

Stormwater Site Plan

PREPARED FOR:

Integrus Architecture Contact: Sarah Wilder 117 South Main Street, Suite 100 Seattle, WA 98104

PROJECT:

Pierce College Puyallup New STEM Building Puyallup, WA 2210810.10

PREPARED BY:

Claire Hovde Project Engineer

REVIEWED BY:

William J. Fierst, PE Principal

DATE:

May 2022 Revised August 2022 Revised October 2022

Stormwater Site Plan

PREPARED FOR:

Integrus Architecture Contact: Sarah Wilder 117 South Main Street, Suite 100 Seattle, WA 98104

PROJECT:

Pierce College Puyallup New STEM Building Puyallup, WA 2210810.10

PREPARED BY:

Claire Hovde Project Engineer

REVIEWED BY:

William J. Fierst, PE Principal

DATE

May 2022 Revised August 2022 Revised October 2022

10/24/2022

I hereby state that this Stormwater Site Plan for the Pierce College Puyallup New STEM Building project has been prepared by me or under my supervision and meets the standard of care and expertise that is usual and customary in this community for professional engineers. I understand that City of Puyallup does not and will not assume liability for the sufficiency, suitability, or performance of drainage facilities prepared by me.

Table of Contents

Sectio	on	Page	Э
1.0	Projec	t Overview	1
	1.1	Existing Conditions	1
		1.1.1 Critical Areas	2
		1.1.2 Site Soils	2
	1.2	Proposed Conditions	2
2.0	Minimum Requirements2		
	2.1	MR 1: Preparation of Stormwater Site Plans	3
	2.2	MR 2: Construction Stormwater Pollution Prevention	3
	2.3	MR 3: Source Control of Pollution	3
	2.4	MR 4: Preservation of Natural Drainage Systems and Outfalls	4
	2.5	MR 5: Onsite Stormwater Management	4
	2.6	MR 6: Runoff Treatment	5
	2.7	MR 7: Flow Control	5
	2.8	MR 8: Wetlands Protection	5
	2.9	MR 9: Operations and Maintenance	6
3.0	Offsite	Analysis	6
4.0	Perma	nent Stormwater Control Plan	6
	4.1	Existing Site Hydrology	6
	4.2	Developed Site Hydrology	7
	4.3	Flow Control System	7
	4.4	Water Quality System	7
	4.5	Conveyance System Analysis and Design	7
5.0	Constr	uction Stormwater Pollution Prevention Plan	8
6.0	Special Reports and Studies8		8
7.0	Conclu	ision	8

Appendices

Appendix A

Exhibits

A-1 Vicinity Map
A-2.1 Existing Conditions Map - South
A-2.2 Existing Conditions Map - North
A-3 Downstream Map
A-4.1 Developed Site Map - South
A-4.2 Developed Site Map – North
A-5 Water Quality Basin Map
A-6 Existing Wetland Basin Map
A-7 [Not Used]
A-8 Campus Map
A-9 FEMA Flood Map
A-10 City of Puyallup Drainage Basin Map
A-11 City of Puyallup Critical Areas Map
A-12 NRCS Soils Map
A-13 2019 SWMMWW Flow Chart for Determining Stormwater Requirements
A-14

Appendix B

Flow Control, Water Quality, Wetland Hydroperiod, and Conveyance Calculations

B-1..... Flow Control and Water Quality Calculations B-2..... Wetland Hydroperiod Calculations B-3..... Conveyance Calculations

Appendix C

Special Reports and Studies

C-1	Geotechnical Engineering Services Report by GeoEngineers, Inc.,
	January 21, 2021
C-2	Geotechnical Engineering Services Addendum Report No. 1 by
	GeoEngineers, Inc., June 29, 2022

C-3...... Wetland Analysis Report by Grette Associates, LLC, April 25, 2022

Appendix D

Operation and Maintenance Manual

1.0 **Project Overview**

This Stormwater Site Plan (SSP) describes proposed stormwater mitigation for the proposed STEM classroom building project at Pierce College Puyallup (PCP). PCP is bounded by 39th Avenue SE to the south, Wildwood Park Drive to the north and east, and Bradley Lake and commercial properties to the west in Puyallup, Washington. The total campus area is approximately 122.3 acres and is situated on eight separate parcels.

The project proposes a new STEM classroom building and a new 108-stall parking lot. Refer to Section 1.2 for proposed basin areas. Improvements include asphalt paving, concrete paving, a new building, utilities services for the new building, and stormwater management. Refer to Appendices A-4.1 and A4.2 for Developed Conditions Maps for more information. A belowground detention facility using StormTech MC-7200 chambers is proposed for stormwater flow control. A bioretention facility will be used upstream of the proposed flow control facility to provide stormwater quality treatment for pollution generating impervious surfaces (PGIS).

This SSP describes the stormwater facilities designed for this project. The drainage plans and report have been prepared to satisfy all requirements of the Department of Ecology (DOE) 2019 *Stormwater Management Manual for Western Washington (SWMMWW)*. This report accompanies the final site plan submitted for the proposed new STEM building at PCP.

1.1 Existing Conditions

The 122.3-acre campus is partially developed and located on the north side of 39th Avenue SE. The campus consists of several buildings, parking lots, detention ponds, forested areas, wetlands, and an access drive loop that is routed around the perimeter of the developed portion of the campus.

PCP is bounded by 39th Avenue SE to the south, Wildwood Park Drive to the north and east, and Bradley Lake and commercial properties to the west in Puyallup, Washington. The main entrance driveway to the campus is located on the south side of the property along 39th Avenue SE. An additional driveway connection to the campus is located at the northwest of the site and connects to 7th Street SE. All adjacent properties are downgradient of the site and do not appear to discharge stormwater onto the campus.

The campus straddles two drainage basins, as outlined by the City of Puyallup Drainage Basin Map. The basin delineation line runs approximately north/south down the middle of the campus. The west side of the campus is within the State Highway Basin and the east side of the campus is within the Pothole Basin. Refer to Appendix A-10, City of Puyallup Drainage Basin Map for more information. The proposed improvements are located within the Pothole Basin. Refer to Appendices A-2.1 and A-2.2 for the Existing Condition Maps for more information.

The existing conditions at the project site include native vegetation and forested area that are undeveloped. Topography generally slopes from southwest to northeast. The project site drains to an existing conveyance system that is routed north and east before outfalling to an existing detention pond located at the far eastern edge of the campus. The existing detention pond outfalls to a biofiltration swale, where it eventually disperses into an existing unnamed wetland located approximately 320 feet southeast of the detention pond. Refer to Appendix A-3, Downstream Map for the location of the existing detention pond and existing wetland. Additionally, the parking lot portion of the project is adjacent to existing Wetland A. A small portion of the existing project basin drains to Wetland A in the existing condition. Refer to Appendix A-2.2, Existing Conditions Map for more information.

1.1.1 Critical Areas

The site contains five wetlands onsite, per the City of Puyallup GIS Critical Areas Map (see Appendix A-11 for more information). PCP maps indicate 11 wetlands are located onsite. An existing wetland, Wetland A, is located adjacent to the project limits located approximately 60 feet north of the proposed parking lot. A Wetland Analysis Report by Grette Associates dated April 25, 2022, has been completed for the wetlands near the proposed site improvements (see Appendix C-2). Refer to Section 2.8 for additional information.

1.1.2 Site Soils

Soils at the site are mapped by the Natural Resources Conservation Service (NRCS) as predominantly gravelly sandy loam underlain by glacial till. Refer to Appendix A-12 for the NRCS Soils Map.

The Geotechnical Engineering Services Report by GeoEngineers, Inc. dated January 21, 2021, confirms the site is underlain by glacial till. Pit testing showed perched groundwater and seepage into the pit. Therefore, infiltration is not possible. Refer to Appendix C-1 for the Geotechnical Engineering Services Report and Appendix C-3 for a memo dated May 4, 2022, from GeoEngineers detailing their pit testing results.

1.2 Proposed Conditions

The proposed STEM project is centrally located on the campus approximately 100 feet north of the Library Sciences Center (LSC) and approximately 250 feet east of the College Center (CTR). Refer to Appendix A-8, Campus Map for existing building and proposed project location.

The project proposes a new STEM building and a new 100-stall parking lot. Improvements include a new building, asphalt paving, concrete paving, utilities, and stormwater management facilities. Refer to Appendices A-4.1 and A-4.2 for Developed Conditions Maps for more information. A belowground detention facility using StormTech MC-7200 chambers is proposed for stormwater flow control. A bioretention facility will be used upstream of the proposed flow control facility to provide stormwater quality treatment for PGIS. Refer to Section 4.2 for more information. Proposed site areas are tabulated below:

	Acres	Percent of Project Area
Impervious Area	1.47	67%
PGIS Area	0.66	30%
Pervious Area	0.73	33%
Total Disturbed Area	2.20	130%

2.0 Minimum Requirements

The New STEM Building project is considered new development and is subject to Minimum Requirements (MRs) 1 through 9 because the project proposes more than 5,000 square feet of new and replaced hard surfaces. Therefore, all minimum requirements apply to new hard surfaces and the converted vegetation.

Based on discussions with the City of Puyallup, existing paving that is being replaced does not contribute to impervious surfaces thresholds for stormwater mitigation. To meet this requirement, the replaced impervious surfaces must maintain existing grades and therefore must follow the existing site characteristics for stormwater runoff. A small portion of existing paving located west of the STEM building will be replaced due to routing of utilities to serve the new STEM building. The replaced paving for utility routing will satisfy the above requirements and therefore will not be included in the stormwater calculations. However, the replaced paving will meet the requirements outlined below for MRs 1 through 4.

Below is a discussion of how the project meets each of the requirements.

2.1 MR 1: Preparation of Stormwater Site Plans

A complete stormwater site plan including civil plans and this report are provided with this site development permit package.

2.2 MR 2: Construction Stormwater Pollution Prevention

A Construction Stormwater Pollution Prevention Plan (CSWPPP) is included with this site development permit package.

2.3 MR 3: Source Control of Pollution

The project is required to provide source control of pollution. *SWMMWW* Volume 4, Chapter 4 was used as a reference because this is a commercial project. Maintenance, repair, and cleaning of vehicles will be conducted inside a building, which is consistent with the structural source controls of this chapter. Some additional practices include:

- Assign one or more individuals to be responsible for stormwater pollution control related to inspections, operation, maintenance, and emergencies.
- Cover, containment, and protection from vandalism shall be provided for all chemicals, liquid products, petroleum products, and non-inert wastes present on the site (see Chapter 173-304 WAC for the definition of inert waste).
- Maintenance and repair of equipment and vehicles that may result in discharge or spillage of pollutants to the ground or into surface water runoff must be conducted inside the detail shop.
- Spills and leaks of gasoline or other pollutants will be promptly contained and cleaned. Solid absorbents should be used for cleanup of liquid spills. Spill cleanup materials shall not be flushed to storm drains. Pollutants shall not be hosed down from any area to the ground or storm drains.
- All pollutants, including waste materials and demolition debris created onsite during construction, shall be handled and disposed of in a manner that does not cause contamination of surface water.

The CSWPPP, under separate cover, provides details on source control of pollution during construction.

2.4 MR 4: Preservation of Natural Drainage Systems and Outfalls

The campus is currently developed, with several sub-basins located throughout. The project site drains to an existing detention pond that ultimately disperses to an existing unnamed wetland. Refer to Appendix A-3, Downstream Map for more information on the project site's natural drainage systems and outfalls.

Stormwater from proposed improvements will outfall to the same waterbodies in the existing and proposed conditions within their respective sub-basins. Therefore, all proposed improvements will maintain onsite natural drainage courses.

2.5 MR 5: Onsite Stormwater Management

As outlined in *SWMMWW* Figure I-2.4.2, the project results in over 5,000 square feet of new plus replaced hard surfaces. Therefore, the project is subject to MRs 1 through 9 and List 2, as outlined in *SWMMWW* Section I-3.4.5.

Per *SWMMWW* Figure I-2.5.1, the project is subject to List 2 for considering feasibility of onsite stormwater management Best Management Practices (BMPs). List 2 feasibility follows:

Lawn and Landscaped Areas:

• <u>BMP T5.13: Post Construction Soil Quality and Depth</u> – The project will meet this requirement.

Roofs:

- <u>BMP T5.30: Full Dispersion</u> Full dispersion is infeasible because the project does not have adequate native vegetation to provide full dispersion.
- <u>BMP T5.10A Full Downspout Infiltration</u> Full downspout infiltration is infeasible because the project has underlying soils that are not suitable for infiltration.
- <u>BMP T7.30: Bioretention</u> Bioretention facilities are infeasible because the project has underlying soils that are not suitable for infiltration.
- <u>BMP T5.10: Downspout Dispersion Systems</u> Downspout dispersion systems are infeasible because the project does not have adequate native vegetation to provide full dispersion.
- <u>BMP T5.10C Perforated Stub-Out Connections</u> Perforated stub-out connections are infeasible because the project has underlying soils that are not suitable for infiltration.

Other Hard Surfaces:

- <u>BMP T5.30: Full Dispersion</u> Full dispersion is infeasible because the project does not have adequate native vegetation to provide full dispersion. However, Parking Lot 6 does have sufficient vegetated area down gradient of the proposed improvements; therefore, full dispersion is proposed.
- <u>BMP T5.15: Permeable Pavement</u> Permeable pavement is infeasible because the project has underlying soils that are not suitable for infiltration.

- <u>BMP T7.30: Bioretention</u> Bioretention facilities are infeasible because the project has underlying soils that are not suitable for infiltration. However, bioretention will be used for water quality for PGIS surfaces located at the parking lot. The bioretention will use an underdrain due to site soils not allowing for infiltration.
- <u>BMP T5.12: Sheet Flow Dispersion</u> Sheet flow dispersion is infeasible because the project does not have adequate native vegetation to provide full dispersion.
- <u>BMP T5.11: Concentrated Flow Dispersion</u> Concentrated flow dispersion is infeasible because the project does not have adequate native vegetation to provide full dispersion.

2.6 MR 6: Runoff Treatment

All proposed pollution generating surfaces will be treated for water quality via BMP T7.30 Bioretention. Refer to Section 4.4 for more information. Refer to Appendix A-5 for the location of the proposed bioretention facility. Refer to Appendix B-1 for water quality calculations.

Two raingardens are proposed to the east of the proposed building. However, these raingardens are provided for aesthetic and education purposes, not for water quality treatment. All water quality treatment is provided by the bioretention facility in the northeast corner of the new parking lot.

2.7 MR 7: Flow Control

A flow control system will be provided for the project via an underground detention facility. The system will use underground StormTech MC-7200 chambers. The flow control system has been calculated using the Western Washington Hydrology Model (WWHM) and meets all requirements of the 2019 *SWMMWW*. Refer to Section 4.2 for more information. Refer to Appendices A-4.1 and A-4.2 for the location of proposed flow control facilities. Refer to Appendix B-1 for flow control calculations.

2.8 MR 8: Wetlands Protection

The site contains five wetlands onsite, per the City of Puyallup GIS Critical Areas Map (see Appendix A-11 for more information). PCP maps indicate 11 wetlands are located onsite. A Wetland Analysis Report by Grette Associates, dated April 25, 2022, has been completed for the wetlands that are near the proposed site improvements. Refer to Appendix C-2 for more information.

The project site drains to an unnamed wetland located at the southeast corner of the campus. No work is planned in or near the wetland buffer; therefore, it is not included in the wetland study. The drainage basin tributary to the wetland is large and contains approximately 54.83 acres in total area. The basin is partially developed and includes approximately 14.67 acres of impervious surfaces. Refer to Appendix A-6, Existing Wetland Basin Map for more information. The entire basin has been modeled in WWHM to calculate the wetland hydroperiods in the existing and proposed conditions per the guidelines set forth in the *SWMMWW*, Appendix I-D. The proposed improvements are in compliance with the *SWMMWW* and will therefore not impact the wetlands hydrology. Refer to Appendix B-2, Wetland Hydroperiod Calculations for more information.

The parking lot improvements are located adjacent to a separate wetland, Wetland A, which the project outfalls to. Wetland A is located approximately 60 feet north of the project site. The project site and the wetland are separated by College Way. Wetland A is considered a Category III wetland, with a habitat score of 5 points and an 80-foot buffer. It is located approximately 110 feet from improvements at Parking Lot B. A small portion of the existing project basin drains to the

adjacent wetland in the existing condition via a bypass catch basin. The bypass catch basin collects approximately 0.02 acre of pervious area in the existing condition. An area exchange is proposed to maintain the wetland's hydrology by providing an equal amount of area within the project limits. Therefore, Wetland A's hydrology will not be impacted by the proposed work. Refer to Appendix A-2.2, Existing Conditions Map for more information on Wetland A's existing basin. Refer to Appendix A-4.2 Developed Conditions Map for more information on the proposed basin exchange.

The existing hydrology for all onsite wetlands will not be impacted by the proposed work and therefore the project is in compliance with MR 8.

2.9 MR 9: Operations and Maintenance

An Operations and Maintenance Manual is provided with this submittal. Refer to Appendix D for more information.

3.0 Offsite Analysis

The project discharges at the northeast end of the campus along the College Way. Stormwater is then collected and conveyed via catch basins and 12-inch storm pipes. Stormwater is routed north for approximately 150 feet along College Way. Stormwater is then routed east through 18-inch storm pipes for approximately 100 feet, where it outfalls to a riprap ditch. Stormwater then flows south for approximately 500 feet before outfalling to the existing detention pond located at the eastern extent of the campus. The existing detention pond outfalls to a riprap pad, where it eventually disperses into an existing unnamed wetland located approximately 320 feet southeast of the detention pond. Refer to Appendix A-3, Downstream Map for the existing detention pond location.

Impacts to offsite drainage courses and conveyance systems are not anticipated.

4.0 Permanent Stormwater Control Plan

4.1 Existing Site Hydrology

The campus straddles two drainage basins, as outlined by the City of Puyallup Drainage Basin Map. The basin delineation line runs approximately north/south down the middle of the site. The west side of the site is in the State Highway Basin and the east side of the site is in the Pothole Basin. Refer to Appendix A-10, City of Puyallup Drainage Basin Map for more information. All adjacent properties are downgradient of the site and do not appear to discharge stormwater onto the proposed site.

The proposed STEM project is centrally located on the campus approximately 100 feet north of the Library Sciences Center (LSC) and approximately 250 feet east of the College Center (CTR). The project site is located within the City of Puyallup Pothole Basin. The existing conditions include native vegetation and forested area. Topography generally slopes from southwest to northeast. The project site drains to an existing conveyance system that is routed north and then east throughout the campus before ultimately outfalling to an existing detention pond located at the far eastern edge of the campus. The existing detention pond outfalls to a riprap pad, where it eventually disperses into an existing unnamed wetland located approximately 320 feet southeast of the detention pond. Refer to Appendix A-3, Downstream Map for the existing detention pond location.

A small portion of the existing basin drains to Wetland A located approximately 60 feet north of the project. A basin exchange is proposed to maintain the area tributary to the existing wetland.

Therefore, the existing hydrology of the north wetland will not be impacted by the proposed work. Refer to Appendix A-2.2, Existing Conditions Maps for more information on the project's existing basin. Refer to Appendix A-4.2, Developed Conditions Map for more information on the proposed basin exchange.

4.2 Developed Site Hydrology

All proposed improvements will maintain onsite natural drainage courses, as outlined in Section 4.1. Stormwater from proposed improvements will outfall to the same locations within their respective sub-basins. Stormwater flows from proposed developed areas will be properly managed and will meet all the requirements set forth in the *SWMMWW*. Proposed developed hydrology will not further impact downstream drainage courses.

4.3 Flow Control System

A flow control system will be provided for the project via an underground detention facility. The system will use underground StormTech MC-7200 chambers. The flow control system has been calculated using WWHM and meets all requirements of the 2019 *SWMMWW*. Refer to Section 4.2 for more information. Refer to Appendices A-4.1 and A-4.2 for the location of proposed flow control facilities. Refer to Appendix B-1 for flow control calculations.

The flow control system has been calculated using WWHM and meets all requirements of the 2019 *SWMMWW*. The project will use BMP T5.13: Post Construction Soil Quality and Depth for all pervious areas impacted by the project. Per the *SWMMWW*, Volume V, Section V11.1, project areas meeting the requirements set forth by BMP T5.13 may model pervious area as pasture rather than lawn. The project intends to use these criteria. Refer to Appendix B-1 for flow control calculations for more information.

4.4 Water Quality System

All proposed pollution generating surfaces will receive Basic Treatment for water quality via BMP T7.30 Bioretention. Refer to Appendix A-14 for the Runoff Treatment BMP Selection Flow Chart. The bioretention facility is located in the northeast corner of the new parking lot. Stormwater from the proposed parking will sheet flow over land and enter the bioretention facility. Refer to Appendix A-5 for the location of the proposed bioretention facility. The bioretention facility will use perforated pipe underdrains to treat a minimum of 91 percent of all stormwater that enters the facility. Stormwater that is treated by the bioretention facility will be conveyed to the downstream flow control facility.

All water quality systems have been calculated using WWHM and meet all requirements of the 2019 *SWMMWW*, as indicated in Section III-2.6. Refer to Appendix B-1 for water quality calculations.

Two raingardens are proposed to the east of the proposed building. However, these raingardens are provided for aesthetic and educational purposes, not for water quality treatment. All water quality treatment is provided by the bioretention facility in the northeast corner of the new parking lot.

4.5 Conveyance System Analysis and Design

The onsite conveyance system consists of catch basins and 12-inch storm pipes with a minimum slope of 0.005 ft/ft. A conveyance analysis was performed on the farthest downstream pipe prior to entering the detention system. The conveyance analysis was modeled conservatively by routing all runoff from the building sub-basin into SDCB 10. The parking sub-basin was routed

into SDCB 19. The pipe slopes were changed from the actual slopes to 0.50 to be conservative as well. The conveyance system was analyzed for the 25-year, 24-hour design storm using the Santa Barbara Urban Hydrograph (SBUH) method, assuming a Type 1A rainfall distribution (3.5 inches). The model confirms the system has adequate capacity. Refer to Appendix B-3 for Conveyance Calculations.

5.0 Construction Stormwater Pollution Prevention Plan

A Construction Stormwater Pollution Prevention Plan (CSWPPP) will be included under a separate cover for this site development permit package.

6.0 Special Reports and Studies

This project includes a Geotechnical Engineering Services Report by GeoEngineers, Inc. dated January 21, 2021, and a Wetland Analysis Report by Grette Associates dated April 25, 2022. Refer to Appendix C for the special reports.

7.0 Conclusion

This analysis is based on data and records either supplied to or obtained by AHBL. These documents are referenced within the text of the analysis. The analysis has been prepared using procedures and practices within the standard accepted practices of the industry. We conclude that this project, as proposed, will not create any new problems within the existing downstream drainage system. This project will not noticeably aggravate any existing downstream problems due to either water quality or quantity.

AHBL, Inc.

Claire Hovde Project Engineer

CFH/ACP/lsk

May 2022 Revised August 2022 Revised October 2022

Q:\2021\2210810\WORDPROC\Reports\20221024 Rpt (SSP) 2210810.10.docxQ:\2021\2210810\WORDPROC\Reports\20221024 Rpt (SSP) 2210810.10.docxQ

Appendix A

Exhibits

A-1Vicinity Map
A-2.1 Existing Conditions Map - South
A-2.2 Existing Conditions Map - North
A-3Downstream Map
A-4.1 Developed Site Map - South
A-4.2 Developed Site Map – North
A-5Water Quality Basin Map
A-6 Existing Wetland Basin Map
A-7[Not Used]
A-8Campus Map
A-9 FEMA Flood Map
A-10City of Puyallup Drainage Basin Map
A-11City of Puyallup Critical Areas Map
A-12NRCS Soils Map
A-13
A-14

IG BASIN AREAS			
IMPERVIOUS	TOTAL		
0.14 AC	1.38 AC		

IG BASIN AREAS		
IMPERVIOUS	TOTAL	
0 AC	0.82 AC	

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

National Flood Hazard Layer FIRMette

Legend

000 Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020 EX A-10

EX A-11

ArcGIS Web Map

6/29/2021, 11:26:01 AM

Unverified

Regulated Floodplain 2017

Zone X (SHADED)

Field-verified

Wetlands

Unverified

1:9,028 0.1 0 0.05 0.2 mi 0.07 0.15 0.3 km 0

Maxar

Soil Map—Pierce County Area, Washington

Natural Resources **Conservation Service**

USDA

Web Soil Survey National Cooperative Soil Survey

6/29/2021 Page 1 of 3

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
4A	Bellingham silty clay loam	1.4	0.3%	
13B	Everett very gravelly sandy loam, 0 to 8 percent slopes	157.9	34.8%	
18B	Indianola loamy sand, 0 to 5 percent slopes	20.3	4.5%	
18C	Indianola loamy sand, 5 to 15 percent slopes	41.7	9.2%	
19B	Kapowsin gravelly ashy loam, 0 to 6 percent slopes	42.1	9.3%	
19C	Kapowsin gravelly ashy loam, 6 to 15 percent slopes	141.4	31.2%	
19E	Kapowsin gravelly ashy loam, 30 to 65 percent slopes	32.9	7.3%	
20B	Kitsap silt loam, 2 to 8 percent slopes	2.8	0.6%	
24D	Neilton gravelly loamy sand, 8 to 25 percent slopes	4.4	1.0%	
W	Water	8.8	1.9%	
Totals for Area of Interest		453.7	100.0%	

Pierce County Area, Washington

13B—Everett very gravelly sandy loam, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2t629 Elevation: 30 to 900 feet Mean annual precipitation: 35 to 91 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 180 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Everett and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Everett

Setting

Landform: Eskers, moraines, kames Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Crest, interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Sandy and gravelly glacial outwash

Typical profile

- Oi 0 to 1 inches: slightly decomposed plant material
- A 1 to 3 inches: very gravelly sandy loam
- Bw 3 to 24 inches: very gravelly sandy loam
- C1 24 to 35 inches: very gravelly loamy sand
- C2 35 to 60 inches: extremely cobbly coarse sand

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4s Hydrologic Soil Group: A

Forage suitability group: Droughty Soils (G002XS401WA), Droughty Soils (G002XN402WA), Droughty Soils (G002XF403WA)
Other vegetative classification: Droughty Soils (G002XS401WA), Droughty Soils (G002XN402WA), Droughty Soils (G002XF403WA)
Hydric soil rating: No

Minor Components

Alderwood

Percent of map unit: 10 percent Landform: Ridges, hills Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest, talf Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Indianola

Percent of map unit: 10 percent Landform: Terraces, eskers, kames Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Data Source Information

Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 16, Jun 4, 2020

Hydrologic Soil Group: B
Forage suitability group: Limited Depth Soils (G002XF303WA), Limited Depth Soils (G002XN302WA)
Other vegetative classification: Limited Depth Soils (G002XF303WA), Limited Depth Soils (G002XN302WA)
Hydric soil rating: No

Minor Components

Alderwood

Percent of map unit: 5 percent Landform: Ridges, hills Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest, talf Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Mckenna

Percent of map unit: 2 percent Landform: Depressions, drainageways Landform position (three-dimensional): Dip Down-slope shape: Concave, linear Across-slope shape: Concave Hydric soil rating: Yes

Dupont

Percent of map unit: 2 percent Landform: Depressions, troughs Landform position (three-dimensional): Dip Down-slope shape: Concave, linear Across-slope shape: Concave Hydric soil rating: Yes

Norma

Percent of map unit: 2 percent Landform: Depressions, drainageways Landform position (three-dimensional): Dip Down-slope shape: Concave, linear Across-slope shape: Concave Hydric soil rating: Yes

Harstine

Percent of map unit: 2 percent Landform: Ridges Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest Down-slope shape: Linear Across-slope shape: Convex Hydric soil rating: No

Neilton

Percent of map unit: 2 percent Landform: Outwash terraces

Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Data Source Information

Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 16, Jun 4, 2020

Pierce County Area, Washington

19C—Kapowsin gravelly ashy loam, 6 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2t61x Elevation: 50 to 900 feet Mean annual precipitation: 30 to 50 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 150 to 220 days Farmland classification: All areas are prime farmland

Map Unit Composition

Kapowsin and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kapowsin

Setting

Landform: Moraines Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Side slope, base slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Volcanic ash mixed with glacial drift over dense glaciomarine deposits

Typical profile

Ap - 0 to 7 inches: gravelly ashy loam Bhs - 7 to 11 inches: gravelly ashy loam Bs1 - 11 to 15 inches: gravelly ashy loam 2Bs2 - 15 to 25 inches: loam 3Bstm - 25 to 29 inches: loam 3Cd - 29 to 59 inches: gravelly loam

Properties and qualities

Slope: 6 to 15 percent
Depth to restrictive feature: More than 80 inches; More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: About 11 to 24 inches
Frequency of flooding: None
Frequency of ponding: None

Available water capacity: Low (about 5.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B
Forage suitability group: Limited Depth Soils (G002XF303WA), Limited Depth Soils (G002XN302WA)
Other vegetative classification: Limited Depth Soils (G002XF303WA), Limited Depth Soils (G002XN302WA)
Hydric soil rating: No

Minor Components

Alderwood

Percent of map unit: 5 percent Landform: Ridges, hills Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Nose slope, talf Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Neilton

Percent of map unit: 2 percent Landform: Outwash terraces Landform position (three-dimensional): Riser Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Norma

Percent of map unit: 2 percent Landform: Depressions, drainageways Landform position (three-dimensional): Dip Down-slope shape: Concave, linear Across-slope shape: Concave Hydric soil rating: Yes

Mckenna

Percent of map unit: 2 percent Landform: Depressions, drainageways Landform position (three-dimensional): Dip Down-slope shape: Concave, linear Across-slope shape: Concave Hydric soil rating: Yes

Dupont

Percent of map unit: 2 percent Landform: Depressions, troughs Landform position (three-dimensional): Dip Down-slope shape: Concave, linear Across-slope shape: Concave Hydric soil rating: Yes

Harstine

Percent of map unit: 2 percent Landform: Ridges Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Nose slope Down-slope shape: Linear Across-slope shape: Convex Hydric soil rating: No

Data Source Information

Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 16, Jun 4, 2020

Pierce County Area, Washington

19E—Kapowsin gravelly ashy loam, 30 to 65 percent slopes

Map Unit Setting

National map unit symbol: 2t620 Elevation: 50 to 900 feet Mean annual precipitation: 30 to 50 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 150 to 220 days Farmland classification: Not prime farmland

Map Unit Composition

Kapowsin and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kapowsin

Setting

Landform: Moraines Landform position (two-dimensional): Footslope, backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Volcanic ash mixed with glacial drift over dense glaciomarine deposits

Typical profile

Ap - 0 to 7 inches: gravelly ashy loam Bhs - 7 to 11 inches: gravelly ashy loam Bs1 - 11 to 15 inches: gravelly ashy loam 2Bs2 - 15 to 25 inches: loam 3Bstm - 25 to 29 inches: loam 3Cd - 29 to 59 inches: gravelly loam

Properties and qualities

Slope: 30 to 65 percent
Depth to restrictive feature: More than 80 inches; More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: About 11 to 24 inches
Frequency of flooding: None
Frequency of ponding: None

Available water capacity: Low (about 5.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e

USDA

Figure I-3.1: Flow Chart for Determining Requirements for New Development

2019 Stormwater Management Manual for Western Washington

Please see *http://www.ecy.wa.gov/copyright.html* for copyright notice including permissions, limitation of liability, and disclaimer.

