THE APPROVED CONSTRUCTION PLANS, DOCUMENTS AND ALL ENGINEERING MUST BE POSTED ON THE JOB AT ALL INSPECTIONS IN A VISIBLE AND READILY ACCESSIBLE LOCATION.

FULL SIZED LEDGIBLE COLOR PLANS ARE REQUIRED TO BE PROVIDED BY THE PERMITEE ON SITE FOR INSPECTION

FOUNDATION ONLY PERMIT

PRCTI20221709

Structural Calculations

PREPARED FOR:

Red Dot Corporation Puyallup Corporate Center East Main Avenue at Linden Lane

PROJECT:

Red Dot Corporation Environmental Chamber Foundation 2220760.20

PREPARED BY:

Andrew McEachern, P.E., S.E. Principal

DATE:

December 2022

City of Puyallup Development & Permitting Services				
Building	Planning			
Engineering	Public Works			
Fire OF M	Traffic			

PRCTI20221709

Structural Calculations

For

Red Dot Corporation

Environmental Chamber Foundation

Project # 2220760.20

Project Principal

Andrew D. McEachern, P.E., S.E.

Design Criteria

Design Codes and Standards

<u>Codes and Standards</u>: Structural design and construction shall be in accordance with the applicable sections of the following codes and standards as adopted and amended by the local building authority: International Building Code, 2018 Edition.

Structural Design Criteria:

Live Loa	ad Criteria:						
	Roof (Min Blanket Snow):			25 psf			
	Slab on Grade:						
Wind Lo	oad Criteria:						
	Basic Wind Speed:			97 mph			
	Risk Category:			II			
	Wind Exposure:			В			
	Topographic Factor:			1.0			
<u>Seismic</u>	<u>Criteria:</u>						
	Risk Category:			II			
	Seismic Importance Factor:			1.0			
	S _s = 1.258	S ₁	=	0.433			
	$S_{ds} = 1.006$	S_{d1}	=	N/A			
	Site Class:			D			
	Seismic Design Category:			D			

Soil Criteria:

Based on Geotechnical Engineering Report by: Terra Associates Inc, dated September 2019.

Soil Bearing Capacity: 2,500 psf when sitting on 2 feet of structural fill on the previously preloaded side. Allow 33% increase for loads from wind or seismic origin.

Project Description

The scope of work for this project involves the structural design of foundations required to support a proposed Environmental Chamber. The Environmental Chamber consists of a new freestanding room / piece of equipment, which will be located within an existing building.

The proposed Environmental Chamber is a relatively lightweight system of insulated wall and ceiling panels. The anticipated loads will fall within the minimum 350 psf uniform load specified for the original 7" thick concrete slab on grade. Equipment anchorage will be provided to meet the manufacturer's minimum recommendations. The Environmental Chamber is a self-supporting / freestanding element, which will be internally braced. Loads from the new Chamber will not be braced into the existing building structure. All of the Environmental Chamber loads will be delivered directly into the building slab on grade.

It is the intention of the structural design to satisfy the force levels of the IBC 2018.

City of Puyallup Development & Permitting Services ISSUED PERMIT			
Building	Planning		
Engineering	Public Works		
Fire OF W	Traffic		

PRCTI20221709

- FIELD VERIFY ALL DIMENSIONS SHOWN W/ EQUIPMENT MFR

- MIN CONCRETE STRENGTH (f'c) 6,000 psi

- VERIFY ANCHORAGE REQUIREMENTS W/ EQUIPMENT MFR

- VERIFY SUBGRADE REQUIREMENTS AND SURFACE PREPARATION WITH GEOTECH AND EQUIPMENT MFR.

- PROVIDE GEOPIERS OR EQUIVALENT BELOW FDN PER GEOTECH IF NECESSARY TO MEET SLAB DEFLECTION REQUIREMENTS.

SSK-02

- FIELD VERIFY ALL DIMENSIONS SHOWN W/ EQUIPMENT MFR

- MIN CONCRETE STRENGTH (f'c) 6,000 psi

- VERIFY ANCHORAGE REQUIREMENTS W/ EQUIPMENT MFR

- VERIFY SUBGRADE REQUIREMENTS AND SURFACE PREPARATION WITH GEOTECH AND EQUIPMENT MFR.

- PROVIDE GEOPIERS OR EQUIVALENT BELOW FDN PER GEOTECH IF NECESSARY TO MEET SLAB DEFLECTION REQUIREMENTS.

