

FOUNDATION ONLY PERMIT

Structural Calculations

PREPARED FOR:

Red Dot Corporation Puyallup Corporate Center East Main Avenue at Linden Lane

PROJECT:

Red Dot Corporation Equipment Foundations 2220760.20

PREPARED BY:

Andrew McEachern, P.E., S.E. Principal

DATE:

October 2022

THE APPROVED CONSTRUCTION PLANS, DOCUMENTS AND ALL ENGINEERING MUST BE POSTED ON THE JOB AT ALL INSPECTIONS IN A VISIBLE AND READILY ACCESSIBLE LOCATION.

FULL SIZED LEDGIBLE COLOR PLANS ARE REQUIRED TO BE PROVIDED BY THE PERMITEE ON SITE FOR INSPECTION

Structural Calculations

For

Red Dot Corporation

Equipment Foundations

Project # 2220760.20

Project Principal

Andrew D. McEachern, P.E., S.E.

Design Criteria

Design Codes and Standards

<u>Codes and Standards</u>: Structural design and construction shall be in accordance with the applicable sections of the following codes and standards as adopted and amended by the local building authority: International Building Code, 2018 Edition.

Structural Design Criteria:

Live Lo	ad Criteria:							
	Roof (Min Blanket Snow):			25 psf				
	Slab on Grade:							
Wind Lo	oad Criteria:							
	Basic Wind Speed:			97 mph				
	Risk Category:			II				
	Wind Exposure:			В				
	Topographic Factor:			1.0				
<u>Seismic</u>	<u>: Criteria:</u>							
	Risk Category:			II				
	Seismic Importance Factor:			1.0				
	$S_s = 1.258$	S1	=	0.433				
	$S_{ds} = 1.006$	S_{d1}	=	N/A				
	Site Class:			D				
	Seismic Design Category:			D				

Soil Criteria:

Based on Geotechnical Engineering Report by: Terra Associates Inc, dated September 2019.

Soil Bearing Capacity: 2,500 psf when sitting on 2 feet of structural fill on the previously preloaded side. Allow 33% increase for loads from wind or seismic origin.

Project Description

The scope of work for this project involves the structural design of foundations required to support new equipment. The equipment will be located within an existing building.

It is the intention of the structural design to satisfy the force levels of the IBC 2018.

Structural Notes:

Applicable Codes and Standards:

2015 International Building Code (IBC) and other applicable local building codes.

ASCE/SEI 7-10 - "Minimum Design Loads for Buildings and Other Structures"

2015 NDS for wood structures.

American Concrete Institute - ACI 315, ACI 318, ACI 301, ACI 307.

Structural design shall be in accordance with the latest edition of above codes and standards. Contractor shall comply with the latest edition of all applicable codes and standards.

Design Loads:

Seismic loading per IBC Sections 1603 and 1613, Site Class D. The basic structural type is a bearing wall system with light framed walls with shear panels. Rw = 6.5 (wood structural panels), soil type D. Seismic importance factor 1.0, Seismic Use Group I Design and Analysis by Simplified Design Procedure Peak Ground Accelerations (PGA) based on OSHPD, by lat/long. PGA 1 sec = .421 PGA .2 sec = 1.217 Seismic base shear = 0.185 * Dead Load

Foundations:

Soil parameters (assumed): Vertical allowable soil pressure: 1,000 psf 🥄

All soil conditions are to be field verified during construction by the Geotechnical Engineer. If needed, structural fill shall be placed in 12-inch maximum horizontal lifts (loose thickness) and compacted to 90 percent of maximum dry density in accordance with ASTM D-1557. Imported structural fill shall be granular material containing no more than 5 percent fines, passing no. 200 sieve. Structural fill in place shall be tested by a licensed soil engineer or approved by the building inspector.

Cast in Place Concrete:

Concrete cast against earth

Concrete shall attain a minimum compressive strength of 3,000 psi at 28 days (5-½ sack mix). An alternate mix provided by the concrete supplier and pre-approved by the building department is acceptable. Reinforcing steel shall conform to ASTM A-615, Grade 60 (Fy=60,000 psi) for all bars.

Concrete protection for reinforcement shall be: Concrete exposed to earth or weather 2" (#6 & larger)

3"

1. STRUCTURAL NOTES

- 1.1. ANY DISCREPANCY FOUND AMONG THE DRAWINGS, SPECIFICATIONS, THESE NOTES, AND THE SITE CONDITIONS SHALL BE REPORTED TO THE ARCHITECT AND THE STRUCTURAL ENGINEER, WHO SHALL CORRECT SUCH DISCREPANCY IN WRITING. ANY WORK DONE BY THE CONTRACTOR AFTER DISCOVERY OF SUCH DISCREPANCY SHALL BE DONE AT THE CONTRACTOR'S RISK. THE CONTRACTOR SHALL VERIFY AND COORDINATE THE DIMENSIONS AMONG ALL DRAWINGS PRIOR TO PROCEEDING WITH ANY WORK OR FABRICATION. THE CONTRACTOR IS RESPONSIBLE FOR ALL ERECTION BRACING, FORMWORK AND TEMPORARY CONSTRUCTION SHORING.
- 1.1.1. THE CONTRACTOR SHALL NOT SCALE THE ARCHITECTURAL AND STRUCTURAL DRAWINGS FOR LOCATIONS OF ELEMENTS NOTED ABOVE.
- 1.1.2. ELECTRONIC COPIES OF THE STRUCTURAL DRAWINGS (PDF'S, CAD DRAWINGS OR BIM MODELS) MAY BE PROVIDED TO THE CONTRACTOR FOR THEIR USE. THESE FILES MAY BE PROVIDED AT THE REQUEST OF THE CONTRACTOR FOR THEIR CONVENIENCE ONLY. THE CONTRACTOR AGREES THAT THESE FILES SHALL NOT SUPERSEDE INFORMATION SHOWN ON THE ORIGINAL BID/ CONSTRUCTION DOCUMENTS. THE CONTRACTOR AGREES TO HOLD THE STRUCTURAL ENGINEER HARMLESS FOR ANY ERRORS OR DISCREPANCIES CONTAINED WITHIN THESE ELECTRONIC FILES.
- 1.2. CODES
- 1.2.1. ALL METHODS, MATERIALS AND WORKMANSHIP SHALL CONFORM TO THE 2015 INTERNATIONAL BUILDING CODE (IBC) AS AMENDED AND ADOPTED BY THE LOCAL BUILDING AUTHORITY.
- ALL REFERENCES TO OTHER CODES, STANDARDS AND 1.2.2. SPECIFICATIONS, (ACI, ASTM, ETC.), SHALL BE FOR THE EDITION CURRENTLY REFERENCED BY IBC AS AMENDED AND ADOPTED BY THE LOCAL BUILDING AUTHORITY.
- 1.3. DESIGN CRITERIA

1.3.1. UNIFORM LOADS:

2		
LOCATION	LIVE LOAD	DEAD LOAD
ROOF	25 PSF (SNOW*)	ACTUAL
SLAB ON GRADE (STRUCTURAL)	7" SLAB = 350PSF	ACTUAL

* THIS IS NOT A CROUND SNOW LOAD

	1 HIS IS NUT	4 GROUN	D SNOW LOAD		
1.3.2.	CONCENTRAT COMPONENTS WEIGHTS, ETC LOADS AND DE	ED LOADS OR SYST ., OF MEC ESIGN TH	S: ALL MANUFACTU TEMS SHALL LOCAT CHANICAL UNITS OI EIR SYSTEM FOR T	RERS OF E, COOR R OTHER HESE LO	PRE-ENGINEER
1.3.3.	WIND LOADS (30):	PER IBC S	SECTION 1609 AND	ASCE 7 C	CHAPTERS 26 THE
	ULTIMATE D	ESIGN WI	ND SPEED (Vult):		110 MPH
	RISK CATEG	ORY			0
	WIND EXPO	SURE:			В
	APPLICABLE PRESSURE	INTERNA COEFFICI	AL ENT:		+/-0.18
	TOPOGRAPI	HIC FACTO	OR (K _{zt})		1.0 (FLAT)
	COMPONENTS TO BE USED F	AND CLA OR THE D TERIALS I	DDING: ULTIMATE ESIGN OF EXTERIO S AS FOLLOWS:	DESIGN V DR COMP	VIND PRESSURE
	ZONE:1	+/- 23 PS	SF (10 SQ FT)		
	ZONE:2	+/- 39 PS	SF (10 SQ FT)		
	ZONE:3	+/- 59 PS	SF (10 SQ FT)		
	ZONE:4	+/- 23 PS	SF (10 SQ FT)		
	ZONE:5	+/- 28 PS	SF (10 SQ FT)		
1.3.4.	SEISMIC LOAD THRU 13):	S (PER IB	C SECTION 1613 AI	ND ASCE	7 CHAPTERS 11
	RISK CATEG	ORY:			0
	SEISMIC IMF	ORTANC	E FACTOR (I _e):		1.0
	S _s :				1.257
	S ₁ :				0.433
	SITE CLASS				D
	S _{DS} :				0.838
	S _{D1} :				0.452
	SEISMIC DE	SIGN CAT	EGORY:		D
	SEISMIC RE	SPONSE (COEFFICIENT (Cs):		0.168
	ANALYSIS P	ROCEDUF	RE USED:		EQUIVALENT LATERAL FORC PROCEDURE
	SEISMIC FORC	E- STEM	RESPONSE MODIFICATION COEFFICIENT, R	OVERST FACTOR	TRENGTH R, Ω₀
	6 <u></u>				

1. SPECIAL REINFORCED CONCRETE SHEAR WALLS

NOTE: TABULATED OVERSTRENGTH FACTOR HAS BEEN REDUCED IN ACCORDANCE WITH ASCE 7 TABLE 12.2-1 FOOTNOTE G FOR STRUCTURES WITH FLEXIBLE DIAPHRAGMS.

5

2

1.4. STATEMENT OF SPECIAL INSPECTIONS

SEE STATEMENT OF SPECIAL INSPECTION AND TESTING SHEET S0.2.

- 1.5. SHOP DRAWINGS
 - 1.5.1. SUBMIT SHOP DRAWINGS TO THE ARCHITECT/ENGINEER FOR THE FOLLOWING:
 - A. CONCRETE MIX DESIGN SUBMITTALS
 - B. REINFORCING STEEL
 - C. STRUCTURAL AND MISCELLANEOUS STEEL INCLUDING WELD INSERTS AND ANCHORS
 - D. PRE-ENGINEERED STEEL JOISTS AND JOIST GIRDERS *
 - E. TILT UP WALLS
 - F. PRE-ENGINEERED STEEL STAIRS & CANOPIES *
 - * DEFERRED SUBMITTALS: PRE-ENGINEERED ITEMS SHALL BE SUBMITTED TO THE BUILDING OFFICIAL AFTER REVIEW BY THE ENGINEER OF RECORD AS A DEFERRED SUBMITTAL.