State of Washington

Appendix B

Flow Control, Water Quality, Wetland Hydroperiod, and Conveyance Calculations

- B-1 Flow Control and Water Quality Calculations
- B-2.....Wetland Hydroperiod Calculations
- B-3.....Conveyance Calculations

<section-header>

General Model Information

Project Name:	Pierce College Detention_Chambers
Site Name:	Pierce College STEM
Site Address:	1601 39th Ave SE
City:	Puyallup
Report Date:	10/13/2022
Gage:	38 IN CENTRAL
Data Start:	10/01/1901
Data End:	09/30/2059
Timestep:	15 Minute
Precip Scale:	1.000
Version Date:	2021/08/18
Version:	4.2.18

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Surface

Bypass:	No
GroundWater:	No
Pervious Land Use C, Forest, Flat	acre 2.2
Pervious Total	2.2
Impervious Land Use	acre
Impervious Total	0
Basin Total	2.2
Element Flows To:	

Interflow

Groundwater

Mitigated Land Use

Basin 1

Bypass:	No	
GroundWater:	No	
Pervious Land Use C, Pasture, Flat	acre 0.73	
Pervious Total	0.73	
Impervious Land Use ROADS FLAT	acre 1.47	
Impervious Total	1.47	
Basin Total	2.2	
Flement Flows To:		

Element Flows TO:		
Surface	Interflow	Groundwater
Gravel Trench Bed 1	Gravel Trench Bed 1	

Routing Elements Predeveloped Routing

Mitigated Routing

Gravel Trench Bed 1

Bottom Length:			1000.00 ft.
Bottom Width:			9.08 ft.
Trench bottom slope	1:		0 To 1
Trench Left side slope	e 0:		0 To 1
Trench right side slope	e 2:		0 To 1
Material thickness of f	irst layer:		0.75
Pour Space of materia	al for first layer:		0.4
Material thickness of s	second layer:		5
Pour Space of materia	al for second la	yer:	0.73
Material thickness of t	hird layer:	-	1
Pour Space of materia	al for third layer	:	0.4
Discharge Structure	-		
Riser Height:	6.7 ft.		
Riser Diameter:	12 in.		
Orifice 1 Diameter:	0.6 in.	Elevatio	n:0 ft.
Orifice 2 Diameter:	0.82 in.	Elevatio	n:3.9 ft.
Orifice 3 Diameter:	1.1 in.	Elevatio	n:4.5 ft.
Element Flows To:			
Outlet 1	Outlet 2		

Gravel Trench Bed Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.208	0.000	0.000	0.000
0.0750	0.208	0.006	0.002	0.000
0.1500	0.208	0.012	0.003	0.000
0.2250	0.208	0.018	0.004	0.000
0.3000	0.208	0.025	0.005	0.000
0.3750	0.208	0.031	0.006	0.000
0.4500	0.208	0.037	0.006	0.000
0.5250	0.208	0.043	0.007	0.000
0.6000	0.208	0.050	0.007	0.000
0.6750	0.208	0.056	0.008	0.000
0.7500	0.208	0.062	0.008	0.000
0.8250	0.208	0.073	0.008	0.000
0.9000	0.208	0.085	0.009	0.000
0.9750	0.208	0.096	0.009	0.000
1.0500	0.208	0.108	0.010	0.000
1.1250	0.208	0.119	0.010	0.000
1.2000	0.208	0.131	0.010	0.000
1.2750	0.208	0.142	0.011	0.000
1.3500	0.208	0.153	0.011	0.000
1.4250	0.208	0.165	0.011	0.000
1.5000	0.208	0.176	0.012	0.000
1.5750	0.208	0.188	0.012	0.000
1.6500	0.208	0.199	0.012	0.000
1.7250	0.208	0.210	0.012	0.000
1.8000	0.208	0.222	0.013	0.000
1.8750	0.208	0.233	0.013	0.000
1.9500	0.208	0.245	0.013	0.000
2.0250	0.208	0.256	0.013	0.000
2.1000	0.208	0.268	0.014	0.000
2.1750	0.208	0.279	0.014	0.000

2.2500 2.3250	0.208 0.208	0.290 0.302	0.014 0.014	$0.000 \\ 0.000$
2.4000 2.4750	0.208 0.208	0.313 0.325	0.015 0.015	$0.000 \\ 0.000$
2.5500	0.208	0.336	0.015	0.000
2.7000	0.208	0.359	0.015	0.000
2.7750 2.8500	0.208 0.208	0.370 0.382	0.016 0.016	0.000 0.000
2.9250	0.208	0.393	0.016	0.000
3.0750	0.208	0.416	0.017	0.000
3.1500	0.208	0.427 0.439	0.017	0.000
3.3000 3.3750	0.208 0.208	0.450 0.462	0.017 0.017	0.000
3.4500	0.208	0.473	0.018	0.000
3.6000	0.208	0.484	0.018	0.000
3.6750 3.7500	0.208 0.208	0.507 0.519	0.018 0.018	0.000 0.000
3.8250	0.208	0.530	0.019	0.000
3.9750	0.208	0.553	0.024	0.000
4.0500 4.1250	0.208 0.208	0.564 0.576	0.026 0.028	0.000 0.000
4.2000	0.208	0.587 0.598	0.030	0.000
4.3500	0.208	0.610	0.032	0.000
4.4250 4.5000	0.208	0.621	0.033	0.000
4.5750 4.6500	0.208 0.208	0.644 0.656	0.044 0.049	$0.000 \\ 0.000$
4.7250	0.208	0.667	0.053	0.000
4.8750	0.208	0.690	0.059	0.000
4.9500 5.0250	0.208 0.208	0.701 0.713	0.062 0.065	$0.000 \\ 0.000$
5.1000	0.208	0.724	0.067	0.000
5.2500	0.208	0.747	0.072	0.000
5.3250 5.4000	0.208	0.758 0.770	0.074 0.076	0.000
5.4750 5.5500	0.208 0.208	0.781 0.792	0.078 0.080	0.000 0.000
5.6250	0.208	0.804	0.082	0.000
5.7750	0.208	0.815	0.085	0.000
5.8500 5.9250	0.208 0.208	0.828 0.834	0.087 0.088	0.000 0.000
6.0000 6.0750	0.208 0.208	0.840 0.847	0.090 0.092	0.000
6.1500	0.208	0.853	0.093	0.000
6.3000	0.208	0.865	0.095	0.000
6.3750 6.4500	0.208 0.208	0.872 0.878	0.098 0.099	$0.000 \\ 0.000$
6.5250	0.208	0.884	0.101	0.000

6.6000	0.208	0.890	0.102	0.000
6.6750	0.208	0.897	0.104	0.000

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC	#1
Total Pervious Area:	2.2	
Total Impervious Area:	0	

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.73 Total Impervious Area: 1.47

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.046365 year0.07212310 year0.08612125 year0.10036950 year0.108838100 year0.115801

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.022381
5 year	0.037679
10 year	0.051781
25 year	0.075351
50 year	0.097989
100 year	0.125848

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

rear	Fieuevelopeu	wiitiyat
1902	0.034	0.018
1903	0.028	0.015
1904	0.046	0.017
1905	0.022	0.024
1906	0.010	0.013
1907	0.071	0.018
1908	0.053	0.016
1909	0.052	0.018
1910	0.072	0.018
1911	0.047	0.018

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941	0.154 0.074 0.018 0.030 0.046 0.015 0.050 0.037 0.047 0.053 0.043 0.043 0.019 0.024 0.045 0.029 0.036 0.074 0.045 0.047 0.045 0.047 0.045 0.029 0.036 0.074 0.044 0.034 0.033 0.097 0.045 0.039 0.063 0.038 0.002 0.042 0.020 0.020 0.020 0.020	0.034 0.062 0.013 0.032 0.017 0.015 0.064 0.017 0.032 0.018 0.030 0.016 0.015 0.016 0.015 0.016 0.017 0.022 0.034 0.018 0.019 0.031 0.031 0.057 0.027 0.017 0.022 0.034 0.018 0.019 0.031 0.017 0.022 0.034 0.018 0.019 0.031 0.027 0.027 0.017 0.027 0.017 0.027 0.017 0.027 0.017 0.017 0.027 0.017 0.017 0.027 0.017 0.017 0.027 0.017 0.017 0.027 0.017 0.017 0.017 0.027 0.017 0.013 0.078
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957	0.033 0.060 0.053 0.029 0.018 0.100 0.085 0.024 0.030 0.130 0.117 0.042 0.035 0.017 0.060 0.125	0.018 0.032 0.018 0.014 0.015 0.047 0.016 0.015 0.058 0.079 0.026 0.014 0.015 0.034 0.038
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969	0.078 0.021 0.078 0.042 0.020 0.022 0.087 0.024 0.037 0.038 0.038	0.080 0.013 0.074 0.028 0.013 0.015 0.070 0.016 0.015 0.019 0.017

1970 1971 1972	0.060 0.094 0.061	0.019 0.070 0.021
1973 1974	0.078 0.042	0.042 0.018
1975 1976	0.099 0.052	0.083 0.019
1977 1978	0.018 0.088	0.013 0.072
1979	0.024	0.017
1980	0.048	0.018
1982 1983	0.019 0.078	0.014 0.031
1984 1985	0.032	0.016 0.017
1986	0.046	0.026
1987	0.056	0.003
1989 1990	0.050 0.057	0.016 0.018
1991 1992	0.045 0.064	0.027 0.060
1993	0.062	0.018
1995	0.093	0.024
1996 1997	0.102 0.039	0.079 0.015
1998 1999	0.046 0.004	0.018 0.015
2000	0.035 0.018	0.027 0.013
2002	0.065	0.018
2003	0.052	0.018
2005 2006	0.095 0.029	0.030 0.016
2007 2008	0.029 0.049	0.018 0.018
2009	0.034	0.017
2011	0.023	0.015
2012	0.034	0.017
2014 2015	0.020 0.038	0.014 0.016
2016 2017	0.015 0.071	0.015 0.035
2018	0.130	0.100
2020	0.040	0.016
2021	0.064	0.049
2023 2024	0.054 0.102	0.029 0.018
2025 2026	0.048 0.078	0.019 0.034
2027	0.028	0.016

2028	0.024	0.014
2029 2030	0.053	0.047
2031	0.032	0.014
2032	0.018	0.014
2033	0.028	0.015
2034	0.028	0.016
2036	0.057	0.022
2037	0.014	0.014
2038	0.046	0.031
2039	0.005	0.012
2040	0.025	0.017
2041	0.108	0.075
2043	0.052	0.035
2044	0.070	0.045
2045	0.048	0.038
2040 2047	0.056	0.067
2048	0.053	0.000
2049	0.048	0.018
2050	0.034	0.017
2051	0.050	0.018
2052	0.029	0.016
2054	0.065	0.058
2055	0.020	0.013
2056	0.023	0.014
2057	0.035	0.024
2059	0.078	0.033

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigate
1	0.1543	0.0999
2	0.1300	0.0979
3	0.1299	0.0939
4	0.1255	0.0833
5	0.1212	0.0811
6	0.1173	0.0800
7	0.1106	0.0788
8	0.1076	0.0786
9	0.1019	0.0775
10	0.1017	0.0764
11	0.0997	0.0747
12	0.0988	0.0745
13	0.0980	0.0720
14	0.0971	0.0718
15	0.0953	0.0705
16	0.0941	0.0701
17	0.0930	0.0669
18	0.0885	0.0643
19	0.0880	0.0627
20	0.0873	0.0620
21	0.0855	0.0601
22	0.0784	0.0582

23	0.0780	0.0579
24	0.0780	0.0569
25	0.0780	0.0491
26	0.0778	0.0473
27	0.0776	0.0471
28	0.0739	0.0462
29	0.0736	0.0455
30	0.0719	0.0434
31	0.0714	0.0424
32	0.0711	0.0415
33	0.0701	0.0379
34	0.0649	0.0347
35	0.0646	0.0346
36	0.0643	0.0344
37	0.0639	0.0338
38	0.0636	0.0338
39	0.0625	0.0336
40	0.0620	0.0329
41	0.0610	0.0321
42	0.0601	0.0317
43	0.0600	0.0317
44	0.0598	0.0314
45	0.0574	0.0310
46	0.0571	0.0309
47	0.0565	0.0308
48	0.0561	0.0303
49	0.0559	0.0301
50	0.0541	0.0300
51	0.0533	0.0295
52	0.0530	0.0295
53	0.0529	0.0275
54	0.0529	0.0274
55	0.0527	0.0266
56	0.0527	0.0265
57	0.0523	0.0263
58	0.0521	0.0259
59	0.0520	0.0239
60	0.0518	0.0238
61	0.0517	0.0236
62	0.0511	0.0221
63	0.0505	0.0218
64	0.0498	0.0212
65	0.0496	0.0192
66	0.0495	0.0192
67	0.0492	0.0190
68	0.0478	0.0189
69	0.0477	0.0189
70	0.0477	0.0188
71	0.0476	0.0187
72	0.0473	0.0187
73	0.0471	0.0185
74	0.0468	0.0185
75	0.0465	0.0184
76	0.0464	0.0183
77	0.0463	0.0183
78	0.0463	0.0183
79	0.0458	0.0182
80	0.0451	0.0182

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	0.0449 0.0447 0.0444 0.0438 0.0425 0.0423 0.0422 0.0421 0.0419 0.0412 0.0395 0.0392 0.0391 0.0381 0.0376 0.0376 0.0375 0.0366 0.0359 0.0351 0.0346 0.0343 0.0343 0.0342 0.0340 0.0338	0.0182 0.0181 0.0181 0.0181 0.0181 0.0180 0.0180 0.0179 0.0178 0.0177 0.0176 0.0176 0.0176 0.0176 0.0175 0.0175 0.0175 0.0175 0.0174 0.0174 0.0174 0.0172 0.0172 0.0172 0.0172 0.0171 0.0171 0.0170 0.0169 0.0168
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136	0.0337 0.0321 0.0327 0.0324 0.0318 0.0298 0.0298 0.0291 0.0289 0.0288 0.0288 0.0286 0.0286 0.0284 0.0283 0.0280 0.0279 0.0266 0.0263 0.0255 0.0245 0.0245 0.0245 0.0245 0.0245 0.0245 0.0245 0.0245 0.0242 0.0241 0.0232 0.0226 0.0223	0.0168 0.0167 0.0165 0.0164 0.0164 0.0164 0.0163 0.0160 0.0159 0.0159 0.0159 0.0159 0.0158 0.0157 0.0157 0.0157 0.0155 0.0154 0.0153 0.0153 0.0152 0.0151 0.0150 0.0148 0.0147
137 138	0.0221 0.0206	0.0146 0.0145

139	0.0201	0.0144
140	0.0201	0.0144
141	0.0201	0.0143
142	0.0196	0.0142
143	0.0195	0.0140
144	0.0194	0.0140
145	0.0181	0.0140
146	0.0181	0.0139
147	0.0181	0.0137
148	0.0178	0.0136
149	0.0176	0.0135
150	0.0176	0.0134
151	0.0170	0.0134
152	0.0154	0.0134
153	0.0149	0.0133
154	0.0137	0.0133
155	0.0100	0.0130
156	0.0046	0.0129
157	0.0037	0.0129
158	0.0024	0.0120

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0232	54276	40243	74	Pass
0.0240	50176	38991	77	Pass
0.0249	46564	37118	79	Pass
0.0258	43329	34526	79	Pass
0.0266	40260	32132	79	Pass
0.0275	37462	29551	78	Pass
0.0284	34908	27224	77	Pass
0.0292	32576	24847	76	Pass
0.0301	30321	22227	73	Pass
0.0310	28276	19490	68	Pass
0.0318	26432	17008	64	Pass
0.0327	24797	14631	59	Pass
0.0336	23285	12354	53	Pass
0.0344	21933	10354	47	Pass
0.0353	20637	9385	45	Pass
0.0362	19423	9202	47	Pass
0.0370	18282	9030	49	Pass
0.0379	17224	8836	51	Pass
0.0388	16155	8670	53	Pass
0.0396	15152	8510	50	Pass
0.0405	14271	833Z	58	Pass
0.0413	10401	0100	60 62	Pass
0.0422	12000	0000 7000	03 65	Pass
0.0431	11900	7670	69	Pass
0.0439	10550	7079	71	Pass Dass
0.0440	0072	72/1	72	Pass
0.0465	9372	6975	74	Pass
0.0400	8847	6731	76	Pass
0.0483	8332	6521	78	Pass
0.0491	7861	6294	80	Pass
0.0500	7457	6066	81	Pass
0.0509	7030	5861	83	Pass
0.0517	6609	5662	85	Pass
0.0526	6277	5460	86	Pass
0.0535	5978	5251	87	Pass
0.0543	5701	5017	88	Pass
0.0552	5437	4793	88	Pass
0.0561	5198	4595	88	Pass
0.0569	4942	4385	88	Pass
0.0578	4704	4161	88	Pass
0.0587	4511	3949	87	Pass
0.0595	4338	3754	86	Pass
0.0604	4156	3595	86	Pass
0.0613	3956	3408	86	Pass
0.0621	3764	3233	85	Pass
0.0630	3576	3032	84	Pass
0.0638	3412	2863	83	Pass
0.0647	3259	2687	82	Pass
0.0656	3134	2528	8U 70	Pass
0.0004	3U20 2027	2301	10 74	Pass
0.00/3	2921	2109	14 72	Pass
U.U00Z	2013	∠054	13	rass

0.0690	2682	1912	71	Pass
0.0699	2555	1743	68 64	Pass
0.0708	2451	1//0	0 4 61	Pass
0.0725	2256	1297	57	Pass
0.0734	2140	1193	55	Pass
0.0742	2038	1035	50	Pass
0.0751	1952	934	47	Pass
0.0760	1860	853	45	Pass
0.0768	1777	761	42	Pass
0.0777	1690	673	39	Pass
0.0786	1619	585	36	Pass
0.0794	1561	528	33	Pass
0.0803	1482	482	32	Pass
0.0812	1407	436	30	Pass
0.0820	1338	400	29	Pass
0.0629	1270	303	25	Pass
0.0846	1162	278	23	Pass
0.0855	1102	251	22	Pass
0.0863	1055	230	21	Pass
0.0872	1006	214	21	Pass
0.0881	963	202	20	Pass
0.0889	919	187	20	Pass
0.0898	872	173	19	Pass
0.0907	814	155	19	Pass
0.0915	772	135	17	Pass
0.0924	/3/	119	16	Pass
0.0933	694 626	105	15	Pass
0.0941	601	00 81	13	Pass Dass
0.0950	553	71	12	Pass
0.0967	517	63	12	Pass
0.0976	478	48	10	Pass
0.0985	433	31	7	Pass
0.0993	394	18	4	Pass
0.1002	364	0	0	Pass
0.1011	341	0	0	Pass
0.1019	310	0	0	Pass
0.1028	297	0	0	Pass
0.1036	273	0	0	Pass
0.1045	252	0	0	Pass
0.1004	231 221	0	0	Pass
0.1002	224	0	0	rass Pass
0.1071	195	0	0	r ass Pace
0.1088	180	Ő	õ	Pass
5		~	<u> </u>	. 400

Water Quality

Water QualityWater Quality BMP Flow and Volume for POC #1On-line facility volume:0 acre-feetOn-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.Off-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.O cfs.0 cfs.

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

7	Basin 2.20ac	1			

Mitigated Schematic

<section-header>

General Model Information

Project Name:	Parking Lot B
Site Name:	
Site Address:	
City:	
Report Date:	8/5/2022
Gage:	38 IN CENTRAL
Data Start:	10/01/1901
Data End:	09/30/2059
Timestep:	15 Minute
Precip Scale:	1.000
Version Date:	2021/08/18
Version:	4.2.18

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

,	Bioretention 1 Mitigated				×	
	Facility Name Biorete	ention 1				
		Outlet 1	Outlet 2	Outlet	t 3	
гг	Downstream Connection	0	0	0		
-	🗆 Use simple Bioretentic	D Quick	Swale Size \	Water Quality	Size Facility	
-	🗸 Underdrain Used		Underdrain Dia	meter(ft) 0.5	Offset(in)	
_	Bioretention Bottom Eleva	atior 0	Orifice Diamete	r(in) 6	÷0 ÷	
IN	Bioretention Dimensions		Flow Through Underd	rain (ac-ft)	263.014	
1.	Bioretention Length (ft)	31.000	Total Outflow (ac-ft)	2	288.535	
-	Bioretention Bottom Width (ft)	10.000	Percent Through Und	erdrain S	91.15	
	Freeboard (ft)	0.500	WQ Percent Filtered	9	91.15	
	Over-road Flooding (ft)	0.000				
	Effective Total Depth (ft)	4	Facili	ty Dimension	Diagram	
	Bottom slope of bioretention.(0-1)	0.000				
	Sidewall Invert Locatio	n line line line line line line line lin	Hiser Outlet Structure		•	
	Front and Back side slope (H/V)	3.000	Riser Height Above bioretention surface (#)			
	Left Side Slope (H/V)	3.000	Riser Diameter (in)			
	Right Side Slope (H/V)	3.000	Biser Tupe	24 -		
	Material Lavers for		Flat	•		
	Layer 1 Layer 2	Layer 3				
	Depth (ft) 1.500 1.500					
	Soil Layer 1	12in/h 💌				
	Soil Layer 2 GBAVEL		Orifico Diom	otor Unight		
	Soil Layer 3 GBAVEL		Number (in)	eter Height (ff)		
			1			
	Edit Soil Types					
	-KSat Safety Factor					
	ONone O2 ⊙4	Bioretention Volume at Biser Head (ac.ft) 059				
			Show Biorotoption			
			Silo# Dioleteint	ion jupen rabie	-	
	Nauve minuauun INU	—				
			Precipitation on Facility (ocre-ft) 12	147	
	Total Inflow ac-ft	294.04	Evaporation from Eacility (a	(acre-ft) 5.5	11	
			e vaporation nom racility	(acrent) 0.0		

Mitigated Land Use

Basin 1

Bypass:	No	
GroundWater:	No	
Pervious Land Use C, Pasture, Flat	acre 0.16	
Pervious Total	0.16	
Impervious Land Use PARKING FLAT	acre 0.66	
Impervious Total	0.66	
Basin Total	0.82	
Element Flows To:		

Surface	Interflow	Groundwater
Surface retention 1	Surface retention 1	

Routing Elements Predeveloped Routing

Mitigated Routing

Bioretention 1

Bottom Length: Bottom Width: Material thickness of f	irst layer:	31.00 ft. 10.00 ft. 1.5
Material type for first la Material thickness of c	ayer:	SMMWW 12in/hr
Material type for seco	GRAVEI	
Material thickness of t	hird layer:	0
Material type for third	layer:	GRAVEL
Underdrain used		~ -
Underdrain Diameter	0.5	
	0	
Flow Through Underd	263.014	
Total Outflow (ac-ft.):	288.535	
Percent Through Under	erdrain:	91.15
Discharge Structure	0 5 4	
Riser Height:	0.5 ft.	
Riser Diameter:	24 IN.	
Outlet 1	Outlet 2	

Bioretention Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)
0.0000	0.0315	0.0000	0.0000	0.0000
0.0440	0.0314	0.0001	0.0000	0.0000
0.0879	0.0309	0.0003	0.0000	0.0000
0.1319	0.0305	0.0005	0.0000	0.0000
0.1758	0.0300	0.0006	0.0000	0.0000
0.2198	0.0295	0.0008	0.0001	0.0000
0.2637	0.0291	0.0010	0.0002	0.0000
0.3077	0.0286	0.0011	0.0003	0.0000
0.3516	0.0282	0.0013	0.0004	0.0000
0.3956	0.0278	0.0015	0.0005	0.0000
0.4396	0.0273	0.0017	0.0007	0.0000
0.4835	0.0269	0.0019	0.0009	0.0000
0.5275	0.0265	0.0021	0.0011	0.0000
0.5714	0.0260	0.0023	0.0011	0.0000
0.6154	0.0256	0.0025	0.0014	0.0000
0.6593	0.0252	0.0027	0.0017	0.0000
0.7033	0.0248	0.0030	0.0021	0.0000
0.7473	0.0243	0.0032	0.0025	0.0000
0.7912	0.0239	0.0034	0.0027	0.0000
0.8352	0.0235	0.0037	0.0030	0.0000
0.8791	0.0231	0.0039	0.0034	0.0000
0.9231	0.0227	0.0042	0.0040	0.0000
0.9670	0.0223	0.0045	0.0046	0.0000
1.0110	0.0219	0.0047	0.0052	0.0000
1.0549	0.0215	0.0050	0.0052	0.0000
1.0989	0.0211	0.0053	0.0059	0.0000
1.1429	0.0207	0.0056	0.0066	0.0000
1.1868	0.0204	0.0059	0.0074	0.0000
1.2308	0.0200	0.0062	0.0083	0.0000

1.2747 1.3187 1.3626 1.4066 1.4505 1.4945 1.5385 1.5824 1.6264 1.6703 1.7143 1.7582 1.8022 1.8462 1.8901 1.9341 1.9780 2.0220 2.0659 2.1099 2.1538 2.2418 2.2418 2.2857 2.3297 2.3736 2.4176 2.4615 2.5934 2.5935 2.5934 2.6813 2.7253 2.7692 2.8132 2.9890 3.0000	0.0196 0.0192 0.0189 0.0185 0.0181 0.0178 0.0174 0.0170 0.0167 0.0163 0.0160 0.0157 0.0153 0.0150 0.0147 0.0143 0.0140 0.0137 0.0134 0.0134 0.0137 0.0121 0.0122 0.00121 0.0109 0.00106 0.0095 0.0095 0.0095 0.0095 0.0087 0.0081 0.0071	0.0065 0.0072 0.0075 0.0075 0.0078 0.0082 0.0085 0.0092 0.0095 0.0098 0.0102 0.0106 0.0109 0.0109 0.0121 0.0125 0.0129 0.0129 0.0129 0.0133 0.0137 0.0141 0.0146 0.0150 0.0154 0.0159 0.0154 0.0159 0.0154 0.0159 0.0164 0.0159 0.0164 0.0159 0.0164 0.0173 0.0173 0.0178 0.0183 0.0193 0.0193 0.0203 0.0209 0.0214 0.0225 0.0231 0.0232	0.0086 0.0092 0.0101 0.0112 0.0122 0.0132 0.0134 0.0146 0.0158 0.0171 0.0200 0.0214 0.0287 0.02	0.0000 0.00
E	Bioretention Hydrauli	ic Table		
Stage(fee 3.0000 3.0440 3.0879 3.1319 3.1758 3.2198 3.2637 3.3077 3.3516 3.3956 3.4396 3.4396 3.4835 3.5275 2.5714	et)Area(ac.)Volume 0.0315 0.0232 0.0320 0.0246 0.0324 0.0261 0.0329 0.0275 0.0334 0.0290 0.0339 0.0304 0.0344 0.0319 0.0348 0.0335 0.0353 0.0350 0.0358 0.0366 0.0363 0.0381 0.0368 0.0397 0.0373 0.0414 0.0378 0.0430	(ac-ft.)Discharg 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	e(cfs)To Amen 0.0215 0.0215 0.0228 0.0234 0.0241 0.0247 0.0253 0.0259 0.0266 0.0272 0.0278 0.0285 0.0291 0.0291 0.0297	ded(cfs)Infilt(cfs) 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.

0383 0.0)447 (0.8304	0.0304	0.0000
0388 0.0)464 ´	1.3452	0.0310	0.0000
0394 0.0)481 ´	1.9330	0.0316	0.0000
0399 0.0)499 2	2.5809	0.0323	0.0000
0404 0.0)516 3	3.2771	0.0329	0.0000
0409 0.0)534 4	4.0103	0.0335	0.0000
0415 0.0)552 4	4.7689	0.0341	0.0000
0420 0.0)571 5	5.5408	0.0348	0.0000
0425 0.0	0589 6	5.3140	0.0354	0.0000
0429 0.0	0603 7	7.0765	0.0359	0.0000
	0383 0.0 0388 0.0 0394 0.0 0399 0.0 0404 0.0 0409 0.0 0415 0.0 0420 0.0 0425 0.0	0383 0.0447 0 0388 0.0464 2 0394 0.0481 2 0399 0.0499 2 0404 0.0516 3 0409 0.0534 2 0415 0.0552 2 0420 0.0571 5 0425 0.0589 6 0429 0.0603 7	03830.04470.830403880.04641.345203940.04811.933003990.04992.580904040.05163.277104090.05344.010304150.05524.768904200.05715.540804250.05896.314004290.06037.0765	03830.04470.83040.030403880.04641.34520.031003940.04811.93300.031603990.04992.58090.032304040.05163.27710.032904090.05344.01030.033504150.05524.76890.034104200.05715.54080.034804250.05896.31400.035404290.06037.07650.0359

Surface retention 1

Element Flows To: Outlet 1

Outlet 2 Bioretention 1

Analysis Results

POC 1

POC #1 was not reported because POC must exist in both scenarios and both scenarios must have been run.
Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Mitigated Schematic

Bas 0.82	sin 1 2ac		
SI			
Biol	retention		

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

PROJECT REPORT

General Model Information

Project Name:	Parking Lot B Wetland Calc
Site Name:	Pierce College Puyallup
Site Address:	1601 39th Ave SE
City:	Puyallup
Report Date:	2/4/2022
Gage:	38 IN CENTRAL
Data Start:	10/01/1901
Data End:	09/30/2059
Timestep:	15 Minute
Precip Scale:	1.000
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use C, Forest, Flat	acre 40.16
Pervious Total	40.16
Impervious Land Use ROADS FLAT	acre 14.67
Impervious Total	14.67
Basin Total	54.83
Element Flows To: Surface	Interflow

Groundwater

Mitigated Land Use

Basin 1		
Bypass:	No	
GroundWater:	No	
Pervious Land Use C, Forest, Flat C, Pasture, Flat	acre 39.41 0.2 ←	—— Parking Lot B Pervious Area
Pervious Total	39.61	
Impervious Land Use ROADS FLAT	acre 15.22 ←	14.67 ac (Existing Impervious) 00.55 ac (Parking Lot B Impervious)
Impervious Total	15.22	
Basin Total	54.83	
Element Flows To: Surface	Interflow	Groundwater

Routing Elements Predeveloped Routing Mitigated Routing

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
2 7463	6349	7014	110	Fail
2.7400	5601	6244	111	Fail
2.0001	1013	5546	112	Fail
2.3233	4943	1000	112	Foil
3.0217	4417	4090	110	Fall Fail
3.1135	3903	4390		Fall
3.2053	3510	3899	111	Faii
3.2971	3170	3502	110	Fail
3.3889	2862	3176	110	Fail
3.4807	2599	2895	111	Fail
3.5725	2367	2631	111	Fail
3.6643	2156	2399	111	Fail
3.7561	1966	2192	111	Fail
3.8479	1788	2011	112	Fail
3.9397	1635	1817	111	Fail
4.0315	1493	1677	112	Fail
4.1232	1368	1531	111	Fail
4.2150	1229	1402	114	Fail
4.3068	1104	1282	116	Fail
4.3986	1016	1151	113	Fail
4 4904	921	1044	113	Fail
4 5822	849	958	112	Fail
4 6740	760	884	116	Fail
4 7658	694	806	116	Fail
1 8576	623	735	117	Fail
1 0/0/	576	673	116	Fail
5 0/12	578	601	113	Fail
5 1330	170	555	115	Fail
5 2249	473	555	117	
5 2166	200	161	116	Fail
5 4094	359	404	120	Fail
5.4004	200	40Z 207	120	Fall
5.5002	320	252	117	Fall
5.5919	301 275	303	117	Fall
0.000 <i>1</i>	210	324	117	Fall
5.//55	252	300	119	Fall
5.8673	234	273	116	Fall
5.9591	215	255	118	Fail
6.0509	202	235	116	Fail
6.1427	186	214	115	Fail
6.2345	1/4	202	116	Fail
6.3263	154	191	124	Fail
6.4181	141	175	124	Fail
6.5099	130	159	122	Fail
6.6017	120	142	118	Fail
6.6935	114	129	113	Fail
6.7853	100	121	121	Fail
6.8771	96	114	118	Fail
6.9689	94	108	114	Fail
7.0606	89	97	108	Pass
7.1524	85	94	110	Pass
7.2442	77	92	119	Fail
7.3360	71	84	118	Fail
7.4278	66	80	121	Fail
7.5196	62	73	117	Fail
7.6114	59	70	118	Fail

7.7032 7.7950 7.8868 7.9786 8.0704 8.1622 8.2540 8.3458	56 53 52 44 41 40 38 37	65 61 58 56 53 51 46 40	116 115 127 129 127 121 108	Fail Fail Fail Fail Fail Fail Fail Pass
8.4376 8.5293 8.6211 8.7129 8.8047 8.8965 8.9883 9.0801 9.1719	36 33 32 30 29 28 27 26 24	39 37 36 35 34 31 30 29 28	108 112 116 117 110 111 111 116	Pass Fail Fail Fail Pass Fail Fail Fail
9.2637 9.3555 9.4473 9.5391 9.6309 9.7227 9.8145 9.9063	24 24 23 22 22 21 21 20	20 27 26 25 24 24 23 22 22	112 108 108 109 109 109 104 110	Fail Pass Pass Pass Pass Pass Pass Pass
9.9981 10.0898 10.1816 10.2734 10.3652 10.4570 10.5488 10.6406 10.7324	19 19 19 18 18 16 16 15	22 21 20 20 19 19 19 19 19 18	115 110 105 105 105 105 118 118 120	Fail Pass Pass Pass Pass Fail Fail Fail Fail
10.8242 10.9160 11.0078 11.0996 11.1914 11.2832 11.3750 11.4668	15 14 13 13 13 12 11 11	17 16 16 15 15 13 13 13	113 114 123 115 115 108 118 118	Fail Fail Fail Fail Fail Fail Fail Fail
11.6503 11.7421 11.8339	11 11 10 9	13 12 12 11	118 109 120 122	Fail Pass Fail Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water QualityWater Quality BMP Flow and Volume for POC #1On-line facility volume:0 acre-feetOn-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.Off-line facility target flow:0 cfs.Adjusted for 15 min:0 cfs.O cfs.0 cfs.

Wetland Input Volumes

Wetlands Input Volume for POC 1 Average Annual Volume (acft) Series 1: 501 POC 1 Predeveloped flow Series 2: 801 POC 1 Mitigated flow Month Series 1 Series 2 Percent Pass/Fail Jan 10.3006 10.4476 101.4 Pass Feb 8.8841 9.0008 101.3 Pass Mar 6.6987 6.7998 101.5 Pass Apr 3.3524 3.4208 102.0 Pass 103.1 May 1.8381 1.8944 Pass 103.5 Jun 1.2639 1.3086 Pass Jul 0.5960 0.6182 103.7 Pass 0.7066 0.7331 103.7 Pass Aug 1.5463 103.7 Pass Sep 1.4904 Oct 3.5792 3.7097 103.6 Pass Nov 7.4693 7.6851 102.9 Pass Dec 10.2018 10.3906 101.9 Pass Day Predevel **Mitigated Percent** Pass/Fail Jan1 0.2826 0.2865 101.4 Pass 234567 0.3714 0.3780 101.8 Pass 0.3745 0.3800 101.4 Pass 0.2897 0.2929 101.1 Pass 0.3123 0.3170 101.5 Pass 101.6 Pass 0.3358 0.3411 0.3221 0.3270 101.5 Pass 8 0.2858 0.2902 101.6 Pass 9 0.3262 0.3317 101.7 Pass 10 0.3253 0.3306 101.6 Pass 11 0.3314 0.3364 101.5 Pass 12 0.2969 0.3013 101.5 Pass 101.7 Pass 13 0.3945 0.4013 101.5 Pass 14 0.4218 0.4282

15 16 17 19 20 22 23 425 26 78 90 11 23 45 67 89 10 112 34 56 78 90 12 23 24 56 78 90 12 23 24 56 78 90 12 23 24 56 78 90 12 23 24 56 78 90 12 23 24 56 78 90 12 23 24 56 78 90 12 23 24 56 78 90 12 23 24 56 78 90 12 23 24 56 78 90 12 23 24 56 78 90 12 23 24 56 78 90 12 23 24 56 78 90 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.3673 0.3614 0.3557 0.4252 0.4045 0.3261 0.2890 0.3546 0.3782 0.3413 0.2877 0.3372 0.3007 0.2558 0.2283 0.3107 0.3539 0.3530 0.2961 0.2837 0.2544 0.3833 0.2961 0.2654 0.3014 0.2654 0.3014 0.2654 0.3014 0.2945 0.2654 0.3014 0.2945 0.2654 0.3014 0.2945 0.2654 0.3014 0.2945 0.2654 0.3014 0.2945 0.2654 0.3014 0.2945 0.2654 0.3200 0.4404 0.4292 0.3506 0.3200 0.2853 0.2849 0.2602 0.3506 0.3200 0.2792 0.3252 0.2982 0.2734 0.2201 0.2449 0.2414 0.2511	0.3719 0.3663 0.3607 0.4311 0.4093 0.3284 0.2924 0.3606 0.3842 0.3456 0.2912 0.3419 0.3043 0.2586 0.2312 0.3163 0.3594 0.3577 0.2996 0.2867 0.2867 0.2996 0.3424 0.2906 0.3424 0.2903 0.2649 0.2689 0.3065 0.2991 0.3219 0.3250 0.4474 0.4348 0.4304 0.2632 0.2429 0.3255 0.2884 0.2632 0.2429 0.3355 0.2823 0.3298 0.3014 0.2722 0.3250 0.4474 0.4348 0.2632 0.2429 0.3355 0.2823 0.3298 0.3014 0.2760 0.22449 0.2249 0.2249 0.2485 0.2449 0.2549	101.2 Pass 101.4 Pass 101.4 Pass 101.2 Pass 100.7 Pass 101.2 Pass 101.7 Pass 101.2 Pass 101.2 Pass 101.2 Pass 101.2 Pass 101.2 Pass 101.4 Pass 101.3 Pass 101.3 Pass 101.3 Pass 101.3 Pass 101.3 Pass 101.3 Pass 101.1 Pass 101.3 Pass 101.3 Pass 101.4 Pass 101.3 Pass 101.4 Pass 101.3 Pass 101.4 Pass 101.3 Pass 101.7 Pass 101.6 Pass 101.3 Pass 101.6 Pass 101.6 Pass 101.6 Pass 101.6 Pass 101.6 Pass 101.6 Pass 101.6 Pass 101.6 Pass 101.7 Pass 101.6 Pass 101.7 Pass 101.6 Pass 101.7 Pass 101.7 Pass 101.7 Pass 101.2 Pass 101.7 Pass
27 28 29 Mar1 2 3 4 5 6 7 8 9 10 11 12	0.2982 0.2734 0.2201 0.2449 0.2511 0.2339 0.2696 0.2012 0.2268 0.2799 0.2282 0.2151 0.2441 0.2623	0.3014 0.2760 0.2224 0.2485 0.2449 0.2549 0.2370 0.2737 0.2034 0.2308 0.2308 0.2851 0.2313 0.2181 0.2478 0.2664	101.1 Pass 101.0 Pass 101.0 Pass 101.5 Pass 101.4 Pass 101.5 Pass 101.5 Pass 101.5 Pass 101.7 Pass 101.8 Pass 101.8 Pass 101.8 Pass 101.4 Pass 101.4 Pass 101.5 Pass 101.5 Pass 101.6 Pass

13 14 15 16 17 18 90 21 22 34 25 26 7 89 10 112 34 56 7 89 10 112 112 112 112 112 112 112 112 112	0.2164 0.2280 0.1791 0.1813 0.1452 0.1680 0.1715 0.1918 0.2786 0.2086 0.1991 0.1777 0.2251 0.1848 0.2067 0.2277 0.1910 0.1808 0.1264 0.1085 0.1310 0.1586 0.1430 0.1286 0.1430 0.1286 0.1418 0.1256 0.0883 0.0864 0.0643 0.0970 0.0734 0.0824 0.0883 0.0864 0.0883 0.0864 0.0770 0.0734 0.0824 0.1256 0.0883 0.0864 0.0643 0.0970 0.0734 0.0824 0.1361 0.0883 0.0820 0.0970 0.0734 0.0824 0.00970 0.0734 0.0824 0.00970 0.0734 0.0824 0.00970 0.0734 0.0824 0.00970 0.0734 0.0824 0.00970 0.0734 0.0824 0.0883 0.0820 0.0970 0.0734 0.0824 0.0820 0.0970 0.0734 0.0824 0.0820 0.0820 0.0928 0.0695 0.0707 0.0650 0.0896 0.1281	0.2192 0.2312 0.2053 0.1815 0.1841 0.1471 0.1706 0.1743 0.1952 0.2838 0.2116 0.2022 0.1802 0.2295 0.1876 0.2104 0.2315 0.1934 0.1280 0.1105 0.1336 0.1616 0.1454 0.1307 0.1445 0.1307 0.1445 0.1810 0.1597 0.1335 0.1519 0.1280 0.0900 0.0885 0.0658 0.0996 0.0748 0.0996 0.0748 0.0990 0.0844 0.0990 0.0844 0.0996 0.0748 0.0991 0.0837 0.1118 0.09948 0.0912 0.0725 0.0668 0.0923 0.1315	101.3 Pass 101.4 Pass 101.3 Pass 101.5 Pass 101.5 Pass 101.5 Pass 101.5 Pass 101.6 Pass 101.7 Pass 101.7 Pass 101.6 Pass 101.6 Pass 101.6 Pass 101.7 Pass 101.8 Pass 101.3 Pass 101.3 Pass 101.3 Pass 101.3 Pass 101.3 Pass 101.3 Pass 101.9 Pass 101.9 Pass 101.9 Pass 101.9 Pass 101.9 Pass 101.9 Pass 101.9 Pass 101.9 Pass 101.9 Pass 102.1 Pass 101.9 Pass 102.2 Pass 102.2 Pass 102.2 Pass 102.4 Pass 102.4 Pass 102.4 Pass 102.7 Pass 102.4 Pass 102.7 Pass 102.4 Pass 102.4 Pass 102.4 Pass 102.7 Pass 102.4 Pass 102.7 Pass 102.6 Pass 102.6 Pass 102.7 Pass 102.7 Pass 102.7 Pass 102.7 Pass 102.7 Pass 102.7 Pass 102.8 Pass 102.7 Pass 102.7 Pass 102.8 Pass 102.7 Pass 102.7 Pass 102.8 Pass 102.7 Pass 102.7 Pass 102.7 Pass 102.7 Pass 102.7 Pass 102.7 Pass 102.8 Pass 102.7 Pass 102.7 Pass
27 28 29 30 May1 2 3 4 5 6 7 8 9	0.0320 0.0695 0.0707 0.0650 0.0896 0.1281 0.0804 0.0786 0.1023 0.0867 0.0630 0.0584 0.0471 0.0334	0.0712 0.0725 0.0668 0.0923 0.1315 0.0823 0.0805 0.1052 0.0891 0.0646 0.0600 0.0483 0.0343	102.5 Pass 102.7 Pass 102.7 Pass 102.8 Pass 103.0 Pass 102.7 Pass 102.3 Pass 102.4 Pass 102.8 Pass 102.7 Pass 102.7 Pass 102.5 Pass 102.6 Pass 102.6 Pass