SSK-03

Load & Capacity Table

d - Slab Thickness

	Pla	te (in)	R1 ^A	oplied C	oncent	trated L	_oad or	n Plate -	(kip)	Governing	Pu	Pn	
Load ID	Wid	Lèn	(in)	D	Lr	L	S	W	Е	Ld Comb	(kip)	(kip)	Check
Point Load	4.00	4.00	2.00	10.00						D Only	10.0	166.1	Pass, FS=16.61 >= 3
	PRC	TI202	22170	99						FACTOR OF EXCEEDS 3: LOAD INDIC/	SAFETY 1 FOR PC ATED		
								VER	PO A 4'	INT LOAD APPL " x 4" FOOTPRIN	IED IT		

City of Puyallup Development & Permitting Services ISSUED PERMIT				
Building	Planning			
Engineering	Public Works			
Fire OF W	Traffic			

Load & Capacity Table

d - Slab Thickness

City of Puyallup Development & Permitting Services ISSUED PERMIT				
Building	Planning			
Engineering	Public Works			
Fire OF W	Traffic			

Wall F	ooting									Project File	2220760.2	20.ec6
LIC# : KW-	06014847, Build:20.22.	8.17			AHB	BL, INC)			(c) ENER	CALC INC 19	983-2022
DESCF	RIPTION: Enviro	o Chan	nber Wall	_oad			PRC	FI202	21709			
DESIGN	SUMMARY									De	sian OK	
	Factor of Safety	Item	1		Applied			(Capacity	Governing L	oad Comb	ination
PAS	S n/a	Overt	urning - Z-Z		0.0	k-ft			0.0 k-ft	No O	verturning	
PAS	s n/a	Sliding	a - X-X		0.0	k			0.0 k	No	Slidina	
PAS	S n/a	Uplift	5		0.0	k			0.0 k	Ν	o Uplift	
	Utilization Ratio	lterr	1		Applied			(Capacity	Governing L	oad Comb	ination
DAS	c 0.6338	Soil B	ooring		1 585	kef			2 50 kcf	eerening 2		
	0.0000	7 501 5			0 7007	1.4			2.30 KSI	.1.0		
PAS	0.3117		ure (+X)		0.7297	K-IL			2.341 K-II	+1.2	UD+1.60L	
PAS	S 0.1448	Z Flex	ure (-X)		0.3389	k-ft			2.341 k-ft	+	0.90D	
PAS	S 0.240	1-way	Shear (+X)		22.766	psi			94.868 psi	+1.2	0D+1.60L	
PAS	S 0.2215	1-way	Shear (-X)		21.015	psi			94.868 psi	+1.2	0D+1.60L	
Detailed	Results											
Soil Bea	ring											
Rotation Loa	Axis & d Combination			Gr	oss Allowable		Xecc		Actual Soil B -X	earing Stress +X	Actual / Al Rati	lowable o
. D Only					2.50 ksf		0.0 i	n	1.085 ksf	1.085 ksf		0.434
, +D+L					2.50 ksf		0.0	n	1.585 ksf	1.585 ksf		0.634
, +D+0.7	'50L				2.50 ksf		0.0 i	n	1.460 ksf	1.460 ksf		0.584
, +0.60D)				2.50 ksf		0.0 i	n	0.6508 ksf	0.6508 ksf		0.260
Overturnin	ng Stability										Units : k-	ft
Rotation Load	Axis & d Combination			Over	turning Momen	ıt		Resis	ting Moment	Stability Ratio	Stat	tus
Footing Sliding Sta	Has NO Overturning ability											
Force A	pplication Axis				liding Earoa			Baa	icting Force	Sliding SofotyPo	tio Chat	
Loa				3	liding Force			Res	Isting Force	Shung Saletyka	lio Stat	us
Footing I	Has NO Sliding											
- ooting 11			Mu W	hich .	Tension @ Bot	۵s	Rea'd	G	vrn As	Actual As	Phi*Mn	
Flexure	Axis & Load Comb	ination	k-ft S	ide ?	or Top ?	i	in^2	•	in^2	in^2	k-ft	Status
+1 40D			0 5272	-X	Bottom		0 0294	Min f	or Bendina	0 1333	2 341	OK
, +1.40D)		0.5272	+X	Bottom		0.0294	Min fo	or Bending	0.1333	2.341	OK
, +1.20D	+1.60L		0.7297	-X	Bottom		0.0408	Min fo	or Bending	0.1333	2.341	OK
, +1.20D	+1.60L		0.7297	+X	Bottom		0.0408	Min fo	or Bending	0.1333	2.341	OK
, +1.20D	+0.50L		0.5387	-X	Bottom		0.0301	Min fo	or Bending	0.1333	2.341	OK
, +1.20D	+0.50L		0.5387	+X	Bottom		0.0301	Min fo	or Bending	0.1333	2.341	OK
, +1.20D)		0.4519	-X	Bottom		0.0252	Min fo	or Bending	0.1333	2.341	OK
, +1.20D)		0.4519	+X	Bottom		0.0252	Min fo	or Bending	0.1333	2.341	OK
, +0.90D)		0.3389	-X	Bottom		0.0189	Min fo	or Bending	0.1333	2.341	OK
, +0.90D			0.3389	+X	Bottom		0.0189	Min fo	or Bending	0.1333	2.341	OK
One Way S	Shear										Units : k	
Load Co	ombination	V	u @ -X	Vu @	+X	Vu:	Max		Phi Vn	Vu / Phi*Vn	St	atus
+1.40D			15.184 ps	si	16.45 psi		16.45	psi	94.868 psi	0.1734		OK
+1.20D+	1.60L		21.015 ps	si 2	2.766 psi		22.766	psi	94.868 psi	0.24		OK
+1.20D+	0.50L		15.515 ps	si 1	6.808 psi		16.808	psi	94.868 psi	0.1772		OK
+1.20D			13.015 ps	si .	14.1 psi		14.1	psi	94.868 psi	0.1486		OK
+0.90D			9 761 ns	si 1	0.575 nsi		10 575	nsi	94 868 psi	0 1115		OK