- 1.5.2. SHOP DRAWING REVIEW NOTES

	1.5.2.	SHOP DRAWING REVIEW NOTES	3.4.	ADMIXT	JRES	5. METALS			
		A. ENGINEER OF RECORD SHALL REVIEW SHOP DRAWINGS FOR GENERAL CONFORMANCE WITH THE PROJECT CONSTRUCTION DOCUMENTS (PLANS AND SPECIFICATIONS)		3.4.1.	WATER REDUCING ADMIXTURE: ASTM C494. ADMIXTURES SHALL BE USED IN EXACT ACCORDANCE WITH MANUFACTURER'S	5.1. STR 5.1.	UCTU 1.	JRAL STEEL GENERAL REQUIREMENTS ALL DETAILING, FABRICATION, AND ERECTION	SHALL CONFORM TO
		 B. ENGINEER OF RECORD REVIEW OF SHOP DRAWINGS SHALL NOT RELIEVE THE GENERAL CONTRACTOR OF THEIR RESPONSIBILITY 		3.4.2.	WATER REDUCING ADMIXTURES SHALL BE USED AT ALL HEAVILY CONGESTED AREAS (I.E. CONCRETE WALLS WITH REINFORCING			AISC 360-10 "SPECIFICATION FOR STRUCTURA AISC 341-10 "SEISMIC PROVISIONS FOR STRUC BUILDINGS" AND AISC 303-10 "CODE OF STAND	L STEEL BUILDINGS", CTURAL STEEL DARD PRACTICE FOR
		FOR REVIEW OF THE SHOP DRAWINGS FOR COMPLIANCE WITH THE PROJECT REQUIREMENTS.		3.4.3.	SPACING OF 4" OR LESS) CONCRETE USING ADMIXTURES TO PRODUCE FLOWABLE CONCRETE			STEEL BUILDINGS AND BRIDGES" EXCEPT AS A STRUCTURAL NOTES.	AMENDED BY THESE
		C. APPROVAL OF THE SHOP DRAWINGS BY THE ENGINEER OF RECORD SHALL NOT BE CONSIDERED AS A GUARANTEE BY THE ENGINEER THAT THE SHOP DRAWINGS COMPLY WITH ALL PROJECT		3.4.4.	MAY BE USED SUBJECT TO ENGINEER'S APPROVAL. AIR ENTRAINMENT: ASTM C260 AND ASTM C494 ENTRAIN 5%	5.2. STR 5.2.	UCTI 1.	JRAL STEEL STEEL W SHAPES SHALL BE ASTM A992 Fy=50 I	KSI. OTHER SHAPES
		REQUIREMENTS. D. CONCURRENT SHOP DRAWING REVIEW SHALL ONLY BE PERMITTED		245	VOOTHER ADMIXTURES REPAILTED UNI ESS ARROVED BY THE	5.2.2	2.	AND PLATES SHALL BE ASTM A36 Fy=36 KSI. RECTANGULAR HOLLOW STEEL SECTIONS (HS	S) OR TUBE STEEL
		IF APPROVED BY THE ARCHITECT/ENGINEER OF RECORD PRIOR TO THE START OF SHOP DRAWING REVIEW.	25	5.4.5.	ENGINEER.	5.2.	2	FOR ROUND SECTIONS)	5, ry-40 KSI (ry-42 KSI
1.6	. MISCE 1.6.1.	LLANEOUS VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD.	5.5.	3.5.1.	FOLLOW RECOMMENDED PRACTICE FOR CONCRETE FORMWORK	0.2.	з. И	A. MACHINE BOLTS NOT SPECIFIED AS HIGH S	TRENGTH SHALL BE
	1.6.2.	VERIFY SIZE AND LOCATION OF ALL OPENINGS IN THE FLOORS, ROOF AND WALLS WITH ARCHITECTURAL, MECHANICAL AND ELECTRICAL		3.5.2.	ALL SHORING SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.		E	ASTM A-SUP GRADE A. HIGH STRENGTH BOLTS SHALL BE ASTM F31 GRADE A400 AS INDICATED ON STRUCTURA	125 GRADE A325 OR
	1.6.3.	DRAWINGS. CONSTRUCTION DETAILS NOT SPECIFICALLY SHOWN ON THE DRAWINGS SHALL FOLLOW SIMILAR DETAILS OF SECTIONS OF THIS PROJECT AS APPROVED BY THE ARCHITECT/ ENGINEER.			CONCRETE SURFACES AT ALL FACES LEVEL, PLUMB AND TRUE TO THE DIMENSIONS AND ELEVATIONS SHOWN. TOLERANCES AND VARIATIONS SHALL BE AS SPECIFIED. A SHORING PLAN, STAMPED BY A LICENSED PROFESSIONAL ENGINEER SHALL BE SUBMITTED TO THE			BOLTS SHALL BE CONSIDERED BEARING TY INCLUDED IN SHEAR PLANE (CONNECTION T OTHERWISE. ALL HIGH STRENGTH BOLTED BE INSTALLED WITH NUTS CONFORMING TO	PE WITH THREADS TYPE N) UNLESS NOTED CONNECTIONS SHALL ASTM A563 AND
	1.6.4.	SEE ARCHITECTURAL, MECHANICAL AND ELECTRICAL DRAWINGS FOR DIMENSIONS AND LOCATIONS OF OPENINGS NOT DIMENSIONED OR SHOWN ON STRUCTURAL PLANS.	3.6.	REINFO	ENGINEER FOR APPROVAL. RCING STEEL: DETAIL FABRICATE AND PLACE PER ACL315 AND ACL318, SUPPORT		(HARDENED WASHERS CONFORMING TO AS ALL HIGH STRENGTH BOLTS SHALL BE INST SPECIFICATION FOR STRUCTURAL JOINTS U	TM F436. ALLED PER THE JSING HIGH-STRENGTH
	1.6.5.	SEE ARCHITECTURAL, MECHANICAL AND ELECTRICAL DRAWINGS FOR LOCATIONS AND WEIGHTS OF ALL MECHANICAL AND ELECTRICAL		3.6.2	REINFORCEMENT WITH APPROVED CHAIRS, SPACERS, OR TIES.			BOLTS (LATEST EDITION) BY THE RESEARCH STRUCTURAL CONNECTIONS (WWW.BOLTCO	H COUNCIL ON DUNCIL.ORG).
	1.6.6.	EQUIPMENT INCLUDING HOUSEKEEPING PADS. FOR PIPES, CONDUITS, DUCTS AND MECHANICAL EQUIPMENT		3.6.3.	WELDABLE DEFORMED BAR REINFORCEMENT: ASTM A013 GR 00 WHERE NOTED ON STRUCTURAL DRAWINGS	5.2.4	4. /	STEEL ANCHORAGE ELEMENTS: A. THREADED RODS SHALL BE ALL-THREAD. (F	_y =36 KSI) U.N.O.
		SUPPORTED OR BRACED FROM STRUCTURE: CONFORM TO SHEET METAL AND AIR CONDITIONING CONTRACTORS NATIONAL		3.6.4.	WELDED WIRE FABRIC: ASTM A-185 & ASTM A-82 Fy=65 KSI		E	 WELDED HEADED STUDS: "NELSON STUDS" STUD WELDING, INC. OR APPROVED EQUIVA 	SHALL BE BY NELSON
		ASSOCIATION, INC., PUBLICATION APPENDIX E. SEISMIC RESTRAINT MANUAL GUIDELINES FOR MECHANICAL SYSTEMS." ALL BRACING AND SUPPORTS SHALL BE DESIGNED FOR SEISMIC HAZARD LEVEL		3.6.5. 3.6.6.	DEFORMED BAR ANCHORS: ASTM A-496 EXCEPT AS NOTED SPECIFICALLY ON THE DRAWINGS, ALL CONCRETE		(ASTM A108. STUDS SHALL HAVE A MINIMUM ANCHOR RODS: ANCHOR RODS SHALL BE A	F _u OF 65 KSI. STM F 1554, F _v =36 KSI.
		(SHL) B. SPRINKLER LINE ATTACHMENTS SHALL CONFORM TO NFPA PAMPHLET 13.			REINFORCEMENT SHALL BE LAP-SPLICED AS FOLLOWS: #6 AND SMALLER 48 X BAR DIAMETER		[D. EXPANSION ANCHORS SHALL BE CARBON S FOLLOWING TABLE. ANCHORS IN CONCRET	TEEL AS NOTED IN THE E SHALL HAVE BEEN
	1.6.7.	THE STRUCTURE HAS BEEN DESIGNED TO RESIST CODE REQUIRED VERTICAL AND LATERAL FORCES AFTER THE CONSTRUCTION OF ALL			NO MORE THAN 50% HORIZONTAL OR VERTICAL BARS SHALL BE SPLICED AT ONE LOCATION			TESTED IN ACCORDANCE WITH ACI 355.2 AN CRACKED CONCRETE AND SEISMIC APPLICA	ID/OR ICC-ES AC193 FOR ATIONS. ANCHORS
		STRUCTURAL ELEMENTS HAS BEEN COMPLETED. STABILITY OF THE STRUCTURE PRIOR TO COMPLETION IS THE SOLE RESPONSIBILITY OF THE GENERAL CONTRACTOR. THIS RESPONSIBILITY INCLUDES BUT IS		3.6.7.	EXCENT OFFED SPECIFICALLY ON THE DRAWINGS, PROVIDE			CURRENT EDITION OF THE IBC AND SHALL E THE SEISMIC DESIGN CATEGORY NOTED IN	AT COMPLIES WITH THE BE RATED FOR USE IN THE DESIGN CRITERIA
		NOT LIMITED TO JOB SITE SAFETY: ERECTION MEANS, METHODS, AND SEQUENCES; TEMPORARY SHORING, FORMWORK, AND			REINEORCEMENT AND LAP WITH HORIZONTAL REINFORCEMENT AS FOLLOWS:			SECTION OF THESE NOTES.	
		WHERE SHORING IS REQUIRED, A SHORING PLAN, STAMPED BY A LICENSED PROFESSIONAL/STRUCTURAL ENGINEER SHALL BE			#6 AND SMALLER 48 X BAR DIAMETER THESE CORNER BARS SHALL BE PLACED AT ALL CORNERS AND INTERSECTIONS IN CONCRETE FOOTINGS AND WALLS.			EXPANSION ANCHORS	CODE REPORT
		SUBMITTED TO THE ENGINEER FOR APPROVAL.		3.6.8.	LAP WELDED WIRE FABRIC 12" OR ONE SPACING PLUS 2", WHICHEVER				
2. SIT	E PREPA	RATION/SOIL REMEDIATION	3.7.		ETE COVER ON REINFORCING SHALL BE AS FOLLOWS (UNLESS SHOWN			HILTI KWIK BOLT TZ SIMPSON STRONG-BOLT 2	ICC ESR-1917 ICC ESR-3037
2.1	ALLOV	VABLE SOIL PRESSURE 2500 PSF WHEN SITTING ON 2' OF STRUCTURAL			BOTTOM OF FOOTINGS 3" FORMED FARTH FACE 2"			DEWALT/POWERS POWER-STUD+ SD2	ICC ESR-2502
	OR SE ASSO	ND PRELOADED SITE. ALLOW 33-1/3% INCREASE FOR LOADS FROM WIND SISMIC ORIGIN. SEE GEOTECHNICAL ENGINEERING REPORT BY TERRA CIATES INC DATED SEPTEMBER 2019. SEE GEOTECH REPORT FOR ALL			WALLS, WEATHER FACE1-1/2"WALLS, INSIDE FACE1"		E	ADHESIVE ANCHORS SHALL BE THREADED	ANCHOR RODS OR