10 11 23 14 15 67 89 10 11 23 45 10 11 23 23 23 23 23 23 23 23 23 23 23 23 23	0.0480 0.0509 0.0575 0.0681 0.0420 0.0468 0.0702 0.0407 0.0404 0.0517 0.0462 0.0372 0.0397 0.0577 0.0444 0.0527 0.0603 0.0449 0.0556 0.0702 0.0460 0.0632 0.0669 0.0364 0.0392 0.0543 0.0572 0.0543 0.0572 0.0543 0.0572 0.0586 0.0525 0.0556 0.0366 0.0312 0.0386 0.0312 0.0308 0.0312 0.0308 0.0312 0.0494 0.0316 0.0269 0.0245 0.0366 0.0245 0.0366 0.0269 0.0245 0.0366 0.0285 0.0285 0.0284 0.038 0.0284 0.038	0.0496 0.0526 0.0594 0.0704 0.0434 0.0434 0.0484 0.0726 0.0419 0.0418 0.0536 0.0478 0.0385 0.0410 0.0597 0.0459 0.0459 0.0453 0.0464 0.0575 0.0726 0.0475 0.0654 0.0405 0.0693 0.0376 0.0405 0.0562 0.0590 0.0664 0.0543 0.0575 0.0378 0.0452 0.0378 0.0452 0.0319 0.0323 0.0254 0.0328 0.0279 0.0254 0.0295 0.0274 0.0295 0.0376 0.0295 0.0376 0.0295 0.0376 0.0295 0.0274 0.0295 0.0371 0.0295 0.0371 0.0295 0.0321 0.0295 0.0274 0.0295 0.0391 0.0295 0.0391 0.0295 0.0391 0.0295 0.0391 0.0391 0.0295 0.0391 0.0391 0.0391 0.0391 0.0391 0.0391 0.0395 0.0391 0.0395 0.0391 0.0391 0.0395 0.0391 0.0395 0.0391 0.0395 0.0391 0.0395 0.0391 0.0395 0.0391 0.0395 0.0391 0.0395 0.0391 0.0395 0.0391 0.0395 0.0391 0.0395 0.0391 0.0395 0.0391 0.0391 0.0395 0.0391 0.0395 0.0391 0.0395 0.0391 0.0391 0.0395 0.0391 0.0395 0.0391 0.0391 0.0395 0.0391 0.0395 0.0391 0.0395 0.0391 0.0391 0.0395 0.0391 0.0395 0.0391 0.0395 0.0391 0.0391 0.0395 0.0391 0.0391 0.0395 0.0391 0.03	103.2 Pass 103.4 Pass 103.4 Pass 103.5 Pass 103.5 Pass 103.7 Pass 103.7 Pass 103.4 Pass 103.7 Pass 103.4 Pass 103.4 Pass 103.4 Pass 103.3 Pass 103.3 Pass 103.3 Pass 103.3 Pass 103.5 Pass 103.4 Pass 103.4 Pass 103.5 Pass 103.4 Pass 103.5 Pass 103.7 Pass
2 3 4 5 6	0.0330 0.0284 0.0180 0.0263 0.0341 0.0119	0.0295 0.0187 0.0272 0.0354 0.0124	103.7 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.7 Pass

7 8 9 10 11 12 13 14 5 6 7 8 9 10 12 23 24 26 27 8 9 31 4 5 6 7 8 9 10 12 34 5 6 7 8 9 10 12 34 5 6 7 8 9 10 12 34 5 6 7 8 9 10 12 22 22 22 22 22 22 22 22 22 22 22 22	0.0430 0.0330 0.0127 0.0239 0.0230 0.0392 0.0106 0.0263 0.0239 0.0222 0.0272 0.0135 0.0117 0.0148 0.0110 0.0032 0.0060 0.0072 0.0196 0.0146 0.0134 0.0063 0.0022 0.0021 0.0063 0.0022 0.0021 0.0067 0.0073 0.0022 0.0021 0.0067 0.0073 0.0158 0.0204 0.0074 0.0074 0.0073 0.0158 0.0204 0.0074 0.0074 0.0073 0.0158 0.0204 0.0072 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0072 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0072 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0072 0.0074 0.0074 0.0072 0.0074 0.0074 0.0072 0.0074 0.0074 0.0072 0.0074 0.0074 0.0072 0.0074 0.0072 0.0074 0.0072 0.0074 0.0072 0.0074 0.0072 0.0074 0.0072 0.0072 0.0074 0.0072 0.0072 0.0074 0.0072 0.0074 0.0074 0.0074 0.0074 0.0074 0.00	0.0446 0.0342 0.0239 0.0239 0.0406 0.0110 0.0272 0.0248 0.0230 0.0282 0.0140 0.0121 0.0154 0.0154 0.0154 0.0075 0.0203 0.0062 0.0075 0.0203 0.0152 0.0066 0.0023 0.0023 0.0066 0.0023 0.0022 0.0069 0.0066 0.0023 0.00211 0.0066 0.0023 0.0022 0.0069 0.0076 0.0164 0.0211 0.0077 0.0128 0.0128 0.0150 0.0140 0.00121 0.0075 0.0069 0.0075 0.0023 0.0022 0.0069 0.0075 0.0023 0.0022 0.0069 0.0076 0.0164 0.0211 0.0077 0.0128 0.0128 0.0120 0.0120 0.0077 0.0128 0.0120 0.0120 0.0077 0.0000 0.00100 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.00000000000000000000000000000000000	103.7 Pass 103.7 Pass
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	0.0061 0.0166 0.0228 0.0114 0.0297 0.0238 0.0283 0.0283 0.0290 0.0290 0.0091 0.0225 0.0180 0.0233 0.0223 0.0223 0.0215 0.0352 0.0356	$\begin{array}{c} 0.0063\\ 0.0172\\ 0.0068\\ 0.0236\\ 0.0119\\ 0.0308\\ 0.0247\\ 0.0293\\ 0.0293\\ 0.0301\\ 0.0094\\ 0.0234\\ 0.0234\\ 0.0234\\ 0.0234\\ 0.0231\\ 0.0231\\ 0.0231\\ 0.0231\\ 0.0236\\ 0.0365\\ 0.0369\end{array}$	103.7 Pass 103.7 Pass
25 26 27 28 29 30 31 Sep1 2	0.0356 0.0510 0.0431 0.0539 0.0240 0.0318 0.0650 0.0621 0.0479	0.0369 0.0529 0.0447 0.0559 0.0249 0.0330 0.0674 0.0644 0.0497	103.7 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.8 Pass 103.8 Pass 103.7 Pass

3456789101234567890112345678900112345678910123456789001123456789001123456789001123456789001123456789001123456789001221	0.0234 0.0463 0.0352 0.0226 0.0326 0.0326 0.0355 0.0495 0.0381 0.0164 0.0343 0.0285 0.0669 0.0595 0.0560 0.0747 0.0571 0.0571 0.0595 0.0610 0.0747 0.0747 0.0747 0.0747 0.0595 0.0610 0.0748 0.0748 0.0780 0.0471 0.0345 0.0814 0.0660 0.0798 0.0746 0.0747 0.0351 0.0896 0.0928 0.0747 0.0351 0.0835 0.0896 0.0747 0.0351 0.0747 0.0351 0.0747 0.0935 0.1191 0.1227 0.1304 0.1765 0.1321	0.0243 0.0480 0.0365 0.0234 0.0388 0.0368 0.0514 0.0395 0.0295 0.0295 0.0695 0.0695 0.0618 0.0581 0.0923 0.0494 0.0775 0.0592 0.0617 0.0633 0.0494 0.0775 0.0592 0.0617 0.0633 0.0788 0.0445 0.0311 0.0766 0.0810 0.0488 0.0358 0.0445 0.0311 0.0766 0.0844 0.0684 0.0684 0.0684 0.0684 0.0684 0.0684 0.0684 0.0684 0.0684 0.0774 0.1499 0.1133 0.1144 0.1089 0.0929 0.0929 0.0963 0.0775 0.0970 0.1236 0.1273 0.1353 0.1370	103.7 Pass 103.7 Pass
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	0.0935 0.1191 0.1227 0.1304 0.1765 0.1321 0.1083 0.1430 0.1450 0.1602 0.2032 0.1730 0.1569 0.1353 0.1731	0.0970 0.1236 0.1273 0.1353 0.1831 0.1370 0.1122 0.1482 0.1482 0.1503 0.1662 0.2106 0.1792 0.1624 0.1399 0.1792	103.7 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.6 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.6 Pass 103.5 Pass 103.5 Pass

31 23 45 67 89 10 11 23 22 23 45 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 22 23 45 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 45 67 89 10 11 23 22 23 45 67 89 10 11 23 45 10 11 23 45 10 10 23 22 23 45 67 89 10 11 23 45 67 89 10 11 23 22 23 45 67 89 10 23 23 45 67 89 10 11 23 22 23 23 23 23 23 23 23 23 23 23 23	0.1713 0.1842 0.1965 0.2070 0.1733 0.1592 0.1950 0.1364 0.2027 0.2556 0.2231 0.2341 0.2426 0.2014 0.2417 0.2838 0.2911 0.2483 0.2911 0.2483 0.2993 0.2965 0.4240 0.3705 0.2670 0.2801 0.2594 0.3622 0.3254 0.3775 0.3772 0.3468 0.3775 0.3775 0.3251 0.2726 0.3123 0.3525 0.3526 0.2794 0.3319 0.3630 0.2930 0.2655 0.3509 0.3487 0.3618 0.3777	0.1767 0.1904 0.2034 0.2144 0.1794 0.1648 0.2018 0.2095 0.2644 0.2305 0.2418 0.2507 0.2078 0.2490 0.2919 0.2606 0.2558 0.2994 0.2245 0.3079 0.3042 0.3042 0.3079 0.3042 0.3079 0.3042 0.3257 0.3861 0.3557 0.3861 0.3540 0.3557 0.3861 0.3540 0.3540 0.3712 0.3326 0.3557 0.3861 0.3540 0.3540 0.3712 0.3326 0.3557 0.3861 0.3540 0.3598 0.3235 0.3194 0.3598 0.2840 0.3384 0.3598 0.2997 0.2702 0.3583 0.3682 0.3682 0.3257 0.35682 0.3257 0.3583 0.3553 0.3682 0.3227	103.2 Pass 103.4 Pass 103.5 Pass 103.5 Pass 103.5 Pass 103.5 Pass 103.5 Pass 103.5 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.7 Pass 103.0 Pass 103.0 Pass 103.0 Pass 102.9 Pass 102.6 Pass 102.6 Pass 102.6 Pass 102.6 Pass 102.7 Pass 102.1 Pass 102.1 Pass 102.1 Pass 102.1 Pass 102.2 Pass 102.1 Pass 101.9 Pass 101.9 Pass 101.7 Pass 101.8 Pass 102.1 Pass 101.7 Pass
19 20 21 22 23 24 25 26 27	$\begin{array}{c} 0.3509 \\ 0.3487 \\ 0.3618 \\ 0.3177 \\ 0.2979 \\ 0.2893 \\ 0.3489 \\ 0.3760 \\ 0.3167 \end{array}$	0.3583 0.3553 0.3682 0.3227 0.3031 0.2943 0.3551 0.3813 0.3210	102.1 Pass 101.9 Pass 101.8 Pass 101.6 Pass 101.8 Pass 101.7 Pass 101.8 Pass 101.8 Pass 101.4 Pass 101.4 Pass

28	0.3321	0.3373	101.6 Pass
29	0.3749	0.3811	101.7 Pass
30	0.2589	0.2621	101.2 Pass
31	0.3103	0.3152	101.6 Pass

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

%	Basin 54.83a	1 IC			

Mitigated Schematic

R	Basin 54.83a	1 IC			

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

Appendix B-3 Conveyance Calculations

SN	Element Description ID	From (Inlet) Node	To (Outlet) Node	Length	Inlet Invert Elevation	Inlet Invert Offset	Outlet Invert Elevation	Outlet Invert Offset	Total Drop	Average Slope	Pipe Shape	Pipe Diameter or Height	Pipe Width	Manning's Roughness	Entrance Losses	Exit/Bend Losses	Additional Losses
1	Link-01	SDCB10	SDCB11	(ft) 77.00	(ft) 514.08	(ft) 0.00	(ft) 513.69	(ft) 0.00	(ft) 0.38	(%) 0.5000	CIRCULAR	(inches) 12.000	(inches) 12.00	0.0110	0.5000	0.5000	0.0000
2	Link-02	SDCB19	SDCB17	19.00	512.73		512.63	0.00	0.10	0.5300	CIRCULAR	8.040	8.04	0.0150	0.5000	0.5000	0.0000

Initial	Flap	Lengthening	Peak	Time of	Max	Travel	Design	Max Flow /	Max	Total	Max	Reported
Flow	Gate	Factor	Flow	Peak	Flow	Time	Flow	Design Flow	Flow Depth /	Time	Flow	Condition
				Flow	Velocity		Capacity	Ratio	Total Depth	Surcharged	Depth	
				Occurrence					Ratio			
(cfs)			(cfs)	(days hh:mm)	(ft/sec)	(min)	(cfs)			(min)	(ft)	
0.00	NO	1.00	0.79	0 08:00	3.21	0.40	2.98	0.27	0.35	0.00	0.35	Calculated
0.00	NO	1.00	0.57	0 07:54	2.39	0.13	0.76	0.75	0.65	0.00	0.43	Calculated

SN	Element ID	X Coordinate	Y Coordinate Description	Invert Elevation	Boundary Type	Flap Gate	Fixed Water Elevation	Peak Inflow	Peak Lateral Inflow	Maximum HGL Depth Attained	Maximum HGL Elevation Attained
				(ft)			(ft)	(cfs)	(cfs)	(ft)	(ft)
1	SDCB11	1469.93	5857.46	513.69	NORMAL	NO		0.79	0.00	0.35	514.04
2	SDCB17	463.80	6027.14	512.63	NORMAL	NO		0.57	0.00	0.43	513.06

SN	Element	X Coordinate	Y Coordinate Description	Invert	Ground/Rim	Ground/Rim	Initial	Initial	Surcharge	Surcharge	Ponded	Minimum	Peak	Peak	Maximum
	ID			Elevation	(Max)	(Max)	Water	Water	Elevation	Depth	Area	Pipe Cover	Inflow	Lateral	HGL
					Elevation	Offset	Elevation	Depth						Inflow	Elevation
															Attained
				(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft²)	(inches)	(cfs)	(cfs)	(ft)
1	SDCB10	1514.48	4632.52	514.08	522.56	8.49	514.08	0.00	522.56	0.00	0.00	89.82	0.79	0.79	514.43
2	SDCB19	-283.29	6031.72	512.73	518.75	6.02	512.73	0.00	518.75	0.00	0.00	64.24	0.57	0.57	513.16

Maximum	Maximum	Minimum	Average	Average	Time of	Time of	Total	Total
HGL	Surcharge	Freeboard	HGL	HGL	Maximum	Peak	Flooded	Time
Depth	Depth	Attained	Elevation	Depth	HGL	Flooding	Volume	Flooded
Attained	Attained		Attained	Attained	Occurrence	Occurrence		
(ft)	(ft)	(ft)	(ft)	(ft)	(days hh:mm)	(days hh:mm)	(ac-inches)	(minutes)
0.35	0.00	8.13	514.21	0.13	0 08:00	0 00:00	0.00	0.00
0.43	0.00	5.59	512.88	0.15	0 07:54	0 00:00	0.00	0.00

SN	Element Description	Data	Data	Rainfall	Rain	State	County	Return	Rainfall	Rainfall
	ID	Source	Source	Туре	Units			Period	Depth	Distribution
			ID							
								(years)	(inches)	
1	Rain Gage-01	Time Series	TS-03	Cumulative	inches	Washington	Pierce	25	3.5	SCS Type IA 24-hr

SN	Element Description	Area	Drainage	Impervious	Pervious	Impervious	Rain Gage	Total	Total	Peak	Time
	ID		Node ID	Area	Area	Area	ID	Precipitation	Runoff	Runoff	of
				Curve	Curve						Concentration
				Number	Number						
		(acres)				(%)		(inches)	(inches)	(cfs)	(days hh:mm:ss)
1	BuildingSubBasin	1.38	SDCB10	98.00	74.00	59.00	Rain Gage-01	3.49	2.43	0.79	0 00:05:00
2	ParkingSubBasin	0.82	SDCB19	98.00	74.00	80.00	Rain Gage-01	3.49	2.85	0.57	0 00:05:00

See Exhibit A-4 Developed Conditions Map for exhibit of sub-basins

Special Reports and Studies

C-1	Geotechnical Engineering Services Report by GeoEngineers, Inc.,
	January 21, 2021
C-2	Geotechnical Engineering Services Addendum Report No. 1 by
	GeoEngineers, Inc., June 29, 2022
C-3	Wetland Analysis Report by Grette Associates, LLC, April 25, 2022

Project 2020-148 Pierce College, Puyallup STEM Building

Attachment 6b: Geotech Report

Geotechnical Engineering Services Report

Pierce College Puyallup – STEM Building Design Study Puyallup, Washington

for Washington State Department of Enterprise Services

January 21, 2021

Earth Science + Technology

Geotechnical Engineering Services Report

Pierce College Puyallup – STEM Building Design Study Puyallup, Washington

for

Washington State Department of Enterprise Services

January 21, 2021

1101 South Fawcett Avenue, Suite 200 Tacoma, Washington 98402 253.383.4940
Geotechnical Engineering Services Report

Pierce College Puyallup – STEM Building Design Study Puyallup, Washington

File No. 21342-002-00

January 21, 2021

Prepared for:

Washington State Department of Enterprise Services Division of Engineering & Architectural Services 206 General Administration Building Olympia, Washington 98504-1012

Attention: Christopher Gizzi

Prepared by:

GeoEngineers, Inc. 1101 South Fawcett Avenue, Suite 200 Tacoma, Washington 98402 253.383.4940

Christopher R. Newton, PE Geotechnical Engineer

1/21/2021

Dennis (D.J.) Thompson, PE Associate Geotechnical Engineer

1/21/2021

CRN:DJT:tt

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	INTRODUCTION AND PROJECT UNDERSTANDING1				
2.0	0 SCOPE OF SERVICES1				
3.0	SITE CON	IDITIONS	1		
3.1	Surface (Conditions	1		
3.2	Literatur	e Review	2		
0.2.	3.2.1	Geologic Mans	2		
	322	Soil Survey	2		
	3.2.3.	Geotechnical Report Reviewed	2		
3.3.	Subsurfa	ce Conditions	2		
	3.3.1.	Subsurface Explorations and Laboratory Testing	2		
	3.3.2.	Soil and Groundwater Conditions	3		
4.0	CONCLUS	SIONS AND RECOMMENDATIONS	3		
1 1	Drimon	Controbuient Considerations	2		
4.1. 4.2	Soismial	Design Considerations			
4.2.		Solomia Dasign Paramaters	4		
	4.2.1.	Liquefaction	4		
	4.2.2.	Liqueraction	4		
	4.2.3.	Curface Pupture Detential	4		
12	4.2.4.	Sunace Rupture Potential			
4.3.					
	4.3.1. 4.2.0	General			
	4.3.2.	Creating and Suppring			
	4.3.3.	Elosion and Sedimentation Control	э		
	4.3.4.	Dermonent Cut and Fill Slance	o		
	4.3.3.	Crewedwater Llandling Considerations	0		
	4.3.6.	Groundwater Handling Considerations	(
	4.3.7.	Sunace Drainage	(
	4.3.8.	Subsurface Drainage	(
	4.3.9.	Subgrade Preparation	(
	4.3.10.		8 0		
4.4.			8		
	4.4.1.		8		
	4.4.2.	Select Granular FIII	9		
	4.4.3.	Pipe Bedding	9		
	4.4.4.		9		
4 -	4.4.5.	Un-Site Soil	9		
4.5. Fill Placement and Compaction 10					
	4.5.1.		10		
	4.5.2.	Area Fills and Pavement Bases	10		
	4.5.3.	Backfill Behind Walls	10		
	4.5.4.	Trench Backfill	10		

4.6. Four	.6. Foundation Support				
4.6.1	. General				
4.6.2	2. Foundation Bearing Surface Preparation				
4.6.3	8. Allowable Soil Bearing Pressure				
4.6.4	Foundation Settlement				
4.6.5	5. Lateral Resistance				
4.7. Slab	p-on-Grade Floors				
4.8. Reta	aining Walls and Below-Grade Structures				
4.8.1	. Design Parameters				
4.8.2	2. Drainage				
4.9. Infilt	tration Feasibility Assessment				
5.0 LIM	ITATIONS	14			

LIST OF FIGURES

Figure 1. Vicinity Map Figure 2. Site Plan

APPENDICES

Appendix A. Subsurface Explorations and Laboratory Testing

Figure A-1 – Key to Exploration Logs

Figures A-2 through A-7 – Logs of Test Pits

Figure A-8 – Sieve Analysis Results

Appendix B. Report Limitations and Guidelines for Use

1.0 INTRODUCTION AND PROJECT UNDERSTANDING

This report presents the results of our geotechnical engineering services for the Pierce College Puyallup – Science, Technology, Engineering, Mathematics (STEM) Building project. The project site is located at 1601 39th Avenue SE in Puyallup, Washington as shown on the Vicinity Map, Figure 1. This report is proceeded by a draft report dated December 7, 2020.

Our project understanding is based on review of the "NEW STEM BUILDING, Pierce College Puyallup, Predesign Report" dated August 24, 2020 (Predesign Report). We were also provided with the "Geotechnical Report, Pierce College Puyallup, Communication Arts/Allied Health Building, Puyallup, Washington" dated May 9, 2006 and prepared by HWA Geosciences Inc. (HWA Report).

The Predesign Report indicates that the proposed STEM building will be constructed at the east site (Alternate B) in the north-central portion of campus in a currently forested area. The proposed building location is located to the east-southeast of the existing Communication Arts and Allied Health building and to the west of campus Parking Lot C. The building is to consist of a 54,400-square-foot, three-story structure containing classrooms, laboratories, faculty offices and study spaces. We understand that the project is in the beginning stages and that the project team seeks to establish baseline geotechnical data and recommendations to support future planning and design. Baseline data requested and recommendations provided include a description of soil and groundwater conditions, seismic hazards, building foundation options, stormwater infiltration feasibility, re-use of on-site soil as structural fill and backfill and other recommended design parameters.

It is our understanding that this project will ultimately be contracted as progressive design-build delivery method. As such, in the spirit of the progressive design-build format, innovation in project design and builder risk can be incorporated into the final planning, design, and construction process, within reason. We provide the geotechnical recommendations included in this report as baseline conditions, upon which the contractor may rely on within the context that they are presented. Any design-builder innovations or risks that alter the provided recommendations or the context within which they are provided, are done so at the design-builder's sole risk and would need to be fully supported by a separate set of geotechnical engineering recommendations.

2.0 SCOPE OF SERVICES

Our services have been provided in general accordance with our proposal for this project dated July 13, 2020 and Signed Agreement No. 2020-148 T(3) dated on September 4, 2020. A complete list of our scope or services is provided in our proposal.

3.0 SITE CONDITIONS

3.1. Surface Conditions

The site is bounded by undeveloped, forested land to the north, campus Parking Lot C to the east, and existing Pierce College buildings, landscaped and hardscaped common areas to the west and south. The site is currently forested with mature coniferous and deciduous trees and a dense understory layer,

including brush, small trees, fallen trees, and forest duff. Site topography generally slopes upward toward the west-southwest of the site from approximate Elevation 526 feet to Elevation 532 feet (NAVD88).

3.2. Literature Review

3.2.1. Geologic Maps

Our understanding of the site geology is based on review of the Geologic Map of the Tacoma 1:100,000scale Quadrangle, Washington (Schuster, et al. 2015). The geologic map indicates the site is underlain by "Vashon Till" (Q_{gt}). "Recessional outwash" (Q_{go}) is also mapped in the near project vicinity. Vashon Till is glacially consolidated and is described as a low permeability, highly compact mixture of sand, gravel, silt and clay that can contain cobbles and boulders dispersed throughout.

Recessional outwash is generally described as variably sorted silt, clay, sand and gravel deposited by receding glacial ice. The outwash is typically underlain at some depth by glacial till. Recessional outwash deposits are not glacially consolidated and are generally loose to medium dense.

3.2.2. Soil Survey

We reviewed the Natural Resources Conservation Service (NRCS) Web Soil Survey (accessed October 29, 2020). According to the survey, the site is underlain by Kapowsin gravelly ashy loam, 6 to 15 percent slopes. Kapowsin gravelly ashy loam is described as moderately well drained with a very low capacity of the most limiting layer to transmit water and categorized as Hydrologic Soil Group B.

3.2.3. Geotechnical Report Reviewed

We reviewed the following geotechnical report for this project.

 "Geotechnical Report, Pierce College Puyallup, Communication Arts/Allied Health Building, Puyallup, Washington" dated May 9, 2006 prepared by HWA Geosciences, Inc.

HWA Geosciences, Inc. completed four test pits for the Communication Arts/Allied Health building to the northwest of the project site. In HWA's explorations, they noted typical soil conditions consisted of about 1 foot of forest duff overlying medium dense, weathered glacial deposits on the order of 1 to 5 feet thick. The weathered glacial deposits were noted to overlie dense to very dense granular glacial outwash deposits with interbedded lenses of glacial till. Cobbles and boulders were also encountered in their explorations. No groundwater seepage was observed in their explorations at the time of excavations, and they noted mottling of soils and increased moisture typically below 9 to 10 feet depth.

3.3. Subsurface Conditions

3.3.1. Subsurface Explorations and Laboratory Testing

We explored subsurface conditions at the site by excavating six test pits (TP-1 through TP-6) at the approximate locations shown on the attached Site Plan, Figure 2. A description of our subsurface exploration program and summary exploration logs are provided in Appendix A.

Selected samples collected from our test pits were tested in our laboratory to confirm field classifications and to evaluate pertinent engineering properties. Our laboratory testing program included grain-size distribution analyses and moisture content determinations. A summary of our laboratory testing program and the test results are provided in Appendix A.

3.3.2. Soil and Groundwater Conditions

In our explorations, after partially clearing the surface with the excavator, we typically observed about 4 to 8 inches of forest duff and/or organic-rich soil. Undisturbed forest duff thickness was typically on the order of about 9 to 12 inches. The depths of soil units described below are with respect to the partially cleared areas of forest duff thickness.

Beneath the forest duff, we generally observed silty sand with varying gravel content in a loose to dense condition to a depth of about 2 to $4\frac{1}{2}$ feet below ground surface (bgs). Abundant roots were noted to a depth of about 2 feet bgs. We interpret the soil directly underlying the forest duff to be weathered glacial till. Underlying the weathered glacial till we observed silty sand with gravel to silty gravel with sand and occasional cobbles in a dense to very dense condition, which we interpret to be glacial till, extending to the full depths explored. We also encountered occasional boulders in exploration TP-1.

We did not observe the regional groundwater table nor indications of perched groundwater in our explorations. However, based on our experience, it is not uncommon for glacial soils to contain isolated zones of perched groundwater. Though not observed in our explorations, we anticipate that perched groundwater could be present in other areas at the site depending on soil conditions, rainfall amounts, irrigation activities and other factors. We anticipate that perched groundwater levels will generally be highest during the wet season, typically October through May.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1. Primary Geotechnical Considerations

Based on our understanding of the project, the explorations performed for this study, review of subsurface information near or within the project vicinity and our experience, it is our opinion that the proposed improvements can be designed and constructed generally as envisioned with regard to geotechnical considerations. A summary of the primary geotechnical considerations for the project is provided below and is followed by our detailed recommendations.

- Proposed structures at the site can be supported using shallow foundations and slabs-on-grade, provided that the foundation bearing surfaces are prepared as recommended. We do not anticipate that significant overexcavation will be required, unless isolated areas of loose, or otherwise unsuitable areas are encountered near foundation grade.
- We did not identify soils that we interpret to be prone to liquefaction in our explorations. In our opinion, the risk of liquefaction occurring at this site is low.
- Clearing and stripping depths for forest duff at the site will typically be on the order of 9 to 12 inches. Abundant roots were observed to a depth of about 2 feet bgs, which may require greater clearing and stripping efforts when establishing bearing surfaces for structures on site.
- Near-surface soils observed at the site contain a significant quantity of fines and, therefore, could be difficult or impossible to work with when wet or become easily disturbed if exposed to wet weather. Depending on the intended use of the material and the moisture/weather conditions, it may be difficult to re-use near-surface soils as structural fill.

Based on our observations, the infiltration capacity of the observed site soils is low. Additional field testing will be necessary to further evaluate the suitability of site soils for stormwater infiltration and to establish a design infiltration rate if infiltration is included in design.

4.2. Seismic Design Considerations

4.2.1. Seismic Design Parameters

We understand seismic design of proposed structures will be performed using procedures outlined in the 2018 International Building Code (IBC). The 2018 IBC states structures shall be designed and constructed to resist the effects of earthquake motions in accordance with American Society of Civil Engineers (ASCE) 7-16.

We used map-based values as recommended by the United States Geological Survey (USGS) to determine the seismic design spectrum in accordance with ASCE 7-16. Based on subsurface conditions observed in our explorations, our review of site geology and our experience in the area, we anticipate soils below our explorations and extending to depth are glacially consolidated and dense to very dense. For seismic design and analysis, we recommend using a response spectrum for Site Class C. We recommend the parameters provided in Table 1 below be used for design.

TABLE 1.	SEISMIC	DESIGN	CRITERIA
----------	---------	--------	----------

2018 IBC (ASCE 7-16) Seismic Design Parameters	
Spectral Response Acceleration at Short Periods (Ss)	1.253g
Spectral Response Acceleration at 1-Second Periods (S1)	0.432g
Site Class	С
Design Peak Ground Acceleration (PGA _M)	0.6g
Design Spectral Response Acceleration at Short Periods (SDS)	1.003g
Design Spectral Response Acceleration at 1-Second Periods (S_{D1})	0.432g

4.2.2. Liquefaction

Liquefaction refers to a condition where vibration or shaking of the ground, usually from earthquake forces, results in development of excess pore pressures in loose, saturated soils and subsequent loss of strength in the deposit of soil so affected. In general, soils that are susceptible to liquefaction include loose to medium dense sands to silty sands that are below the water table. The *Liquefaction Susceptibility Map of Pierce County, Washington* (Palmer, et al. 2004) indicates the site soils have a "very low" liquefaction potential. Based on the soil and groundwater conditions observed in our explorations and those documented in the report reviewed, we conclude that the potential for liquefaction at the site is low.

4.2.3. Lateral Spreading Potential

Lateral spreading related to seismic activity typically involves lateral displacement of large, surficial blocks of non-liquefied soil when a layer of underlying soil loses strength during seismic shaking. Lateral spreading usually develops in areas where sloping ground or large grade changes (including retaining walls) are present. Based on our understanding of the liquefaction risk at the site and the proposed improvements, it is our opinion that the risk of lateral spreading is low.

4.2.4. Surface Rupture Potential

According to the Washington State Department of Natural Resources Interactive Geologic Information Portal and the USGS Interactive Quaternary Faults Database (both accessed October 30, 2020), the nearest mapped fault is located about 6 miles north/northeast of the site. The fault is oriented in a northwest-southeast direction and is identified as part of the Tacoma fault zone system (USGS Fault ID No. 581; USGS Fault Class A). Based on the proximity of the site to this nearest mapped fault and fault information available at the time of this study, it is our opinion the risk for surface rupture at this site is low.

4.3. Site Development and Earthwork

4.3.1. General

We anticipate that site development and earthwork will include clearing and grubbing, site grading, excavating for shallow foundations, utilities and other improvements, establishing subgrades for foundations and roadways and placing and compacting fill and backfill materials. We expect that site grading and earthwork can be accomplished with conventional earthmoving equipment. The following sections provide specific recommendations for site development and earthwork.

4.3.2. Clearing and Stripping

We anticipate that clearing and stripping depths at the site will typically be on the order of 9 to 12 inches to remove forest duff. However, abundant roots were observed to about 2 feet bgs; therefore, it is likely that greater stripping depths will be required in areas of heavier vegetation or relatively lower lying areas.

During stripping operations excessive disturbance of surficial soils can occur, especially if left exposed to wet conditions. Glacial till soils expected to be exposed after clearing and stripping have a relatively high fines content and can be easily disturbed during wet weather. Clearing and stripping at the site should be performed during dry weather and/or exposed soils should be promptly covered and protected to avoid excessive disturbance. Disturbed soils may require additional compaction or remediation during construction and grading.

Cobbles were encountered in our explorations, and boulders were encountered in exploration TP-1. Cobbles and boulders are commonly present in glacial till soils in the project area. The contractor should be prepared to remove cobbles and boulders if encountered during grading or excavation. Boulders may be removed from the site or used in landscape areas. Voids caused by boulder removal should be backfilled with structural fill.

4.3.3. Erosion and Sedimentation Control

Erosion and sedimentation rates and quantities can be influenced by construction methods, slope length and gradient, amount of soil exposed and/or disturbed, soil type, construction sequencing and weather. Implementing an Erosion and Sedimentation Control Plan will reduce impacts to the project where erosionprone areas are present. The plan should be designed in accordance with applicable city, county and/or state standards. The plan should incorporate basic planning principles, including:

- Scheduling grading and construction to reduce soil exposure;
- Re-vegetating or mulching denuded areas;
- Directing runoff away from exposed soils;

- Reducing the length and steepness of slopes with exposed soils;
- Decreasing runoff velocities;
- Preparing drainage ways and outlets to handle concentrated or increased runoff;
- Confining sediment to the project site; and
- Inspecting and maintaining control measures frequently.

Temporary erosion protection should be used and maintained in areas with exposed or disturbed soils to help reduce erosion and reduce transport of sediment to adjacent areas and receiving waters. Permanent erosion protection should be provided by paving, structure construction or landscape planting.

Until the permanent erosion protection is established, and the site is stabilized, site monitoring may be required by qualified personnel to evaluate the effectiveness of the erosion control measures and to repair and/or modify them as appropriate. Provisions for modifications to the erosion control system based on monitoring observations should be included in the erosion and sedimentation control plan. Where sloped areas are present, some sloughing and raveling of exposed or disturbed soil on slopes should be expected. We recommend that disturbed soil be restored promptly so that surface runoff does not become channeled.

4.3.4. Temporary Excavations and Cut Slopes

Based on observations made during excavation of our test pits and our experience with other projects in similar soil conditions, we anticipate that shallow or even moderately deep (about 10-foot) excavations could maintain vertical slopes for extended periods of time with only minor caving. However, excavations deeper than 4 feet should be shored or laid back at a stable slope if workers are required to enter. Shoring and temporary slope inclinations must conform to the provisions of Title 296 Washington Administrative Code (WAC), Part N, "Excavation, Trenching and Shoring." Regardless of the soil type encountered in the excavation shoring, trench boxes or sloped sidewalls will be required under Washington Industrial Safety and Health Act (WISHA). We recommend contract documents specify that the contractor is responsible for selecting excavation and dewatering methods, monitoring the excavations for safety and providing shoring, as required, to protect personnel and structures.

In general, we recommend that for planning purposes all temporary cut slopes be inclined no steeper than about 1½H to 1V (horizontal to vertical) if workers are required to enter the excavation. This guideline assumes all surface loads are kept at a minimum distance of at least one-half the depth of the cut away from the top of the slope and that seepage is not present on the slope face. Flatter cut slopes will be necessary where seepage occurs or if surface surcharge loads are anticipated. Temporary covering with heavy plastic sheeting should be used to protect these slopes during periods of wet weather.

