ 18.0 \end{gathered}$	3
$\begin{gathered} 915 \\ 36 \end{gathered}$	$\begin{gathered} \text { DN15 } \\ 1 / 2 \\ \hline \text { DN20 } \\ 3 / 4 \\ \hline \end{gathered}$	$\begin{gathered} 6.4 \\ 21.0 \end{gathered}$	3
$\begin{gathered} 1220 \\ 48 \end{gathered}$	$\begin{gathered} \text { DN15 } \\ 1 / 2 \\ \hline \text { DN20 } \\ 3 / 4 \\ \hline \end{gathered}$	$\begin{gathered} 8.5 \\ 27.9 \end{gathered}$	3
$\begin{gathered} 1525 \\ 60 \end{gathered}$	$\begin{gathered} \text { DN15 } \\ 1 / 2 \\ \hline \text { DN20 } \\ 3 / 4 \end{gathered}$	$\begin{aligned} & 10.7 \\ & 35.1 \end{aligned}$	4
$\begin{gathered} 1830 \\ 72 \end{gathered}$	$\begin{gathered} \text { DN15 } \\ 1 / 2 \\ \hline \text { DN20 } \\ 3 / 4 \\ \hline \end{gathered}$	$\begin{aligned} & 12.8 \\ & 42.0 \end{aligned}$	4

VdS Ceiling Manufacturers List

AB2, AB7, AB10 ,AB11

1. AMF
2. Armstrong
3. Chicago Metallic
4. Dipling
5. Durlum
6. Geipel
7. Gema-Armstrong
8. Hilti
9. Knauf
10. Lafarge
11. Linder
12. Odenwald
13. Richter
14. Rigips
15. Rockfon Pagos
16. Suckow \& Fischer
17. USG Donn

AB4

No specific approval

AB5, AB8

1. Hilti
2. Knauf
3. Lafarge
4. Lindner
5. Rigips
5.3 PERFORMANCE - FRICTION LOSS DATA

Length of Stainless Steel Flexible Hose mm inches	Outlet Size mm inches type	Equivalent Length of steel pipe according to EN 10255 DN 25 $(33,7 \times 3,25)$ meters feet	Maximum Number of 90° Bends at 3" $/ 76.2 \mathrm{~mm}$ Bend Radius
$\begin{gathered} 790 \\ 31 \end{gathered}$	15 mm 1/2 Straight 20 mm 3/4 Straight	$\begin{aligned} & 1.8 \\ & 6.0 \end{aligned}$	2
$\begin{gathered} 915 \\ 36 \end{gathered}$	15 mm $1 / 2$ Straight 20 mm $3 / 4$ Straight	$\begin{gathered} 3.6 \\ 11.9 \end{gathered}$	3
$\begin{gathered} 1220 \\ 48 \end{gathered}$	15 mm $1 / 2$ Straight 20 mm $3 / 4$ Straight	$\begin{gathered} 4.3 \\ 14.0 \end{gathered}$	3
$\begin{gathered} 1525 \\ 60 \end{gathered}$	15 mm $1 / 2$ Straight 20 mm $3 / 4$ Straight	$\begin{gathered} 4.1 \\ 13.6 \end{gathered}$	3
$\begin{gathered} 1830 \\ 72 \end{gathered}$	15 mm $1 / 2$ Straight 20 mm $3 / 4$ Straight	$\begin{gathered} 5.5 \\ 18.1 \end{gathered}$	3

Series AH2 Braided Hose
Style AB2, AB3, AB4, AB5, AB7, AB8, AB10 and AB12 Brackets

Length of Flexible Hose mm inches	Equivalent Length of 1"/33.7 mm Sch. 40 Pipe	
	Straight Configuration meters feet	Bend Configuration meters feet
$\begin{gathered} 790 \\ 31 \end{gathered}$	$\begin{gathered} 0.87 \\ 2.9 \end{gathered}$	$\begin{gathered} 2.70 \\ 8.9 \end{gathered}$
$\begin{gathered} 915 \\ 36 \end{gathered}$	$\begin{gathered} 1.00 \\ 3.3 \end{gathered}$	$\begin{gathered} 2.80 \\ 9.2 \end{gathered}$
$\begin{gathered} 1220 \\ 48 \end{gathered}$	$\begin{gathered} 2.23 \\ 7.3 \end{gathered}$	$\begin{aligned} & 4.66 \\ & 15.3 \end{aligned}$
$\begin{gathered} 1525 \\ 60 \end{gathered}$	$\begin{gathered} 2.90 \\ 9.5 \end{gathered}$	$\begin{gathered} 6.5 \\ 21.3 \end{gathered}$
$\begin{gathered} 1830 \\ 72 \end{gathered}$	$\begin{aligned} & 3.31 \\ & 10.9 \end{aligned}$	$\begin{aligned} & 7.16 \\ & 23.5 \end{aligned}$

CCCF NOTE

- Friction loss data is in accordance with GB5135.16 tested at a flow rate of 114 liters per minute (30 gallons per minute).

6.0 NOTIFICATIONS

WARNING

- It is the responsibility of the system designer to verify suitability of 300-series stainless steel flexible hose for use with the intended fluid media within the piping system and external environments.
- The effect of chemical composition, pH level, operating temperature, chloride level, oxygen level, and flow rate on 300 -series stainless steel flexible hose must be evaluated by the material specifier to confirm system life will be acceptable for the intended service.
- It is the responsibility of the owner of a building or their authorized agent to provide the sprinkler system installer with any knowledge that the water supply might be contaminated with or conducive to the development of microbiologically influenced corrosion (MIC), including as required by NFPA 13. Failure to identify adverse water quality issues may affect the VicFlex product and void the manufacturer's warranty.
Failure to follow these instructions could cause product failure, resulting in serious personal injury and/or property damage.