	SUBGF VAPOF	RADE PREPARATION REQUIREMENTS AS WELL AS CAPILLARY BREAK AND R BARRIER RECOMMENDATIONS.	3.8.	CONST	RUCTION AND CONTROL JOINTS			THE FOLLOWING TABLE. ANCHORS IN CONC BEEN TESTED IN ACCORDANCE WITH ACI 35	CRETE SHALL HAVE 5.4 AND/OR ICC-ES AC-
2.2	EXCAV	VATE TO DEPTH SHOWN AND TO FIRM UNDISTURBED MATERIAL. OVER-		3.8.1.	UNLESS NOTED OTHERWISE, LOCATION OF THE CONSTRUCTION OR CONTROL JOINTS IN SLAB ON GRADE SHALL NOT EXCEED THE DISTANCES NOTED BELOW, JOINTS SHALL BE LOCATED ON COLUMN			308 FOR CRACKED CONCRETE AND SEISMIC ANCHORS SHALL HAVE A CURRENT CODE R WITH THE CURRENT EDITION OF THE IBC AN	CAPPLICATIONS. EPORT THAT COMPLIES ID SHALL BE RATED FOR
	EXCAV	/ATIONS SHALL BE BACKFILLED WITH LEAN CONCRETE (f.=500-1200 PSI) RUCTURAL FILL AT THE CONTRACTOR'S EXPENSE. EXERCISE EXTREME			GRIDS OR UNDER PERMANENT PARTITIONS TO THE GREATEST EXTENT POSSIBLE. ADDITIONAL JOINTS SHALL BE REQUIRED AT			USE IN THE SEISMIC DESIGN CATEGORY NO CRITERIA SECTION OF THESE NOTES.	TED IN THE DESIGN
	OTHEF UNTIL	DURING EXCAVATION TO AVOID DAMAGE TO BURIED LINES, TANKS, AND R CONCEALED ITEMS. UPON DISCOVERY, DO NOT PROCEED WITH WORK RECEIVING WRITTEN INSTRUCTIONS FROM THE ARCHITECT. A			REENTRANT CORNERS AND CORNERS OF SLAB DEPRESSIONS OR PENETRATIONS. SEE ARCHITECTURAL DRAWINGS FOR JOINT LAYOUT AT EXPOSED CONCRETE CONDITIONS. PROVIDE JOINT				CODE
	COMP EXCAV	ETENT REPRESENTATIVE OF THE OWNER SHALL INSPECT ALL FOOTING /ATIONS FOR SUITABILITY OF BEARING SURFACES PRIOR TO PLACEMENT			SEALANT PER SPECIFICATIONS - INSTALL PER MANUFACTURER RECOMMENDATIONS.			IN CONCRETE	REPORT
	OF RE WATE	INFORCING STEEL. PROVIDE DRAINAGE AS NECESSARY TO AVOID R-SOFTENED SUBGRADE.	3.0	CONDU	7" SLAB ON GRADE 20'-0" O.C. MAX			HILTI HIT HY-200 SAFE SET	ICC ESR-3187
2.3	. FILL, B BACKF	ACKFILL AND COMPACTION FILL AGAINST WALLS SHALL NOT BE PLACED UNTIL AFTER THE REMOVAL	0.0.	3.9.1.	ELECTRICAL CONDUIT SHALL NOT BE PLACED WITHIN A SLAB ON GRADE BUT PLACED BELOW THE SLAB IN THE SUB-BASE			SIMPSON AT-XP * DEWALT/POWERS PURE 110+	IAPMO ER-263 ICC ESR-3298
	OF ALL RETAII MATER	L MATERIAL SUBJECT TO ROT OR CORROSION. ALL FILL PLACED AGAINST NING WALLS OR BASEMENT WALLS SHALL BE FREE DRAINING GRANULAR RIAL. STRUCTURAL FILL OTHER THAN PEA GRAVEL SHALL BE GRANULAR	3.10.	GROUT	FOR BEARING PLATES				
	PLACE DRY D	ED IN 6-INCH LIFTS AND COMPACTED TO AT LEAST 95% OF ITS MAXIMUM ENSITY AS DETERMINED BY ASTM D-1557 (MOD PROCTOR). PEA GRAVEL		THE NO (MASTE	N-SHRINK GROUT SHALL MEET ASTM C1107 GRADE B OR EQUIVALENT RFLOW 928 BY BASF OR APPROVED EQUIVALENT). GROUT SHALL BE A CKAGED HYDRAULIC CEMENT BASED MINERAL AGGREGATE GROUT			TEMPERATURE IS ABOVE 50 DEGREES FAH EMBEDMENT GREATER THAN 12-INCHES FO	RENHEIT OR FOR R LONGER GEL TIME.
	FILL SI	HALL HAVE A MAXIMUM PARTICLE SIZE OF 3/8" DIAMETER.		MIXED, COMPR	PLACED AND CURED AS RECOMMENDED BY THE MANUFACTURER. ESSIVE STRENGTH SHALL EXCEED 6000 PSI AT 28 DAYS.		F	SEE ICC ESR-2508 (CONC) AND IAPMO ER-26 POWDER ACTUATED FASTENERS: PDF'S OF	5 (MASONRY). R PAF'S SHALL BE A
3. ST 3.1	RUCTURA	AL CONCRETE RAL	3.11.	TILT-UP	CONCRETE WALLS TYPICAL AND SPECIAL REINFORCEMENT SHOWN ON PANEL			MINIMUM 0.157" DIA KNURLED SHANK FASTE FOLLOWING TABLE, UNLESS NOTED OTHER DRIVEN INTO STEEL SHALL BE DRIVEN SO T	NER AS NOTED IN THE WISE. FASTENERS
	ALL CO REQUI	ONCRETE SHALL BE HARD ROCK CONCRETE MEETING THE IREMENTS OF ACI-301, "SPECIFICATIONS FOR STRUCTURAL CONCRETE			ELEVATIONS IS DESIGNED FOR FORCES OCCURRING AFTER PANEL IS IN PLACE AND TIED TO ROOF AND FLOOR DIAPHRAGMS. USE			FASTENER COMPLETELY PENETRATES THE AT TOPPING SLABS, PT SLABS OR SLABS WI	STEEL BASE MATERIAL. TH RADIANT HEAT
	FOR B	UILDINGS." PROPORTIONING OF INGREDIENTS FOR EACH CONCRETE MIX BE BY METHOD 2 OR THE ALTERNATE PROCEDURE GIVEN IN ACI-301.			STRONGBACKS AND EXTRA REINFORCEMENT AS REQUIRED AND DIRECTED BY PANEL LIFT INSERT MANUFACTURER/SUPPLIER FOR ERECTION PURPOSES. LIFT INSERT MANUFACTURER/SUPPLIER			TUBES EMBEDDED WITHIN THE SLAB, LIMIT TO 3/4" MAXIMUM AND COORDINATE WITH TI PLACEMENT AND COVER	THE PDF PENETRATION ENDON/TUBE
	CONCI	E CONCRETE PER ACI-304 AND CONFORM TO ACI-604 (306) FOR WINTER RETING AND ACI-605 (305) FOR HOT WEATHER CONCRETING. USE IOR MECHANICAL VIBRATORS WITH 7,000 RPM MINIMUM FREQUENCY. DO			SHALL ANALYZE PANELS FOR ADEQUACY DURING COMPLETE LIFTING OPERATION FROM HORIZONTAL TO VERTICAL, INCLUDING LATERAL				
	NOT O	VER-VIBRATE. CONCRETE SHALL BE PLACED MONOLITHICALLY BETWEEN TRUCTION OR CONTROL JOINTS. PROTECT ALL CONCRETE FROM		3.11.2.	TRANSPORT (WALKING) OF PANELS. ALL PANEL DIMENSIONS ON FOUNDATION PLANS ARE TO CENTER			POWDER ACTUATED FASTENERS	CODE REPORT
	DAYS	AFTER PLACING.		12/12/1 2	LINES OF CONNECTIONS UNLESS NOTED OTHERWISE. DO NOT SCALE PANEL ELEVATIONS.			HILTI X-U SIMPSON PDPA	ICC ESR-2269
3.2	TWEN	TY-EIGHT DAY COMPRESSIVE STRENGTHS SHALL BE AS FOLLOWS:		3.11.3.	UNLESS SHOWN OR INDICATED ON STRUCTURAL DRAWINGS.			DEWALT/POWERS CSI PIN	ICC ESR-2024
		SLABS ON GRADE4000 PSIFOOTINGS3000 PSI		3.11.4. 3.11.5.	SEE ARCH FOR FINISHES, CURING, ETC. GROUT UNDER PANEL WITH A 9-SACK PEA GRAVEL CONCRETE				
		VERTICALLY FORMED WALLS 4000 PSI		3.11.6.	GROUT MIX (rc=5000 PSI AT 28 DAYS). PANELS DRAWN SHOW TYPICAL LOCATIONS OF PANEL CONNECTIONS	5.2.9	5.	METAL PROTECTION: ALL STEEL EXPOSED TO SOIL, OR AS NOTED SHALL BE GALVANIZED PE AS APPLICABLE. ALL OTHER STEEL SUPERCES	WEATHER, MOISTURE, R ASTM A-123 OR A153
	CONCI	RETE SUPPLIER TO PROVIDE TEST RECORDS PER SECTION 26.4 OF ACI			AND ADDITIONAL REINFORCING FOR MOST PANEL OPENINGS. NOT ALL EMBEDDED ITEMS AND MECHANICAL AND ELECTRICAL PENETRATIONS ARE SHOWN. CONTRACTOR SHALL COORDINATE			PRIMED AFTER FABRICATION.	
3.3	318. . MATEF	RIALS			PENETRATIONS WITH MECHANICAL AND ELECTRICAL AND REINFORCING PER PLANS.			WELDS, ETC. APPLY REPAIR COATING THICKN OR EQUAL TO ORIGINAL ZINC COATING THICKN	IESS GREATER THAN NESS.
	3.3.1.	CEMENT: ASTM C150, TYPE I OR TYPE II. ENGINEER'S APPROVAL IS NEEDED FOR USE OF TYPE III CEMENT.		3.11.7.	GENERAL CONTRACTOR SHALL INCLUDE AN ALLOWANCE FOR STACKING OF PANELS OR RAT SLABS AS REQUIRED WHERE	5.2.0	6.	STEEL COLUMNS: ALL VERTICAL LOAD CARRY BEEN NOTED AS "COLUMNS" ON THE STRUCTU	ING MEMBERS HAVE JRAL DRAWINGS. THIS
	3.3.2. 3 3 3 3	COARSE AND FINE AGGREGATE: ASTM C33.			ADEQUATE CASTING AREA IS NOT AVAILABLE AT INTERIOR BUILDING SLAB ON GRADE AREAS.			NOTATION DOES NOT IDENTIFY THESE MEMBE "COLUMNS" AS DEFINED BY THE LATEST OSHA	ERS AS "POSTS" OR RULES REGARDING
	3.3.4.	FLYASH: ASTM C618 CLASS C OR CLASS F						AND 1926.755). THE GENERAL CONTRACTOR, S STEEL ERECTOR SHALL BE RESPONSIBLE TO	STEEL DETAILER, AND DETERMINE THE
	3.3.5.	GROUND GRANULATED BLAST FURNACE SLAG (GGBFS): SHALL NOT BE PERMITTED.						CORRECT OSHA DESIGNATION OF EACH MEME THE NOTATION SHOWN ON THE STRUCTURAL	BER REGARDLESS OF DRAWINGS.