4.3.5. Permanent Cut and Fill Slopes

We recommend permanent slopes be constructed at a maximum inclination of 2H to 1V to manage erosion. Where 2H to 1V permanent slopes are not feasible, protective facings and/or retaining structures should be considered.

To achieve uniform compaction, we recommend fill slopes be overbuilt and subsequently cut back to expose well-compacted fill. Fill placement on existing slopes steeper than 5H to 1V should be benched into the slope face. The configuration of benches depends on the equipment being used and the inclination of

the existing slope. Bench excavations should be level and extend into the slope face at least half the width of the compaction equipment used.

Exposed areas should be re-vegetated as soon as practical to reduce surface erosion and sloughing. Temporary protection should be used until permanent protection is established.

4.3.6. Groundwater Handling Considerations

Based on our understanding of the proposed site improvements, we do not anticipate that the regional groundwater table will be encountered during excavations for this project.

Although not encountered in our explorations, areas of perched groundwater could be encountered at the site. The interface between more permeable and less permeable zones such as the contact between weathered glacial till and glacial till are likely locations for accumulation of perched groundwater. Groundwater handling needs will typically be lower during the summer and early fall months. We anticipate that shallow perched groundwater can be handled adequately with sumps, pumps, and/or diversion ditches, as necessary. Ultimately, we recommend that the contractor performing the work be made responsible for controlling and collecting groundwater encountered.

4.3.7. Surface Drainage

Surface water from roof downspouts, driveways and landscape areas should be collected and controlled. Curbs or other appropriate measures such as sloping pavements, sidewalks and landscape areas should be used to direct surface flow away from buildings, erosion sensitive areas and from behind retaining structures. Roof and catchment drains should not be connected to wall or foundation drains.

4.3.8. Subsurface Drainage

Based on our subsurface explorations, the site generally consists of low permeable, undisturbed glacial till soils at relatively shallow depths (on the order of 2 to $4\frac{1}{2}$ feet bgs). Excavations that extend into undisturbed glacial till, such as foundation excavations, will likely create a perched groundwater condition. Utility trenches that extend into undisturbed glacial till and are backfilled with structural fill could also create perched groundwater due to difference in permeability between trench backfill and undisturbed glacial till.

Based on our explorations, we recommend that perimeter foundation drains be considered in the project design. It is our opinion that the building slab does not need to be drained unless excessive water is encountered during excavation and grade development for the building slab. To manage perched groundwater within site excavations and where groundwater or high moisture would be detrimental to other site improvements, other special drainage details could be required. For example, to clear groundwater accumulation in utility trenches and other excavations backfilled with permeable material and where also located near structures.

4.3.9. Subgrade Preparation

Subgrades that will support structures and roadways should be thoroughly compacted to a uniformly firm and unyielding condition on completion of stripping and before placing structural fill. We recommend that subgrades for structures and roadways be evaluated, as appropriate, to identify areas of yielding or soft soil. Probing with a steel probe rod or proof-rolling with a heavy piece of wheeled construction equipment are appropriate methods of evaluation.

If soft or otherwise unsuitable subgrade areas are revealed during evaluation that cannot be compacted to a stable and uniformly firm condition, we recommend that: (1) the unsuitable soils be scarified (e.g., with a ripper or farmer's disc), aerated and recompacted, if practical; or (2) the unsuitable soils be removed and replaced with compacted structural fill, as needed.

4.3.10. Subgrade Protection and Wet Weather Considerations

Near-surface soils observed at the site contain a significant quantity of fines and will be susceptible to disturbance during periods of wet weather. The wet weather season generally begins in October and continues through May in western Washington; however, periods of wet weather can occur during any month of the year. It may be possible to conduct earthwork at the site during wet weather months provided appropriate measures are implemented to protect exposed soil. If earthwork is scheduled during the wet weather months, we offer the following recommendations:

- Measures should be implemented to remove or eliminate the accumulation of surface water from work areas. The ground surface in and around the work area should be sloped so that surface water is directed away and graded so that areas of ponded water do not develop. Measures should be taken by the contractor to prevent surface water from collecting in excavations and trenches.
- Earthwork activities should not take place during periods of heavy precipitation.
- Slopes with exposed soils should be covered with plastic sheeting.
- The contractor should take necessary measures to prevent on-site soils and other soils to be used as fill from becoming wet or unstable. These measures may include the use of plastic sheeting, sumps with pumps and grading. The site soils should not be left uncompacted and exposed to moisture. Sealing exposed soils by rolling with a smooth-drum roller prior to periods of precipitation will help reduce the extent to which these soils become wet or unstable.
- Construction traffic should be restricted to specific areas of the site, preferably areas that are surfaced with working pad materials not susceptible to wet weather disturbance.
- Construction activities should be scheduled so that the length of time that soils are left exposed to moisture is reduced to the extent practical.
- Protective surfacing such as placing asphalt-treated base (ATB) or haul roads made of quarry spalls or a layer of free-draining material such as well-graded pit-run sand and gravel may be considered to limit disturbance to completed areas. Minimum quarry spall thicknesses should be on the order of 12 to 18 inches. Typically, minimum gravel thicknesses on the order of 24 inches are necessary to provide adequate subgrade protection.

4.4. Fill Materials

4.4.1. Structural Fill

The workability of material for use as structural fill will depend on the gradation and moisture content of the soil. Material used for structural fill should be free of debris, organic contaminants and rock fragments larger than 6 inches. For most applications, structural fill consisting of material similar to "Select Borrow" or "Gravel Borrow" as described in Section 9-03.14 of the Washington State Department of Transportation (WSDOT) Standard Specifications will be appropriate.

GEOENGINEERS

Weather and site conditions should be considered when determining the type of import fill materials purchased and brought to the site for use as structural fill. If earthwork activities are scheduled during the wet weather months or during prolonged periods of wet weather, we recommend that washed crushed rock or select granular fill, as described below, be used for structural fill.

If prolonged dry weather prevails during the earthwork phase of construction, materials with a somewhat higher fines content may be acceptable.

4.4.2. Select Granular Fill

Select granular fill should consist of well-graded sand and gravel or crushed rock with a maximum particle size of 6 inches and less than 5 percent fines by weight based on the minus ³/₄-inch fraction. Organic matter, debris or other deleterious material should not be present. In our opinion, material with gradation characteristics similar to WSDOT Specification 9-03.9 (Aggregates for Ballast and Crushed Surfacing), or 9-03.14 (Borrow) is suitable for use as select granular fill, provided that the fines content is less than 5 percent (based on the minus ³/₄-inch fraction) and the maximum particle size is 6 inches.

4.4.3. Pipe Bedding

Trench backfill for the bedding and pipe zone should consist of well-graded granular material similar to "Gravel Backfill for Pipe Zone Bedding" described in Section 9-03.12(3) of the WSDOT Standard Specifications. The material must be free of roots, debris, organic matter and other deleterious material. Other materials may be appropriate depending on manufacturer specifications and/or local jurisdiction requirements.

4.4.4. Trench Backfill

Trench backfill must be free of debris, organic material and rock fragments larger than 6 inches. We recommend that trench backfill material consist of material similar to "Select Borrow" or "Gravel Borrow" as described in Section 9-03.14 of the WSDOT Standard Specifications.

4.4.5. On-Site Soil

Based on our subsurface explorations and experience, it is our opinion that existing site soils, excluding the forest duff, may be considered for use as structural fill and trench backfill, provided that it can be adequately moisture conditioned, placed and compacted as recommended and does not contain organic or other deleterious material. Based on our experience, the glacial till and weathered glacial till at the site are extremely moisture sensitive and will be very difficult or impossible to properly compact when wet.

In addition, it is likely that existing soils will be above optimum moisture content (OMC) when excavated, unless earthwork activities take place in the middle of summer. Even then, the soil could still be above OMC when excavated. Soils placed and compacted above OMC are typically difficult to work with and may have trouble achieving adequate compaction. If earthwork occurs during a typical wet season, or if the soils are persistently wet and cannot be dried back due to prevailing wet weather conditions or lack of drying space/time, we recommend the use of imported structural fill or select granular fill, as described above.

4.5. Fill Placement and Compaction

4.5.1. General

To obtain proper compaction, fill and backfill soil should be compacted near the OMC and in uniform horizontal lifts. Lift thickness and compaction procedures will depend on the moisture content and gradation characteristics of the soil and the type of equipment used. The maximum allowable moisture content varies with the soil gradation and should be evaluated during construction. Generally, 8- to 12-inch loose lifts are appropriate for steel-drum vibratory roller compaction equipment. Compaction should be achieved by mechanical means. During fill and backfill placement, sufficient testing of in-place density should be conducted to check that adequate compaction is being achieved.

4.5.2. Area Fills and Pavement Bases

Fill placed to raise site grades and materials under pavements and structural areas should be placed on subgrades prepared as previously recommended. Fill material placed below structures and footings should be compacted to at least 95 percent of the theoretical maximum dry density (MDD) per ASTM International (ASTM) D 1557. Fill material placed shallower than 2 feet below pavement sections should be compacted to at least 95 percent of the MDD. Fill placed deeper than 2 feet below pavement sections should be compacted to at least 90 percent of the MDD. Fill material placed in landscaping areas should be compacted to a firm condition that will support construction equipment, as necessary, typically around 85 to 90 percent of the MDD.

4.5.3. Backfill Behind Walls

Backfill behind retaining walls or below-grade structure walls should be compacted to between 90 and 92 percent of the MDD. Overcompaction of fill placed directly behind walls should be avoided. We recommend use of hand-operated compaction equipment and maximum 6-inch loose lift thickness when compacting fill within about 5 feet behind walls.

4.5.4. Trench Backfill

For utility excavations, we recommend that the initial lift of fill over the pipe be thick enough to reduce the potential for damage during compaction, but generally should not be greater than about 18 inches above the pipe. In addition, rock fragments greater than about 1 inch in maximum dimension should be excluded from this lift.

Trench backfill material placed below structures and footings should be compacted to at least 95 percent of the MDD. In paved areas, trench backfill should be uniformly compacted in horizontal lifts to at least 95 percent of the MDD in the upper 2 feet below subgrade. Fill placed below a depth of 2 feet from subgrade in paved areas must be compacted to at least 90 percent of the MDD. In non-structural areas, trench backfill should be compacted to a firm condition that will support construction equipment as necessary.

4.6. Foundation Support

4.6.1. General

In our opinion, the proposed structures at the site can be satisfactorily supported on continuous wall and isolated column footings. Exterior footings should be established at least 18 inches below the lowest adjacent grade. Interior footings can be founded a minimum of 12 inches below the bottom of the floor

slab. Isolated column and continuous wall footings should have minimum widths of 24 and 18 inches, respectively.

Based on the groundwater conditions in our explorations and our understanding of the proposed footing elevations (bottom of footings established within a few feet of existing site grade), it is our opinion footing drains are not necessary to maintain bearing support as provided in this report. However, it is possible and even likely that perched groundwater zones will develop within fill placed over native glacial till soils at the site. Footing drains or perimeter drains are recommended to reduce the potential for perched groundwater accumulation in the fill around building foundations.

The sections below provide our recommendations for foundation bearing surface preparation and foundation design parameters.

4.6.2. Foundation Bearing Surface Preparation

Shallow footing excavations should be performed using a smooth-edged bucket to limit bearing disturbance. Foundations should bear on inert mineral native glacial till soils (weathered or unweathered) or on structural fill extending to these soils. The forest duff layer and any roots/organics should be completely removed from below proposed footing areas. It should be noted that abundant roots were observed to a depth of about 2 feet bgs in our explorations. Depending on bearing surface elevations, up to 2 feet of removal may be required below foundation areas. The bearing surface should be compacted as necessary to a firm, unyielding condition. Loose or disturbed materials present at the base of footing excavations should be removed or compacted.

If structural fill is placed below footings as either replacement of overexcavated soils or to establish a bearing pad, we recommend the structural fill extend laterally beyond the foundation perimeter a distance equal to the depth of fill (measured from the base of the footing where necessary), or 3 feet, whichever is less.

Foundation bearing surfaces should not be exposed to standing water. If water is present in the excavation, it must be removed before placing formwork and reinforcing steel. Protection of exposed soil, such as placing a 6-inch thick layer of crushed rock or a 3- to 4-inch layer of lean-mix concrete, could be used to limit disturbance to bearing surfaces.

We understand that areas containing soft, unsuitable site soils were encountered during site preparation for the nearby Communication Arts and Allied Health building, which resulted in overexcavation and replacement with import structural fill to depths up to about 3 to 4 feet. It should be noted that on-site material will become easily disturbed if stripped and left exposed to wet weather. Additional overexcavation depths may be required for this project depending on earthwork sequencing and how well exposed site soils are protected.

4.6.3. Allowable Soil Bearing Pressure

Shallow foundations bearing on subgrades prepared as recommended may be designed using an allowable soil bearing pressure of 3,500 pounds per square foot (psf). This bearing pressure applies to the total of dead and long-term live loads and may be increased by one-third when considering total loads, including earthquake or wind loads. These are net bearing pressures. The weight of the footing and overlying backfill can be ignored in calculating footing sizes.

It is possible that higher bearing pressures are attainable at the site, especially for structures well founded in the dense glacial till or on structural fill placed on this material. Additional considerations such as building load, foundation size, and settlement tolerances should also be considered to support higher bearing pressures.

4.6.4. Foundation Settlement

Disturbed soil must be removed from the base of footing excavations and the bearing surface should be prepared as recommended. Provided these measures are taken, we estimate the total static settlement of shallow foundations will be on the order of 1 inch or less for the bearing pressures presented above. Differential settlements could be on the order of $\frac{1}{4}$ to $\frac{1}{2}$ inch between similarly loaded foundations or over a distance of 50 feet of continuous footings. The settlements should occur rapidly, essentially as loads are applied. Settlements could be greater than estimated if disturbed or saturated soil conditions are present below footings.

4.6.5. Lateral Resistance

The ability of the soil to resist lateral loads is a function of the base friction, which develops on the base of foundations and slabs, and the passive resistance, which develops on the face of below-grade elements of the structure as these elements move into the soil. For cast-in-place foundations supported in accordance with the recommendations presented above, the allowable frictional resistance on the base of the foundation may be computed using a coefficient of friction of 0.40 applied to the vertical dead-load forces. If precast foundations are included as part of project plans, we can provide specific recommendations for base friction resistance for precast foundations. The allowable passive resistance on the face of the foundation or other embedded foundation elements may be computed using an equivalent fluid density of 290 pounds per cubic foot (pcf).

These values include a factor of safety of about 1.5. The passive earth pressure and friction components may be combined provided that the passive component does not exceed two-thirds of the total. The top foot of soil should be neglected when calculating passive lateral earth pressure unless the area adjacent to the foundation is covered with pavement or a slab-on-grade.

4.7. Slab-on-Grade Floors

Slab-on-grade floors should bear on native glacial till soils or on structural fill extending to these soils and should be prepared as recommended in the "4.3.8 Subgrade Preparation" section of this report. Disturbed areas should be compacted, if possible, or removed and replaced with compacted structural fill. In all cases, the exposed soil should be compacted to a firm and unyielding condition.

We recommend the slab-on-grade floors be underlain by a minimum 6-inch-thick capillary break layer consisting of clean sand and gravel, crushed rock, or washed rock. The capillary break material should contain less than 3 percent fine material based on the percent passing the ³/₄-inch sieve size. Provided that loose soil is removed, and the subgrade is prepared as recommended, we recommend slabs-on-grade be designed using a modulus of subgrade reaction of 250 pounds per cubic inch (pci). We estimate that settlement for slabs-on-grade constructed as recommended will be less than ³/₄-inch for a floor load of up to 500 psf.

Based on our understanding of subsurface conditions at the site, it is our opinion that an underslab drain system is not necessary. If dry slabs are required (e.g., where adhesives are used to anchor carpet or tile to slab), a waterproof liner may be placed as a vapor barrier below the slab.

4.8. Retaining Walls and Below-Grade Structures

4.8.1. Design Parameters

We recommend the following lateral earth pressures be used for design of conventional retaining walls and below-grade structures. Our design pressures assume that the ground surface around the retaining structures will be level or near level. If drained design parameters are used, drainage systems must be included in the design in accordance with the recommendations presented in the "4.8.2 Drainage" section below.

- Active soil pressure may be estimated using an equivalent fluid density of 35 pcf for the drained condition.
- Active soil pressure may be estimated using an equivalent fluid density of 80 pcf for the undrained condition; this value includes hydrostatic pressures.
- At-rest soil pressure may be estimated using an equivalent fluid density of 55 pcf for the drained condition.
- At-rest soil pressure may be estimated using an equivalent fluid density of 90 pcf for the undrained condition; this value includes hydrostatic pressures.
- For seismic considerations, a uniform lateral pressure of 13*H psf (where H is the height of the retaining structure or the depth of a structure below ground surface) should be added to the lateral earth pressure.
- An additional 2 feet of fill representing a typical traffic surcharge of 250 psf should be included if vehicles are allowed to operate within ½ the height of the retaining walls. Other surcharge loads should be considered on a case-by-case basis.

The active soil pressure condition assumes the wall is free to move laterally 0.001 H, where H is the wall height. The at-rest condition is applicable where walls are restrained from movement. The above-recommended lateral soil pressures do not include surcharge loads other than described or the effects of sloping backfill surfaces. Overcompaction of fill placed directly behind retaining walls or below-grade structures must be avoided. We recommend use of hand-operated compaction equipment and maximum 6-inch loose lift thickness when compacting fill within about 5 feet of retaining walls and below-grade structures.

Retaining wall foundation bearing surfaces should be prepared following the "4.6 Foundation Support" section of this report. Provided bearing surfaces are prepared as recommended, retaining wall foundations may be designed using the allowable soil bearing values and lateral resistance values presented above for building foundation design. We estimate settlement of retaining structures will be similar to the values previously presented for building foundations.

4.8.2. Drainage

If retaining walls or below-grade structures are designed using drained parameters, a drainage system behind the structure must be constructed to collect water and prevent the buildup of hydrostatic pressure against the structure. We recommend the drainage system include a zone of free-draining backfill a minimum of 18 inches in width against the back of the wall. The drainage material should consist of coarse sand and gravel containing less than 5 percent fines by weight based on the fraction of material passing the ³/₄-inch sieve.

A perforated, rigid, smooth-walled drain pipe with a minimum diameter of 4 inches should be placed along the base of the structure within the free-draining backfill and extend for the entire wall length. The drain pipe should be metal or rigid PVC pipe and be sloped to drain by gravity. Discharge should be routed to appropriate discharge areas and to reduce erosion potential. Cleanouts should be provided to allow routine maintenance. We recommend roof downspouts or other types of drainage systems not be connected to retaining wall drain systems.

4.9. Infiltration Feasibility Assessment

We anticipate that stormwater facilities on site, if planned, will be designed in accordance with the 2014 Washington State Department of Ecology Stormwater Management Manual for Western Washington (SWMMWW), as adopted by the City of Puyallup. According to the SWMMWW, measured infiltration rates in soils consolidated by glacial advance (i.e., glacial till) shall be determined using in-situ field tests such as a Pilot Infiltration Test (PIT). The manual does not allow the use of soil grain-size analysis to determine design infiltration rates for glacially consolidated soils. Additionally, detailed infiltration analyses including performance testing and groundwater mounding analysis are noted in the SWMMWW. Based on our explorations, we do not expect groundwater will be a factor in stormwater design for construction and excavations extending to the depths explored in this report.

The site is generally underlain by undisturbed glacial till at relatively shallow depths (on the order of 2 to $4\frac{1}{2}$ feet bgs). In our experience with similar soil and density conditions (undisturbed glacial till), PITs typically measure very slow infiltration rates, on the order of 0.05 to 0.25 inches per hour with correction factors and in some cases, no infiltration can be measured. We suggest this range be considered for preliminary design of facilities, then followed up with final rates determined by completing PITs.

5.0 LIMITATIONS

We have prepared this report for the Washington State Department of Enterprise Services (DES) for the Pierce College Puyallup – STEM Building Design Study project located in Puyallup, Washington. DES may distribute copies of this report to owner's authorized agents and regulatory agencies as may be required for the Project.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices for geotechnical engineering in this area at the time this report was prepared. The conclusions, recommendations, and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty, express or implied, applies to the services or this report.

Please refer to Appendix B titled "Report Limitations and Guidelines for Use" for additional information pertaining to use of this report.

Projection:

APPENDIX A Subsurface Explorations and Laboratory Testing

APPENDIX A SUBSURFACE EXPLORATIONS AND LABORATORY TESTING

Subsurface Explorations

Subsurface conditions for the proposed Pierce College Puyallup – STEM Building Design Study project were explored by excavating six test pits on October 5, 2020 at the approximate locations shown on the Site Plan, Figure 2. The test pits were excavated to depths between about 8 and 10¹/₄ feet bgs using an excavator provided and operated by Kelly's Excavating, Inc. under subcontract to GeoEngineers. After each test pit was completed, the excavation was backfilled using the generated material and compacted using the bucket of the excavator.

During the exploration program, our field representative obtained soil samples, classified the soils encountered, and maintained a detailed log of each exploration. The relative densities noted on the test pit logs are based on the difficulty of excavation and our experience and judgment. The samples were collected and retained in sealed plastic bags and then transported back to our office. The soils were classified visually in general accordance with the system described in Figure A-1, which includes a key to the exploration logs. Summary logs of the explorations are included as Figures A-2 through A-7.

The locations of the test pits were determined using an electronic tablet equipped with global positioning system (GPS) software. The locations of the explorations should be considered approximate.

Laboratory Testing

Soil samples obtained from the borings were transported to GeoEngineers' laboratory. Representative soil samples were selected for laboratory tests to evaluate the pertinent geotechnical engineering characteristics of the site soils and to confirm our field classifications.

Our testing program consisted of the following:

- Four grain-size distribution analyses (sieve analyses [SA])
- Five moisture content determinations (MC)

Tests were performed in general accordance with test methods of ASTM International (ASTM) or other applicable procedures. The following sections provide a general description of the tests performed.

Sieve Analysis (SA)

Grain-size distribution analyses were completed on selected samples in general accordance with ASTM Test Method C 136. This test method covers the quantitative determination of the distribution of particle sizes in soils. Typically, the distribution of particle sizes larger than 75 micrometers (μ m) is determined by sieving. The results of the tests were used to verify field soil classifications and determine pertinent engineering characteristics. Figure A-8 presents the results of our sieve analyses.

Moisture Content (MC)

The moisture content of selected samples was determined in general accordance with ASTM Test Method D 2216. The test results are used to aid in soil classification and correlation with other pertinent engineering soil properties. The results are presented on the test pit logs at the depth tested.

MAJOR DIVISIONS			SYMBOLS		
	GRAVEL	CLEAN GRAVELS	GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)	GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
COARSE GRAINED	MORE THAN 50%	GRAVELS WITH FINES	GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
SUILS	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)	GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
ORE THAN 50%	SAND	CLEAN SANDS		WELL-GRADED SANDS, GRAVELLY SANDS	
RETAINED ON IO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)	SP	POORLY-GRADED SANDS, GRAVELLY SAND	
	MORE THAN 50% OF COARSE ERACTION PASSING	SANDS WITH FINES	SM	SILTY SANDS, SAND - SILT MIXTURES	
	ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)	sc	CLAYEY SANDS, SAND - CLAY MIXTURES	
			ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50	LIQUID LIMIT LESS THAN 50	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
SOILS			OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
RE THAN 50% PASSING . 200 SIEVE			мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50	СН	INORGANIC CLAYS OF HIGH PLASTICITY	
			ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	
	HIGHLY ORGANIC	SOILS	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	
B	Sat 2.4- Star She Pist Dire Bull Con lowcount is re lows required	mpler Symb inch I.D. split k ndard Penetra lby tube on ect-Push < or grab tinuous Coring ecorded for dri to advance sa	ool Descriptio parrel tion Test (SPT)	ns the number of (or distance noted).	
S ""	ee exploration	n log for hamn	ner weight and di	op.	
	mulcates S	ampier pusite	a asing the weigh	t of the unit fig.	

ADDITIONAL MATERIAL SYMBOLS

SYMBOLS		TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	сс	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	SOD	Sod/Forest Duff
	TS	Topsoil

TURES		Groundwater Contact
	<u> </u>	Measured groundwater level in exploration, well, or piezometer
R,	Ţ	Measured free product in well or piezometer
Y AYS,		Graphic Log Contact
SILTY		Distinct contact between soil strata
OR	/	Approximate contact between soil strata
		Material Description Contact
		Contact between geologic units
		Contact between soil of the same geologic unit
VITH		Laboratory / Field Tests
	%F %G AL CP CS DD DS HA MC MD SA HA PL PP SA TX US	Percent fines Percent gravel Atterberg limits Chemical analysis Laboratory compaction test Consolidation test Dry density Direct shear Hydrometer analysis Moisture content Moisture content and dry density Mohs hardness scale Organic content Permeability or hydraulic conductivity Plasticity index Point load test Pocket penetrometer Sieve analysis Triaxial compression Unconfined compression Vane shear
	NS SS MS HS	No Visible Sheen Slight Sheen Moderate Sheen Heavy Sheen

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Project Number: 21342-002-00

Figure B-2 Sheet 1 of 1

Sheet 1 of 1

APPENDIX B Report Limitations and Guidelines for Use

APPENDIX B REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report.

Read These Provisions Closely

It is important to recognize that the geoscience practices (geotechnical engineering, geology and environmental science) rely on professional judgment and opinion to a greater extent than other engineering and natural science disciplines, where more precise and/or readily observable data may exist. To help clients better understand how this difference pertains to our services, GeoEngineers includes the following explanatory "limitations" provisions in its reports. Please confer with GeoEngineers if you need to know more how these "Report Limitations and Guidelines for Use" apply to your project or site.

Geotechnical Services are Performed for Specific Purposes, Persons and Projects

This report has been prepared for Washington State Department of Enterprise Services (WSDES) and for the Project(s) specifically identified in the report. The information contained herein is not applicable to other sites or projects.

GeoEngineers structures its services to meet the specific needs of its clients. No party other than the party to whom this report is addressed may rely on the product of our services unless we agree to such reliance in advance and in writing. Within the limitations of the agreed scope of services for the Project, and its schedule and budget, our services have been executed in accordance with our Agreement with WSDES signed on September 4, 2020 and generally accepted geotechnical practices in this area at the time this report was prepared. We do not authorize, and will not be responsible for, the use of this report for any purposes or projects other than those identified in the report.

A Geotechnical Engineering or Geologic Report is based on a Unique Set of Project-Specific Factors

This report has been prepared for the Pierce College Puyallup – STEM Building Design Study project in Puyallup, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, it is important not to rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

For example, changes that can affect the applicability of this report include those that affect:

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

- the function of the proposed structure;
- elevation, configuration, location, orientation or weight of the proposed structure;
- composition of the design team; or
- project ownership.

If changes occur after the date of this report, GeoEngineers cannot be responsible for any consequences of such changes in relation to this report unless we have been given the opportunity to review our interpretations and recommendations. Based on that review, we can provide written modifications or confirmation, as appropriate.

Environmental Concerns are Not Covered

Unless environmental services were specifically included in our scope of services, this report does not provide any environmental findings, conclusions, or recommendations, including but not limited to, the likelihood of encountering underground storage tanks or regulated contaminants.

Information Provided by Others

GeoEngineers has relied upon certain data or information provided or compiled by others in the performance of our services. Although we use sources that we reasonably believe to be trustworthy, GeoEngineers cannot warrant or guarantee the accuracy or completeness of information provided or compiled by others.

Subsurface Conditions Can Change

This geotechnical or geologic report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by man-made events such as construction on or adjacent to the site, new information or technology that becomes available subsequent to the report date, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. If more than a few months have passed since issuance of our report or work product, or if any of the described events may have occurred, please contact GeoEngineers before applying this report for its intended purpose so that we may evaluate whether changed conditions affect the continued reliability or applicability of our conclusions and recommendations.

Information Provided by Others

GeoEngineers has relied upon certain data or information provided or compiled by others in the performance of our services. Although we use sources that we reasonably believe to be trustworthy, GeoEngineers cannot warrant or guarantee the accuracy or completeness of information provided or compiled by others.

Geotechnical and Geologic Findings are Professional Opinions

Our interpretations of subsurface conditions are based on field observations from widely spaced sampling locations at the site. Site exploration identifies the specific subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied its professional judgment to render an informed opinion about subsurface conditions at other locations. Actual subsurface conditions may differ, sometimes significantly, from the opinions

presented in this report. Our report, conclusions and interpretations are not a warranty of the actual subsurface conditions.

Geotechnical Engineering Report Recommendations are Not Final

We have developed the following recommendations based on data gathered from subsurface investigation(s). These investigations sample just a small percentage of a site to create a snapshot of the subsurface conditions elsewhere on the site. Such sampling on its own cannot provide a complete and accurate view of subsurface conditions for the entire site. Therefore, the recommendations included in this report are preliminary and should not be considered final. GeoEngineers' recommendations can be finalized only by observing actual subsurface conditions revealed during construction. GeoEngineers cannot assume responsibility or liability for the recommendations in this report if we do not perform construction observation.

We recommend that you allow sufficient monitoring, testing and consultation during construction by GeoEngineers to confirm that the conditions encountered are consistent with those indicated by the explorations, to provide recommendations for design changes if the conditions revealed during the work differ from those anticipated, and to evaluate whether earthwork activities are completed in accordance with our recommendations. Retaining GeoEngineers for construction observation for this project is the most effective means of managing the risks associated with unanticipated conditions. If another party performs field observation and confirms our expectations, the other party must take full responsibility for both the observations and recommendations. Please note, however, that another party would lack our project-specific knowledge and resources.

A Geotechnical Engineering or Geologic Report Could Be Subject to Misinterpretation

Misinterpretation of this report by members of the design team or by contractors can result in costly problems. GeoEngineers can help reduce the risks of misinterpretation by conferring with appropriate members of the design team after submitting the report, reviewing pertinent elements of the design team's plans and specifications, participating in pre-bid and preconstruction conferences, and providing construction observation.

Do Not Redraw the Exploration Logs

Geotechnical engineers and geologists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. The logs included in a geotechnical engineering or geologic report should never be redrawn for inclusion in architectural or other design drawings. Photographic or electronic reproduction is acceptable, but separating logs from the report can create a risk of misinterpretation.

Give Contractors a Complete Report and Guidance

To help reduce the risk of problems associated with unanticipated subsurface conditions, GeoEngineers recommends giving contractors the complete geotechnical engineering or geologic report, including these "Report Limitations and Guidelines for Use." When providing the report, you should preface it with a clearly written letter of transmittal that:

 advises contractors that the report was not prepared for purposes of bid development and that its accuracy is limited; and

encourages contractors to confer with GeoEngineers and/or to conduct additional study to obtain the specific types of information they need or prefer.

Contractors are Responsible for Site Safety on Their Own Construction Projects

Our geotechnical recommendations are not intended to direct the contractor's procedures, methods, schedule or management of the work site. The contractor is solely responsible for job site safety and for managing construction operations to minimize risks to on-site personnel and adjacent properties.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants, and no conclusions or inferences should be drawn regarding Biological Pollutants as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria and viruses, and/or any of their byproducts.

A Client that desires these specialized services is advised to obtain them from a consultant who offers services in this specialized field.

Geotechnical Engineering Services Addendum Report No. 1

Pierce College Puyallup STEM Building Design Services Puyallup, Washington

for **Absher Construction Co.**

June 29, 2022

Geotechnical Engineering Services Addendum Report No. 1

Pierce College Puyallup STEM Building Design Services Puyallup, Washington

for **Absher Construction Co.**

June 29, 2022

1101 South Fawcett Avenue, Suite 200 Tacoma, Washington 98402 253.383.4940

Geotechnical Engineering Services Addendum Report No. 1

Pierce College Puyallup STEM Building Design Services Puyallup, Washington

File No. 21342-002-01

June 29, 2022

Prepared for:

Absher Construction Co. 1001 Shaw Road Puyallup, Washington 98372

Attention: Blaine Wolfe

Prepared by:

GeoEngineers, Inc. 1101 South Fawcett Avenue, Suite 200 Tacoma, Washington 98402 253.383.4940

Christopher R. Newton, PE Geotechnical Engineer

Dennis (D.J.) Thompson, PE Associate Geotechnical Engineer

CRN:DJT:kjb:leh

38397 BORESSIONAL ENGINER 6/29/22

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	INTRO	DUCTION AND PROJECT UNDERSTANDING	L							
2.0	SITE C	ONDITIONS	L							
2.1. 9	Surfac	e Conditions	1							
2.2.	2.2. Literature Review									
2	.2.1.	Geologic and Soil Survey	2							
2	.2.2.	Soil Survey	2							
2	.2.3.	Water Well Information	2							
2.3. 9	Subsu	rface Conditions	2							
2.	.3.1.	Subsurface Explorations and Laboratory Testing	2							
2.	.3.2.	Soil Conditions	3							
2.	.3.3.	Groundwater Conditions	3							
3.0	CONCL	LUSIONS AND RECOMMENDATIONS	1							
311	Primar	v Geotechnical Considerations	1							
3.2	Mat Fo	undations	1							
3.3	lumin	aire Poles	5							
3	.3.1.	Design Parameters	5							
3	.3.2.	Construction and Additional Design Considerations	5							
3.	.3.3.	Backfill Placement and Compaction Around Luminaire Pole Foundations	3							
3.4. \$	Site De	evelopment and Earthwork	3							
3.	.4.1.	General	3							
3.	.4.2.	Groundwater Handling Considerations6	3							
3.5. I	Fill Ma	iterials	7							
3.	.5.1.	On-Site Soil	7							
3.6. 3	Storm	water Infiltration	3							
3.	.6.1.	General	3							
3.	.6.2.	Pilot Infiltration Tests	3							
3.7. I	Pavem	nent Recommendations10)							
3.	.7.1.	General10)							
3.	.7.2.	Construction Considerations10)							
3.	.7.3.	Asphalt Concrete Pavement Design)							
4.0 I	LIMITA	11 TIONS	L							

LIST OF FIGURES

Figure 1. Vicinity Map Figure 2. Site Plan

APPENDICES

Appendix A. Subsurface Explorations and Laboratory Testing Figure A-1 – Key to Exploration Logs Figure A-2 – Log of Boring Figures A-3 through A-8 – Logs of Test Pits Figures A-9 and A-10 – Sieve Analysis Results Figure A-11 – Groundwater Hydrograph

1.0 INTRODUCTION AND PROJECT UNDERSTANDING

This addendum report presents the results of our additional geotechnical engineering services for the proposed Science, Technology, Engineering, Mathematics (STEM) Building at Pierce College Puyallup, as shown on the Vicinity Map, Figure 1. Our previous work for this project includes preparation of a "Geotechnical Engineering Services Report, Pierce College Puyallup – STEM Building Design Study, Puyallup, Washington" dated January 21, 2021 (January 2021 Report). This addendum reflects additional subsurface explorations, information and recommendations not provided in our January 2021 report. This addendum addresses additional stormwater management and pavement design considerations for the parking lot to be located northeast of the STEM Building.

Our project understanding is based on discussions with you, AHBL, Inc. (AHBL; project civil engineer), and Integrus Architecture (Integrus; project structural engineer and architect). We also reviewed the Architectural, Civil, and Structural Plans from the GMP Plan Set dated March 11, 2022 and prepared by Integrus.

The proposed STEM Building is to consist of a 54,748-gross-square-foot, three-story steel frame structure containing classrooms, laboratories, faculty offices, and study spaces. Conventional shallow foundations, mat slabs, and slab-on-grade are planned for building support. The mat slabs will support buckling-restrained brace frames. Other site improvements include a proposed parking lot north of the STEM Building adjacent to Campus Way and Parking Lot C, trenching and utilities, and stormwater management facilities.

Stormwater management facilities currently being considered are Stormtech Chamber systems and bioretention facilities beneath or around the proposed parking lot. Rain gardens are also planned around the building. Stormwater management facilities on site will be designed in accordance with Washington State Department of Ecology's 2019 Stormwater Management Manual for Western Washington (SWMMWW).

Our services have been provided in general accordance with our signed agreement for this project authorized on March 1, 2022. A complete list of our scope of services is provided in our proposal dated February 10, 2022.

2.0 SITE CONDITIONS

2.1. Surface Conditions

The site is bounded by College Way to the north, campus Parking Lot C to the east, existing Pierce College buildings, landscaped and hardscaped common areas to the west and south. The site is currently forested with mature coniferous and deciduous trees and a dense understory layer, including brush, small trees, fallen trees, and forest duff. Site topography generally slopes downward toward the east-northeast from approximate Elevation 532 feet to Elevation 520 feet (The North American Vertical Datum of 1988; NAVD88). Elevations referenced in this report are with respect to NAVD88 unless noted otherwise.