Victaulic VicFlex Series AH2 and AH2-CC Flexible Sprinkler Fittings may be painted provided the paint is compatible with stainless steel and zinc-plated carbon steel or ductile iron. Care should be taken to ensure the sprinkler and associated escutcheon or coverplate are not painted.
Victaulic VicFlex Series AH2 and AH2-CC penetrating through non-fire rated gypsum wall (drywall) will function as designed, provided the components are installed in accordance with the respective installation instructions referenced in this document.

7.0 REFERENCE MATERIALS - CHARACTERISTICS

VicFlex Maximum Load Values

Series AH2 Hose with 24" Bracket

Model Size	Actual Length ft m	Total Load		Max. Uniform Load	
		lb	N	lb/linear ft	$\mathrm{N} /$ linear m
31/790	$\begin{aligned} & 2.6 \\ & 0.8 \end{aligned}$	5.2	23	2.6	38
36/915	$\begin{gathered} 3 \\ 0.9 \end{gathered}$	5.5	25	2.8	40
48/1220	$\begin{gathered} 4 \\ 1.2 \end{gathered}$	6.3	28	3.1	46
60/1525	$\begin{gathered} 5 \\ 1.5 \end{gathered}$	7.0	31	3.5	51
72/1830	$\begin{gathered} 6 \\ 1.8 \end{gathered}$	7.7	34	3.9	57

Series AH2 Hose with 48" Bracket

Model Size	Actual Length ft m	Total Load		Max. Uniform Load	
		lb	N	$\mathrm{lb} / \mathrm{linear} \mathrm{ft}$	$\mathrm{N} /$ linear m
31/790	$\begin{aligned} & 2.6 \\ & 0.8 \end{aligned}$	6.1	27	1.5	22
36/915	$\begin{gathered} 3 \\ 0.9 \end{gathered}$	6.4	29	1.6	23
48/1220	$\begin{gathered} 4 \\ 1.2 \end{gathered}$	7.2	32	1.8	26
60/1525	$\begin{gathered} 5 \\ 1.5 \end{gathered}$	7.9	35	2.0	29
72/1830	$\begin{gathered} 6 \\ 1.8 \end{gathered}$	8.7	39	2.2	32

Total Load is defined as the sum of the weights of the following:

- water-filled flexible sprinkler hose with threaded end fittings, including a typical fire sprinkler
- bracket assembly (any applicable Victaulic bracket model of the relevant associated size)

ASTM C 635: Suspension System Load-Carrying Capabilities (excerpted)

Suspension System	Actual Length	Min. Allowable Uniform Load	
	ft / m	$\mathrm{lb} /$ linear ft	$\mathrm{N} /$ linear m
	Light	5.0	75.7
	Intermediate	12.0	181.0
	Heavy	16.0	241.7

SUMMARY: All direct-hung suspension system duty classifications per ASTM C 635 are able to withstand the maximum water-filled weight of the VicFlex sprinkler hose and bracket.

7.0 REFERENCE MATERIALS - CHARACTERISTICS (CONTINUED)

Flexible Hose In-Plane Bend Characteristics

One Bend

NOTE
For out-of-plane (three-dimensional) bends, care must be taken to avoid imparting torque on the hose.

I-VicFlex-AB1-AB2

I-VicFlex-AB3
I-VicFlex-AB4
I-VicFlex-AB5
I-VicFlex-AB7
I-VicFlex-AB12
I-VicFlex-ABBA
I-VicFlex-ABMM
I-RES

User Responsibility for Product Selection and Suitability
Each user bears final responsibility for making a determination as to the suitability of Victaulic products for a particular end-use application, in accordance with industry standards and project specifications, and the applicable building codes and related regulations as well as Victaulic performance, maintenance, safety, and warning instructions. Nothing in this or any other document, nor any verbal recommendation, advice, or opinion from any Victaulic employee, shall be deemed to alter, vary, supersede, or waive any provision of Victaulic Company's standard conditions of sale, installation guide, or this disclaimer.
Intellectual Property Rights
No statement contained herein concerning a possible or suggested use of any material product, service, or design is intended, or should be constructed, to grant any license under any patent or other intellectual property right of Victaulic or any of its subsidaries or affiliates covering such use or design, or as a recommendation for the use of such material, product, service, or design in the infringement of any patent or other intellectual property right. The terms "Patented" or "Patent Pending" refer to design or utility patents or patent applications for articles and/or methods of use in the United States and/or other countries.

Note
This product shall be manufactured by Victaulic or to Victaulic specifications. All products to be installed in accordance with current Victaulic installation/assembly instructions. Victaulic reserves the right to change product specifications, designs and standard equipment without notice and without incurring obligations.

Installation

Reference should always be made to I-VICFLEX-AB1-AB2-AB10, I-VICFLEX-AB4,
I-VICFLEX-AB7, or I-VICFLEX-AB8 for the product you are installing. Handbooks are included with each shipment of Victaulic products for complete installation and assembly data, and are available in PDF format on our website at www.victaulic.com.

Narranty

Refer to the Warranty section of the current Price List or contact Victaulic for details.

Trademarks

Victaulic and all other Victaulic marks are the trademarks or registered trademarks of Victaulic Company, and/or its affiliated entities, in the U.S. and/or other countries.