- BE PERMITTED.

PRE-ENGINEERED STEEL STAIRS AND CANOPIES: THE 5.2.7. MANUFACTURER SHALL SUBMIT SHOP DRAWINGS AND CALCULATIONS SEALED BY A PROFESSIONAL ENGINEER LICENSED IN THE STATE OF THE PROJECT.

- 5.3. WELDING
- 5.3.1. ALL WELDING SHALL BE IN ACCORDANCE WITH THE "STRUCTURAL WELDING CODE," AWS D1.1, AWS D1.4 AND AWS D1.8 AS APPROPRIATE.
- 5.3.2. ALL WELDING SHALL BE BY CERTIFIED WELDERS; USE 70 KSI LOW HYDROGEN FILLER METAL, AND SHALL BE PROTECTED PER AWS D1.1 UNTIL USE. FOR ALL FULL PENETRATION WELDS, FILLER METAL SHALL BE NOTCH TOUGH TO MEET CHARPY V-NOTCH OF 20 FOOT-POUND AT -20°F.
- 5.3.3. NO WELDING OF REINFORCING STEEL SHALL BE ALLOWED EXCEPT WHERE SHOWN. ALL WELDING OF REINFORCEMENT SHALL BE PER ANSI/AWS D1.4. THE FOLLOWING FILLER METAL SHALL BE USED WHEN WELDING REINFORCEMENT:
 - A. FOR WELDING OF ASTM A706 GR 60 REBAR, 80 KSI FILLER METAL.
 - B. FOR WELDING OF ASTM A615 GR 60 REBAR, NOT PERMITTED.
 - C. FOR WELDING OF ASTM A615 GR 40 REBAR, NOT PERMITTED.
- 5.3.4. ALL FULL PENETRATION FIELD AND SHOP WELDS SHALL BE FULL TIME INSPECTED AND TESTED BY NON-DESTRUCTIVE PROCEDURES. RESULTS OF TESTS SHALL BE SUBMITTED FOR REVIEW BY THE STRUCTURAL ENGINEER.
- 5.4. WELDING PROCEDURE SPECIFICATION (WPS)
- 5.4.1. FOR ALL WELDING OF REINFORCING STEEL AND NON PREQUALIFIED WELDS CONTRACTOR SHALL SUBMIT A WELDING PROCEDURE SPECIFICATION (WPS) TO ENGINEER FOR APPROVAL. PRIOR TO WELDING, EACH WPS SHALL INCLUDE ALL NECESSARY INFORMATION REQUIRED BY AWS D1.1, AWS D1.4 AND AWS D1.8 AND AS FOLLOWS:
 - A. APPLICABLE BASE METAL TYPES AND THICKNESSES.
 - B. SKETCH OF JOINT INDICATING APPLICABLE DIMENSIONS. INDIVIDUAL PASSES SHALL BE IDENTIFIED AND NUMBERED TO IDENTIFY THE SEQUENCE. THE SKETCH SHALL IDENTIFY THE MAXIMUM THICKNESS AND BEAD WIDTH. IN NO CASE SHALL THE LAYER THICKNESS EXCEED 1/4" NOR THE BEAD WIDTH EXCEED 5/8." C. PREHEAT REQUIREMENTS.

 - D. ELECTRICAL CHARACTERISTICS (I.E., CURRENT, VOLTAGE, TRAVEL SPEED, ETC.).
 - E. ELECTRODE REQUIREMENTS SHALL MEET THE REQUIREMENTS OF AWS A5.1, AWS A5.5, AWS A5.17, AWS A5.23, AWS A5.18, AWS A5.20, AWS A5.28, AND AWS A5.29, AS APPLICABLE FOR WELDING METHOD USED.

5.5. STEEL JOISTS AND JOIST GIRDERS

- 5.5.1. DESIGN LOADS SHALL BE AS STATED IN THE DESIGN CRITERIA SECTION OF THESE NOTES PLUS ANY SPECIAL LOADS INDICATED ON THE DRAWINGS. UNLESS OTHERWISE NOTED, MINIMUM DESIGN LOADS SHALL INCLUDE:
 - A. WHERE PRIMARY ROOF MEMBERS ARE EXPOSED TO A WORK FLOOR A SINGLE NON-CONCURRENT CONCENTRATED LIVE LOAD OF 2000 LBS SHALL BE LOCATED AT ANY PANEL POINT ALONG THE TRUSS BOTTOM CHORD.
 - B. AT ROOF JOISTS AND JOIST GIRDERS, A MINIMUM NET UPLIFT LOAD OF 10 PSF.
- STEEL JOISTS AND JOIST GIRDERS SHALL BE MANUFACTURED PER 5.5.2. THE LATEST EDITION OF THE STANDARD SPECIFICATIONS FOR STEEL JOISTS AND JOIST GIRDERS PUBLISHED BY THE STEEL JOIST INSTITUTE.
- 5.5.3. ALL STEEL JOISTS AND JOISTS GIRDERS SHALL BE MANUFACTURED BY A FABRICATOR CURRENTLY APPROVED BY ICC (INTERNATIONAL CODE COUNCIL). MANUFACTURER SHALL BE A MEMBER OF SJI, AND ALL STEEL JOISTS AND JOIST GIRDERS SHALL BE SJI APPROVED.
- 5.5.4. THE MANUFACTURER SHALL SUBMIT SHOP DRAWINGS AND CALCULATIONS SEALED BY A PROFESSIONAL ENGINEER LICENSED IN THE STATE OF THE PROJECT.
- 5.5.5. IT SHALL BE THE RESPONSIBILITY OF THE MANUFACTURER, THE GENERAL CONTRACTOR, AND THE ERECTOR TO MANUFACTURE AND INSTALL ALL STEEL JOISTS AND JOIST GIRDERS IN CONFORMANCE WITH THE MOST CURRENT OSHA RULES (OSHA 29 CFR PART 1926.757).
- 5.5.6. LIMIT LIVE LOAD AND/OR SNOW LOAD DEFLECTION TO L/240 FOR ROOF FRAMING MEMBERS.
- 5.5.7. THE JOIST MANUFACTURER SHALL DESIGN THE JOISTS FOR UNIFORM LOADS INDICATED ON THE STRUCTURAL DRAWINGS AS WELL AS ALL SPECIAL LOADS NOTED ON THE STRUCTURAL PLANS AND DETAILS. SPECIAL LOADS SHALL INCLUDE POINT LOADS FOR SUPPORT OF SECONDARY FRAMING, OVERFRAMING AND SUPPORTED EQUIPMENT (MECHANICAL UNITS, SUSPENDED EQUIPMENT, ETC.).
- 5.5.8. THE JOIST MANUFACTURER SHALL COORDINATE JOIST BRIDGING AT EXPOSED LOCATIONS FOR ARCHITECTURAL APPEARANCE. BRIDGING LOCATIONS SHALL ALSO BE COORDINATED TO AVOID CONFLICTS WITH MECHANICAL DUCTWORK, SKYLIGHTS AND OTHER BUILDING SYSTEMS.

6. CARPENTRY

DIMENSION LUMBER SHALL BE DF.#2 SAWN LUMBER BEAMS, HEADERS AND COLUMNS SHALL BE DF#2 OR AS SHOWN ON THE DRAWINGS. ALL 2" NOMINAL LUMBER SHALL BE KILN DRIED (KD). EACH PIECE OF LUMBER SHALL BEAR STAMP OF WEST COAST LUMBER INSPECTION BUREAU (WCLIB) AND/OR WESTERN WOOD PRODUCTS ASSOCIATION (WWPA) SHOWING GRADE MARK.

- 6.1. PRESSURE-PRESERVATIVE TREATMENT IN ACCORDANCE WITH AMERICAN WOOD PROTECTION ASSOCIATION (AWPA) STANDARD U1, LATEST EDITION TO THE USE CATEGORY AS FOLLOWS:
- 6.1.1. TREAT ALL WOOD IN CONTACT WITH CONCRETE, MORTAR, GROUT, MASONRY AND WITHIN 12" OF EARTH TO THE REQUIREMENTS OF USE CATEGORY UC2 (INTERIOR/DAMP).