- 1. STRUCTURAL NOTES
- 1.1. ANY DISCREPANCY FOUND AMONG THE DRAWINGS, SPECIFICATIONS, THESE NOTES, AND THE SITE CONDITIONS SHALL BE REPORTED TO THE ARCHITECT AND THE STRUCTURAL ENGINEER, WHO SHALL CORRECT SUCH DISCREPANCY IN WRITING. ANY WORK DONE BY THE CONTRACTOR AFTER DISCOVERY OF SUCH DISCREPANCY SHALL BE DONE AT THE CONTRACTOR'S RISK. THE CONTRACTOR SHALL VERIFY AND COORDINATE THE DIMENSIONS AMONG ALL DRAWINGS PRIOR TO PROCEEDING WITH ANY WORK OR FABRICATION. THE CONTRACTOR IS RESPONSIBLE FOR ALL ERECTION BRACING, FORMWORK AND TEMPORARY CONSTRUCTION SHORING.
- 1.1.1. THE CONTRACTOR SHALL NOT SCALE THE ARCHITECTURAL AND STRUCTURAL DRAWINGS FOR LOCATIONS OF ELEMENTS NOTED ABOVE.
- 1.1.2. ELECTRONIC COPIES OF THE STRUCTURAL DRAWINGS (PDF'S, CAD DRAWINGS OR BIM MODELS) MAY BE PROVIDED TO THE CONTRACTOR FOR THEIR USE. THESE FILES MAY BE PROVIDED AT THE REQUEST OF THE CONTRACTOR FOR THEIR CONVENIENCE ONLY. THE CONTRACTOR AGREES THAT THESE FILES SHALL NOT SUPERSEDE INFORMATION SHOWN ON THE ORIGINAL BID/ CONSTRUCTION DOCUMENTS. THE CONTRACTOR AGREES TO HOLD THE STRUCTURAL ENGINEER HARMLESS FOR ANY ERRORS OR DISCREPANCIES CONTAINED WITHIN THESE ELECTRONIC FILES.
- 1.2. CODES
- ALL METHODS, MATERIALS AND WORKMANSHIP SHALL CONFORM TO 1.2.1. THE 2015 INTERNATIONAL BUILDING CODE (IBC) AS AMENDED AND ADOPTED BY THE LOCAL BUILDING AUTHORITY.
- ALL REFERENCES TO OTHER CODES, STANDARDS AND 1.2.2. SPECIFICATIONS, (ACI, ASTM, ETC.), SHALL BE FOR THE EDITION CURRENTLY REFERENCED BY IBC AS AMENDED AND ADOPTED BY THE LOCAL BUILDING AUTHORITY.
- 1.3. DESIGN CRITERIA

1.3.1. UNIFORM LOADS:

LOCATION	LIVE LOAD	DEAD LOAD
ROOF	25 PSF (SNOW*)	ACTUAL
SLAB ON GRADE (STRUCTURAL)	7" SLAB = 350PSF	ACTUAL

* THIS IS NOT A GROUND SNOW LOAD

- 1.3.2. CONCENTRATED LOADS: ALL MANUFACTURERS OF PRE-ENGINEERED COMPONENTS OR SYSTEMS SHALL LOCATE, COORDINATE, VERIFY WEIGHTS, ETC., OF MECHANICAL UNITS OR OTHER CONCENTRATED LOADS AND DESIGN THEIR SYSTEM FOR THESE LOADS.
- 1.3.3.