2.2. Literature Review

2.2.1. Geologic and Soil Survey

Based on our additional review, we conclude that the geology description and soil survey descriptions provided in our January 2021 Report remain appropriate except as described below.

2.2.2. Soil Survey

We reviewed the Natural Resources Conservation Service (NRCS) Web Soil Survey (accessed April 18, 2022). According to the survey, the site is underlain by two subunits of Kapowsin gravelly ashy loam: 6 to 15 percent slopes and 30 to 65 percent slopes. Kapowsin gravelly ashy loam is described as moderately well drained with a very low capacity of the most limiting layer to transmit water and categorized as Hydrologic Soil Group B.

2.2.3. Water Well Information

We searched the Washington State Department of Natural Resources Interactive Geologic Information Portal on April 18, 2022 for water well log reports in the project vicinity. Based on our search, we found a water well log report dated May 28, 2002 (Ecology Well ID Tag No. AFR 833) near the southwest corner of the campus property. This well log reported the static groundwater level at about 411 feet below the top of the well (over 100 feet below project site grade). We interpret this static groundwater level to be more representative of the regional groundwater table in the project vicinity.

2.3. Subsurface Conditions

2.3.1. Subsurface Explorations and Laboratory Testing

We explored subsurface conditions at the project site by advancing one boring (MW-1) on March 9, 2022, and six test pit excavations (TP-1 (PIT-1) through TP-6) between April 5 and 6, 2022. The approximate locations of the boring and test pits are shown on the attached Site Plan, Figure 2. A groundwater monitoring well was constructed in the boring after drilling was complete. One small-scale pilot infiltration test (PIT) was completed in TP-1 (PIT-1) at approximately 12 feet below the ground surface (bgs). The test results and methodology for the PIT are discussed in further detail in the "Stormwater Infiltration" section of this report. A description of our subsurface exploration program and summary exploration logs for this study are provided in Appendix A.

Figure 2 also displays the locations of test pit explorations completed as part of our January 2021 Report. We provide this as additional reference when reviewing our January 2021 Report in concert with this report. The subsurface exploration procedures, interpreted conditions, and test pits logs are presented in our January 2021 Report.

Selected samples collected from our boring and test pits were tested in our laboratory to confirm field classifications and to evaluate pertinent engineering properties. Our laboratory testing program included grain-size distribution analyses and moisture content determinations. A summary of our laboratory testing program and the test results are provided in Appendix A.

2.3.2. Soil Conditions

2.3.2.1. General

We observed about 3- to 12-inches of forest duff and/or organic-rich soil at the surface in test pits TP-1 through TP-4. Approximately 6 inches of sod was observed at the surface in test pits TP-5 and TP-6 and boring MW-1. Descriptions of soils encountered below these surface materials are discussed in the following sections.

2.3.2.2. Monitoring Well MW-1

Below the sod at MW-1, we observed what we interpret to be glacial till. Glacial till was typically comprised of silty sand with gravel and silty gravel with sand. The upper approximately 8 feet of glacial till was observed to be in a weathered, loose condition. Below the weathered zone, the glacial till was generally observed to be very dense to the depth explored. MW-1 was terminated in glacial till soils.

2.3.2.3. Test Pits TP-1 (PIT-1) through TP-6

Below the sod, forest duff, and/or organic-rich soils in TP-1 (PIT-1) through TP-6, we observed what we interpret to be glacial till to the depths explored. The upper approximately 4 to 5 feet of glacial till were observed to be weathered and generally ranged between a loose to dense condition. Occasional roots generally extended to on the order of 3 feet depth. Underlying the weathered zone, glacial till generally consisted of dense to very dense silty sand with gravel and silty gravel with sand and variable cobbles and boulders content. In TP-1 (PIT-1) the glacial till gradually changed more course to a gravel with silt and sand at about 11 feet bgs to the full depth explored.

2.3.3. Groundwater Conditions

We did not observe what we interpret to be the regional groundwater table in our explorations. However, we observed groundwater seepage generally in the upper 6 feet and occasionally deeper for the explorations advanced for this report. We interpret the seepage observed to be perched groundwater and was generally within the weathered glacial till, perched near the interface with the intact glacial till and also at times, seeping through intermittent gravel seams.

We typically define slow seepage as less than 1 gallon per minute (gpm), moderate seepage 1 to 3 gpm, and rapid seepage is greater than 3 gpm. During drilling for monitoring well MW-1, we encountered shallow groundwater at about 5 feet depth, which is within the similar zone where groundwater seepage was encountered in nearby test pits TP-5 and TP-6.

Based on our experience, it is not uncommon for glacial soils to contain isolated zones of perched groundwater. We anticipate that perched groundwater could be present in other areas or depths at the project site depending on soil conditions, rainfall amounts and irrigation activities. We anticipate that perched groundwater levels will generally be highest during the wet season, typically October through May.

We tracked groundwater levels in monitoring well MW-1 using a pressure transducer data logger from March 10 through May 18, 2022. The pressure transducer was programmed to collect a groundwater level reading once a day. This data is presented in the Groundwater Hydrograph, Figure A-11 of Appendix A. Table 1 below presents our groundwater elevation summary for MW-1.

TABLE 1. GROUNDWATER LEVELS FROM MONITORING WELL MW-1

Approx. Ground Surface Elevation (feet)	Approx. Maximum Elevation (feet)	Date and Time of Maximum Elevation	Approx. Average Elevation (feet) ¹
522	504.6	3/27/22 12:00 PM	503.5

Notes: ¹ Average groundwater elevation from March 10 through May 18, 2022.

3.0 CONCLUSIONS AND RECOMMENDATIONS

3.1. Primary Geotechnical Considerations

Based on our understanding of the project, the explorations performed for this study and our January 2021 Report, it is our opinion that the proposed improvements can be designed and constructed generally as envisioned with regard to geotechnical considerations. A summary of the primary geotechnical considerations for the project is provided below and is followed by our detailed recommendations. The conclusions and recommendations provided in our January 2021 Report remain valid except as modified herein. Our January 2021 Report should also be reviewed in its entirety and should be presented with this report when reviewed by others.

- Clearing and stripping depths for forest duff in the proposed parking lot area will typically be on the order of about 12 inches. Greater clearing and stripping depths may be required when establishing subgrades in areas of heavier vegetation or relatively lower lying areas. Adjacent to Parking Lot C, clearing and stripping depths will be on the order of 6 inches to remove sod.
- Most of the soils observed in our explorations for this study contain a significant quantity of fines and, therefore, could be difficult or impossible to work with when wet or become easily disturbed if exposed to wet weather.
- Isolated perched groundwater zones were commonly present in the explorations where wet conditions were typically encountered. Depending on the intended use of material generated in this area, and the moisture/weather conditions, it may be difficult to process and/or re-use on-site soils as structural fill and backfill.
- Based on our experience, subsurface conditions observed in our explorations, and results from our infiltration testing, it is our opinion that stormwater infiltration within proposed development areas related to this study is generally infeasible. We provide additional discussion in the "Stormwater Infiltration" section below.

3.2. Mat Foundations

We provide additional considerations below for mat foundation design. The shallow foundation bearing surface preparation recommendations outlined in our January 2021 Report should also be followed. We have assumed that mat foundation bearing surfaces will consist of thoroughly compacted, firm, and unyielding inert native soil or structural fill extending to such soil.

A modulus of subgrade reaction of 250 pounds per cubic inch (pci) may be used for structural design of mat foundations. This value is for a 1-foot by 1-foot square plate. The modulus of subgrade reaction for a mat foundation will vary based on its minimum width and is computed according to the following equation:

$$k_s = k_{s1}[(B+1)/2B]^2$$

Where k_s is the computed modulus of subgrade reaction, k_{s1} is the modulus of subgrade reaction for a 1- foot by 1-foot plate, and B is the minimum width or lateral dimension of the mat.

For bearing surfaces prepared as recommended, we estimate the total static settlement of mat foundations will be on the order of 1 inch or less for the modulus of subgrade reaction presented above. Differential settlements could be on the order of $\frac{1}{4}$ to $\frac{1}{2}$ inch between similarly loaded foundations or over about 20 feet across a foundation dimension, such as along the width or length of the mat. The settlements should occur rapidly, essentially as loads are applied. Settlements could be greater than estimated if disturbed or saturated soil conditions are present below foundations.

The lateral resistance design parameters outlined in our January 2021 Report remain applicable to mat foundation design.

3.3. Luminaire Poles

3.3.1. Design Parameters

We understand that luminaire poles are planned for site improvements. It is our opinion that Washington State Department of Transportation (WSDOT) Standard Plans may be used, as applicable, for design of luminaire poles. Recommended soil properties and design parameters are provided in Table 2 below. Other jurisdictional design criteria or other methods of design may also be applicable and may take precedence. We can assist with other design methods, as requested.

Recommended values are based on our experience in the area, subsurface explorations, and review of the February 2022 WSDOT Geotechnical Design Manual (WSDOT GDM), Chapter 17, "Foundation Design for Signals, Signs, Noise Barriers, Culverts, and Buildings," and Table 17.2 of the same. We recommend that this document be referenced and reviewed during the design and selection process for luminaire pole foundations. The WSDOT GDM, Chapter 17 also provides design guidance if foundations other than indicated in the Standard Plans are required.

The allowable lateral bearing pressure listed below is for foundations constructed in relatively flat ground conditions, which is anticipated for this project. Special design considerations for foundations constructed on or near slopes are provided in WSDOT GDM, Chapter 17. We should be consulted further if sloping conditions are anticipated around luminaire poles.

TABLE 2. LUMINAIRE POLE DESIGN PARAMETERS

Soil Unit Weight (pcf)	Soil Friction Angle (deg)	Allowable Lateral Bearing Pressure (psf)
125	34	2,500

3.3.2. Construction and Additional Design Considerations

We present two conditions to consider when designing and constructing luminaire pole foundations (pole foundations).

Condition #1, an excavation the same dimension as the designed pole foundation is developed, and the foundation is cast directly against undisturbed earth. Or,

Condition #2, an excavation larger than the designed dimension of the pole foundation is developed, a corrugated metal pipe is placed into the excavation, and the foundation concrete is cast inside the metal pipe. The corrugated metal pipe is left in place after pouring the foundation concrete. Any overexcavated area outside of the corrugated metal pipe is backfilled with controlled density fill (CDF) or structural fill.

Construction of foundation Condition #1 requires the sidewalls of the excavation to stay stable and not cave into the excavation. In the case of drilling installation methods, temporary steel casing or drill slurry can also be used if caving soil conditions are encountered. Excavations made for foundation Condition #2 should be in accordance with the "Temporary Excavations and Cut Slopes" section of our January 2021 Report if workers are expected to enter the excavation. Recommendations regarding backfilling around pole foundations are included in the "Backfill Placement and Compaction Around Luminaire Pole Foundations" section of this report.

In general, we expect that the majority of the luminaire pole foundations will be constructed in fill and/or weathered soil overlying glacial till. We expect that the majority of the excavations for the foundations could remain open for a short period of time, but ultimately, we expect the potential for raveling, dislodged cobbles and oversized particles and seepage. At this time, we suggest Condition #2 be considered for budgeting and design purposes. Additional sumps/pumps and some dewatering or capture of decanted water, or other means of groundwater seepage management may be required. At a minimum, the contractor should be prepared to use casing, as necessary, to stabilize the hole, especially within the upper approximate 5 feet.

3.3.3. Backfill Placement and Compaction Around Luminaire Pole Foundations

Backfill in overexcavated areas and around pole foundations must be compacted in accordance with WSDOT Standard Specifications Section 2-09.3(1)E. If the overexcavated area is large enough for compaction equipment to access, import structural fill material should be used to backfill the excavations. Backfill material around pole foundations must be compacted to at least 95 percent of the theoretical maximum dry density (MDD) per ASTM International (ASTM) D 1557.

Alternatively, CDF may be used to backfill the excavation in accordance with WSDOT Standard Specification Section 2-09.3(1)E. CDF is a self-compacting, cementitious, flowable material requiring no subsequent vibration or tamping to achieve consolidation. CDF is included as an option for backfilling around pole foundations in the WSDOT Standard Signal Foundation Plans. If the area to backfill is too small for compaction equipment to access, CDF should also be used. Additionally, we recommend that CDF be used to backfill any large voids created during excavation if compaction equipment cannot access the void area.

3.4. Site Development and Earthwork

3.4.1. General

The recommendations provided herein are to supplement the "Site Development and Earthwork" section of our January 2021 Report, which remains applicable to this project.

3.4.2. Groundwater Handling Considerations

The isolated perched groundwater zones (shallow groundwater) observed in our explorations are common within glacial deposits encountered at this campus and in general, sites with similar soil conditions.

Groundwater seepage was generally observed between about Elevation 518 and 522 feet. The interface between more permeable and less permeable soil types such as the contact between weathered glacial till and glacial till are common conditions where perched groundwater can be present. As such, perched groundwater could be encountered in other excavations outside of our explorations, especially where more permeable sand and gravel seams may overlie less permeable materials.

Groundwater handling needs for excavations anticipated at this site will typically be lower during the summer and early fall months. Due to some of the variable soil layering and isolated, intermittent perched groundwater zones observed, it is our opinion that wells and well point systems will not be practical for dewatering of shallow excavations. It is our opinion that handling of shallow groundwater will be more practical with the use of larger sumps/pumps, diversion ditches, drain/collector systems, and/or combinations of methods.

We noted slow to rapid seepage rates in our explorations completed for this study. For preliminary dewatering considerations, we estimate seepage rates into shallow excavations could be on the order of 2 to 3 gpm. We recommend that additional test pits/explorations for critical excavation areas, primarily the location of the Stormtech Chambers be considered, especially in the wetter times of year, prior to primary earthwork activities. This will allow observation of seepage flow rates at current time, and the ability to consider any additional shallow groundwater management and handling criteria. Ultimately, we recommend that the contractor performing the work be responsible for controlling and collecting groundwater encountered. We are available to provide additional assistance on planning of shallow groundwater management, as requested.

3.5. Fill Materials

3.5.1. On-Site Soil

Most of the site soils observed in our explorations contain a significant quantity of fines and are difficult or impossible to work with when wet or become easily disturbed if exposed to wet weather. Isolated perched groundwater zones were commonly present in our explorations and the soil conditions encountered within these zones were typically wet.

Based on our subsurface explorations and experience, it is our opinion that existing site soils, excluding the forest duff and/or organic-rich soil and sod, could be considered for use as structural fill and trench backfill, provided that they can be adequately moisture conditioned, placed and compacted as recommended and do not contain organic or other deleterious material.

During excavation activities, seepage observed at the site could saturate drier soil located below or in between these seepage zones. In addition, some of the existing soils outside of the seepage zones will be generated at moisture contents above optimum (OMC). The severity of this will depend on time of year of excavation and overall handling techniques. As such, we suggest earthwork activities take place in the middle of summer. In any event, segregation of dryer material from wetter material should be expected for use of on-site material at any time of year. Additionally, drying and staging of these materials may be required to spread material out and condition soil to a proper moisture content before use.

It should be expected and planned for that some on-site material will not be suitable for immediate use as a structural fill, especially during the wet season. Provisions for removal of on-site material and import structural and/or select granular fill should be expected on this project. Imported structural fill or select

granular fill materials are described in the "Fill Materials" section of our January 2021 Report. Ultimately, we recommend that the use of on-site soils be evaluated on a case-by-case basis during construction. We are available to assist with additional consultation and considerations when planning to use on-site material.

3.6. Stormwater Infiltration

3.6.1. General

It is our understanding that stormwater management facilities will be designed in general accordance with the Washington State Department of Ecology's 2019 SWMMWW. According to the SWMMWW, design infiltration rates in glacially consolidated soils (i.e., glacial till) should be determined via in-situ infiltration testing such as a PIT. The sections below further describe our PIT methodology, infiltration suitability of site soils, and recommendations for stormwater management facility design.

We completed a small-scale PIT, PIT-1, during excavation of TP-1. PIT-1 was located approximately within the basal footprint of the larger grouping of planned Stormtech Chambers for the proposed parking lot.

A PIT was originally planned at each TP-2 and TP-5 (both are approximately within basal footprints of the planned Stormtech Chambers); however, due to moderate to rapid groundwater seepage observed in the excavations, we were not able to complete these PITs. We also observed moderate to rapid groundwater seepage at TP-4 and TP-6, so we were not able to perform a PIT at those test pits either.

3.6.2. Pilot Infiltration Tests

3.6.2.1. Methodology

We completed the PIT generally following GeoEngineers' standard methodology for PITs, which is a synthesis of best practices and, in our opinion, meets the intended procedures for small-scale PITs set forth in the SWMMWW. PIT-1 was completed at about 12 feet bgs or Elevation 512 feet (NAVD88), which is roughly the proposed bottom of Stormtech Chamber system elevation per the Civil GMP Plan Set. The approximate basal area of the PIT excavation was at least 16 square feet. Upon reaching the target depth, a piezoelectric pressure transducer was lowered to near the floor of the test pit to record water level readings during the PIT. A separate piezoelectric pressure transducer was secured to a tree branch near the test pit to record barometric pressure during the PIT. The piezoelectric pressure transducers were programmed to record water level/barometric pressure readings at 20-second intervals. Water was pumped into the PIT-1 excavation from a water tank trailer generally to depths of about 16 inches.

GeoEngineers' PIT procedure consists of a 6-hour (minimum) saturation period where the water depth in the PIT is raised and lowered, generally over intervals of 6 inches or less, in a series of falling-head stages. Water level measurements collected by the pressure transducer during each falling-head stage are used to calculate the apparent infiltration rate for each stage. Manual water level measurements are also recorded in the event a transducer malfunctions during the test. The falling-head stage methodology is intended to fully saturate the soils below the base of the PIT while allowing for a direct measurement of the infiltration rate to help determine when saturated or near-saturated conditions have been achieved. This is usually manifested by a progressive decline in the apparent infiltration rate or the measured (initial) infiltration rate of the soil.

Generally, once a stabilized infiltration rate is observed and a minimum of 6 hours of saturation time has elapsed, the PIT is continued for one or more falling-head cycles or is left undisturbed until the water drains away completely. If left to drain away completely, the final drain-down period shows how infiltration changes over a continuous range of declining water depths. Sixteen falling-head stages were recorded for the PIT.

3.6.2.2. Test Results

The SWMMWW recommends that correction factors be applied to the measured (initial) infiltration rate determined in the PIT to establish a long-term design infiltration rate. The correction factors account for uncertainties in site variability, testing procedures, and long-term reduction in permeability due to plugging. Table 3 below provides a summary of the correction factors outlined in the SWMMWW that are, in our opinion, appropriate for use at this site. The total correction factor is equal to the product of the individual factors.

TABLE 3. CORRECTION FACTORS FOR FIELD INFILTRATION MEASUREMENTS

Correction Factor	Recommended Value
Site Variability and Number of Locations Tested	$CF_v=0.33$ Selected because of number of test locations
Test Method	Small-scale PIT, CFt = 0.50
Degree of Influent Control to Prevent Siltation and Bio-buildup	CF _m = 0.9
Total Correction Factor (CFv x CFt x CFm)	CFT=0.15

The long-term design infiltration rate (K_{sat_design}) is obtained by multiplying the measured (initial) infiltration rate ($K_{sat_initial}$) by the total correction factor:

Table 4 summarizes the measured (initial) and long-term design infiltration rates for PIT-1.

TABLE 4. INFILTRATION RATE SUMMARY FOR PIT-1

Approximate	Approximate	Measured (Initial)	Long-Term Design
Depth of PIT	Elevation of PIT ¹	Infiltration Rate	Infiltration Rate ²
(feet bgs)	(feet; NAVD88)	(K _{sat_initial} ; in/hr)	(K _{sat_design} ; in/hr)
12	512	13.6	2.0

Notes:

¹Elevation should be considered approximate.

²Long-term design infiltration rate with appropriate correction factors applied.

3.6.2.3. Conclusions of PIT Results and Stormwater Infiltration Feasibility

Based on the subsurface conditions observed in our explorations and our experience on campus, it is our opinion that stormwater infiltration is generally infeasible for this project. We do not recommend using the long-term design infiltration rate listed in Table 4 above. This PIT was completed in a more permeable gravel seam at depth. Glacial till soils in the project vicinity and at the site are undifferentiated and commonly include isolated and/or discontinuous seams of cleaner sand and gravel. During our studies, we did not observe this unit to be consistent across the area and at similar depths and did not observe conclusive evidence of suitable horizontal bedding layers in our explorations. As such, we recommend that infiltration

not be considered as an option for stormwater management on this project. If a small amount of infiltration is necessary (i.e., small shallow bio-swales, yard drains, etc.), we recommend we be consulted first to review proposed location, design, and overall use before final determination.

3.7. Pavement Recommendations

3.7.1. General

Pavements for the proposed improvements will include new a new parking lot and driveways. Our recommended pavement sections provided below are based on our explorations and experience in the area. We understand asphalt concrete pavement (ACP) is planned for the proposed improvements.

The recommended pavement sections below may not be adequate for heavy construction traffic loads such as those imposed by concrete transit mixers, dump trucks or cranes. Additional pavement thickness may be necessary to prevent pavement damage during construction. An asphalt-treated base (ATB) section can also be used during construction to protect partially constructed pavement sections and pavement subgrades. The recommended sections assume final improvements surrounding the pavement areas will be designed and constructed such that stormwater or excess irrigation water from landscape areas does not accumulate below the pavement section or pond on pavement surfaces. If pavements in parking areas slope inward (toward the center of the parking area) full depth curbs or other measures should be used to prevent water from entering and ponding on the subgrade and within the base section.

3.7.2. Construction Considerations

Existing pavements, hardscaping or other structural elements should be removed prior to placement of new pavement sections. Pavement subgrade should be prepared to a uniformly firm, dense and unyielding condition as previously described. Crushed surfacing base course (CSBC) and subbase should be moisture conditioned to near optimum moisture content and compacted to at least 95 percent of the MDD (ASTM D 1557).

Crushed surfacing base course should conform to applicable sections of 4-04 and 9-03.9(3) of the WSDOT Standard Specifications. Hot mix asphalt should conform to applicable sections of 5-04, 9-02 and 9-03 of the WSDOT Standard Specifications.

Some areas of pavement may exhibit settlement and subsequent cracking over time. Cracks in the pavement will allow water to infiltrate to the underlying base course, which could increase the amount of pavement damage caused by traffic loads. To prolong the effective life of the pavement, cracks should be sealed as soon as possible.

3.7.3. Asphalt Concrete Pavement Design

3.7.3.1. Standard-Duty ACP – Automobile Driveways and Parking Areas

- 2 inches of hot mix asphalt, class ½ inch, PG 58-22
- 4 inches of CSBC
- 6 inches of subbase consisting of select granular fill, previously described, to provide a uniform grading surface, to provide pavement support, to maintain drainage, and to provide separation from subgrade soil.

Subgrade consisting of proof-compacted firm and unyielding conditions, or structural fill prepared in accordance with the "Subgrade Preparation" and "Area Fills and Pavement Bases" sections of our January 2021 Report.

3.7.3.2. Areas Subject to Occasional Heavy Truck Traffic

- **3** inches of hot mix asphalt, class ¹/₂ inch, PG 58-22
- 6 inches of CSBC
- 6 inches of subbase consisting of select granular fill, previously described, to provide a uniform grading surface, to provide pavement support, to maintain drainage, and to provide separation from subgrade soil.
- Subgrade consisting of proof-compacted firm and unyielding conditions, or structural fill prepared in accordance with the "Subgrade Preparation" and "Area Fills and Pavement Bases" sections of our January 2021 Report.

3.7.3.3. Temporary Construction Surfacing

A temporary surfacing of ATB can be used to protect partially constructed pavement sections and pavement subgrades during construction. This can provide a relatively clean working surface, prevent construction traffic from damaging final paving surfaces and reduce subgrade repairs required for final paving. A 2-inch-thick section of ATB can be substituted for the upper 2 inches of CSBC in either the light-duty or heavy-duty pavement sections. Prior to placement of the final pavement surface sections, we recommend that any areas of ATB pavement failure be removed, and the subgrade repaired. If ATB is used and is serviceable when final pavements are constructed, the design asphalt concrete pavement thickness can be placed directly over the ATB.

Cement treatment of subgrades is sometimes used to create construction surfacing or to control soil moisture during wet weather construction. In our opinion cement treatment would not likely be cost effective for creating a wet weatherproof construction surface due to the high fines content in the soil. Cement treatment or cement stabilization would likely only be cost effective as an emergency or contingency action for reducing soil moisture in the on-site material if excavated and re-used as a structural fill. We estimate that it would take a significant amount of cement, likely on the order of 12 percent by weight, to create a firm and stable working surface that could handle wet weather construction. If used as a structural fill, likely on the order of 6 to 8 percent cement by weight would be required.

4.0 LIMITATIONS

We have prepared this report for Absher Construction for the Pierce College Puyallup - STEM Building project located in Puyallup, Washington. Absher Construction may distribute copies of this report to owner's authorized agents and regulatory agencies as may be required for the Project.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices for geotechnical engineering in this area at the time this report was prepared. The conclusions, recommendations, and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty, express or implied, applies to the services or this report.

Please refer to Appendix B titled "Report Limitations and Guidelines for Use" of our January 2021 Report for additional information pertaining to use of this report.

Legend TP-1 (PIT-1) Test Pit by GeoEngineers, Inc., 2022 MW-1 Monitoring Well by GeoEngineers, Inc., 2022 TP-1 🕂 Test Pit by GeoEngineers, Inc., January 2021 Report

Notes:

- The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Background from AHBL, Inc., dated 04/19/2022.

Projection: Washington State Plane, South Zone, NAD83, US Foot

APPENDIX A Subsurface Explorations and Laboratory Testing

APPENDIX A SUBSURFACE EXPLORATIONS AND LABORATORY TESTING

Subsurface Explorations

Monitoring Well

Subsurface conditions were explored by advancing one hollow-stem auger boring on March 9, 2022. Subsurface exploratory services were provided by Holocene Drilling, Inc. under subcontract to GeoEngineers, Inc. The boring was advanced to 26½ feet below ground surface (bgs). A 2-inch diameter groundwater monitoring well was constructed after drilling and sampling within the borehole. The well was screened from approximately 10 to 25 feet bgs and a pressure transducer data logger was programmed and installed within the well to record water levels once a day. The groundwater elevations with respect to date are presented in the Groundwater Hydrograph, Figure A-11.

The approximate location of the boring was determined using a tablet equipped with global positioning system (GPS) software and/or pacing off from existing structural features. The exploration locations are included on the Site Plan, Figure 2. The location and elevation of the exploration should be considered approximate. The elevation was estimated based on an existing site topographic map provided by AHBL, Inc.

Our field representative collected samples, classified the soils, maintained a detailed log of the exploration and observed groundwater conditions. The samples were obtained with a standard split spoon sampler in general accordance with ASTM International (ASTM) D 1586. Field blow counts are presented on the log. The soils were classified visually in general accordance with the system described in Figure A-1, which includes a key to the exploration logs. A summary log of the exploration is included as Figure A-2.

The densities noted on the boring exploration log are based on the blow counts produced in the standard penetration test (SPT) and our experience and judgment. The log is based on our interpretation of the field and laboratory data and indicate the depth at which we interpret subsurface materials or their characteristics to change, although these changes might actually be gradual.

Observations of groundwater conditions were made during drilling and are presented on the boring log. Groundwater conditions observed during drilling represent a short-term condition and may or may not be representative of the long-term groundwater conditions at the site. Groundwater conditions observed during drilling should be considered approximate.

Test Pits and Pilot Infiltration Test (PIT)

We also explored subsurface conditions by excavating six test pits between April 5 and 6, 2022 at the approximate locations shown on the Site Plan, Figure 2. The test pits were excavated to depths between about 8¼ and 13¼ feet bgs using an excavator provided and operated by Green Earthworks Construction NW, Inc. under subcontract to GeoEngineers. After each test pit was completed, the excavation was backfilled using the generated material and compacted using the bucket of the excavator. A pilot infiltration test (PIT) was completed at about 12 feet bgs at TP-1 (PIT-1). After completing the PIT, the excavation was extended to observe soil conditions below the test elevation.

During the exploration program, our field representative obtained soil samples, classified the soils encountered, and maintained a detailed log of each exploration. The relative densities noted on the test pit logs are based on the difficulty of excavation and our experience and judgment. The soils were classified visually in general accordance with the system described in Figure A-1, which includes a key to the exploration logs. Summary logs of the explorations are included as Figures A-2 through A-8.

The locations of the test pits were determined using an electronic tablet equipped with GPS software. The locations of the explorations should be considered approximate. The elevations were estimated based on an existing site topographic map provided by AHBL, Inc.

Laboratory Testing

Soil samples obtained from the explorations were transported to GeoEngineers' laboratory. Representative soil samples were selected for laboratory tests to evaluate the pertinent geotechnical engineering characteristics of the site soils and to confirm our field classifications.

Our testing program consisted of the following:

- Six grain-size distribution analyses (sieve analyses [SA])
- Six moisture content determinations (MC)

Tests were performed in general accordance with test methods of ASTM International (ASTM) or other applicable procedures. The following sections provide a general description of the tests performed.

Sieve Analysis (SA)

Grain-size distribution analyses were completed on selected samples in general accordance with ASTM Test Method C 136. This test method covers the quantitative determination of the distribution of particle sizes in soils. Typically, the distribution of particle sizes larger than 75 micrometers (μ m) is determined by sieving. The results of the tests were used to verify field soil classifications and determine pertinent engineering characteristics. Figures A-9 and A-10 present the results of our sieve analyses.

Moisture Content (MC)

The moisture content of selected samples was determined in general accordance with ASTM Test Method D 2216. The test results are used to aid in soil classification and correlation with other pertinent engineering soil properties. The results are presented on the test pit and boring logs at the depth tested.

	MAJOR DIVIS	IONS	SYME GRAPH	BOLS		
	GRAVEI	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
COARSE GRAINED	MORE THAN 50%	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
SOILS	OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
MORE THAN 50%	CAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS	
RETAINED ON NO. 200 SIEVE	AND AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	
	MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
	ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
				он	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	
	HIGHLY ORGANIC	SOILS	m	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	
	□ 2.4 □ Star	inch I.D. split I ndard Penetra Iby tube	barrel / Dation Test (ames & SPT)	Moore (D&M)	
B b S S	Pist Pist Dire Dire Con	ect-Push k or grab tinuous Coring ecorded for dri l to advance sa n log for hamn ampler pushed	yen samp Impler 12 her weight d using the	lers as t inches and dro weight	he number of (or distance noted). op. : of the drill rig.	

TIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	СС	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	SOD	Sod/Forest Duff
	TS	Topsoil

LIT SANDS, SAND - SILT MIXTURES	Groundwater Contact
AYEY SANDS, SAND - CLAY IXTURES	Measured groundwater level in exploration, well, or piezometer
ORGANIC SILTS, ROCK FLOUR, AYEY SILTS WITH SLIGHT ASTICITY	Measured free product in well or piezometer
ORGANIC CLAYS OF LOW TO EDIUM PLASTICITY, GRAVELLY AYS, SANDY CLAYS, SILTY CLAYS, AN CLAYS	- Graphic Log Contact
RGANIC SILTS AND ORGANIC SILTY AYS OF LOW PLASTICITY	Distinct contact between soil strata
ORGANIC SILTS. MICACEOUS OR	Approximate contact between soil strata
ATOMACEOUS SILTY SOILS	Material Description Contact
ORGANIC CLAYS OF HIGH ASTICITY	Contact between geologic units
RGANIC CLAYS AND SILTS OF EDIUM TO HIGH PLASTICITY	Contact between soil of the same geologic unit
EAT, HUMUS, SWAMP SOILS WITH GH ORGANIC CONTENTS	Laboratory / Field Tests
number of distance noted).	%FPercent fines%GPercent gravelALAtterberg limitsCAChemical analysisCPLaboratory compaction testCSConsolidation testDDDry densityDSDirect shearHAHydrometer analysisMCMoisture content and dry densityMbsMohs hardness scaleOCOrganic contentPMPermeability or hydraulic conductivityPIPlasticity indexPLPoint lead testPPPocket penetrometerSASieve analysisTXTriaxial compressionUCUnconsolidated undrained triaxial compressionVSVane shear
f the drill rig.	Sheen Classification
nt of the	NS No Visible Sheen SS Slight Sheen MS Moderate Sheen HS Heavy Sheen

understanding of subsurface conditions. vere made; they are not warranted to be

Project Location: Puyallup, Washington

Project Number: 21342-002-01

ŝ STD ate:5/6/22 Path

GEOENGINEERS

WFI

Figure A-2

Sheet 1 of 1

Project Number: 21342-002-01

Figure A-3 Sheet 1 of 1

Date Excavated	4/6/20	022	Total Depth (ft) 12			Logged E Checked	3y ⊨By	OA CRN		Excavator Equipment Volvo ECR 88D					See "Remarks" section for groundwater observed Caving not observed		
Surface Elevation (ft) Vertical Datum			5 NA	523 VD88	ŀ	Eastin Northi	g (X) ng (Y)			1199720 Coordinate S 670650 Horizontal Da					WA State Plane South NAD83 (feet)		
Elevation (feet) Depth (feet)	Testing Sample	Testing and a sample Name	Graphic Log	Group Classification		MATERIAL DESCRIPTION						Moisture Content (%)	Fines Content (%)	REMARKS			
-51^{2} 1- -51^{2} 2- -51^{2} 2- -51^{2} 3- -51^{2} 3- -51^{2} 6- -51^{2} 6- -51^{2} 6- -51^{2} 6- -51^{2} 8- -51^{2} 9- -51^{2} 10- -51^{2} 11- -51^{2} 12-		1 MC 2		Duff SM GM SM	Appn Dart Brow Gray Gray	roximately 3 < brown silty boulders ar 	3 inche y fine t d orga to coats) (Ic h lamir ravel a	es forest o mediu anics (ro arse grave pose to p hations o and occa	st du lium oots avel o me s of c casio	uff i sand with gravel, occ s) (loose, moist) (weat with sand, occasiona edium dense, wet) oxidation staining silty onal cobbles (dense, f	asional cob thered glaci I cobbles a fine to me moist)	bles, al till) 	9	31	Moderate to rapid groundwater seepage observed at approximately 1¼ feet depth Roots extend to approximately 1½ feet depth Approximately 1-foot-diameter boulder encountered		
Notes: Se The dept Coordina	Notes: See Figure A-1 for explanation of symbols. The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to ½ foot. Coordinates Data Source: Horizontal approximated based on Google Earth. Vertical approximated based on Topographic Survey.																
	_						Pro	Log	g : P	of Test Pit T Pierce College P	P-2 uyallup	- STEM	Buil	ding	Design Services		
GE	oEn	NG	INE	ERS			Pro	oject l	Lo	ocation: Puyallu	ıp, Wasł	nington			Eiguro A A		

Date:5

Figure A-4 Sheet 1 of 1

Project Number: 21342-002-01

ŝ STD BINT\2134200201

Sheet 1 of 1

Project Number: 21342-002-01

Figure A-8 Sheet 1 of 1

PIERCE COLLEGE – PUYALLUP: STEM BUILDING PROJECT

WETLAND ANALYSIS REPORT

PIERCE COLLEGE – PUYALLUP: STEM BUILDING PROJECT

WETLAND ANALYSIS REPORT

PREPARED FOR:

SARA WILDER, AIA 117 South Main Street, Suite 100 Seattle, WA 98104

PREPARED BY:

GRETTE ASSOCIATES^{LLC} 2102 North 30th Street, Suite A Tacoma, Washington 98403 (253) 573-9300

JANAE DINKINS BIOLOGIST

April 25, 2022

DATE

0

CHAD WALLIN BIOLOGIST PIERCE COUNTY QUALIFIED WETLAND SPECIALIST

TABLE OF CONTENTS

1	INT	RODUCTION
2	FEA	TURE SUMMARY
3	BAG	CKGROUND
	3.1	Local Critical Areas Inventory
	3.2	National Wetlands Inventory
	3.3	Sensitive Wildlife and Plants
	3.4	State Water Classification System
	3.5	Soil Information
4	ME	ГНОDS 5
	4.1	Hydrophytic Vegetation
	4.2	Wetland Hydrology
	4.3	Hydric Soils
5	PRE	CIPITATION ANALYSIS
6	WE	ΓLAND RESULTS7
	6.1	Wetland A7
	6.2	Stormwater Pond7
	6.3	Wetland Categorization
	6.4	Project Impacts and Stormwater Management
	6.5	Regulatory Considerations
	6.6	Disclaimer
7	BIO	LOGIST QUALIFICATIONS
	7.1	Janae Dinkins
	7.2	Chad Wallin
8	REF	TERENCES
LIST OF FIGURES

Figure 1.	Vicinity map
Figure 2.	Stormwater Pond Conveyance Features
Figure 3.	Stormwater Pond Conditions

LIST OF TABLES

Table 1.	Wetland delineation summary4	
Table 2.	Definitions for USFWS plant indicator status)
Table 3.	WETS precipitation analysis Puyallup 2.1 ESE7	'
Table 4.	Wetland rating and categorization summary9)

LIST OF APPENDICES

Appendix A.	Wetland Delineation Map
-------------	-------------------------

- Appendix B. Wetland Summaries
- Appendix C. Wetland Datasheets
- Appendix D: Wetland Rating Form
- Appendix E: Queried Database Figures

1 INTRODUCTION

Grette Associates is under contract to prepare a wetland analysis report that summarizes the critical areas reconnaissance performed in the northeast portion of Pierce College's Puyallup Campus (Figure 1).