6.2. CARPENTRY HARDWARE

- 6.2.1. MACHINE BOLTS SHALL BE ASTM A-307.
- 6.2.2. PROVIDE MALLEABLE IRON WASHERS (MIW) OR HEAVY PLATE CUT WASHERS WHERE BOLT HEADS, NUTS OR LAG SCREWS BEAR ON WOOD.
- 6.2.3. NAILS SHALL BE COMMON, AMERICAN OR CANADIAN MANUFACTURER ONLY WITH MIN. DIAMETERS AS FOLLOWS:

NAIL SIZE	MINIMUM NAIL SHANK DIAMETER	MINIMUM NAIL LENGTH	
Bd	0.131"	2 1/2"	
10d	0.148"	3"	
12d	0.148"	3 1/4"	
16d SINKER	0.148"	3 1/4"	
16d	0.162"	3 1/2"	
20d	0.192"	4"	

NELSON

Nelco Architecture, Inc.

1200 Fifth Ave. Suite 1300 Seattle, WA 98101 Phone: (206) 408-8500 WWW.NELSONWORLDWIDE.COM

PANATTONI[®]

PANATTONI DEVELOPMENT 1821 DOCK ST SUITE 100 TACOMA, WA 98402

PUYALLUP CORPORATE CENTER

EAST MAIN AVENUE AT LINDEN LANE PUYALLUP, WASHINGTON

1

Description	
PERMIT SUBMITTAL	
PRICING SET	
PERMIT RESUBMITTAL	

Date 04/03/2020 07/21/2020 08/24/2020

2215 North 30th Street, Suite 300 Tacoma, WA 98403 253.383.2422 TEL 253.383.2572 FAX www.ahbl.com WEB

STRUCTURAL NOTES

Proj. No: 2190390.20 Reviewed By: LAH/CLR

FOOTING SCHEDULE					
MARK	SIZE	REINFORCING	REMARKS		
F6.0	6'-0" x 6'-0" x 1'-2"	(7) #5 EACH WAY AT BOTTOM OF FOOTING			
F7.5	7'-6" x 7'-6" x 1'-4"	(7) #6 EACH WAY AT BOTTOM OF FOOTING			

FOOTINGS SCHEDULE NOTES:

- 1. TOP OF FOOTING ELEVATION = -1'-0" UNLESS NOTED OTHERWISE ON PLAN.
- 2. FOOTING DESIGN BASED ON 2500 PSF ALLOWABLE SOIL BEARING PRESSURE.
- 3. EQUALLY SPACE REINFORCING IN EACH DIRECTION.
- 4. PROVIDE 3" CLEAR TO REINFORCING AT BOTTOM OF FOOTING.

FOUNDATION NOTES:

- 1. SEE SHEET S0.1 AND S0.2 FOR GENERAL NOTES. SEE SHEET S0.4 FOR TYPICAL DETAILS. SEE SHEET S0.3 FOR TESTING AND INSPECTION NOTES.
- 2. SEE GEOTECHNICAL ENGINEERING REPORT FOR ALL FOUNDATION AND SLAB SUPPORT REQUIREMENTS. THIS INCLUDES ALL EXCAVATION, FILL AND FILL PLACEMENT REQUIREMENTS.
- 3. SEE ARCHITECTURAL/MECHANICAL DRAWINGS FOR DRAINS, SLOPES, AND OTHER FLOOR DEPRESSIONS NOT SHOWN.
- 4. SEE ARCHITECTURAL DRAWINGS FOR DIMENSIONS, ELEVATIONS, AND WALLS NOT SHOWN.
- 5. VERIFY ALL WINDOW AND DOOR WIDTH AND HEIGHTS WITH ARCHITECTURAL DRAWINGS.
- 6. SEE ARCHITECTURAL DRAWINGS FOR STUD SIZE, SPACING, AND CALLOUTS AT NON-STRUCTURAL WALLS. 7. FOR TYPICAL CONNECTION OF NON-LOAD BEARING WALLS TO SLAB, USE POWER
- ACTUATED FASTENERS AT 16" O.C. 8. PANEL DIMENSIONS SHOWN ARE TO CENTERLINE OF PANEL JOINT. SEE ARCHITECTURAL DRAWINGS FOR ADDITIONAL PANEL DIMENSIONS.
- 9. ELEVATIONS OF PANELS ARE SHOWN STARTING ON SHEET S5.1 THROUGH S5.6.
- 10. UNLESS NOTED OTHERWISE, TILT-UP PANEL ELEVATIONS SHOW PANELS VIEWED FROM INSIDE OF BUILDING LOOKING TOWARDS BUILDING EXTERIOR.
- 11. POUR STRIP CONTROL JOINTS, LOCATE AT PANEL JOINTS AND MIDWAY BETWEEN. AT TURNS IN POUR STRIP ADD JOINTS FROM MAIN SLAB TO OUTSIDE WALL.
- 12. SEE 1/S3.2 FOR TRASH ENCLOSURE. SEE ARCHITECTURAL SITE PLAN FOR LOCATION.

LEGEND:

TILT-UP CONCRETE WALL. FOR REINFORCING REQUIREMENTS AND JOINT LOCATIONS, SEE TILT-UP CONCRETE PANEL ELEVATIONS ON SHEETS S5.1 THRU S5.6.

PANEL JOINT BETWEEN TILT-UP CONCRETE WALL PANELS.

Nelco Architecture, Inc.

NELSON

1200 Fifth Ave. Suite 1300 Seattle, WA 98101 Phone: (206) 408-8500 WWW.NELSONWORLDWIDE.COM

PANATTONI DEVELOPMENT 1821 DOCK ST SUITE 100 TACOMA, WA 98402

PUYALLUP CORPORATE CENTER

EAST MAIN AVENUE AT LINDEN LANE PUYALLUP, WASHINGTON

Description:	IN
PERMIT SUBMITTAL	
PRICING SET	
PERMIT RESUBMITTAL	

Date: △ 04/03/2020 07/21/2020 08/24/2020

2215 North 30th Street, Suite 300 Tacoma, WA 98403 253.383.2422 TEL 253.383.2572 FAX www.ahbl.com WEB

Proj. No: 2190390.20 Reviewed By: LAH/CLR

S1.1 S1.4 S1.2 S1.3

KEY PLAN

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. <u>Find out why.</u>

ATC Hazards by Location

Search Information

Coordinates:	47.19119836700967, -122.2611706795929
Elevation:	55 ft
Timestamp:	2022-10-05T02:44:43.491Z
Hazard Type:	Wind

PRCTI20221709

Man chta ©2022 Imagery ©2022 , Maxar Technologies, U.S. Geological Survey, USDA/FPAC/GEO

ASCE 7-16		ASCE 7-10		ASCE 7-05	
MRI 10-Year 67 mp	bh	MRI 10-Year 72 mph	h ,	ASCE 7-05 Wind Speed	85 mph
MRI 25-Year 73 mp	bh	MRI 25-Year 79 mph	h		
MRI 50-Year 78 mp	bh	MRI 50-Year 85 mph	h		
MRI 100-Year 82 mp	bh	MRI 100-Year 91 mph	h		
Risk Category I	bh	Risk Category I 100 mph	'n		
Risk Category II	bh	Risk Category II 110 mph	h		
Risk Category III 104 mp	bh	Risk Category III-IV 115 mph	h		
Risk Category IV 108 mp	bh				

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or Liability of response accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination werification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. **A** This is a beta release of the new ATC Hazards by Location website. Please <u>contact us</u> with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Search Information

Coordinates:	47.19119836700967, -122.2611706795929
Elevation:	55 ft
Timestamp:	2022-10-05T02:47:09.267Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	II
Site Class:	D-default

PRCTI20221709

Basic Parameters

Name	Value	Description
S _S	1.258	MCE _R ground motion (period=0.2s)
S ₁	0.433	MCE _R ground motion (period=1.0s)
S _{MS}	1.509	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	1.006	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1.2	Site amplification factor at 0.2s
Fv	* null	Site amplification factor at 1.0s
CR _S	0.914	Coefficient of risk (0.2s)
CR ₁	0.898	Coefficient of risk (1.0s)
PGA	0.5	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA

Chy of Payandp Development & Permitting Services /ISSUED PERMIT Building Planning Engineering Public Works Fire Traffic ATC Hazards by Location

PGA _M	0.6	Site modified peak ground acceleration			_
TL	6	Long-period transition period (s)	PF	RCTI20221709	Э
SsRT	1.258	Probabilistic risk-targeted ground motion (0.2s)			
SsUH	1.376	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)			
SsD	1.5	Factored deterministic acceleration value (0.2s)			
S1RT	0.433	Probabilistic risk-targeted ground motion (1.0s)			
S1UH	0.482	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)			
S1D	0.6	Factored deterministic acceleration value (1.0s)			
PGAd	0.5	Factored deterministic acceleration value (PGA)			
* See Section	on 11.4.8				

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

3.3 Groundwater

We observed light to moderate groundwater seepage in 6 of the 14 test pits at depths ranging from 7.5 to 10 feet below existing site grades. Additionally, we observed wet soil from 7.5 to 10 feet in 8 of the test pits. We performed two pore water dissipation tests. One at CPT-1 and one at CPT-5. Based on the test results, the static groundwater level was indicated to be at a depth of four to seven feet below current site grades. Fluctuations in the static groundwater level will occur seasonally. Based on the time of year of our testing, we expect the groundwater levels indicated to be near their seasonal lows. Typically, groundwater will reach maximum levels during the wet winter months.

3.4 Seismic

Liquefaction is a phenomenon where there is a reduction or complete loss of soil strength due to an increase in water pressure induced by vibrations. Liquefaction mainly affects geologically recent deposits of fine-grained sands underlying the groundwater table. Soils of this nature derive their strength from intergranular friction. The generated water pressure or pore pressure essentially separates the soil grains and eliminates this intergranular friction; thus, eliminating the soil's strength.

We completed a liquefaction analysis using the computer program LiquefyPro published by CivilTech Corporation. The analysis was completed using a ground acceleration value of 0.55g, which is the ASCE 7-16 site-modified peak ground acceleration value (PGA_M) determined using the map-based online ground motion parameter calculator at https://seismicmaps.org/ for Latitude 47.191033°N and Longitude 122.261465°W. The results of the liquefaction analysis are attached in Appendix B.