WIND LOADS 30):	(PER IBC SECTION 1609	AND ASCE 7 C	HAPTERS 26 THR
ULTIMATE I	DESIGN WIND SPEED (\	/ _{ult}):	110 MPH
RISK CATE	GORY		I
WIND EXPO	SURE:		В
APPLICABL PRESSURE	E INTERNAL COEFFICIENT:		+/-0.18
TOPOGRAF	PHIC FACTOR (K _{zt})		1.0 (FLAT)
COMPONENT TO BE USED I CLADDING M/	S AND CLADDING: ULTI FOR THE DESIGN OF EX ATERIALS IS AS FOLLO	MATE DESIGN V (TERIOR COMP VS:	VIND PRESSURES ONENT AND
ZONE:1	+/- 23 PSF (10 SQ FT)		
ZONE:2	+/- 39 PSF (10 SQ FT)		
ZONE:3	+/- 59 PSF (10 SQ FT)		
ZONE:4	+/- 23 PSF (10 SQ FT)		
ZONE:5	+/- 28 PSF (10 SQ FT)		
SEISMIC LOA THRU 13):	DS (PER IBC SECTION 1	613 AND ASCE	7 CHAPTERS 11
RISK CATE	GORY:		I
SEISMIC IM	PORTANCE FACTOR (I.):	1.0
S _s :			1.257
S ₁ :			0.433
SITE CLASS	S:		D
S _{DS} :			0.838
S _{D1} :			0.452
SEISMIC DE	ESIGN CATEGORY:		D
SEISMIC RE	ESPONSE COEFFICIENT	(C _s):	0.168
ANALYSIS I	PROCEDURE USED:		EQUIVALENT LATERAL FORCE PROCEDURE

SEISMIC FORCE-	RESPONSE	OVERSTRENGTH	
RESISTING SYSTEM	MODIFICATION	FACTOR, Ω_0	
	COEFFICIENT, R		

1. SPECIAL REINFORCED CONCRETE SHEAR WALLS

5 NOTE: TABULATED OVERSTRENGTH FACTOR HAS BEEN REDUCED IN ACCORDANCE WITH ASCE 7 TABLE 12.2-1 FOOTNOTE G FOR STRUCTURES WITH FLEXIBLE DIAPHRAGMS.

2

1.4. STATEMENT OF SPECIAL INSPECTIONS

SEE STATEMENT OF SPECIAL INSPECTION AND TESTING SHEET S0.2.

1.5. SHOP DRAWINGS

1.3.4.

- 1.5.1. SUBMIT SHOP DRAWINGS TO THE ARCHITECT/ENGINEER FOR THE FOLLOWING:
 - A. CONCRETE MIX DESIGN SUBMITTALS
 - B. REINFORCING STEEL
 - C. STRUCTURAL AND MISCELLANEOUS STEEL INCLUDING WELD INSERTS AND ANCHORS
- D. PRE-ENGINEERED STEEL JOISTS AND JOIST GIRDERS *
- E. TILT UP WALLS
- F. PRE-ENGINEERED STEEL STAIRS & CANOPIES * * DEFERRED SUBMITTALS: PRE-ENGINEERED ITEMS SHALL BE SUBMITTED TO THE BUILDING OFFICIAL AFTER REVIEW BY THE

ENGINEER OF RECORD AS A DEFERRED SUBMITTAL.