The purpose of this critical areas report is to provide a summary of the two areas where the proposed project will discharge stormwater as well as document all wetlands that are located within 300 feet of Pierce College's STEM project for conformance with Chapter 21.06 of the Puyallup Municipal Code (PMC).

Figure 1. Vicinity map

¹ Pierce College's Puyallup Campus is highlighted in yellow.

2 FEATURE SUMMARY

A Grette Associates qualified wetland professional and a Grette Associates biologist visited the campus on March 22, 2022 to identify any wetlands within 300 feet of the proposed project site (Appendix A).

Grette Associates collected wetland delineation data and delineated one wetland feature (Wetland A; Appendix A) that contained all three wetland criteria defined in the U.S. Army Corps of Engineers (USACE) *Federal Wetland Delineation Manual* (1987), and the USACE's *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0)* (2010). Wetland A was rated

according to PMC 21.06.910 and the Washington State Department of Ecology's (Ecology) *Washington State Wetland Rating System for Western WA* – 2014 Update (Hruby 2014). A wetland delineation summary, field datasheets and wetland rating form are presented in Appendices B, C and D, respectively. A summary of the delineated wetland is provided in Table 1.

Given the substantial development (i.e., College Way) which serves as a buffer interruption¹, the proposed project will not impact Wetland A or its associated buffer.

Table 1. Wetland delineation summary

Feature	Cowardin Class ²	Hydrology Modifier	HGM Class	Wetland Category	Buffer Width ³
А	PEM/SS	Seasonally Flooded and Saturated	Depressional	III	80 ft.

¹Classification based on Cowardin et al. (1979).

² Buffers are based on PMC 21.06.930.

3 BACKGROUND

3.1 Local Critical Areas Inventory

The City of Puyallup's Public Data Viewer was queried to determine if there are any wetlands mapped in the vicinity of the proposed project site. According the City's database, there is a wetland feature mapped north of Pierce College's STEM project location (Appendix D).

3.2 National Wetlands Inventory

The U.S. Fish and Wildlife Service's National Wetlands Inventory (NWI) was queried to determine if previously-identified wetlands are present within 300 feet of the project site (USFWS 2022). According to the NWI Interactive Online Mapper, there were no wetlands identified within 300 feet of the project site.

3.3 Sensitive Wildlife and Plants

The Washington Department of Fish and Wildlife's (WDFW) Priority Habitats and Species (PHS) database on-line mapper was queried to determine if state or federally listed fish or wildlife species occur near the proposed project site (WDFW 2022). According to the PHS database, no priority species or habitats are mapped in the vicinity of the project site (Appendix D).

The Washington Department of Natural Resources' (WDNR) Wetlands of High Conservation Value mapper was queried to determine if the general campus area occurs in a location reported to contain high quality natural heritage wetland occurrences or occurrences of natural heritage features commonly associated with wetlands (WDNR 2022a). According to WDNR's mapper, there are no records of rare plants or high-quality native ecosystems occurring on or in the vicinity of the campus (Appendix D).

¹ While Chapter 21.06 of the PMC does not address buffer interruptions, Grette Associates was informed by the City's Planning Division (C. Beale, personal communication, December 13, 2021). According to the City's peer-review specialist, it is best available science that substantial development (e.g., paved roads) serve as a buffer interruption.

3.4 State Water Classification System

The Washington Department of Natural Resources' (WDNR) Mapping Tool on-line mapper was queried to identify the water typing of any streams mapped by WDNR (WDNR 2022b). According to WDNR, no stream features are mapped in the vicinity of the campus (Appendix D).

3.5 Soil Information

According to the Natural Resources Conservation Service's (NRCS) Web Soil Survey (NRCS 2022a), the soils within the general assessed area consist of Everett very gravelly sandy loam (0-8 percent slopes), Kapowsin gravelly ashy loam (0-6 percent slopes), Kapowsin gravelly ashy loam (0-6 percent slopes), Kapowsin gravelly ashy loam (30-65 percent slopes). According to the NRCS, these mapped soils are not listed as hydric.

4 METHODS

The areas in the vicinity of the project site were traversed and data were collected to confirm wetland boundaries. The identified wetland was delineated according to the procedures described in the USACE's *Federal Wetland Delineation Manual* (1987), and the USACE's *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0)* (2010). Paired data plots and soil test pits were excavated to evaluate wetland and upland conditions. Guidance from the USACE's *Regional Supplement* was used to evaluate the data at each data point.

The boundary of the wetland was established based on changes in vegetation, field indicators of hydric soils, water levels at or below 12 inches, topographic changes, and best professional judgment. Data plots were established in and adjacent to the wetland. The location of the wetland boundary was defined by placement of florescent orange flagging tape. The location of each data plot was defined by the placement of pink flagging tape. The wetland boundary flagging was labeled alpha-numerically (i.e., A-2), where the letter designates the wetland and the number designates the specific flag angle point. Please note that only the southern extent of the wetland that is near the project site was flagged.

Plants were determined to be more or less associated with wetlands based on their wetland indicator (FAC) status. The percent dominance for each plant strata was determined using the 50-20 Rule, which is the recommended method for selecting dominant species from a plant community in instances where quantitative data are available (USACE 2010). In utilizing this rule, dominants are the most abundant species that individually or collectively accounts for more than 50 percent of the total coverage of vegetation in the stratum plus any other species that, by itself accounts for at least 20 percent of the total.

4.1 Hydrophytic Vegetation

The U.S. Fish and Wildlife Service (USFWS) and the NWI have established a rating system that has been applied to commonly occurring plant species on the basis of their frequency of occurrence in wetlands (Table 2). Species indicator status expresses the range in which plants may occur in wetlands and non-wetlands (uplands). Under this system, vegetation is considered hydrophytic when there is an indicator status of facultative (FAC), facultative wetland (FACW) or obligate wetland (OBL) (Table 2). The hydrophytic vegetation criterion for wetland determination is met when *more than* 50 percent of the

dominant species in the plant community are FAC or wetter. The USACE's *National Wetland Plant List* (USACE 2020) was used to determine vegetation indicator status.

Plant Indicator Status Category	Indicator Status Abbreviation	Definition (Estimated Probability of Occurrence)
Obligate Upland	UPL	Occur rarely (<1 percent) in wetlands, and almost always (>99 percent) in uplands
Facultative Upland	FACU	Occur sometimes (1 percent to <33 percent) in wetlands, but occur more often (>67 percent to 99 percent) in uplands
Facultative	FAC	Similar likelihood (33 percent to 67 percent) of occurring in both wetlands and uplands
Facultative Wetland	FACW	Occur usually in wetlands (>67 percent to 99 percent), but also occur in uplands (1 percent to 33 percent)
Obligate Wetland	OBL	Occur almost always (>99 percent) in wetlands, but rarely occur in uplands (<1 percent)
Not Listed	NL	Not listed due to insufficient information to determine status

 Table 2. Definitions for USFWS plant indicator status

4.2 Wetland Hydrology

Evidence of permanent or periodic inundation (water marks, drift lines, drainage patterns), or soil saturation to the surface for 14 consecutive days or more during the growing season meets the hydrology criterion. Oxidized root channels in the top 12 inches and hydrogen sulfide are primary indicators and water-stained leaves and geomorphic position are secondary indicators of wetland hydrology.

4.3 Hydric Soils

Soils that are saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper soil horizons are considered hydric soils. Field indicators include histosols, the presence of a histic epipedon, a sulfidic odor, low soil chroma, and gleying. Soil conditions were compared to the Field Indicators of Hydric Soils detailed in the USACE's *Regional Supplement*.

5 PRECIPITATION ANALYSIS

The Puyallup 2.1 ESE, WA Weather Station (US1WAPR0020) recorded no rainfall during the day of the assessment (NOAA 2022). In the 14 days preceding the site assessment, 0.06 inches of rainfall was recorded at the station (NOAA 2022).

The total precipitation recorded at the Puyallup 2.1 ESE station from October 1, 2022 through March 22, 2022 (33.56 inches) was approximately 109 percent of the normal rainfall (30.78 inches) that occurs during the same time (NOAA 2022).

Table 3 below presents an analysis of the appropriate NRCS WETS table (NRCS 2022b) for the three months preceding the field investigation. Please note that the Puyallup 2.1 ESE weather station does not provide WETS data; therefore, the WETS data for McMillin Reservoir (NWS Station 455224) was used. These two stations are located approximately at the same distance from the project site and also situated at similar elevations. Precipitation data from the McMillin Reservoir station was not used in this analysis because the station did not have complete data for the month of February.

Preceding Month	WETS Perce (inc	Rainfall entile ¹ hes)	Measured Rainfall ²	Conditions ³	Condition Value ⁴	Month Weight	Value	
	30%	70%	(melles)					
March	3.53	5.00	5.10	Wet	3	3	9	
February	3.12	5.58	0.75	Dry	1	2	2	
January	3.76	6.62	7.65	Wet	3	1	3	
						Sum:	14	

 Table 3. WETS precipitation analysis Puyallup 2.1 ESE

¹ WETS percentile was populated from the McMillin Reservoir

² Observed rainfall for the month (NOAA 2022)

³ Dry conditions are below 30% WETS table value, Normal conditions are between 30% and 70% of the WETS table values, Wet conditions are above 70% of the WETS table value.

⁴ Dry equals a value of 1, normal equals a value of 2, wet equals a value of 3

⁵ Due to the timing of the site assessment, March precipitation results were included in this analysis.

Bins were established to determine the overall rainfall period during the field investigation; drier (sum is 6-9), normal (sum is 10-14), wet (sum is 15-18). A sum of 14 indicates that hydrologic conditions are normal.

6 WETLAND RESULTS

6.1 Wetland A

Wetland A is a palustrine emergent/scrub-shrub wetland the is situated in the northeast portion of the campus (Appendix A). Wetland A is hydrogeomorphically classified as a depressional wetland (Appendix D).

Vegetation within wetland A consist of red alder saplings (*Alnus rubra*, FAC), spiraea (*Spiraea douglasii*, FACW), water parsley (*Oenanthe sarmentosa*, OBL) and reed canary grass (*Phalaris arundinacea*, FACW). Also, skunk cabbage (*Lysichiton americanus*, OBL) was observed in the wetland as well. The wetland vegetation observed largely supports FACW and OBL species.

Soils observed within Wetland A were unconsolidated due to the high-water table and soil saturation. Based on these conditions, soils were not able to be accurately evaluated; however, it is Grette Associates' professional opinion that the soils evaluated meets the technical definition of hydric soils. Given the predominance of vegetation that generally has an association with prolonged inundation and/or soil saturation as well as hydrology indicators of prolonged inundation (e.g., algal mat) that were observed within the wetland, the soils within Wetland A are likely saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper soil horizons.

Wetland hydrology observed within the wetland consisted of shallow surface water, alga mat present, saturation, and water table.

6.2 Stormwater Pond

According to the information provided to Grette Associates, there is a potential wetland feature situated east of the project site and in one area where the project would discharge stormwater. Based on Grette Associates' assessment, the area mapped as potential wetland

is a constructed stormwater pond that appears to collect stormwater from the eastern portion of campus (Figures 2 and 3).

Per PMC 21.06.210, wetlands do not include those artificial wetlands intentionally created from non-wetland sites which include, but not limited to, drainage ditches, grass-lined swales, and detention facilities. Therefore, it is Grette Associates' professional opinion, that the stormwater pond is not classified as wetland and subject to the requirements defined in Chapter 21.06 of the PMC.

Figure 2. Stormwater Pond Conveyance Features

¹The photograph on the left captures the stormwater pond outlet pipe located in the southeastern portion of the stormwater pond and the photograph on the right captures a stormwater catch basin located on top of the earthen berm associated with the stormwater pond.

Figure 3. Stormwater Pond Conditions

6.3 Wetland Categorization

To determine the categorization of Wetland A based on function, the wetland classification guidelines in Ecology's wetland rating system (Hruby 2014) were used. Based on this guidance, each wetland was given a score for each of three functions: Water Quality, Hydrology, and Habitat (Table 4).

Feature	Cowardin Class	HGM Class	Water Quality	Hydrology	Habitat	Total	Category
Wetland A	PEM/SS	Depressional	8	6	5	19	III

Table 4. Wetland rating and categorization summary

Per Chapter 21.06 of the PMC, wetlands are subject to a buffer to protect the integrity and function of said feature. According to PMC 21.06.930, Category III wetlands providing less than moderate habitat function and with high land use are subject to an 80-foot buffer.

6.4 Project Impacts and Stormwater Management

Per PMC 21.06.530, a critical areas report shall include a description of the proposed stormwater management plan, an assessment of potential impacts to critical areas and their associated buffers, and an analysis of mitigation measures taken to avoid and minimize critical area impacts.

The proposed project will be constructed south of College Way which serves as a buffer interruption². As such, the proposed project will not impact Wetland A (north of College Way) or its associated buffer and has therefore demonstrated that the proposed project has implemented all measures to avoid and minimize wetland impacts. Please refer to the stormwater analysis, or like document, that was submitted in support of the proposed project which addresses the proposed stormwater discharge into Wetland A.

6.5 Regulatory Considerations

Wetlands are regulated by agencies at the local, state, and federal levels. At the local level, wetlands and their associated buffers in the City of Puyallup are regulated under the City's critical areas ordinance (Chapter 21.06 of the PMC).

At the state level, wetlands are regulated by the Washington State Department of Ecology through the federal Clean Water Act (Section 401). The requirement for a Water Quality Certification from Ecology for wetland impacts is triggered by an applicant's applying for a federal Clean Water Act Section 404 permit from the USACE. Ecology may also issue an Administrative Order through RCW 90.48 (Water Pollution Control Act), allowing them wetland regulatory authority over Waters of the State without a federal nexus.

At the federal level, impacts (specifically dredging or filling) to wetlands are regulated by the Environmental Protection Agency through the US Army Corps of Engineers. The USACE administers the federal Clean Water Act (Section 404) for projects involving dredging or filling in Waters of the US (lakes, streams, marine waters, and most nonisolated wetlands).

While it is the regulatory agencies that make the final determination regarding jurisdictional status, project proponents can infer jurisdiction using the guidance provided by each agency or local government. This inference can be used to design a project based on the anticipated regulatory constraints within the project area. However, it is the project proponent's responsibility to contact each potential regulating agency and confirm their regulatory status and requirements.

² C. Beale, personal communication, December 13, 2021).

6.6 Disclaimer

The findings and conclusions documented in this report have been prepared for specific application to this proposed project site. They have been developed in a manner consistent with that level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area. Our work was also performed in accordance with the terms and conditions set forth in our proposal. The conclusions and recommendations presented in this report are professional opinions based on an interpretation of information currently available to us and are made within the operation scope, budget, and schedule of this project. No warranty, expressed or implied, is made. In addition, changes in government codes, regulations, or laws may occur. Because of such changes, our observations and conclusions applicable to this site may need to be revised wholly or in part.

Wetland boundaries are based on conditions present at the time of the site visit and considered preliminary until the flagged wetland and/or drainage boundaries are validated by the appropriate jurisdictional agencies. Validation of the boundaries by the regulating agencies provide a certification, typically in writing, that the wetland boundaries verified are the boundaries that will be regulated by the agencies until a specific date or until the regulations are modified. Only the regulating agencies can provide this certification.

Since wetlands are dynamic communities affected by both natural and human activities, changes in wetland boundaries may be expected. Because of such changes, our observations and conclusions applicable to this site may need to be revised wholly or in part.

7 BIOLOGIST QUALIFICATIONS

7.1 Janae Dinkins

Janae Dinkins is a Biologist with training in wetland delineation and ecologic restoration. Janae also has professional experience in stream and buffer restoration, marine aquatic sampling, mitigation monitoring, and fish and wildlife assessments.

Janae has earned Bachelors of Science degrees in Wildlife & Fisheries and Soil & Crop Sciences from Texas A&M University.

For a list of representative projects, please contact her at Grette Associates.

7.2 Chad Wallin

Chad Wallin is a Biologist with extensive training in wetland science and ecology restoration. Chad also has professional experience in stream and fish restoration, marine monitoring, mitigation monitoring, and fish and wildlife assessments.

Chad has earned a Bachelor's of Arts degree in Environmental Studies from the University of Washington along with certificates in ecology restoration and wetland science.

For a list of representative projects, please contact him at Grette Associates.

8 **REFERENCES**

- Anderson, Paul S., S. Meyer, P. Olson, and E. Stockdale. 2016. Determining the Ordinary High Water Mark for Shoreline Management Act Compliance in Washington State. Washington State Department of Ecology Publication # 16-06-029.
- Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1979. Classification of Wetlands and Deepwater Habitats for the United States. FWS/OBS-79/31, U.S. Department of Interior, Fish and Wildlife Service. Washington D.C.
- Environmental Laboratory (Corps). 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- Hruby, T. 2014. Washington State Wetland Rating System for Western Washington: 2014 Update. Washington State Department of Ecology Publication # 14-06-029.
- National Oceanic and Atmospheric Administration (NOAA). 2022. National Climate Data Center (NCDC). Normal Climatological Report: Water Year Data. Accessed March 28, 2022. URL: <u>www.ncdc.noaa.gov</u>
- Natural Resource Conservation Service (NRCS). 2022a. United States Department of Agriculture. Web Soil Survey [map online]. Queried January 26, 2022. URL: <u>http://websoilsurvey.nrcs.usda.gov/</u>
- Natural Resource Conservation Service (NRCS). 2020b. Climate Data for Pierce County, WA. National Water and Climate Center. WETS Table. McMillin Reservoir NWS Station (USC00455224). Accessed January 26, 2022. URL: http://agacis.rccacis.org/53053/obsmn
- U.S. Army Corps of Engineers (USACE). 2020. National Wetland Plant List, version 3.5. <u>http://wetland-plants.usace.army.mil/</u> U.S. Army Corps of Engineers, Engineer Research and Development Center. Cold Regions Research and Engineering Laboratory, Hanover, NH.
- U.S. Army Corps of Engineers (USACE). 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-3. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- U.S. Fish and Wildlife Service (USFWS). 2022. Wetland Mapper [map online]. National Wetlands Inventory Queried March 23, 2022. URL: http://www.fws.gov/wetlands/Wetlands-Mapper.html Interactive Layer = "Wetlands".
- Washington Department of Fish and Wildlife (WDFW). 2022a. PHS on the Web [map online]. Priority Habitats and Species Queried January 26, 2022. URL: <u>http://wdfw.wa.gov/mapping/phs/</u>.
- Washington Department of Fish and Wildlife (WDFW). 2022b. SalmonScape [map online]. All SalmonScape Species. Queried January 26, 2022. URL: <u>http://wdfw.wa.gov/mapping/phs/</u>.

- Washington Department of Natural Resources (WDNR). 2022a. Wetlands of High Conservation Value Mapper [map online]. Queried January 23, 2022. URL: <u>https://www.dnr.wa.gov/NHPwetlandviewer</u>
- Washington Department of Natural Resources (WDNR). 2022b. Forest Practices Application Mapping Tool [map online]. Streams and Water Type Breaks. Queried January 26, 2022. URL: <u>https://fortress.wa.gov/dnr/protectiongis/fpamt/index.html</u>

PIERCE COLLEGE-PUYALLUP CAMPUS: STEM PROJECT

WETLAND ANALYSIS REPORT

APPENDIX A: WETLAND DELINEATION MAP

PIERCE COLLEGE-PUYALLUP CAMPUS: STEM Project

WETLAND ANALYSIS REPORT

APPENDIX B: WETLAND SUMMARY

	W	ETLAND A SUMMARY
Approximate Size (sq. ft.):	-	
Cowardin Classification ¹ :	PEM/SS	
HGM Classification ² :	Depressional	
Wetland Category ³ :	III	
Wetland Buffer Width ⁴ :	80 ft.	
Sample Plot Total ⁵ :	2	
Hydrophytic Vegetation Present (Y/N)?	Yes	
Hydric Soil Indicator?	Yes	
Wetland Hydrology Present?	Yes	
Summary of Find	ings	
Dominant Vegeta	tion: The scrub-s with an und largely cons (<i>Lysichiton</i>)	hrub area predominately consists of a spiraea (<i>Spiraea douglasii</i>) lerstory of native and non-native vegetation. The emergent area ists of reed canarygrass (<i>Phalaris arundinacea</i>) and skunk cabbage <i>americanus</i>).
Soil Profile:	The soils of accurately e	served in Wetland A were unconsolidated and were note able to be avaluated.
Primary Hydrolog Support:	gical Hydrologic table and st	support for Wetland A is primarily provided by high groundwater ormwater discharge.
Wetland Data Plo	t:	Upland Data Plot:

Notes:

- Notes: ¹ Classification based on Cowardin et al. (1979). ² HGM classification based on Brinson, M.M. (1993). ³ Wetland rating was determined based on the guidelines defined in the local municipal code. ⁴ Wetland buffer was determined based on the local municipal code. ⁵ Sample plot total includes the collective amount of wetland and upland samples plots examined to define the wetland boundary.

PIERCE COLLEGE-PUYALLUP CAMPUS: STEM Project

WETLAND ANALYSIS REPORT

APPENDIX C: WETLAND DATASHEETS

WETLAND DETERMINATION	DATA FORM - We	stern Mountains, Valleys, and Coast	Region
Project Site: <u>PC - PyallyCarps</u>	-STEM	City/County: Ryllup / Pierce Sampling D State: M Sampling P	Pate: $3/22/22$ Point: SP-1
Investigator(s):		Section, Township, Range:	10-2
Landform (hillslope, terrace, etc.):	Loca	I relief (concave, convex, none):	Slope (%): 7
Subregion (LRR):	Lat:	Long:	Datum:
Soil Map Unit Name:		NWI classification:	2
Are climatic / hydrologic conditions on the site typical for	this time of year? Year?	es 🔲 No 🔲 (If no, explain in Remarks.)	٨
Are Vegetation D, Soil D, or Hydrology	, significantly disturbed	? Are "Normal Circumstances" present?	Yes 🕅 No 🗖
Are Vegetation 🔲, Soil 🔲, or Hydrology	naturally problematic?	(If needed, explain any answers in Remarks.)	•
SUMMARY OF FINDINGS - Attach site map sl	nowing sampling point	locations, transects, important features, etc.	
Hydrophytic Vegetation Present?	Yes No	In the Oriented Area	
Hydric Soil Present?	Yes 🗆 No 🗖	within a Wetland?	Yes 🖸 No 🛱
Wetland Hydrology Present?	Yes 🔲 No 🙀	-	/
Remarks: SP-1 new for al slope	f stemundur pe	nd	
VEGETATION - Use scientific names of plant	S		
Tree Stratum (Plot size: 30')	Absolute Dominant % Cover Species2	Indicator Status Dominance Test Worksheet:	
1. POBA	50% Y	FAC Number of Dominant Species	3
2 ALRU	20% 4	FAC That Are OBL, FACW, or FAC:	(A)
3. THPL	5% N	FAC Total Number of Dominant	u
4.		Species Across All Strata:	(B)
50% = 20% =	75% = Total Cove	Bereast of Deminant Species	704
Sanling/Shrub Stratum (Plot size: 5)		That Are OBL, FACW, or FAC:	(A/B)
1 GASH	10% Y	Facily Prevalence Index worksheet:	
2		Total % Cover of	Multiply by:
3			<u>v1 =</u>
4		ODL species	x2 =
5			x3 =
5			xo =
		FACU species	x4 =
Herb Stratum (Plot size:)	soft L	EAC B UPL species	x5 =
1	<u> </u>	Column Totals:(A)	(B)
2	104 \overline{N}	Prevalence Index = B/A	. =
3		Hydrophytic Vegetation Indicators:	
4		1 – Rapid Test for Hydrophytic Vege	tation
5		2 - Dominance Test is >50%	
		3 - Prevalence Index is <3.01	
7		4 - Morphological Adaptations ¹ (Prov	vide supporting
8		data in Remarks or on a separate	sheet)
9		5 - Wetland Non-Vascular Plants ¹	
10		Problematic Hydrophytic Vegetation	¹ (Explain)
11			
50% =, 20% =	90% = Total Cove	¹ Indicators of hydric soil and wetland hydr	ology must
Woody Vine Stratum (Plot size:)		be present, unless disturbed or problemat	.6.
1.			
2.		Hydrophytic	
50% = 20% =	= Total Cove	Vegetation Yes	No D
% Para Ground in Hach Stratum		Present?	
Remarks:			
2			

ъ. т

÷

Project Site:								
SOIL	v						Sampling Point:	
Profile Descr	iption: (Describe to	o the depth r	needed to de	ocument the indicator or confi	rm the absence	of indicator	rs.)	
Depth	Matrix			Redox Features		0		1
(inches)	Color (moist)	%	Color (mo	ist) % Type ¹	Loc ²	Texture	Remarks	
11 1001	10 103/2	1006				Judy !	oan	
9-18 7	IOTK4/4	100/				10any 5	and wismall gravel	
					<u> </u>			
1Tupe: C= Co	*	etion RM=R	educed Matr	iv. CS=Covered or Coated San	Grains ² l o		Pore Lining M=Matrix	
Hydric Soil In	dicators: (Applica	ble to all I R		otherwise noted)		Indic	ators for Problematic Hydric Solls ³ :	
	(A1)			Sandy Redox (S5)			2 cm Muck (A10)	
Histic E	pipedon (A2)			Stripped Matrix (S6)			Red Parent Material (TF2)	
Black H	istic (A3)			Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (T			Very Shallow Dark Surface (TF12)	
Hydrog	en Sulfide (A4)			Loamy Gleyed Matrix (F2) Other (Explain in Remarks)				
Deplete	d Below Dark Surfa	ce (A11)		Depleted Matrix (F3)				1.1
Thick D	ark Surface (A12)			Redox Dark Surface (F6)				
Sandy I	Mucky Mineral (S1)			Depleted Dark Surface (F7)		³ Indic	ators of hydrophytic vegetation and	
Sandy	Gleyed Matrix (S4)			Redox Depressions (F8)		we un	etiand hydrology must be present, iless disturbed or problematic.	
Restrictive L	ayer (if present):							
Туре:	<u>+ 18"</u>	0						
Depth (inches	s): gravely b	mepan			Hydric Solls P	resent?	Yes 🛄 No	ø
Remarks:								
Λ)	· ·· ··	abserve	0.					
	CKQ+	0.200						
7								
-								

3.

HYDROLOGY

Wetla	Ind Hydrology Indicate	ors:											
Prima	ry Indicators (minimum	of one r	equired;	check	all that	t apply)		Sec	ondary Indicators (2 or	more require	∋d)		
	Surface Water (A1)					Water-Stained Leaves (B9)			Water-Stained Leave	s (B9)			
	High Water Table (A2)					(except MLRA 1, 2, 4A, and 4B)			(MLRA 1, 2, 4A, and	4B)			
	Saturation (A3)					Salt Crust (B11)			Drainage Patterns (B	10)			
	Water Marks (B1)	*				Aquatic Invertebrates (B13)			Dry-Season Water Ta	able (C2)			
	Sediment Deposits (B2	2)				Hydrogen Sulfide Odor (C1)			Saturation Visible on	Aerial Image	ery (C9)	
	Drift Deposits (B3)					Oxidized Rhizospheres along Living Roots	s (C3)		Geomorphic Position	(D2)			
	Algal Mat or Crust (B4)				Presence of Reduced Iron (C4)			Shallow Aquitard (D3)			
	Iron Deposits (B5)					Recent Iron Reduction in Tilled Soils (C6)			FAC-Neutral Test (D	5)			
	Surface Soil Cracks (E	36)				Stunted or Stresses Plants (D1) (LRR A) Raised Ant Mounds (D6) (LR			D6) (LRR A)			
	Inundation Visible on A	Aerial Im	agery (E	37)		Other (Explain in Remarks)			Frost-Heave Hummocks (D7)				
	Sparsely Vegetated C	oncave	Surface	(B8)									
Field	Observations:												
Surfa	ce Water Present?	Yes		No	X	Depth (inches):							
Wate	r Table Present?	Yes		No	X	Depth (inches):							
Satur (inclu	ation Present? des capillary fringe)	Yes		No	¥	Depth (inches):	Wetla	nd Hy	drology Present?	Yes		No	K.
Desc	ribe Recorded Data (str	eam gau	uge, moi	nitoring	, well, a	aerial photos, previous inspections), if availal	ble:						
Rem	arks: Soils m	1460											
								-		_		_	

US Army Corps of Engineers

Western Mountains, Valleys, and Coast - Version 2.0

÷.,

WETLAND DETERMINATION	DATA	FORM – We	stern Mo	ountains, Valleys, and Coast	Region	,
Project Site: <u>Pierra Calleze - Pu</u> Applicant/Owner:	yllup	Sten	City/Coun	ty: Ruther Bampling I State: LAK Sampling I	Date: <u>3/2</u> 2 Point: SP-	2/22
Investigator(s):				Section, Township, Range:		
Landform (hillslope, terrace, etc.):	vession	J Loca	I relief (conca	ave. convex. none):	Slope (%):	
Subregion (LRR):	Lat:			Long:	Datum:	
Soil Map Unit Name:				NWI classification:		
Are climatic / hydrologic conditions on the site typical for	r this time	of year? Ye	es 🗖	No 🔲 (If no, explain in Remarks.))	
Are Vegetation , Soil , or Hydrology	🔲, sign	ificantly disturbed	? Are "I	Normal Circumstances" present?	Yes 🛛 🔀 No	
Are Vegetation D, Soil D, or Hydrology	🔲, natu	urally problematic?	? (If ne	eded, explain any answers in Remarks.)	v -	
SUMMARY OF FINDINGS – Attach site map si	howing s	ampling point	locations,	transects, important features, etc.		
Hydrophytic Vegetation Present?	Yes	V No				
Hydric Soil Present?	Yes	₩Q No □	Is the Samp within a We	bled Area tland?	Yes Z No	, D
Wetland Hydrology Present?	Yes		Within a ree			
Remarks: SP-Z situnden W/NWC	ernar	of stamu	outer po	en A		
VEGETATION - Use scientific names of plant	S					
Tree Stratum (Plot size: 30')	Absolute % Cover	Dominant <u>Species?</u>	Indicator Status	Dominance Test Worksheet:		
1YOBA	20%	<u> </u>	LAC	Number of Dominant Species	- 3	(6)
2. ALRU	15%	Y	FAC	That Are OBL, FACW, or FAC:		(4)
3				Total Number of Dominant	3	(B)
4	204			Species Across All Strata:		(0)
50% = 20% =	220	= Total Cove	r	Percent of Dominant Species	100%	(A/B)
Sapling/Shrub Stratum (Plot size: 15)				That Are OBL, FACW, or FAC:		(100)
1			×	Prevalence Index worksheet:		
2				Total % Cover of:	Multiply by:	
3				OBL species	x1 =	
4				FACW species	x2 =	
5				FAC species	x3 =	
50% =, 20% = `		= Total Cove	r	FACU species	x4 =	
Herb Stratum (Plot size:)	1-91	``	TIN	UPL species	x5 =	
1	1062	N	FACW	Column Totals:(A)		_ (B)
2	80%	<u> </u>	<u>FK</u> C	Prevalence index = B//	A =	1
3		<u> </u>	_	Hydrophytic Vegetation Indicators:		
4			_	1 – Rapid Test for Hydrophytic Vege	etation	
5				2 - Dominance Test is >50%	1	
6				G 3 - Prevalence Index is ≤3.0 ¹		
7. 8.			_	4 - Morphological Adaptations ¹ (Pro data in Remarks or on a separat	vide supporting e sheet)	
9				5 - Wetland Non-Vascular Plants ¹		
10				Problematic Hydrophytic Vegetation	¹ (Explain)	
11					白旗	1.2
50% =, 20% =	906	= Total Cove	er	Indicators of hydric soil and wetland hydrid be present, unless disturbed or problema:	rology must tic.	4
Woody Vine Stratum (Plot size:)				provident and the provident	Y I	
1						
2				Hydrophytic	API No	(
50% =, 20% =		= Total Cove	er	Present?	CM CM	
% Bare Ground in Herb Stratum						
Remarks:	2					

Project Site:

SOIL	•••							Sampling	Point: 5P-2	
Profile	Description: (Describe to	the depth	needed to de	ocument the indic	ator or confirm	n the absence	of indicato	ors.)		
Dep	th Matrix		-	Redox F	eatures					
(inches	i) Color (moist)	%	Color (mo	ist) %	Type ¹	Loc ²	Texture		Remarks	
0 <u>-5</u> 5 <u>-1</u>	6" 7.54Ry/2	90% 90%	2.5 <u>724/</u>	6 100	L	M	50147 5	si/+		
		_	_			<u> </u>				
¹ Type:	C= Concentration, D=Deple	tion, RM=I	Reduced Matr	ix, CS=Covered or	Coated Sand (Grains. ² Lo	ocation: PL=	Pore Lining, N	M=Matrix	s ³ :
	listocol (A1)	10 10 UN L		Sandy Redox (S	5)			2 cm Muck	(A10)	
	listic Eninedon (A2)			Stripped Matrix (S6)			Red Parent	t Material (TF2)	
	Rack Histic (A3)			Loamy Mucky M	ineral (F1) (exc	ent MI RA 1)		Very Shallo	w Dark Surface (TF12	2)
	Judrogen Sulfide (A4)			Loamy Gleved M	latrix (F2)	openierovity		Other (Expl	lain in Remarks)	-,
	Depicted Bolow Dark Surface	o (A11)		Depleted Matrix	(E2)			outor (Exp	dant ant to mainly,	
	Thick Dark Surface (A12)	5 (ATT)		Redox Dark Sur	ace (F6)					
	Condy Mucky Mineral (S1)			Depleted Dark Sul	urface (E7)		³ Indi	cators of hvdr	ophytic vegetation and	a l
				Bedey Depressi			W	etland hydrold	ogy must be present,	
	Sandy Gleyed Matrix (54)			Redux Depressi			u	nless disturbe	d or problematic.	
Restric	cuve Layer (if present):	lan								
Type:	gunder of the	1				Undria Calla I	Draaant?		Vac II	
Depth	(inches): <u>Io</u>				24 	Hydric Solis H	Present		Tes per	
Remar	KS:									
									*	

HYDROLOGY

Wetland Hydrology Indicators:								
Primary Indicators (minimum of one required; check	all that	apply)	Sec	ondary Indicators (2 or more required)				
Surface Water (A1)		Water-Stained Leaves (B9)	Nater-Stained Leaves (B9) Water-Stained Leaves					
High Water Table (A2)		(except MLRA 1, 2, 4A, and 4B)		(MLRA 1, 2, 4A, and 4B)				
Saturation (A3)		Salt Crust (B11)		Drainage Patterns (B10)				
Water Marks (B1)		Aquatic Invertebrates (B13)		Dry-Season Water Table (C2)				
Sediment Deposits (B2)		Hydrogen Sulfide Odor (C1)		Saturation Visible on Aerial Imagery (C9)				
Drift Deposits (B3)		Oxidized Rhizospheres along Living Roots (C	_ Geomorphic Position (D2)					
Algal Mat or Crust (B4)		Presence of Reduced Iron (C4)	' □	Shallow Aquitard (D3)				
Iron Deposits (B5)		Recent Iron Reduction in Tilled Soils (C6)		FAC-Neutral Test (D5)				
Surface Soil Cracks (B6)		Stunted or Stresses Plants (D1) (LRR A)		Raised Ant Mounds (D6) (LRR A)				
Inundation Visible on Aerial Imagery (B7)		Other (Explain in Remarks)	Ø.	 Frost-Heave Hummocks (D7) 				
Sparsely Vegetated Concave Surface (B8)								
Field Observations:								
Surface Water Present? Yes No		Depth (inches): Surface						
Water Table Present? Yes D No	X	Depth (inches):						
Saturation Present? Yes K No	D,	Depth (inches): Osurha W	Netland Hy	drology Present? Yes 📈 No 🛛				
Describe Recorded Data (stream gauge, monitoring	well, a	erial photos, previous inspections), if available:		f				
Remarks: Soils saturded w/ upper soil layer (0-5") but just moist below.								
⊗ surface water (+2"-3" deep) w/ 24" of pot.								