The results of our analysis indicate soil liquefaction could occur during the design earthquake event. Analysis indicates that liquefaction of the alluvial soil layers could result in total settlements between three and three and one half inches, half of which could be differential. If unmitigated, these settlements would result in some cracking of building walls and floor slabs, as well as distortion of doors and windows, but would not structurally impair the building's use, in our opinion. If the Owner is not willing to accept the risk associated with the potential settlements due to liquefaction of the site soils, the building should be supported on densified aggregate piers.

Based on the soil conditions encountered and the local geology, the 2018 International Building Code (IBC) indicates that site class "D" should be used in structural design.

4.0 DISCUSSION AND RECOMMENDATIONS

4.1 General

Based on our study, in our opinion, development of the site as proposed is feasible from a geotechnical engineering standpoint. The primary geotechnical concern at the site is the presence of compressible soil strata susceptible to consolidation under the planned fill placement and building loads. If unmitigated, compression of these soft strate susceptible levels of differential settlement.

September 27, 2019 Project No. T-8222

4.4 Foundations

Spread Footings

The industrial building may be supported on conventional spread footing foundations bearing on foundation subgrade prepared as recommended in Section 4.2 of this report. Perimeter foundations exposed to the weather should bear at a minimum depth of 1.5 feet below final exterior grades for frost protection. Interior foundations can be constructed at any convenient depth below the floor slab.

Following the completion of a successful surcharge program, we recommend designing foundations for a net allowable bearing capacity of 2,500 pounds per square foot (psf). For short-term loads, such as wind and seismic, a one-third increase in this allowable capacity can be used in design. Following successful completion of the surcharge program, with structural loading as anticipated and this bearing stress applied, estimated immediate foundation settlements of about 1-inch and differential settlement of ½-inch should be expected.

For designing foundations to resist lateral loads, a base friction coefficient of 0.35 can be used. Passive earth pressures acting on the sides of the footings can also be considered. We recommend calculating this lateral resistance using an equivalent fluid weight of 300 pounds per cubic foot (pcf). We recommend not including the upper 12 inches of soil in this computation because it can be affected by weather or disturbed by future grading activity. This value assumes the foundations will be backfilled with structural fill, as described in Section 4.2 of this report. The values recommended include a safety factor of 1.5.

Ground Improvement

As discussed above, as a foundation support alternative in lieu of implementing a surcharge fill program, we recommend using ground improvement techniques to establish support for conventional spread footing designs. Methods that could be considered include vibrated stone columns or aggregate rammed piers. Both of these methods create highly densified columns of graded aggregate that would extend through the upper softer soils into the underlying medium dense soils.

Because of the methods used to construct the columns, some improvement of the adjacent soils is also realized. Moreover, these methods can provide liquefaction mitigation by providing drainage paths and reduced pore pressures during ground shaking, and by constructing relatively high strength, non-liquefiable inclusions in the soils. Once constructed, conventional spread footing foundations can be designed to bear immediately above the stone column/aggregate pier locations.

These ground improvement techniques are typically completed on a design/build approach with both design and construction completed by a specialty contractor. We can assist in selecting the specialty contractor, if desired.

4.5 Slab-on-Grade Floors

Slab-on-grade floors may be supported on a subgrade as recommended in Section 4.2. Immediately below the floor slab, we recommend placing a four-inch thick capillary break layer composed of clean, coarse sand or fine gravely or posterior a four-inch thick capillary break layer composed of clean, coarse sand or fine gravely or posterior a four-inch thick capillary break layer composed of clean, coarse sand or fine gravely or posterior a four-inch thick capillary break layer composed of clean, coarse sand or fine gravely or posterior a four-inch thick capillary break layer composed of clean, coarse sand or fine gravely or posterior a four-inch the posterior a four-inch the posterior and subsequent will reduce the potential for up visiting of the floor slab.

September 27, 2019 Project No. T-8222

The capillary break layer will not prevent moisture intrusion through the slab caused by water vapor transmission. Where moisture by vapor transmission is undesirable, such as covered floor areas, a common practice is to place a durable plastic membrane on the capillary break layer and then cover the membrane with a layer of clean sand or fine gravel to protect it from damage during construction, and to aid in uniform curing of the concrete slab. It should be noted that if the sand or gravel layer overlying the membrane is saturated prior to pouring the slab, it will not be effective in assisting uniform curing of the slab and can actually serve as a water supply for moisture bleeding through the slab, potentially affecting floor coverings. Therefore, in our opinion, covering the membrane with a layer of sand or gravel should be avoided if floor slab construction occurs during the wet winter months and the layer cannot be effectively drained. We recommend floor designers and contractors refer to the current American Concrete Institute (ACI) Manual of Concrete Practice for further information regarding vapor barrier installation below slab-on-grade floors.

4.6 Infiltration Feasibility

Based on our study, it is our opinion that subsurface conditions are generally not favorable for infiltration of site stormwater. The native soils observed at the site contain a high percentage of soil fines that would impede any downward migration of site stormwater. Additionally, mottling was observed that indicates a shallow groundwater table develops at the site that would further impede any stormwater migration. Even low impact development (LID) techniques would likely fill up and overtop during rain events and cause minor local flooding. The USDA Natural Resources Conservation Service (NRSC) categorizes the soils at the lower southern portion of the site as Briscot loam. These soils fall into Hydrologic Group C as outlined in Table B.5 in Appendix III-B of the 2015 Pierce County Stormwater and Site Development Manual (PCSSDM) and are classified as having low infiltration rates when wetted. Based on these soil conditions, it is our opinion that the stormwater should be managed using a conventional system.

4.7 Lateral Earth Pressures

The magnitude of earth pressure development on retaining walls will partly depend on the quality of wall backfill. Where fill is placed behind retaining walls, we recommend placing and compacting it as structural fill as described in Section 4.2. To guard against the build-up of hydrostatic pressure, wall drainage must also be installed. We recommend that wall drainage consist of a minimum 12-inch thick layer of washed gravel placed adjacent to the wall. Alternatively, a composite drainage panel such as Mirafi G100N or equal can be used. A four-inch diameter perforated pipe should be placed on a bed of gravel along the base of the wall footing and directed to a suitable outlet. A typical wall drainage detail is attached as Figure 4.

With granular backfill placed and compacted as recommended and drainage properly installed, we recommend designing restrained (not free to deflect) retaining walls for an at-rest earth pressure equivalent to a fluid weighing 50 pcf. A value of 35 pcf may be used for the case where the wall is unrestrained. These values do not include other surcharge loading such as from fill backslopes or adjacent footings that may act on the wall. If such conditions will exist, then the imposed loading must be included in wall design. Values of friction at the base of the foundations and passive earth pressure that are used in design to resist lateral loads are provided in Section this report.

Red Dot Foundations

- Foundations Needed
 - Mitsubishi Laser
 - 720t Injection Press
- Foundation Review
 - Environmental Chamber
 - Drawing attached to email
 - 950t Injection mold machine
 - Drawing attached to email

Mitsubishi Laser

- Machine Dimensions
 - 629" x 244" 🗡
- Machine Weight
 - 22,000lb
- Machine Anchoring
 - Anchors not specified by manufacturer.
 - Anchor locations provided on attached drawing.

EQUIVALENT UNIFORM LOAD IS -LESS THAN 250 PSF - SPECIFIED SLAB IS OK BY INSPECTION

Foundation Conditions	 The difference in the level of the floor can be no more than 0.393" (10mm) over the length of the machine. Foundation must be able to receive anchors. Please confirm that there are no buried gas, air, electrical or water lines.
Floor Vibration	For safe and stable operation, vibrations should be within the following limits. 1.Acceleration .5m/s ² , 0.05G or less 2.Amplitude .5micron or less
	1 Duet

FLOOR / FOUNDATION REQUIREMENTS

- The manufacturer requires that the machine to be installed on 10 inches (250mm) or more of reinforced concrete to minimize floor vibration.
- If the machine is installed on a foundation less than 10 inches thick, the customer must be aware that maintenance
 may be required at more frequent intervals than specified. An inadequate foundation can also affect part tolerance
 and quality.
- The floor where the laser is to be installed must be level to 0.39 inches (10mm) over the entire length of the machine.
- · For safe and stable operation, floor vibrations should be below the following limits
 - Acceleration.....0.5m/s² Max
 - o Max. Amplitude....5.0µm.
- If the machine is installed in an area that is not properly prepared, maintenance may be required at more frequent intervals than specified and result in premature wear of parts due to shifting or setting of the foundation slab. In some cases, an improper foundation can affect the accuracy of the machine as well as the ability to achieve maximum cutting speeds.
 - The machine must be anchored. If the machine is not anchored, damage will occur.

Mitsubishi Laser

Planning

Public Works

Traffic

Fire

 $p \cdots 200 \sim$ (Take a larger number for the middle or large type machines.)

720t Injection Press

- Machine Dimensions
 - 393.7" x 82.67"
 - Bolt locations specified in drawing
- Machine Weight
 - 37.4ton
- Machine Anchoring
 - No Anchoring.

EQUIVALENT UNIFORM LOAD IS -LESS THAN 350 PSF - SPECIFIED SLAB OK BY INSPECTION

		AZ	
2	1) Machine weight	PRCTI20221709	
È.	2) Foundation with	37. 4700	
	3) Average force di	29. 0TON	PER GEOTECH
•	discributed over	the foundation	REPORT
	4) Foundation dents (3. 16 TON	un
	drawing) should be	upper part of this	
	Therefore, in case is	as criterion.	
	for use is in soft and	ion ground intended	
	into the ground or take	ion, drive in a stake	
	foundation ground can be	actions so that the	
	5) Make the foundation and	orced.	
	6) Mortar	at within 10mm.	
	Use quickly reinforced and		
	An example of recommended	shrink one.	
	"TASCON" made by Danka Co. Mi	r: Brand name:	
	TASCON: Cement: Stand = 0 11: 0	ing proportion:	
	7) After placing the machine on the	89: 1	
	concrete all over the foundation	e foundation do not	
	before leveling and centering	n base with mortar	
	completed.	t the machine is	
	8) Pour the mortar in the foundati	n halt hal et a	
	until the seat metal is slightl	v buried with a v	
A	- For such a case, do not cover on	or the terms of the	
4	- seat metal whith the mortar	ci the top of the	
	9) After completion of installation	Carry out such a	
	pouring and finishing at user's	site.	
1180	10) The following parts on this draw	ing should have been	
1100	prepared at user's site before s	tarting up installation	
	(After receiving your order, pro	visions of these notions	
	will be done on our best deliver	<i>i</i> .)	
		PCS	
		pcs each	
TON B		with all over threaded)	
SEA	P=2.0 M	30×80 16-pcs	
	@ liner: 100×100>	16 16-pcs	
200	@ Seat metal: 200×160×16×	R6-drill 16-pcs	
	11) When using vibration isolating le	vel pads. place	
100	the made in the 6- foundation hol	es (marked with ☆)	City of Puyallup Development & Permitting Services /ISSUED PERMIT
	of the floor in addition to the s	tandard 16-holes.	Building Planning Engineering Public Works
	(total 22-nlaces)		Fire Traffic
100	lies the level and which can with	tand the allowable	
	Use the level pau which can wrong		
	1080 01 2. 7-1011.		

		PRCTI20221709	
Project <u>RED DOT</u>	Project No. 2220760.2	• D Page of	
Subject	Phone		
With/To	Fax #		AHIBIL
Address	# Faxed Pages	Meeting Minutes	
Date 1015/22	By AD	Telephone Memo	
			Civil Engineers
		· · · · · · · · · · · · · · · · · · ·	
			Structural Engineers
Scismic Anous	PER ASCE	7 Section 13.3	
			Landscape Architects
FD: 0.42	Sor wor (,)	1 /)	Community Planners
	1 - 1 - (1 + 2	/ //	
	p 1 (p)	· · · · · · · · · · · · · · · · · · ·	Land Surveyors
· · · · · · · · · · · · · · · · · · ·		Cp * 1. D	
D.9 <u>(</u> 1	.0)(1.006/Wp (1+	2(0)) Rp 7.5	
	(2.5/1.0)	505-1.006	2
		Ip : 1.0	
: 0,16		2/h: 0.0	
RER FOR RIL	נ טינורייוטציאיט איי	STREERAS PER 15.4.	Σ
V: 030	1505) (2 (To)		
· · · · · · · · · · · · · · · · · · ·			
: 0.30	(1.006) w (1.0)		
5 0.30	er w		
	· 015 V= 0.302	W	
			City of Puyallup Development & Permitting Services / ISSUED PERMIT
			Building Planning Engineering Public Works
			Fire

If this does not meet with your understanding, please contact us in writing within seven days. THANK YOU.

		PRCTI20221709	
Project RED DOT	Project No. 21207 60,20	Page of	
Subject	Phone	Calculations	
With/To	Fax #	Fax	A H _I B L
Address	# Faxed Pages	— D Meeting Minutes	
Date \$ (22	ву <u>Ад</u> ~	Telephone Memo	
			Civil Engineers
Solomic Anne	Y\$ 1 5		Structural Engineers
			Landscape Architects
· · · · · · · · · · · · · · · · · · ·			Community Planners
	······	· · · · · · · · · · · · · · · · · · ·	
		• · · · · · · · · · · · · · · · · · · ·	Land Surveyors
		:	
	$\rightarrow \bullet$ —	*	
		HIA ASSUMED	
	\downarrow		
	لېـــــ		
	· · · · · · · · · · · · · · · · · · ·		
	() () 74		
		t in a station of the second	
720 ± + 950 ±	INJECTION ERMANEN	۲ : : : : : : : : : : : : : : : : : : :	
V: 0,302	(37.4 TONS)		
: 22.6	" ut		
- 15 84	ASS - ASSUME	1.5 K/ AN CURA	
07 - (15.8	* (10') - 213 (37.4	ro.s)[3.5']]/1'	
: 0 ^k	- NO NET OUCLIVE		
			City of Puyallup
			Development & Permitting Services / ISSUED PERMIT Building / Planning
			Engineering Public Works

If this does not meet with your understanding, please contact us in writing within seven days. THANK YOU.

		PRCTI20221709	
Project QSD DOT	Project No 2220760.20	Page of	
Subject	Phone	Calculations	
With/To	Fax #	☐ Fax	HIBII
Address	# Faxed Pages	Memorandum	کا رکا رہا ت
Date10/5/22	ву АД Л	Telephone Memo	
	·····		Civil Engineers
	and an		
· · · · · · · · · · · · · · · · · · ·			Structural Engineers
MITSUBISHI L	ASCA		
			Landscape Architects
			A
V : 07	302 (22,0"		Community Planners
····· 6:	6" ut		Land Sunveyors
- 4.	USSA C OSA "	ME 1.5"/Antoior	Lanu Surveyors
	× · · · · ·		
DT : [[4.74 (10) - 43 (22	+)(10')]/20'	
		• • • • • • • • • • • • • • • • • • •	
	$c^{k} \rightarrow no$ with over	TU/Lu IN G	
· · · · · · · · · · · · · · · · · · ·			
AN GUDRA GO) ご 5 / 6 ~		
APPLY	OUERTRENGTIN FACT	or to such at	
	DAR ACI 313 FAR	and 172353(c)	
0 3	20 . VII V.	= 3.0 K AGA ANTON	· · · · · · · · · · · · · · · · · · ·
			F arra
		· · · · · · · · · · · · · · · · · · ·	
			City of Puyallup Development & Permitting Servi (ISSUED PERMIT
		•	Building Planning Engineering Public Work
			Fire
If this does not meet with your unc	lerstanding, please contact us in writing with	in seven days. THANK YOU.	

AHBL Engineers 2215 North 30th Street Suite 300 Tacoma, WA 98403 253.383.2422

Point Load on Slab				Project	File: 2220760.20.ec6
LIC# : KW-06014847, Build:20.22.7.25 DESCRIPTION: Existing Slab Cap	acity	AHBL, INC		(c) E	NERCALC INC 1983-2022
Code References					
Calculations per IBC 2018, CBC 2019, A Load Combinations Used : IBC 2018	SCE 7-16				
Analytical Values					
d - Slab Thickness FS - Req'd Factor of Safety	7.0 in 3.0 : 1	Ks - Soil Modulus of Ec - Concrete Elasti f'c - Concrete Comp μ - Poisson's Ratio	Subgrade Re c Modulus ressive Streng o	aci jth	100.0 pci 3,605.0 ksi 4.0 ksi 0.150
Analysis Formulas		Min. Adjacent Load	Distance		48.064 in
Pn = 1.72 [(Ks R1 / Ec) 10,000 + 3. Ks = Soil modulus of subgrade read R1 = 50% plate average dimension Ec = Concrete elastic modulus Fr - Concrete modulus of rupture = d - Slab Thickness	6] Fr d' Min etion = sqrt(PIWid * PILer 7.5 * sqrt(f'c)	Adjacent Column Distanc Ec = Concrete elastic n d - Slab Thickness u - Poisson's ratio Ks = Soil modulus of su	e = 1.5 * ([E nodulus ıbgrade reacti	c d^3 / (1 on	2 * (1- u^2) Ks] ^
Load & Capacity Table					
Plate (in)R1Load IDWidLen(in)D	centrated Load on Plate - _r L S W	E Governing E Ld Comb	Pu (kip)	Pn (kip)	Check
		D Only	50.0	166 1	Pass FS= 3 32 >=

SIMPSON

Strong-I

Anchor Designer™ Software

Version 3.0.7775.0

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.750 Effective Embedment depth, hef (inch): 6.000 Code report: ICC-ES ESR-2508 Anchor category: -Anchor ductility: Yes hmin (inch): 10.38 c_{ac} (inch): 10.50 Cmin (inch): 1.75 Smin (inch): 3.00

Recommended Anchor

Anchor Name: SET-XP® - SET-XP w/ 3/4"Ø F1554 Gr. 36 Code Report: ICC-ES ESR-2508

Company:	AHBL	Date:	10/4/2022
Engineer:	ADM	Page:	1/5
Project:	Red Dot Equipment Foundations		
Address:	2215 North 30th, Suite 300		
Phone:	253.383.2422		
E-mail:	dmceachern@ahbl.com		

Project description: Location: Laser Anchorage Fastening description:

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 12.00 State: Cracked Compressive strength, f'c (psi): 3000 Ψ_{c,V}: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Hole condition: Dry concrete Inspection: Periodic Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 3.00 x 3.00 x 0.25

SIMPSONAnchor Designer™Strong-TieSoftware
Version 3.0.7775.0

Company:	AHBL	Date:	10/4/2022	
Engineer:	ADM	Page:	2/5	
Project:	Red Dot Equipment Foundations			
Address:	2215 North 30th, Suite 300			
Phone:	253.383.2422			
E-mail:	dmceachern@ahbl.com			

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: No Ductility section for tension: 17.2.3.4.2 not applicable Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

 $\begin{array}{l} N_{ua} \ [lb]: \ 0 \\ V_{uax} \ [lb]: \ 5000 \\ V_{uay} \ [lb]: \ 0 \\ M_{ux} \ [ft-lb]: \ 0 \\ M_{uy} \ [ft-lb]: \ 0 \end{array}$

<Figure 1>

City of Puyallup Development & Permitting Services ISSUED PERMIT Building Planning Engineering Public Works Fire Traffic

Anchor Designer™ Software Version 3.0.7775.0

Company:	AHBL	Date:	10/4/2022
Engineer:	ADM	Page:	3/5
Project:	Red Dot Equipment Foundations		
Address:	2215 North 30th, Suite 300		
Phone:	253.383.2422		
E-mail:	dmceachern@ahbl.com		

<Figure 2>

SIMPSON	Anchor Designer TM	C	Company:	AHBL		Date:	10/4/2022
		E	ingineer:	ADM		Page:	4/5
Strong-Tie	P	Project:	Red Dot Equipment Foundations				
	Version 3.0.7775.0	A	ddress:	2215 North 30th, Suite 300			
6	*	P	hone:	253.383.2422			
		E	-mail:	dmceachern@ahbl.co	m		
3. Resulting Ancl	nor Forces						
Anchor	Tension load, N _{ua} (Ib)	Shear load x, V _{uax} (Ib)		Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)		
1	0.0	5000.0		0.0	5000.	0	
Sum	0.0	5000.0		0.0	5000.	0	
Maximum concrete Maximum concrete Resultant tension for Resultant compress Eccentricity of result	compression strain (‰): 0.00 compression stress (psi): 0 orce (lb): 0 sion force (lb): 0 Itant tension forces in x-axis, e' _N	(inch): 0.00		<figure 3=""></figure>		L	
Eccentricity of resul	Itant tension forces in y-axis, e'w Itant shear forces in x-axis, e'w	(Inch): 0.00				NΥ	

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

V _{sa} (lb)	$\phi_{ ext{grout}}$	ϕ	∕∕V,seis	$\phi_{ ext{grout}} lpha_{ ext{V,seis}} \phi_{ ext{Vsa}} ext{(lb)}$
11625	1.0	0.65	0.68	5138

9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2)