US Army Corps of Engineers

21

Western Mountains, Valleys, and Coast - Version 2.0

WETLAND	DETERMINATION I	DATA FO	DRM – We	stern Mo	ountains, Valleys, and Coast F	Region		
Project Site:	vice Collage - Puy	llip st	En_	City/Count	ty: Mathe Riea Sampling Distance Sampling Distance	ate: oint:	3/22 SP	-3
Investigator(s):	Jallin 1				Section, Township, Range:			
Landform (hillslope, terrace,	etc.): flat/Slove		Local	relief (conca	ave, convex, none):	Slope	(%):	12/2
Subregion (LRR):		Lat:			Long:	Datum:		
Soil Map Unit Name:					NWI classification:			
Are climatic / hydrologic cor	ditions on the site typical for	this time of y	vear? Ye	s 🗖	No [] (If no, explain in Remarks.)			
Are Vegetation . So	oil 🔲. or Hydrology [. signific	antly disturbed?	Are "	Normal Circumstances" present?	Yes	K	lo 🔲
Are Vegetation D, So	il 🔲, or Hydrology [], natural	ly problematic?	(If ne	eded, explain any answers in Remarks.)		/	
SUMMARY OF FINDING	3S – Attach site map sh	owing san	npling point l	locations,	transects, important features, etc.			
Hydrophytic Vegetation Pre	sent?	Yes 🗗		s the Same	aled Area		_	N
Hydric Soil Present?		Yes 🛛	No R	within a We	tland?	Yes		lo DK
Wetland Hydrology Present	?	Yes 🗖	No D					
Remarks: SP-3 silve SP-3 sou	the lager l	sourch	Just the	Advscl	hoses to well .	4		
VEGETATION - Use so	ientific names of plants		Dentinent	1				
Tree Stratum (Plot size: 3	\mathcal{O}^{L}	ADSOIUTE % Cover	Species?	Status	Dominance Test Worksheet:			
1. ALRU		YOU	Y	FAC	Number of Dominant Species	u		(4)
2. THPL		10%	Y	FAL	That Are OBL, FACW, or FAC:	/		(A)
3					Total Number of Dominant	4		
4					Species Across All Strata:			(B)
50% =, 20% =		50%	= Total Cover		Percent of Dominant Species	1005	-	(A (D)
Sapling/Shrub Stratum (Plo	ot size: <u>IS</u>)				That Are OBL, FACW, or FAC:	<u>'00</u>		(A/B)
1. RUDJ		75%	<u>Y</u>	FAC	Prevalence Index worksheet:			
2.			ann a		Total % Cover of:	Multip	v by:	
3.					OBL species	x1 =		_
4.					FACW species	x2 =		_
5.					FAC species	x3 =		_
50% = , 20% =	A 31	75%	= Total Cover		FACU species	x4 =		
Herb Stratum (Plot size:	5',				UPL species	x5 =		-
1 She day a bold	Le.	206	EN.	Y				- (B)
	MC.		<u></u>		Column Totals: (4)	_		_ (0)
2			—		Prevalence index - b/A			
3				—	Hydrophytic Vegetation indicators:	lation		
4					1 – Rapid Test for Hydrophytic Veger	auon		
ə					12 - Dominance Test is >50%			
6				<u> </u>	\square 3 - Prevalence Index is $\leq 3.0^1$			
7			_	_	4 - Morphological Adaptations ¹ (Prov	ide suppor	rting	
8			—			sneet)		
9				—	5 - Wetland Non-Vascular Plants			
10				<u> </u>	Problematic Hydrophytic Vegetation ¹	(Explain)		
11		700	<u> </u>		Indicators of hydric soil and wotland hydro			
50% =, 20% =	_	02	= Total Cover	r	be present, unless disturbed or problemati	c.		
Woody Vine Stratum (Plot	size:)							
1					Undreshudia			
2					Vegetation Ves		No	
50% =, 20% =	_		= Total Cover	r	Present?	-		
% Bare Ground in Herb St	ratum							
Remarks:								

1

Project Site:

SOIL								Sampling	Point:	P-3		
Profile [Description: (Describe to	the depth	needed to d	ocument the i	ndicator or con	firm the absenc	e of indicat	ors.)				
Dept	h Matrix			Red	ox Features		2					
(inches)	Color (moist)	%	Color (mo	ist) %	Type ¹	Loc ²	Texture		F	Remarks		
0-8	- 10 <u>4R33</u>	100%	7.000				loan	<u>, </u>				
0-18	+ 40744/3	186	hSIRY/	6 <u>54</u>	2 _	$\underline{\mathcal{M}}$	solly,	loon				
		<u> </u>										
		<u>.</u>										
¹ Type: C	= Concentration, D=Deple	etion, RM=F	Reduced Mati	ix, CS=Covere	d or Coated Sar	nd Grains. ² l	Location: PL:	=Pore Lining, M	M=Matrix			
Hydric \$	Soil Indicators: (Applicat	ble to all L.F	RRs, unless	otherwise not	ed.)		Indi	cators for Pro	blematic H	lydric S	oils³:	
🖸 Hi	stosol (A1)			Sandy Redo	x (S5)			2 cm Muck	(A10)			
D Hi	stic Epipedon (A2)			Stripped Mat	trix (S6)			Red Parent	Material (T	'F2)		
D BI	ack Histic (A3)			Loamy Muck	y Mineral (F1) (e	except MLRA 1)		Very Shallo	w Dark Sur	face (TF	⁻ 12)	
🗆 Ну	vdrogen Sulfide (A4)			Loamy Gleye	ed Matrix (F2)			Other (Expl	lain in Rema	arks)		
	epleted Below Dark Surfac	ce (A11)		Depleted Ma	ıtrix (F3)							
יד ם	nick Dark Surface (A12)			Redox Dark	Surface (F6)							
🗆 Sa	andy Mucky Mineral (S1)			Depleted Da	rk Surface (F7)		³ Ind	icators of hydro	ophytic veg	etation a	ind	
🗖 Sa	andy Gleyed Matrix (S4)			Redox Depre	essions (F8)		v u	vetiana nyaroic inless disturbe	d or probler	natic.	ί,	
Restrict	tive Layer (if present):											
Туре:												
Depth (i	nches):					Hydric Soils	Present?		Yes		No	VÆ
Remark	S:											_
										2. 1 2. 1		
			di in									

HYDROLOGY

Wetland Hydrology Indicators:													
Prima	ary Indicators (minimum	of one re	equired;	check	all that	apply)		Sec	ondary Indicators (2 or n	nore require	ed)		
	Surface Water (A1)					Water-Stained Leaves (B9)			Water-Stained Leaves	(B9)			
	High Water Table (A2)		34	-1		except MLRA 1, 2, 4A, and 4B) (MLRA 1, 2,		(MLRA 1, 2, 4A, and 4	4B)				
	Saturation (A3)		397			Salt Crust (B11)			Drainage Patterns (B1	0)			
	Water Marks (B1)					Aquatic Invertebrates (B13)			Dry-Season Water Tal	ble (C2)			
	Sediment Deposits (B2)					Hydrogen Sulfide Odor (C1)				Aerial Image	ery (C9)	
	Drift Deposits (B3)					Oxidized Rhizospheres along Living Root	ts (C3)		Geomorphic Position (D2)			
	Algal Mat or Crust (B4)		1	1		Presence of Reduced Iron (C4)			Shallow Aquitard (D3)				
	Iron Deposits (B5)					Recent Iron Reduction in Tilled Soils (C6))		FAC-Neutral Test (D5))			
	Surface Soil Cracks (B	6)				Stunted or Stresses Plants (D1) (LRR A)			Raised Ant Mounds (D	06) (LRR A)			
	Inundation Visible on A	erial Im	agery (E	37)		Other (Explain in Remarks)			Frost-Heave Hummoc	ks (D7)			·
	Sparsely Vegetated Co	ncave S	Surface	(B8)									
Field	Observations:				,								
Surfa	ce Water Present?	Yes		No		Depth (inches):							
Wate	r Table Present?	Yes		No	Ň	Depth (inches):							
Satur (inclu	ation Present? des capillary fringe)	Yes		No	V)	Depth (inches):	Wetla	nd Hy	drology Present?	Yes		No	A
Desc	ribe Recorded Data (stre	eam gau	ige, mor	nitoring	well, a	erial photos, previous inspections), if availa	able:						0
Remarks:													
Soil Monso													
	2013	///											
				_	-						-		

Western Mountains, Valleys, and Coast - Version 2.0

WEILA		LIER	MINATIO	I DA	IA FURM – West	ern Mountains, y	alleys, and coast	Regioi	•	,	,
Project Site: Applicant/Owner:	Pierce	6	leve - Piya	llip	STEM	City/County: Rycllve/	Rerie Sampling I State: W Sampling F	Date: Point:	3/2	2/2	7
Investigator(s):	restigator(s): Section, Township, Range:										
Landform (hillslope, ter	race, etc	.):	Depression	al	Local re	lief (concave, convex, nor	ne):	Slop	e (%):		
Subregion (LRR):	_		_	La	t:	Long:		Datum:	-		
Soil Map Unit Name:							NWI classification:	-			
Are climatic / hydrologi	c conditio	ons on	the site typical f	or this	time of year? Yes	No 🗆	(If no, explain in Remarks.)	•			
Are Vegetation	Soil	□,	or Hydrology	Ω,	significantly disturbed?	Are "Normal Circums	tances" present?	Yes		No	
Are Vegetation D,	Soil	□,	or Hydrology	Π,	naturally problematic?	(If needed, explain ar	ny answers in Remarks.)				

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	No No				
Hydric Soil Present?	Yes	K No		Is the Sampled Area within a Wetland?	Yes	
Wetland Hydrology Present?	Yes	DK-NO				
Remarks: SP-U situde w Souther	c purt	Im al	l w	ettad		

VEGETATION – Use scientific names of plant	S					
Tree Stratum (Plot size: <u>30</u>)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test Worksheet:	2	
1. ALEU	<u>20%</u>	<u> </u>	FAC	Number of Dominant Species	3	(A)
2			_	matrice obe, friend, of frie.	-	
3				Total Number of Dominant Species Across All Strata:	3	(B)
50% = 20% =	10%	= Total Cover		Revent of Deminent Creation	21	
Sapling/Shrub Stratum (Plot size: 15)			-	That Are OBL, FACW, or FAC:	90 4	(A/B)
1.				Prevalence Index worksheet:		
2.				Total % Cover of: Mu	iltiply by:	
3.				OBL species x1 =	=	
4		_		FACW species x2	-	
5				FAC species x3	=	
50% =, 20% =		= Total Cove	r.	FACU species x4	=	
Herb Stratum (Plot size: 5')				UPL species x5	=	•
1. PLAR	40%	Y	FACU	Column Totals:(A)		(B)
2. OESA	20%	<u>Y</u>	OBL	Prevalence Index = B/A =		
3.				Hydrophytic Vegetation Indicators:		
4				1 – Rapid Test for Hydrophytic Vegetation		
5.				2 - Dominance Test is >50%		
6				□ 3 - Prevalence Index is ≤3.0 ¹		
7.				- 4 - Morphological Adaptations ¹ (Provide sur	pporting	
8	·			data in Remarks or on a separate sheet))	
9				5 - Wetland Non-Vascular Plants ¹		
10				Problematic Hydrophytic Vegetation ¹ (Expla	ain)	
11						2
50% =, 20% =	60%	= Total Cove	۲	Indicators of hydric soil and wetland hydrology in be present, unless disturbed or problematic.	nust	
Woody Vine Stratum (Plot size:)						
1						
2				Hydrophytic	No	
50% =, 20% =		= Total Cove	er	Present?	NO	ш
% Bare Ground in Herb Stratum 40%						
Remarks:						
Figling half loop is all chan.	are ist	stat. In m	or U	a conciles a la como la con-	0.	0
not reflective of wetlind. As a re:	SUL NO	I include	dr. pl	of	CUMER . and	*

?

Profile Desc	ription: (Describe (to the depth	needed to docume	ent the indica	ator or confirm	n the absenc	e of indicators.	.)	
Depth	Matrix			Redox Fe	eatures				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks
		\leq							
	-								
	/								
	/								

1Тур	e: C= Concentration, D=Depletion, RM=R	educed Matr	ix, CS=Covered or Coated Sand	I Grains. ² Loca	ation: PL=Pore Linin	g, M=Matrix		
нуа	ic Soli Indicators: (Applicable to all LR	Rs, unless o	otherwise noted.)		Indicators for	Problematic Hydric	Soils ³ :	
	Histosol (A1)		Sandy Redox (S5)		🔲 2 cm Mu	ick (A10)		
	Histic Epipedon (A2)		Stripped Matrix (S6)		Red Par	ent Material (TF2)		
	Black Histic (A3)		Loamy Mucky Mineral (F1) (ex	cept MLRA 1)	Very Sh	allow Dark Surface (TF12)	
	Hydrogen Sulfide (A4)		Loamy Gleyed Matrix (F2)		Other (E	xplain in Remarks)		
	Depleted Below Dark Surface (A11)		Depleted Matrix (F3)					
	Thick Dark Surface (A12)		Redox Dark Surface (F6)					
	Sandy Mucky Mineral (S1)		Depleted Dark Surface (F7)		³ Indicators of h	drophytic vegetation	n and	
	Sandy Gleyed Matrix (S4)		Redox Depressions (F8)		unless distu	rology must be prese rbed or problematic.	ant,	
Res	trictive Layer (if present):						10	
Туре	e:							
Dep	th (inches):			Hydric Soils Pre	sent?	Yes 📈	No	
Remarks:								
Soils unconsolidated due to water table and solundorm.								
Given FARW and OBL species a barreed and geo. position, soits likely next hydric soil definition								

HYDROLOGY

Wetland Hydrology Indicators:												
Prima	ry Indicators (minimum	of one	required; cheo	k all tha	t apply)			Sec	ondary Indicators (2 or more required)			
	Surface Water (A1)				Water-Stained Leave	s (B9)			Water-Stained Leaves (B9)			
	High Water Table (A2)				(except MLRA 1, 2, 4A, and 4B)			(MLRA 1, 2, 4A, and 4B)				
	Saturation (A3)				Salt Crust (B11)				Drainage Patterns (B10)			
Water Marks (B1)					Aquatic Invertebrates (B13)				Dry-Season Water Table (C2)			
Sediment Deposits (B2)					Hydrogen Sulfide Odor (C1)				Saturation Visible on Aerial Imagery (C9)			
	Drift Deposits (B3)				Oxidized Rhizospher	es along Living Roots	s (C3)		Geomorphic Position (D2)			
Algal Mat or Crust (B4)					Presence of Reduced	d Iron (C4)			Shallow Aquitard (D3)			
	Iron Deposits (B5)				Recent Iron Reduction	n in Tilled Soils (C6)			FAC-Neutral Test (D5)			
Surface Soil Cracks (B6)					Stunted or Stresses Plants (D1) (LRR A)			Raised Ant Mounds (D6) (LRR A)				
Inundation Visible on Aerial Imagery (B7)					Other (Explain in Rer	marks)			Frost-Heave Hummocks (D7)			
	Sparsely Vegetated Co	oncave	Surface (B8)									
Field	Observations:					1. C)						
Surfa	ce Water Present?	Yes	No No		Depth (inches):	<u> 76</u> *						
Wate	r Table Present?	Yes			Depth (inches):	Surface						
Satur (inclu	ation Present? des capillary fringe)	Yes	D No		Depth (inches):	Surdace	Wetlar	nd Hy	drology Present? Yes KNo			
Desc	ribe Recorded Data (stre	eam ga	uge, monitorii	ng well, a	aerial photos, previous i	inspections), if availa	ble:					
Rema	Remarks:											
🏵	@ subre when w/ 24 of dat											
		l										

PIERCE COLLEGE-PUYALLUP CAMPUS: STEM PROJECT

WETLAND ANALYSIS REPORT

APPENDIX D: WETLAND RATING FORM

RATING SUMMARY – Western Washington Name of wetland (or ID #): _____PC-Pierce College- STEM Date of site visit: ^{03/22/22} Trained by Ecology? Ves No Date of training 2021 J. Dinkins Rated by HGM Class used for rating Depressional -Wetland has multiple HGM classes? Y V N **NOTE:** Form is not complete without the figures requested (figures can be combined). Google Source of base aerial photo/map **OVERALL WETLAND CATEGORY** []] (based on functions] or special characteristics 1. Category of wetland based on FUNCTIONS **Category I** – Total score = 23 - 27 Score for each **Category II** – Total score = 20 - 22 function based on three Category III – Total score = 16 - 19 ratings (order of ratings Category IV – Total score = 9 - 15 ìs not *important*) **FUNCTION** Improving Hydrologic Habitat Water Quality 9 = H, H, HCircle the appropriate ratings 8 = H, H, MSite Potential H 🖸 M 🗖 L 🗖 7 = H, H, LLandscape Potential 7 = H, M, M6 = H, M, LValue TOTAL 6 = M, M, MScore Based on ◄ -5 = H,L,L8 • 6 5 19 Ratings 5 = M, M, L4 = M, L, L3 = L,L,L

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CATEGORY
Estuarine	I 🗌 II 🔲
Wetland of High Conservation Value	Ι□
Bog	Ι□
Mature Forest	Ι□
Old Growth Forest	Ι□
Coastal Lagoon	I 🗌 II 🗌
Interdunal	
None of the above	\checkmark

Maps and figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	Fig. 1
Hydroperiods	D 1.4, H 1.2	Fig. 2
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	Fig. 2
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	Fig. 1
Map of the contributing basin	D 4.3, D 5.3	Fig. 3
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	Fig 1
polygons for accessible habitat and undisturbed habitat		1 lg. 4
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	Fig. 5
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	Fig. 6/7

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	Н 2.1, Н 2.2, Н 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	
Plant cover of dense, rigid trees, shrubs, and herbaceous plants	S 4.1	
(can be added to figure above)		
Boundary of 150 ft buffer (can be added to another figure)	S 2.1, S 5.1	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.
If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.
1. Are the water levels in the entire unit usually controlled by tides except during floods?
✓ NO – go to 2
1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?
NO – Saltwater Tidal Fringe (Estuarine) If your wetland can be classified as a Freshwater Tidal Fringe use the forms for Riverine wetlands. If i is Saltwater Tidal Fringe it is an Estuarine wetland and is not scored. This method cannot be used to score functions for estuarine wetlands.
2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.
✓ NO – go to 3 If your wetland can be classified as a Flats wetland, use the form for Depressional wetlands.
 3. Does the entire wetland unit meet all of the following criteria? The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size; At least 30% of the open water area is deeper than 6.6 ft (2 m).
✓NO – go to 4
 4. Does the entire wetland unit meet all of the following criteria? The wetland is on a slope (<i>slope can be very gradual</i>), The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks, The water leaves the wetland without being impounded.
✓ NO – go to 5 YES – The wetland class is Slope
NOTE : Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).
 5. Does the entire wetland unit meet all of the following criteria? The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river, The overbank flooding occurs at least once every 2 years.

Wetland name or number A

- ✓ NO go to 6 NOTE: The Riverine unit can contain depressions that are filled with water when the river is not flooding
- 6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.*

```
NO – go to 7
```

```
YES – The wetland class is Depressional
```

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

✓N0 – go to 8

YES – The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit	HGM class to
being rated	use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

DEPRESSIONAL AND FLATS WETLANDS			
Water Quality Functions - Indicators that the site functions to improve wa	ter quality		
D 1.0. Does the site have the potential to improve water quality?			
D 1.1. Characteristics of surface water outflows from the wetland:			
Wetland is a depression or flat depression (QUESTION 7 on key) with no surface water leaving it (r	no outlet).		
Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing	points = 3 ☑ g outlet. points = 2 □	3	•
Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing Wetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch.	points = 1 🔲 points = 1 🔲		
D 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic (use NRCS definitions). Yes	s = 4 No = 0	0	
D 1.3. Characteristics and distribution of persistent plants (Emergent, Scrub-shrub, and/or Forested Cow	ardin classes):		
Wetland has persistent, ungrazed, plants > 95% of area	points = 5 🔽		
Wetland has persistent, ungrazed, plants > ½ of area	points = 3 🔲	5	-
Wetland has persistent, ungrazed plants $> \frac{1}{10}$ of area	points = 1 🔲		
Wetland has persistent, ungrazed plants $<^1/_{10}$ of area	points = 0 🔲		
D 1.4. Characteristics of seasonal ponding or inundation:			
This is the area that is ponded for at least 2 months. See description in manual.			
Area seasonally ponded is > ½ total area of wetland	points = 4 🔽	4	•
Area seasonally ponded is > 1/4 total area of wetland	points = 2 🔲		
Area seasonally ponded is < ¼ total area of wetland	points = 0 🔲		
Total for D 1 Add the points in the b	oxes above		12

Rating of Site Potential If score is: \square **12-16 = H** \square **6-11 = M** \square **0-5 = L** Record the ratio

= L Record the rating on the first page

D 2.0. Does the landscape have the potential to support the water quality function of the site?		
D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0	1	•
D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No = 0	1	
D 2.3. Are there septic systems within 250 ft of the wetland? Yes = 1 No = 0	0	•
D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in questions D 2.1-D 2.3?	0	V
Source Yes = 1 No = 0		
Total for D 2Add the points in the boxes above		2

Rating of Landscape Potential If score is: \Box 3 or 4 = H \Box 1 or 2 = M \Box 0 = L Record the rating on the first page

D 3.0. Is the water quality improvement provided by the site valuable t	o society?			
D 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, 303(d) list?	lake, or marine wa	ater that is on the Yes = 1 No = 0	0	•
D 3.2. Is the wetland in a basin or sub-basin where an aquatic resource is on the	ne 303(d) list?	Yes = 1 No = 0	1	
D 3.3. Has the site been identified in a watershed or local plan as important fo <i>if there is a TMDL for the basin in which the unit is found</i>)?	r maintaining wate	r quality (<i>answer YES</i> Yes = 2 No = 0	2	•
Total for D 3	Add the points	in the boxes above		3
Rating of Value If score is: 2-4 = H 1 = M 0 = L	Record the rati	ng on the first page		

DEPRESSIONAL AND FLATS WETLANDS		
Hydrologic Functions - Indicators that the site functions to reduce flooding and stream degradati	on	
D 4.0. Does the site have the potential to reduce flooding and erosion?		
D 4.1. Characteristics of surface water outflows from the wetland: points = 4 ☑ Wetland is a depression or flat depression with no surface water leaving it (no outlet) points = 4 ☑ Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing outletpoints = 2 Wetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch points = 1 □ Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing points = 0 □	_ 4	•
 D 4.2. Depth of storage during wet periods: Estimate the height of ponding above the bottom of the outlet. For wetlands with no outlet, measure from the surface of permanent water or if dry, the deepest part. Marks of ponding are 3 ft or more above the surface or bottom of outlet points = 7 □ Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet points = 5 □ Marks are at least 0.5 ft to < 2 ft from surface or bottom of outlet points = 3 □ The wetland is a "headwater" wetland points and the surface that trap water points = 1 □ Marks of ponding less than 0.5 ft (6 in) 	3	•
 D 4.3. Contribution of the wetland to storage in the watershed: Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself. The area of the basin is less than 10 times the area of the unit points = 5 □ The area of the basin is 10 to 100 times the area of the unit points = 3 ☑ The area of the basin is more than 100 times the area of the unit points = 5 □ Entire wetland is in the Flats class 	3	•
Total for D 4 Add the points in the boxes above	1	0
Rating of Site Potential If score is: \square 12-16 = H \square 6-11 = M \square 0-5 = L Record the rating on the	first	page
D 5.0. Does the landscape have the potential to support hydrologic functions of the site?		
D 5.1. Does the wetland receive stormwater discharges? Yes = 1 No = 0	1	•
D 5.2. Is >10% of the area within 150 ft of the wetland in land uses that generate excess runoff? Yes = 1 No = 0	1	
D 5.3. Is more than 25% of the contributing basin of the wetland covered with intensive human land uses (residential at >1 residence/ac, urban, commercial, agriculture, etc.)? Yes = 1 No = 0	1	•
Total for D 5 Add the points in the boxes above		3
Rating of Landscape Potential If score is: $\boxed{\Box} 3 = H$ $\boxed{\Box} 1$ or $2 = M$ $\boxed{\Box} 0 = L$ Record the rating on the	first	page
D 6.0. Are the hydrologic functions provided by the site valuable to society?		
 D 6.1. <u>The unit is in a landscape that has flooding problems</u>. <i>Choose the description that best matches conditions around the wetland unit being rated. Do not add points. <u>Choose the highest score if more than one condition is met</u>. The wetland captures surface water that would otherwise flow down-gradient into areas where flooding has damaged human or natural resources (e.g., houses or salmon redds): Flooding occurs in a sub-basin that is immediately down-gradient of unit. Surface flooding problems are in a sub-basin farther down-gradient. points = 1 □ Flooding from groundwater is an issue in the sub-basin. points = 1 □ The existing or potential outflow from the wetland is so constrained by human or natural conditions that the water stored by the wetland cannot reach areas that flood. <i>Explain why</i> Wetland contains no outlet. </i> 	0	•
There are no problems with flooding downstream of the wetland. points = $0 \square$		
D 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan? Yes = 2 No = 0	0	•
Total for D 6 Add the points in the boxes above		0
	firct	naap

Wetland name or number A

These questions apply to wetlands of all HGM classes.		
HABITAT FUNCTIONS - Indicators that site functions to provide important habitat		
H 1.0. Does the site have the potential to provide habitat?		
H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked.	1	•
H 1.2. Hydroperiods		
Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see text for descriptions of hydroperiods).	1	T
H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft ² . Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle If you counted: > 19 species 5 - 19 species points = 1 < 5 species	1	•
H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. <i>If you have four or more plant classes or three classes and open water, the rating is always high.</i> None = 0 points Low = 1 point Moderate = 2 points Moderate = 2 points All three diagrams in this row are HIGH = 3points	1	•

Wetland name or number A

 H 1.5. Special habitat features: Check the habitat features that are present in the wetland. <i>The number of checks is the number of points.</i> □ Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long). □ Standing snags (dbh > 4 in) within the wetland □ Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends at least 3.3 ft (1 m) over a stream (or ditch) in, or contiguous with the wetland, for at least 33 ft (10 m) □ Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (<i>cut shrubs or trees that have not yet weathered where wood is exposed</i>) □ At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas that are permanently or seasonally inundated (<i>structures for egg-laying by amphibians</i>) □ Invasive plants cover less than 25% of the wetland area in every stratum of plants (<i>see H 1.1 for list of</i> 	3 💌
strata) Add the points in the boxes above	7
Rating of Site Potential If score is: 15-18 = H 7-14 = M 0-6 = L Record the rating on	the first page
H 2.0. Does the landscape have the potential to support the habitat functions of the site?	

H 2.1. Accessible habitat (include only habitat that directly abuts wetland unit).			
Calculate: % undisturbed habitat 7.73 + [(% moderate and low intensity land uses)/2] 0.00 = 7.	73_%		
If total accessible habitat is:			_
> ¹ / ₃ (33.3%) of 1 km Polygon point	nts = 3	1	-
20-33% of 1 km Polygon poin	nts = 2		
10-19% of 1 km Polygon poin	nts = 1		
< 10% of 1 km Polygon poin	nts = 0		
H 2.2. Undisturbed habitat in 1 km Polygon around the wetland.			
<i>Calculate:</i> % undisturbed habitat $\frac{25.67}{1}$ + [(% moderate and low intensity land uses)/2] $\frac{7.21}{1}$ = $\frac{32}{10}$.88_%		
Undisturbed habitat > 50% of Polygon point	nts = 3	4	
Undisturbed habitat 10-50% and in 1-3 patches point	nts = 2	1	
Undisturbed habitat 10-50% and > 3 patches point	nts = 1		
Undisturbed habitat < 10% of 1 km Polygon poin	nts = 0		
H 2.3. Land use intensity in 1 km Polygon: If			
> 50% of 1 km Polygon is high intensity land use points	= (- 2)	-2	-
≤ 50% of 1 km Polygon is high intensity point	nts = 0		
Total for H 2 Add the points in the boxes	above	0	
Rating of Landscape Potential If score is: \Box 4-6 = H \Box 1-3 = M \Box < 1 = L Record the rating on the first page			age

H 3.0. Is the habitat provided by the site valuable to society?		
H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies? Choose only the highest score that applies to the wetland being rated. Site meets ANY of the following criteria: points = 2 It has 3 or more priority habitats within 100 m (see next page) It has 3 or more priority habitats within 100 m (see next page) It is mapped as a location for an individual WDFW priority species It is a Wetland of High Conservation Value as determined by the Department of Natural Resources It has been categorized as an important habitat site in a local or regional comprehensive plan, in a Shoreline Master Plan, or in a watershed plan Site does not meet any of the criteria above points = 0	1	4
Rating of Value If score is: $\Box 2 = H$ $\Box 1 = M$ $\Box 0 = L$ Record the rating on a	the first	page

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

In 1

-1

WDFW Priority Habitats

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. <u>http://wdfw.wa.gov/publications/00165/wdfw00165.pdf</u> or access the list from here: <u>http://wdfw.wa.gov/conservation/phs/list/</u>)

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: **NOTE:** This question is independent of the land use between the wetland unit and the priority habitat.

- Aspen Stands: Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
- Old-growth/Mature forests: <u>Old-growth west of Cascade crest</u> Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. <u>Mature forests</u> Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- **Oregon White Oak:** Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- **Instream:** The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- Nearshore: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and
 Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report –
 see web link on previous page*).
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- **Talus:** Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015 Wetland name or number A

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Wetland Type	Category
Check off any criteria that apply to the wetland. Circle the category when the appropriate criteria are met.	
SC 1.0. Estuarine wetlands	
Does the wetland meet the following criteria for Estuarine wetlands?	
— The dominant water regime is tidal,	
— Vegetated, and	
— With a salinity greater than 0.5 ppt Yes –Go to SC 1.1 No= Not an estuarine wetland	
SC 1.1. Is the wetland within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC 332-30-151? Yes = Category I INO - Go to SC 1.2	Cat. I
SC 1.2. Is the wetland unit at least 1 ac in size and meets at least two of the following three conditions?	
— The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less	C -4 1
than 10% cover of non-native plant species. (If non-native species are Spartina, see page 25)	Cat. I
☐ — At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-	
mowed grassland.	Cat. II
\Box — The wetland has at least two of the following features: tidal channels, depressions with open water, or contiguous freshwater wetlands	
SC 2.0. Wetlands of High Conservation Value (WHCV)	
SC 2.1. Has the WA Department of Natural Resources updated their website to include the list of Wetlands of High	Cat. I
Conservation value?	
$\nabla C = 2.2$. Is the wetland listed on the work database as a wetland of high conservation value:	
SC 2.3. Is the wetland in a Section/Township/Range that contains a Natural Heritage wetland?	
http://www1.dnr.wa.gov/nhp/refdesk/datasearch/wnhpwetlands.pdf	
Yes – Contact WNHP/WDNR and go to SC 2.4 DNo = Not a WHCV	
SC 2.4. Has WDNR identified the wetland within the S/T/R as a Wetland of High Conservation Value and listed it on	
their website? U Yes = Category I No = Not a WHCV	
SC 3.0. Bogs	
below. If you answer VES you will still need to rate the wetland based on its functions	
SC 3.1. Does an area within the wetland unit have organic soil horizons, either peats or mucks, that compose 16 in or	
more of the first 32 in of the soil profile? \Box Yes – Go to SC 3.3 \Box No – Go to SC 3.2	
SC 3.2. Does an area within the wetland unit have organic soils, either peats or mucks, that are less than 16 in deep	
over bedrock, or an impermeable hardpan such as clay or volcanic ash, or that are floating on top of a lake or	
pond?	
SC 3.3. Does an area with peats or mucks have more than 70% cover of mosses at ground level, AND at least a 30%	
cover of plant species listed in Table 4? \Box Yes = is a Category I bog \Box No – Go to SC 3.4	
measuring the pH of the water that seens into a hole dug at least 16 in deep. If the pH is less than 5.0 and the	
plant species in Table 4 are present, the wetland is a bog.	Cat. I
SC 3.4. Is an area with peats or mucks forested (> 30% cover) with Sitka spruce, subalpine fir, western red cedar,	
western hemlock, lodgepole pine, quaking aspen, Engelmann spruce, or western white pine, AND any of the	
species (or combination of species) listed in Table 4 provide more than 30% of the cover under the canopy?	
Yes = Is a Category I bog No = Is not a bog	

SC 4.0. Forested Wetlands	
Does the wetland have at least <u>1 contiguous acre</u> of forest that meets one of these criteria for the WA Department of Fish and Wildlife's forests as priority habitats? <i>If you answer YES you will still need to rate</i>	
the wetland based on its functions. — Old-growth forests (west of Cascade crest): Stands of at least two tree species, forming a multi-layered	
canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) that are at least 200 years of	
age OR have a diameter at breast height (dbh) of 32 in (81 cm) or more.	
species that make up the canopy have an average diameter (dbh) exceeding 21 in (53 cm).	
Yes = Category I No = Not a forested wetland for this section	Cat. I
SC 5.0. Wetlands in Coastal Lagoons	
Does the wetland meet all of the following criteria of a wetland in a coastal lagoon?	
— The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or loss frequently, rocks.	
— The lagoon in which the wetland is located contains ponded water that is saline or brackish (> 0.5 ppt)	
during most of the year in at least a portion of the lagoon (needs to be measured near the bottom)	Cat. I
\Box Yes – Go to SC 5.1 \Box No = Not a wetland in a coastal lagoon	
SC 5.1. Does the wetland meet all of the following three conditions?	
than 20% cover of aggressive, opportunistic plant species (see list of species on p. 100).	Cat. II
— At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-	
mowed grassland.	
$\Box Yes = Category I \Box No = Category II$	
Is the wetland west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)? If	
you answer yes you will still need to rate the wetland based on its habitat functions.	
In practical terms that means the following geographic areas:	
Long Beach Peninsula: Lands west of SR 103 Crawland Westmarty Lands west of SR 105	Cat I
 Grayland-Westport: Lands west of SR 105 Ocean Shores-Conalis: Lands west of SR 115 and SR 109 	Cati
\Box Yes – Go to SC 6.1 \Box No = not an interdunal wetland for rating	
	Cat II
for the three aspects of function)?	
SC 6.2. Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger? Yes = Category II No – Go to SC 6.3	Cat. III
SC 6.3. Is the unit between 0.1 and 1 ac, or is it in a mosaic of wetlands that is between 0.1 and 1 ac?	
	Cat. IV
Category of wetland based on Special Characteristics	N/A
If you answered No for all types, enter "Not Applicable" on Summary Form	1 1 1 1

This page left blank intentionally

Water **Assessed Water/Sediment**

4

March 25, 2022

- Category 4C 🖌 Category 5 - 303d
- Category 4B
- 🟓 Category 4A
- Category 2

14tł

- Category 1
- Sediment
- Category 5 303d
- ZZZ Category 4C
- ZZZ Category 4B
- ZZZ Category 4A
- W// Category 2
- ZZZ Category 1

State Poute 162

Water Quality Standards All Standards

12

512 Mendian

9th St-5

Miles

0.5

-

N

Figure 6.

DEPARTMENT OF ECOLOGY State of Washington

Pierce County

Ecology homepage > Water & Shorelines > Water improvement > Total Maximum Daily Load process > Directory of projects > Pierce County

Water quality improvement projects

Select the waterbody or pollutant name to find more information about the specific project.