Shear perp	hear perpendicular to edge in x-direction:										
$V_{bx} = \min[7(bx)]$	$I_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f}$	°cCa1 ^{1.5} ; 9λa√ f °cC	a₁ ^{1.5} (Eq. 17.5.2	.2a & Eq. 17.5.2	2.2b)						
<i>l</i> e (in)	da (in)	λ_a	f'c (psi)	<i>C</i> a1 (in)	V _{bx} (lb)						
6.00	0.750	1.00	3000	12.00	20492						
$\phi V_{cbx} = \phi (A_V)$	/c / Avco) $\Psi_{ed,V} \Psi_{c,V}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	17.3.1 & Eq. 17.	5.2.1a)							
Avc (in²)	Avco (in²)	$\Psi_{ed,V}$	Ψ _{c,V}	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cbx} (lb)				
360.00	648.00	0.900	1.000	1.225	20492	0.70	8784				

Shear parallel to edge in y-direction:

$V_{bx} = \min[7(b)]$	le∕da) ^{0.2} √daλa√f	'cCa1 ^{1.5} ; 9λa√ f 'c0	a₁ ^{1.5} (Eq. 17.5.2	.2a & Eq. 17.5.2	2.2b)			
le (in)	<i>d</i> ₄ (in)	λa	f'c (psi)	<i>Ca1</i> (in)	V _{bx} (lb)			
6.00	0.750	1.00	3000	12.00	20492			
$\phi V_{cby} = \phi(2)$	(Avc/Avco) Ved, v	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	ec. 17.3.1, 17.5.2	.1(c) & Eq. 17.5	5.2.1a)			
Avc (in²)	Avco (in²)	$\Psi_{\text{ed},V}$	Ψc,v	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
360.00	648.00	1.000	1.000	1.225	20492	0.70	19520	

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

City of Puyallup Development & Permitting Services (15SUED PERMIT Building Planning Engineering Public Works Fire Traffic

 $\phi V_{cp} = \phi \min[k_{cp}N_a; k_{cp}N_{cb}] = \phi \min[k_{cp}(A_{Na}/A_{Na0}) \mathcal{\Psi}_{ed,Na} \mathcal{\Psi}_{cp,Na}N_{ba}; k_{cp}(A_{Nc}/A_{Nco}) \mathcal{\Psi}_{ed,N} \mathcal{\Psi}_{cp,N}N_{b}] \text{ (Sec. 17.3.1 & Eq. 17.5.3.1a)}$

SIMPS	SIMPSON Anchor Designer™				Company:	AHBL		Date:	10/4/2022
Software					Engineer:	ADM		Page:	5/5
Strong	Tie So	ottware			Project:	Red Dot Equipm	6		
version 3.0.7775.0					Address:	Address: 2215 North 30th, Suite 300			
					Phone:	253.383.2422			
					E-mail:	dmceachern@ah	nbl.com		
Kcp	A№ (in²)	ANao (in²)	$\Psi_{ed,Na}$	$arphi_{cp,Na}$	Nba (Ib) <i>N</i> ª (lb)			
2.0	341.26	341.26	1.000	1.000	9362	9362			
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPhi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)	
324.00	324.00	1.000	1.000	1.000	12492	12492	0.70	13106	

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	5000	5138	0.97	Pass (Governs)
T Concrete breakout x+	5000	8784	0.57	Pass
Concrete breakout y-	5000	19520	0.26	Pass
Pryout	5000	13106	0.38	Pass

SET-XP w/ 3/4"Ø F1554 Gr. 36 with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- When cracked concrete is selected, concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limited to 2,500 psi per ICC-ES ESR-2508 Section 5.3.

- Per designer input, the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.4.2 for tension need not be satisfied – designer to verify.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

SIMPSON

Strong-I

Anchor Designer™ Software

Version 3.0.7775.0

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor Material: Steel Grade 5.8 Diameter (mm): 24 Effective Embedment depth, hef (inch): 11.339 Code report: ICC-ES ESR-3372 Anchor category: -Anchor ductility: No hmin (inch): 16.85 c_{ac} (inch): 16.02 Cmin (inch): 1.77 Smin (inch): 2.99

Recommended Anchor

Anchor Name: ET-HP® Metric - ET-HP w/ 24 mm Class 5.8 Code Report: ICC-ES ESR-3372

Company:	AHBL	Date:	10/4/2022
Engineer:	ADM	Page:	1/5
Project:	Red Dot Equipment Foundations		
Address:	2215 North 30th, Suite 300		
Phone:	253.383.2422		
E-mail:	dmceachern@ahbl.com		

Project description: Location: 720t Injection Press Anchorage Fastening description:

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 24.00 State: Cracked Compressive strength, f'c (psi): 3000 Ψ_{c,V}: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Hole condition: Dry concrete Inspection: Periodic Temperature range, Short/Long: 150/110°F Ignore 6do requirement: Not applicable Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 3.00 x 3.00 x 0.25

SIMPSON Anchor Designer™ Software Strong-Tie Version 3.0.7775.0

Company:	AHBL	Date:	10/4/2022
Engineer:	ADM	Page:	2/5
Project:	Red Dot Equipment Foundations		
Address:	2215 North 30th, Suite 300		
Phone:	253.383.2422		
E-mail:	dmceachern@ahbl.com		

Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: No Ductility section for tension: 17.2.3.4.2 not applicable Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

N_{ua} [lb]: 0 V_{uax} [lb]: 6900 Vuay [lb]: 0 M_{ux} [ft-lb]: 0 M_{uy} [ft-lb]: 0

Anchor Designer™ Software Version 3.0.7775.0

Company:	AHBL	Date:	10/4/2022
Engineer:	ADM	Page:	3/5
Project:	Red Dot Equipment Foundations		
Address:	2215 North 30th, Suite 300		
Phone:	253.383.2422		
E-mail:	dmceachern@ahbl.com		

<Figure 2>

SIMPSON	Anchor Designer	uchor Designer™	Company:	AHBL		Date:	10/4/2022	
			Engineer:	ADM		Page:	4/5	
Strong-Tie	Software		Project:	Red Dot Equipment Foundations 2215 North 30th, Suite 300				
8	Version 3.0.7775.0		Address:					
	~		Phone:	253.383.2422	253.383.2422			
			E-mail:	dmceachern@ahbl.co	m			
3 Resulting And	hor Forces							
Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)		Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (Ib)		mbined, (lb)	
1	0.0	6900.0		0.0	6900	.0		
Sum	0.0	6900.0		0.0	6900	.0		
Maximum concrete Maximum concrete Resultant tension Resultant compres Eccentricity of res	e compression strain (‰): 0.00 e compression stress (psi): 0 force (lb): 0 ssion force (lb): 0 ultant tension forces in x-axis, e'N	(inch): 0.00)	<figure 3=""></figure>		1		
Eccentricity of res	ultant tension forces in y-axis, e'N			\frown				

Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

V _{sa} (lb)	ϕ_{grout}	ϕ	$lpha_{V,seis}$	$\phi_{ ext{grout}} lpha_{ ext{V,seis}} \phi_{ ext{Vsa}} ext{(lb)}$
23830	1.0	0.60	0.85	12153

9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2)

Shear perp	hear perpendicular to edge in x-direction:										
$V_{bx} = \min[7($	$I_e / d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f}$	c c a1 ^{1.5} ; 9λa√ f ′c c	a₁ ^{1.5} (Eq. 17.5.2	.2a & Eq. 17.5.2	2.2b)						
I _e (in)	da (in)	λ_a	f′c (psi)	<i>c</i> a1 (in)	V _{bx} (lb)						
7.56	0.945	1.00	3000	9.00	13310						
$\phi V_{cbx} = \phi (A_{V})$	/c / Avco) $\Psi_{ed, V} \Psi_{c, v}$	$\Psi \Psi_{h,V} V_{bx}$ (Sec.	17.3.1 & Eq. 17.	5.2.1a)							
Avc (in ²)	Avco (in²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cbx} (lb)				
303.75	364.50	0.900	1.000	1.000	13310	0.70	6988				

Shear parallel to edge in y-direction:

$V_{bx} = \min[7(x)]$	le / da) ^{0.2} √daλa√f	°cCa1 ^{1.5} ; 9λa√ f °c0	Ca1 ^{1.5} (Eq. 17.5.2	.2a & Eq. 17.5.2	2.2b)			
le (in)	<i>d</i> ₄ (in)	λa	f'c (psi)	<i>Ca1</i> (in)	V _{bx} (lb)			
7.56	0.945	1.00	3000	9.00	13310			
$\phi V_{cby} = \phi$ (2)	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	ec. 17.3.1, 17.5.2	2.1(c) & Eq. 17.5	.2.1a)			
Avc (in²)	Avco (in²)	$\Psi_{\text{ed},V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
303.75	364.50	1.000	1.000	1.000	13310	0.70	15528	

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

 $\phi V_{cp} = \phi \min[k_{cp}N_a; k_{cp}N_{cb}] = \phi \min[k_{cp}(A_{Na}/A_{Na0})\Psi_{ed,Na}\Psi_{cp,Na}N_{ba}; k_{cp}(A_{Nc}/A_{Nco})\Psi_{ed,N}\Psi_{cp,N}N_{b}] \text{ (Sec. 17.3.1 & Eq. 17.5.3.1a)}$

SIMPSON Anchor Designer™						Company:	AHBL		Date:	10/4/2022
Anchol Designer				Engineer:	ADM		Page:	5/5		
Strong	Tie	Soliware				Project: Red Dot Equipment Foundations				
Version 3.0.7775.0					Address:	2215 North 30th, Suite 300				
						Phone:	253.383.2422			
						E-mail:	dmceachern@al	nbl.com		
Kcp	<i>A</i> № (in	1 ²)	ANao (in²)	$arPsi_{ed,Na}$	$\Psi_{cp,Ne}$	a N _{ba} (Ib) Na (lb)			
2.0	268.23	3	268.23	1.000	1.000) 14375	14375			
A_{Nc} (in ²)	Anco (i	n²)	$\Psi_{\text{ed},N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)	
676.41	1157.0	07	0.859	1.000	1.000	35551	17847	0.70	20124	

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	6900	12153	0.57	Pass
T Concrete breakout x+	6900	6988	0.99	Pass (Governs)
Concrete breakout y-	6900	15528	0.44	Pass (Governs)
Pryout	6900	20124	0.34	Pass

ET-HP w/ 24 mm Class 5.8 with hef = 11.339 inch meets the selected design criteria.

12. Warnings

- Per designer input, the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.4.2 for tension need not be satisfied – designer to verify.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