Waterbody Name(s)	Pollutant(s)	Status	Project Lead(s)
<u>Clarks and Meeker</u> <u>Creeks</u>	Dissolved Oxygen Sediment Fecal Coliform	EPA approved and Has an implementation plan	<u>Donovan Gray</u> 360-407-6407
<u>Clover Creek</u>	Dissolved Oxygen Fecal Coliform Temperature	Under development	<u>Donovan Gray</u> 360-407-6407
<u>Commencement</u> <u>Bay</u>	Dioxin	EPA approved	<u>Donovan Gray</u> 360-407-6407
Nisqually Watershed Tributaries Tributaries: McAllister Creek Ohop Creek Red Salmon Creek Unnamed Tributary to West Red Salmon Creek Little McAllister Creek Medicine Creek mouth	Fecal Coliform Dissolved Oxygen	EPA approved and Has an implementation plan	Donovan Gray 360-407-6407
Puyallup River	Fecal Coliform	EPA approved and	Donovan Gray

https://fortress.wa.gov/ecy/ezshare/wq/WaterQualityImprovement/TMDL/PierceCounty.htm

Pierce County | Washington State Department of Ecology

	Pierce Co	ounty Washington State Departm	ent of Ecology	Figure	Ŋ
Watershed		Has implementation plan	360-407-6407		
<u>Puyallup River</u> <u>Watershed</u>	<u>Multi-</u> parameter <u>Ammonia-N</u> BOD (5-day)	EPA approved	Donovan Gray 360-407-6407		
Puyallup River: Upper White River	Sediment Temperature	EPA approved	<u>Donovan Gray</u> 360-407-6407		
Puyallup River: Lower White River	рН	Under development	<u>Donovan Gray</u> 360-407-6407		
South Prairie Creek	Fecal Coliform Temperature	EPA approved and Has an implementation plan	<u>Donovan Gray</u> 360-407-6407		
<u>Wapato Lake</u>	Total Phosphorus	EPA approved	<u>Donovan Gray</u> 360-407-6407		

To request ADA accommodation, call Ecology at 360-407-7668, 711 (relay service), or 877-833-6341 (TTY). More about our accessibility services.

Copyright © Washington State Department of Ecology

https://fortress.wa.gov/ecy/ezshare/wq/WaterQualityImprovement/TMDL/PierceCounty.htm

2/2

PIERCE COLLEGE-PUYALLUP CAMPUS: STEM PROJECT

WETLAND ANALYSIS REPORT

APPENDIX E: QUERIED DATABASE FIGURES

College Way

36th

Manor

Wildwood Park Dr

Pierce College-Puyallup

in the

College Way

Esri Community Maps Contributors, King County, WA State Parks GIS, © OpenStreetMap, Microsoft, Esri Canada, Esri, HERE, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, Bureau of Land Management, EPA, NPS, US Census Bureau, USDA, Maxar

College Way

U.S. Fish and Wildlife Service **National Wetlands Inventory**

Puyallup College-STEM

March 23, 2022

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

- Freshwater Forested/Shrub Wetland
 - Freshwater Pond

Freshwater Emergent Wetland

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Priority Habitats and Species on the Web

Report Date: 01/26/2022

PHS Species/Habitats Overview:

Occurence Name	Federal Status	State Status	Sensitive Location
Wetlands	N/A	N/A	No
Waterfowl Concentrations	N/A	N/A	No
Freshwater Forested/Shrub Wetland	N/A	N/A	No

PHS Species/Habitats Details:

Wetlands	
Priority Area	Aquatic Habitat
Site Name	SOUTH PUYALLUP WETLANDS
Accuracy	1/4 mile (Quarter Section)
Notes	POTHOLE WETLANDS IN SOUTH PUYALLUP AREA
Source Record	902560
Source Dataset	PHSREGION
Source Name	NAUER, DON WDW
Source Entity	WA Dept. of Fish and Wildlife
Federal Status	N/A
State Status	N/A
PHS Listing Status	PHS Listed Occurrence
Sensitive	Ν
SGCN	Ν
Display Resolution	AS MAPPED
ManagementRecommendations	http://www.ecy.wa.gov/programs/sea/wetlands/bas/index.html
Geometry Type	Polygons

Waterfowl Concentrations	
Priority Area	Regular Concentration
Site Name	PIERCE COUNTY - NON FARM
Accuracy	1/4 mile (Quarter Section)
Notes	SMALL WATERFOWL CONCENTRATION AREAS, NON AGRICULTURAL.
Source Record	902564
Source Dataset	PHSREGION
Source Name	NAUER, DON WDW
Source Entity	WA Dept. of Fish and Wildlife
Federal Status	N/A
State Status	N/A
PHS Listing Status	PHS LISTED OCCURRENCE
Sensitive	Ν
SGCN	Ν
Display Resolution	AS MAPPED
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=00026
Geometry Type	Polygons

PHS Report

Freshwater Forested/Shrub Wetland							
Priority Area	Aquatic Habitat						
Site Name	N/A						
Accuracy	NA						
Notes	Wetland System: Freshwater Forested/Shrub Wetland - NWI Code: PFO1C						
Source Dataset	NWIWetlands						
Source Name	Not Given						
Source Entity	US Fish and Wildlife Service						
Federal Status	N/A						
State Status	N/A						
PHS Listing Status	PHS Listed Occurrence						
Sensitive	Ν						
SGCN	Ν						
Display Resolution	AS MAPPED						
ManagementRecommendations	http://www.ecy.wa.gov/programs/sea/wetlands/bas/index.html						
Geometry Type	Polygons						

DISCLAIMER. This report includes information that the Washington Department of Fish and Wildlife (WDFW) maintains in a central computer database. It is not an attempt to provide you with an official agency response as to the impacts of your project on fish and wildlife. This information only documents the location of fish and wildlife resources to the best of our knowledge. It is not a complete inventory and it is important to note that fish and wildlife resources may occur in areas not currently known to WDFW biologists, or in areas for which comprehensive surveys have not been conducted. Site specific surveys are frequently necessary to rule out the presence of priority resources. Locations of fish and wildlife resources are subject to variation caused by disturbance, changes in season and weather, and other factors. WDFW does not recommend using reports more than six months old.

WA Wetlands of High Conservation Value

1/26/2022, 3:14:04 PM

Counties

Maxar

Washington Natural Heritage Program

Forest Practices Activity Map - Application

	WASHINGTON STATE DEPARTMENT OF
10.00	

Extreme care was used during the compilation of this map to ensure its accuracy. However, due to changes in data and the need to rely on outside information, the Department of Natural Resources cannot accept responsibility for errors or omissions, and therefore, there are no warranties that accompany this material.

Miles
Date: 1/26/2022 Time: 3:16:27 PM

Appendix D

Operation and Maintenance Manual

Stormwater Site Plan Pierce College Puyallup New STEM Building 2210810.10

Private Stormwater Facilities Operation & Maintenance Manual

PREPARED FOR:

Integrus Architecture Contact: Sarah Wilder 117 South Main Street, Ste 100 Seattle, WA 98104

PROJECT:

Pierce College Puyallup New STEM Building Puyallup, WA 2210810.10

PREPARED BY:

Andrew Coito-Poile Project Engineer

REVIEWED BY:

William J. Fierst, PE Principal

DATE

April 2022 Revised August 2022

Table of Contents

Sectio	on	Page
1.0	Introduction	1
2.0	Responsibility	1
3.0	Schedule	1
4.0	Cost	1
5.0	Vegetation Management Plan	2
6.0	Instructions for Person Maintaining Stormwater System	2
7.0	Conclusion	2

Maintenance Checklists

Annual Inspection Report

1.0 Introduction

The Pierce College Puyallup Campus maintenance staff shall be responsible for maintaining properly functioning stormwater control facilities. This report presents a maintenance program that meets City of Puyallup maintenance requirements. The private stormwater facilities for this project include a system of catch basins and pipes to collect surface runoff and route it through bioretention facilities for stormwater treatment prior to routing to a detention facility through a level spreader.

It is vitally important that the proponent/owner maintain these facilities in a timely and conscientious manner to ensure the facilities function as designed. Siltation, debris, or lack of maintenance can reduce the capabilities of the conveyance system which can lead to localized flooding. If bioretention facilities are not maintained in accordance with the attached maintenance checklist, onsite stormwater can contribute to negative water quality to downstream waterbodies of the state.

2.0 Responsibility

The private stormwater facilities will be owned and maintained by Pierce College Puyallup Campus maintenance personnel.

Property Owner:

Pierce College Puyallup Campus 1601 39th Avenue SE Puyallup, WA 98374 (253) 840-8400

3.0 Schedule

Maintenance of the stormwater facilities shall follow the schedule as specified in the attached maintenance checklists and as recommended by the media filter manufacturer guidelines. Additional maintenance may be required to respond to unusual storm events or reduced performance of the treatment system. A copy of the Pierce County-recommended maintenance schedule is attached and may be photocopied and used as inspection records. An annual inspection report must be submitted to City of Puyallup in accordance with the Maintenance Agreement.

4.0 Cost

The following is an estimate of the average annual cost of maintenance for the stormwater control facilities within the scope of this project.

Total Estimated Annual Cost	\$2,150
Sweep Parking Lot Once Yearly	<u>\$500</u>
Dumping Fees @ \$50/ton x 6 tons	\$300
Personnel @ \$25/hour x 6 hours	\$150
Vactor truck @ \$200/hour x 6 hours	\$1,200

5.0 Vegetation Management Plan

The attached maintenance schedule provides guidance on vegetation control and management. Irrigation and other maintenance, as necessary, shall be provided to ensure that vegetation remains viable and that a hardy root structure forms in the first year. Vegetation planting shall be provided, as described in the construction documents

6.0 Instructions for Person Maintaining Stormwater System

The attached Maintenance Checklists specify maintenance schedules for stormwater facilities onsite. Plan to complete a checklist for all system components per the following schedule:

- 1. Monthly from November through April.
- 2. Once in late summer (preferably September).
- 3. After any major storm event (items marked "S" only).

Using photocopies of the attached pages, check off the problems that are noted each time the item is inspected. Document comments on problems found and the corrective action taken. The Inspection Checklist sheets should be kept on file and used to prepare the annual report required by Pierce County, due on or before May 15 of each year. Use the Pierce County suggested inspection frequency at the left of each item as an inspection guide.

7.0 Conclusion

This Private Stormwater Facilities Operation and Maintenance Manual is developed for the operation of the Pierce College Puyallup Campus STEM classroom building private stormwater systems. This maintenance document has been prepared within the guidelines of City of Puyallup Construction Standards. If this plan is implemented, the owner can expect the stormwater system to function as designed.

AHBL, Inc.

William J. Fierst

William J. Fierst, PE Principal

ACP/CFH/lsk

February 2022 Revised August 2022

Q:\2021\2210810\WORDPROC\Reports\20220818 Rpt (O&M) 2210810.10.docx

3.3 Closed Detention Systems (Tanks/Vaults)

Closed detention systems function similar to detention ponds with the temporary storage volume provided by an underground structure to regulate the storm discharge rate from the site. The structure is typically constructed of large diameter pipe (48" diameter or greater) or a concrete box (Vault). These systems are typically utilized for sites that do not have space available for an above-ground system and are more commonly associated with commercial sites.

Underground detention systems are an enclosed space where harmful chemicals and vapors can accumulate. Therefore, the inspection and maintenance of these facilities should be conducted by an individual with training and certification in working in hazardous confined spaces.

SIDE PROFILE

Closed Detention Systems (Tanks/Vaults) Checklist

		Date						
Frequency	Drainage System Feature	✓	✓	~	✓	Problem	Conditions to Check For	Conditions That Should Exist
м	Storage Area					Plugged Air Vents	One-half of the cross section of a vent is blocked at any point or the vent is damaged.	Vents open and functioning.
М	Storage Area					Debris and Sediment	Accumulated sediment depth exceeds 10% of the diameter of the storage area for ½ length of storage vault or any point depth exceeds 15% of diameter. (Example: 72- inch storage tank would require cleaning when sediment reaches depth of 7 inches for more than 1/2 length of tank.)	All sediment and debris removed from storage area.
A	Storage Area					Joints Between Tank/Pipe Section	Any openings or voids allowing material to be transported into facility. (Will require engineering analysis to determine structural stability).	All joint between tank/pipe sections are sealed.
A	Storage Area					Tank Pipe Bent Out of Shape	Any part of tank/pipe is bent out of shape more than 10% of its design shape. (Review required by engineer to determine structural stability).	Tank/pipe repaired or replaced to design.
A	Storage Area					Vault Structure Includes Cracks in Wall, Bottom, Damage to Frame and/or Top Slab	Cracks wider than 1/2-inch and any evidence of soil particles entering the structure through the cracks, or maintenance/inspection personnel determines that the vault is not structurally sound.	Vault replaced or repaired to design specifications and is structurally sound.
A	Storage Area						Cracks wider than 1/2-inch at the joint of any inlet/outlet pipe or any evidence of soil particles entering the vault through the walls	No cracks more than 1/4-inch wide at the joint of the inlet/outlet pipe.
A	Manhole					Cover Not in Place	Cover is missing or only partially in place. Any open manhole requires maintenance.	Manhole is closed.
A	Manhole					Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread (may not apply to self-locking lids).	Mechanism opens with proper tools.

Closed Detention Systems (Tanks/Vaults) Checklist (Continued)

			Da	ate				
Frequency	Drainage System Feature	✓	✓	~	✓	Problem	Conditions to Check For	Conditions That Should Exist
A	Manhole					Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. Intent is to keep cover from sealing off access to maintenance.	Cover can be removed and reinstalled by one maintenance person.
A	Manhole					Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, misalignment, not securely attached to structure wall, rust, or cracks.	Ladder meets design standards. Allows maintenance person safe access.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

<u>Key</u>:

- (M) Monthly from November through April.
- (A) Once in late summer (preferable September)
- (S) After any major storm (use 1-inch in 24 hours as a guideline).

9.0 Inspection and Maintenance

9.1 ISOLATOR ROW INSPECTION

Regular inspection and maintenance are essential to assure a properly functioning stormwater system. Inspection is easily accomplished through the manhole or optional inspection ports of an Isolator Row. Please follow local and OSHA rules for a confined space entry.

Inspection ports can allow inspection to be accomplished completely from the surface without the need for a confined space entry. Inspection ports provide visual access to the system with the use of a flashlight. A stadia rod may be inserted to determine the depth of sediment. If upon visual inspection it is found that sediment has accumulated to an average depth exceeding 3" (76 mm), cleanout is required.

A StormTech Isolator Row should initially be inspected immediately after completion of the site's construction. While every effort should be made to prevent sediment from entering the system during construction, it is during this time that excess amounts of sediments are most likely to enter any stormwater system. Inspection and maintenance, if necessary, should be performed prior to passing responsibility over to the site's owner. Once in normal service, a StormTech Isolator Row should be inspected bi-annually until an understanding of the sites characteristics is developed. The site's maintenance manager can then revise the inspection schedule based on experience or local requirements.

9.2 ISOLATOR ROW MAINTENANCE

JetVac maintenance is recommended if sediment has been collected to an average depth of 3" (76 mm) inside the Isolator Row. More frequent maintenance may be required to maintain minimum flow rates through the Isolator Row. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row while scouring and suspending sediments. As the nozzle is retrieved, a wave of suspended sediments is flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/ JetVac combination vehicles. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45" (1143 mm) are best. The JetVac process shall only be performed on StormTech Rows that have AASHTO class 1 woven geotextile over their foundation stone (ADS 315WTM or equal).

Looking down the Isolator Row.

A typical JetVac truck. (This is not a StormTech product.)

Examples of culvert cleaning nozzles appropriate for Isolator Row maintenance. (These are not StormTech products.)

3.4 Control Structure/Flow Restrictor

Control structures/flow restrictors are located on the outlet pipe of a detention system. The control structure is typically a Type 2 concrete catch basin (see Section 3.5 for catch basin description) with a riser (vertical pipe). The control structure reduces the discharge rate of stormwater from a detention facility. The flow is regulated by a combination of orifices (holes with specifically sized diameters) and weirs (plates with rectangular or vee shaped notch). Lack of maintenance of the control structure can result in the plugging of an orifice. This can result in flooding of the stormwater system and/or an increase in the rate of discharge from the site potentially damaging downstream property.

Control Structure/Flow Restrictor Checklist

		1000	D	ate				
Frequency	Drainage System Feature	1	1	1	1	Problem	Conditions to Check For	Conditions That Should Exist
м	General					Trash and Debris (Includes Sediment)	Material exceeds 25% of sump depth or 1 foot below orifice plate.	Control structure orifice is not blocked. All trash and debris removed.
Α	General					Structural Damage	Structure is not securely attached to manhole wall.	Structure securely attached to wall and outlet pipe.
A	General					Structural Damage	Structure is not in upright position (allow up to 10% from plumb).	Structure in correct position.
A	General					Structural Damage	Connections to outlet pipe are not watertight and show signs of rust.	Connections to outlet pipe are water tight; structure repaired or replaced and works as designed.
A	General					Structural Damage	Any holesother than designed holesin the structure.	Structure has no holes other than designed holes.
A	Cleanout Gate					Damaged or Missing	Cleanout gate is not watertight or is missing.	Gate is watertight and works as designed.
A	Cleanout Gate			I		Damaged or Missing	Gate cannot be moved up and down by one maintenance person.	Gate moves up and down easily and is watertight.
A	Cleanout Gate					Damaged or Missing	Chain/rod leading to gate is missing or damaged.	Chain is in place and works as designed.
A	Cleanout Gate					Damaged or Missing	Gate is rusted over 50% of its surface area.	Gate is repaired or replaced to meet design standards.
A	Orifice Plate					Damaged or Missing	Control device is not working properly due to missing, out of place, or bent orifice plate.	Plate is in place and works as designed.
M,S	Orifice Plate					Obstructions	Any trash, debris, sediment, or vegetation blocking the plate.	Plate is free of all obstructions and works as designed.
	Overflow Pipe					Obstructions	Any trash or debris blocking (or having the potential of blocking) the overflow pipe.	Pipe is free of all obstructions and works as designed.
A	Manhole					Cover Not in Place	Cover is missing or only partially in place. Any open manhole requires maintenance.	Manhole is closed.

Control Structure/Flow Restrictor Checklist (Continued)

		Date						The second s
Frequency	Drainage System Feature	1	~	1	1	Problem	Conditions to Check For	Conditions That Should Exist
A	Manhole					Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread (may not apply to self-locking lids).	Mechanism opens with proper tools.
A	Manhole					Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. Intent is to keep cover from sealing off access to maintenance.	Cover can be removed and reinstalled by one maintenance person.
A	Manhole					Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, misalignment, not securely attached to structure wall, rust, or cracks.	Ladder meets design standards. Allows maintenance person safe access.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

Key:

- (M) Monthly from November through April.(A) Once in late summer (preferable September)(S) After any major storm (use 1-inch in 24 hours as a guideline).

3.5 Catch Basins

Catch basins are underground concrete structures typically provided with a slotted grate to collect stormwater runoff and route it through underground pipes. Catch basins can also be used as a junction in a pipe system and may have a solid lid. There are two catch basin types.

A Type 1 catch basin is a rectangular box with approximate dimensions of 3'x2'x5'. Type 1 catch basins are utilized when the connected conveyance pipes are less than 18 inches in diameter and the depth from the gate to the bottom of the pipe is less than 5 feet.

Type 2 catch basins, also commonly referred to as storm manholes, are round concrete structures ranging in diameter of 4 feet to 8 feet. Type 2 catch basins are used when the connecting conveyance pipe is 18 inches or greater or the depth from grate to pipe bottom exceeds 5 feet. Type 2 catch basins typically have manhole steps mounted on the side of the structure to allow for access.

Both catch basin types typically provide a storage volume (sump) below the outlet pipe to allow sediments and debris to settle out of the stormwater runoff. Some catch basins are also provided with a spill control device (inverted elbow on outlet pipe) intended to contain large quantities of grease or oils.

The most common cleaning method for catch basins is to utilize a truck with a tank and vacuum hose (vactor truck) to remove sediment and debris from the sump. Catch basins may be an enclosed space where harmful chemicals and vapors can accumulate. Therefore, if the inspection and maintenance requires entering a catch basin, it should be conducted by an individual with training and certification in working in hazardous confined spaces.

Catch Basins Checklist

			D	ate				
Frequency	Drainage System Feature	~	1	~	1	Problem	Conditions to Check For	Conditions That Should Exist
A	General					"Dump no pollutants " Stencil or stamp not visible	Stencil or stamp should be visible and easily read	Warning signs (e.g., "Dump No Waste- Drains to Stream") shall be painted or embossed on or adjacent to all storm drain inlets.
M,S	General					Trash & Debris	Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the basin by more than 10%.	No trash or debris located immediately in front of catch basin or on grate opening.
м	General					Trash & Debris	Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the catch basin.
м	General					Trash & Debris	Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.
м	General					Trash & Debris	Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within the catch basin.
М	General					Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin
A	General					Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch (Intent is to make sure no material is running into basin).	Top slab is free of holes and cracks.

Catch Basins Checklist (Continued)

		Date						
Frequency	Drainage System Feature	1	1	1	1	Problem	Conditions to Check For	Conditions That Should Exist
A	General					Structure Damage to Frame and/or Top Slab	Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached.	Frame is sitting flush on the riser rings or top slab and firmly attached.
А	General					Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.
A	General					Fractures or Cracks in Basin Walls/ Bottom	Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	Pipe is re-grouted and secure at basin wall.
A	General					Settlement / Misalignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.
м	General					Vegetation	Vegetation growing across and blocking more than 10% of the basin opening.	No vegetation blocking opening to basin.
М	General					Vegetation	Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.	No vegetation or root growth present.
М	General					Contamination and Pollution	Any evidence of oil, gasoline, contaminants, or other pollutants (Coordinate removal/cleanup with local water quality response agency).	No contaminants or pollutants present.
A	Catch Basin Cover					Cover Not in Place	Cover is missing or only partially in place.	Any open catch basin requires maintenance. Catch basin cover is closed
A	Catch Basin Cover					Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.
A	Catch Basin Cover					Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. (Intent is to keep cover from sealing off access to maintenance.)	Cover can be removed by one maintenance person.

Catch Basins Checklist (Continued)

			D	ate		Problem	Conditions to Check For	Conditions That Should Exist
Frequency	Drainage System Feature	~	1	~	~			
A	Ladder					Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, not securely attached to basin wall, misalignment, rust, cracks, or sharp edges.	Ladder meets design standards and allows maintenance person safe access.
	Grates					Grate opening Unsafe	Grate with opening wider than 7/8 inch.	Grate opening meets design standards.
M,S	Grates					Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
А	Grates					Damaged or Missing.	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

Key:

- (M) Monthly from November through April.(A) Once in late summer (preferable September)(S) After any major storm (use 1-inch in 24 hours as a guideline).

3.6 Debris Barriers (e.g. Trash Racks)

Debris barriers consist of bar grates over the open end of a culvert or conveyance pipe. The intent of a debris barrier is to prevent large materials from entering a closed pipe system. Debris barriers are typically located on the outlet pipe from a detention pond to the control structure. If a debris barrier is not located on the outlet pipe, one should be provided to prevent plugging of the control structure and possible flooding.

Access barriers are similar to debris barriers but are included on all pipe ends that exceed 18 inches in diameter. Their function is to prevent debris and unauthorized access into the storm conveyance pipe. Removing debris and maintenance to the debris barrier when there is flow through the conveyance pipe should be performed by qualified personnel only.

Debris Barriers (e.g. Trash Racks) Checklist

			D	ate				
Frequency	Drainage System Feature	1	~	~	1	Problem	Conditions to Check For	Conditions That Should Exist
M,S	General					Trash and Debris	Trash or debris that is plugging more than 20% of the openings in the barrier.	Barrier cleared to design flow capacity.
A	General					Damaged/Missing Bars.	Bars are bent out of shape more than 3 inches.	Bars in place with no bends more than 3/4 inch.
A	General					Damaged/Missing Bars.	Bars are missing or entire barrier missing.	Bars in place according to design.
A	General					Damaged/Missing Bars.	Bars are loose and rust is causing 50% deterioration to any part of barrier.	Barrier replaced or repaired to design standards.
A	General					Inlet/Outlet Pipe	Debris barrier missing or not attached to pipe.	Barrier firmly attached to pipe.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

Key:

- (M) Monthly from November through April.(A) Once in late summer (preferable September)(S) After any major storm (use 1-inch in 24 hours as a guideline).
3.7 Energy Dissipaters

Energy dissipaters are provided on the inlet and outlet to a closed pipe system to prevent erosion at these locations. Design of an energy dissipater can vary significantly from highly engineered systems (concrete or rock gabion structures) to the more commonly used rock pad. The rock pad is typically constructed of 4- to 12-inch diameter rocks a minimum of 12 inches thick and is often lined with filter fabric. The rock pad should extend above the top of the pipe a minimum of 1 foot.

Energy Dissipaters Checklist

Date								
Frequency	Drainage System Feature	✓	~	✓	✓	Problem	Conditions to Check For	Conditions That Should Exist
External:								
м	Rock Pad	Pad			Missing or Moved Rock	Only one layer of rock exists above native soil in area five square feet or larger, or any exposure of native soil.	Rock pad replaced to design standards.	
М	Rock Pad					Erosion	Soil erosion in or adjacent to rock pad.	Rock pad replaced to design standards.
М	Dispersion Trench					Pipe Plugged with Sediment	Accumulated sediment that exceeds 20% of the design depth.	Pipe cleaned/flushed so that it matches design.
М	Dispersion Trench	sion			Not Discharging Water Properly	Visual evidence of water discharging at concentrated points along trench (normal condition is a "sheet flow" of water along trench). Intent is to prevent erosion damage.	Trench redesigned or rebuilt to standards.	
м	Dispersion Trench				Perforations Plugged.	Over 1/2 of perforations in pipe are plugged with debris and sediment.	Perforated pipe cleaned or replaced.	
м	Dispersion Trench				Water Flows Out Top of "Distributor" Catch Basin.	Maintenance person observes or receives credible report of water flowing out during any storm less than the design storm or its causing or appears likely to cause damage.	Facility rebuilt or redesigned to standards.	
м	Dispersion Trench			Receiving Area Over-Saturated	Water in receiving area is causing or has potential of causing landslide problems.	No danger of landslides.		
Internal:								
м	Manhole/ Chamber			Worn or Damaged Post, Baffles, Side of Chamber	Structure dissipating flow deteriorates to 1/2 of original size or any concentrated worn spot exceeding one square foot which would make structure unsound.	Structure replaced to design standards.		
м	Manhole/ Chamber					Trash& Debris	Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the catch basin.
М	Manhole/ Chamber					Trash& Debris	Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.
м	Manhole/ Chamber	/lanhole/ Chamber			Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane). N		No dead animals or vegetation present within the catch basin.	

Energy Dissipaters Checklist (Continued)

		Date								
Frequency	Drainage System Feature	~	~	~	~	Problem	Conditions to Check For	Conditions That Should Exist		
Internal (Continued):										
М	Manhole/ Chamber				Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe. There shall be a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin			
A	Manhole/ Chamber					Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch (Intent is to make sure no material is running into basin).	Top slab is free of holes and cracks.		
A	Manhole/ Chamber					Structure Damage to Frame and/or Top Slab	Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached	Frame is sitting flush on the riser rings or top slab and firmly attached.		
А	Manhole/ Chamber					Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.		
A	Manhole/ Chamber					Fractures or Cracks in Basin Walls/ Bottom	Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	Pipe is re-grouted and secure at basin wall.		
А	Manhole/ Chamber					Settlement / Misalignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.		
М	Manhole/ Chamber					Contamination and Pollution	Any evidence of oil, gasoline, contaminants, or other pollutants (Coordinate removal/cleanup with local water quality response agency).	No contaminants or pollutants present.		
A	Catch Basin Cover					Cover Not in Place	Cover is missing or only partially in place.	Any open catch basin requires maintenance. Catch basin cover is closed		

Energy Dissipaters Checklist (Continued)

			Da	ate					
Frequency	Drainage System Feature	✓ ✓ ✓ ✓		~	Problem	Conditions to Check For	Conditions That Should Exist		
Internal (Continued):									
A	Catch Basin Cover				Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.		
A	Catch Basin Cover	atch Basin over		Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. (Intent is to keep cover from sealing off access to maintenance.)	Cover can be removed by one maintenance person.			

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

Key:

- (M) Monthly from November through April.(A) Once in late summer (preferable September)
- (S) After any major storm (use 1-inch in 24 hours as a guideline).

3.8 Typical Biofiltration Swale

Biofiltration swales are engineered grass-lined open channels with moderate centerline slope similar in appearance to typical ditches.

Biofiltration uses vegetation in conjunction with slow and shallow-depth flow for runoff treatment. As runoff passes through the vegetation, pollutants are removed through the combined effects of filtration, infiltration, and settling. These effects are aided by the reduction of the velocity of stormwater as it passes through the biofilter.

Biofiltration swales provide stormwater quality control (treatment), but do not provide stormwater quantity control (detention/retention).

Typical Biofiltration Swale Checklist

	and the second s	Date						
Frequency	Drainage System Feature	~	~	~	1	Problem	Conditions to Check For	Conditions That Should Exist
М	General					Sediment Accumulation on Grass	Sediment depth exceeds 2 inches.	Remove sediment deposits on grass treatment area of the bio-swale. When finished, swale should be level from side to side and drain freely toward outlet. There should be no areas of standing water once inflow has ceased.
М	General					Standing Water	When water stands in the swale between storms and does not drain freely.	Any of the following may apply: remove sediment or trash blockages, improve grade from head to foot of swale, remove clogged check dams, add underdrains or convert to a wet biofiltration swale.
м	General					Flow spreader	Flow spreader uneven or clogged so that flows are not uniformly distributed through entire swale width.	Level the spreader and clean so that flows are spread evenly over entire swale width.
м	General					Constant Baseflow	When small quantities of water continually flow through the swale, even when it has been dry for weeks and an eroded, muddy channel has formed in the swale bottom.	Add a low-flow pea- gravel drain the length of the swale or by-pass the baseflow around the swale.
M	General					Poor Vegetation Coverage	When grass is sparse or bare or eroded patches occur in more than 10% of the swale bottom.	Determine why grass growth is poor and correct that condition. Re-plant with plugs of grass from the upper slope: plant in the swale bottom at 8-inch intervals. Or re-seed into loosened, fertile soil.
м	General					Vegetation	When the grass becomes excessively tall (greater than 10-inches); when nuisance weeds and other vegetation starts to take over.	Mow vegetation or remove nuisance vegetation so that flow is not impeded. Grass should be mowed to a height of 3 to 4 inches. Remove grass clippings.

14

Typical Biofiltration Swale Checklist (Continued)

			Da	ate				
Frequency	Drainage System Feature	~	~	~	~	Problem	Conditions to Check For	Conditions That Should Exist
м	General					Excessive Shading	Grass growth is poor because sunlight does not reach swale.	If possible, trim back over-hanging limbs and remove brushy vegetation on adjacent slopes.
м	General				_	Inlet/Outlet areas clogged with sediment and/or debris.		Remove material so that there is no clogging or blockage in the inlet and outlet area.
м	General					Trash and Debris Accumulation	Trash and debris accumulated in the bio- swale.	Remove trash and debris from bioswale.
М	General					Erosion/Scouring	Eroded or scoured swale bottom due to flow channelization, or higher flows.	For ruts or bare areas less than 12 inches wide, repair the damaged area by filling with crushed gravel. If bare areas are large, generally greater than 12 inches wide, the swale should be re- graded and re-seeded. For smaller bare areas, overseed when bare spots are evident, or take plugs of grass from the upper slope and plant in the swale bottom at 8-inch intervals.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

Key:

- (M) Monthly from November through April.(A) Once in late summer (preferable September)(S) After any major storm (use 1-inch in 24 hours as a guideline).

3.21 Grounds (Landscaping)

Landscaping is an essential component of stormwater management. Bare soil areas generate higher levels of stormwater runoff and sedimentation in stormwater facilities. The following check list gives some general guidance for landscape management.

Grounds (Landscaping) Checklist

			Da	ate				
Frequency	Drainage System Feature	~	~	~	~	Problem	Conditions to Check For	Conditions That Should Exist
М	General			Weeds (nonpoisonous)	Weeds growing in more than 20% of the landscaped area (trees and shrubs only).	Weeds present in less than 5% of the landscaped area.		
м	General					Insect hazard	Any presence of poison ivy or other poisonous vegetation or insect nests.	No poisonous vegetation or insect nests present in landscaped area.
M,S	General					Trash or litter	See Ponds Checklist.	See Ponds Checklist.
M,S	General					Erosion of Ground Surface	Noticeable rills are seen in landscaped areas.	Causes of erosion are identified and steps taken to slow down/spread out the water. Eroded areas are filled, contoured, and seeded.
A	Trees and shrubs					Damage	Limbs or parts of trees or shrubs that are split or broken which affect more than 25% of the total foliage of the tree or shrub.	Trim trees/shrubs to restore shape. Replace trees/shrubs with severe damage.
м	Trees and shrubs					Damage Trees or shrubs that have been blown down or knocked over.		Replant tree, inspecting for injury to stem or roots. Replace if severely damaged.
A	Trees and shrubs					Damage	Trees or shrubs which are not adequately supported or are leaning over, causing exposure of the roots.	Place stakes and rubber- coated ties around young trees/shrubs for support.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

Key:

- (M) Monthly from November through April.
- (A) Once in late summer (preferable September)
- (S) After any major storm (use 1-inch in 24 hours as a guideline).

3.26 Inlet/Outlet Stormwater Pipe

The inlet and outlet stormwater pipes convey stormwater in, through, and out of stormwater facilities.

Storm sewer pipes convey stormwater. Pipes are built from many materials and are sometimes perforated to allow stormwater to infiltrate into the ground. Stormwater pipes are cleaned to remove sediment or blockages when problems are identified. Stormwater pipes must be clear of obstructions and breaks to prevent localized flooding. All stormwater pipes should be in proper working order and free of the possible defects listed below.

In addition, outlet stormwater pipes should be inspected to make sure stormwater exits the facility without causing any negative impacts to the drainage area, if applicable.

		Date						
Frequency	Drainage System Feature	1	1	1	1	Problem	Conditions to Check For	Conditions That Should Exist
М	General					Obstructions including roots	Storm pipe- root enters or deforms pipe, reducing flow.	Use mechanical methods to remove root. Do not put root-dissolving chemicals in storm sewer pipes. If necessary, remove the vegetation over the line.
м	General					Pipe dented or broken	Pipe dented or Inlet/outlet piping damaged or F broken broken and in need of repair. r	
м	General					Pipe rusted or deteriorated	Any part of the piping that is crushed or deformed more than 20% or any other failure to the piping.	Pipe repaired and/or replaced.
м	Erosion					Erosion	Eroded or scoured areas due to flow channelization, high flows, or vehicular damage.	For ruts or bare areas less than 12 inches wide, repair the damaged area by filling with crushed gravel. If bare areas are large, generally greater than 12 inches wide, the damaged area should be re-graded and re-seeded. For smaller bare areas, overseed.
м	Pipe outfall					Missing or removed rock Only one layer of rock exists above native soil in area five square feet or larger, or any exposure of native soil.		Rock pad replaced to design standards.
М	Pipe outfall					Erosion	Soil erosion in or adjacent to rock pad.	Rock pad replaced to design standards.

Inlet/Outlet Storm Pipe Checklist

Inlet/Outlet Storm Pipe Checklist (Continued)

		Date						
Frequency	Drainage System Feature	1	1	1	1	Problem	Conditions to Check For	Conditions That Should Exist
м	Pipe outfall					Erosion/Scouring	Eroded or scoured ditch or stream banks due to flow channelization, or higher flows.	For ruts or bare areas less than 12 inches wide, repair the damaged area by filling with crushed gravel. If bare areas are large, generally greater than 12 inches wide, damaged area should be re-graded and re- seeded. For smaller bare areas, overseed.
м	Pipe Outfall					Missing or Moved Rock	Only one layer of rock exists above native soil area in area five square feet or larger, or any exposure of native soil.	Rock pad replaced to design standards.
М	Pipe Outfall					Erosion	Soil erosion in or adjacent to rock pad.	Rock pad replaced to design standards.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

Key:

(A) Annual (March or April preferred)(M) Monthly (see schedule)

(S) After major storms (use 1-inch in 24 hours as a guideline)

Annual Inspection Report

City of Puyallup – Stormwater BMP Facilities Inspection and Maintenance Log

Return Form to: Stormwater Engineer/ City of Puyallup 333 South Meridian Puyallup, WA 98371

Facility Name: ______

Address: ______

Begin Date: _____

End Date: _____

Date	BMP ID#	BMP facility Description	Inspected By	Cause for Inspection	Exceptions Noted	Notes / Actions Taken

Instructions:

Record all inspections and maintenance for all treatment BMP's on this form. Use additional log sheets and/or attach extended comments or documentation as necessary. Submit a copy of the completed log with the Annual Independent Inspector Report to the City, and start a new log at that time. Checklists provided should be used prior to filling out this form. If you have any questions on how to complete your inspection, please contact City staff.

BMP ID #- always use ID# from the Operation and Maintenance Manual.

Inspected by- Note all Inspections and maintenance on this form, including the required independent annual inspection.

Cause for Inspection- Note if the inspection is routine, pre-rainy season, post storm, annual, or in response to a noted problem or complaint.

Exceptions Noted- Note any condition that requires correction or indicates a need for maintenance.

Notes / Actions Taken- Describe any maintenance done and need for follow up.