1.5.2	5.2. SHOP DRAWING REVIEW NOTES	3.4. ADMI	XTURES	5. METALS		
	A. ENGINEER OF RECORD SHALL REVIEW SHOP DRAWINGS FOR GENERAL CONFORMANCE WITH THE PROJECT CONSTRUCTION	3.4.1	WATER REDUCING ADMIXTURE: ASTM C494. ADMIXTURES SHALL BE USED IN EXACT ACCORDANCE WITH MANUFACTURER'S	5.1. STRUC 5.1.1.	TURAL STEEL GENERAL REQUIREMENTS ALL DETAILING. FABRICATION, AND ERECTION S	SHALL CONFORM TO
	B. ENGINEER OF RECORD REVIEW OF SHOP DRAWINGS SHALL NOT RELIEVE THE GENERAL CONTRACTOR OF THEIR RESPONSIBILITY	3.4.2	INSTRUCTIONS. WATER REDUCING ADMIXTURES SHALL BE USED AT ALL HEAVILY CONGESTED AREAS (I.E. CONCRETE WALLS WITH REINFORCING		AISC 360-10 "SPECIFICATION FOR STRUCTURAL AISC 341-10 "SEISMIC PROVISIONS FOR STRUC BUILDINGS" AND AISC 303-10 "CODE OF STAND/	_ STEEL BUILDINGS", TURAL STEEL ARD PRACTICE FOR
	FOR REVIEW OF THE SHOP DRAWINGS FOR COMPLIANCE WITH THE PROJECT REQUIREMENTS.	3.4.3	SPACING OF 4" OR LESS) CONCRETE USING ADMIXTURES TO PRODUCE FLOWABLE CONCRETE		STEEL BUILDINGS AND BRIDGES" EXCEPT AS A STRUCTURAL NOTES.	MENDED BY THESE
	C. APPROVAL OF THE SHOP DRAWINGS BY THE ENGINEER OF RECORD SHALL NOT BE CONSIDERED AS A GUARANTEE BY THE ENGINEER THAT THE SHOP DRAWINGS COMPLY WITH ALL PROJECT	3.4.4	MAY BE USED SUBJECT TO ENGINEER'S APPROVAL. AIR ENTRAINMENT: ASTM C260 AND ASTM C494 ENTRAIN 5% PLUS/MINUS 1.5% BY VOLUME IN ALL CONCRETE EXPOSED TO	5.2. STRUC 5.2.1.	TURAL STEEL STEEL W SHAPES SHALL BE ASTM A992 F _y =50 K AND PLATES SHALL BE ASTM A36 F _v =36 KSI.	SI. OTHER SHAPES
	D. CONCURRENT SHOP DRAWING REVIEW SHALL ONLY BE PERMITTED IF APPROVED BY THE ARCHITECT/ENGINEER OF RECORD PRIOR TO	3.4.5	WEATHER. NO OTHER ADMIXTURES PERMITTED UNLESS APPROVED BY THE	5.2.2.	RECTANGULAR HOLLOW STEEL SECTIONS (HS SECTIONS (TS) SHALL BE ASTM A500, GRADE B	S) OR TUBE STEEL , F _y =46 KSI (F _y =42 KSI
1.6 MIS	THE START OF SHOP DRAWING REVIEW.	3.5. FORM	IWORK AND SHORING	5.2.3.	BOLTS	
1.6.1	6.1. VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD.	3.5.1	FOLLOW RECOMMENDED PRACTICE FOR CONCRETE FORMWORK (ACI-347).		A. MACHINE BOLTS NOT SPECIFIED AS HIGH ST ASTM A-307 GRADE A.	RENGTH SHALL BE
1.6.2	 6.2. VERIFY SIZE AND LOCATION OF ALL OPENINGS IN THE FLOORS, ROOF AND WALLS WITH ARCHITECTURAL, MECHANICAL AND ELECTRICAL DRAWINGS. 6.3 CONSTRUCTION DETAILS NOT SPECIFICALLY SHOWN ON THE 	3.5.2	ALL SHORING SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. FORMWORK SUPPORTS SHALL BE DESIGNED TO PROVIDE FINISHED CONCRETE SURFACES AT ALL FACES LEVEL, PLUMB AND TRUE TO THE DIMENSIONS AND ELEVATIONS SHOWN. TO FRANCES AND		B. HIGH STRENGTH BOLTS SHALL BE ASTM F31: GRADE A490 AS INDICATED ON STRUCTURAL BOLTS SHALL BE CONSIDERED BEARING TYP INCLUDED IN SHEAR PLANE (CONNECTION T	25 GRADE A325 OR L DRAWINGS. ALL PE WITH THREADS
1.6.	DRAWINGS SHALL FOLLOW SIMILAR DETAILS OF SECTIONS OF THIS PROJECT AS APPROVED BY THE ARCHITECT/ ENGINEER.		VARIATIONS SHALL BE AS SPECIFIED. A SHORING PLAN, STAMPED BY A LICENSED PROFESSIONAL ENGINEER SHALL BE SUBMITTED TO THE ENGINEER FOR APPROVAL.		OTHERWISE. ALL HIGH STRENGTH BOLTED (BE INSTALLED WITH NUTS CONFORMING TO HARDENED WASHERS CONFORMING TO AST	CONNECTIONS SHALL ASTM A563 AND M F436.
1.0.4	DIMENSIONS AND LOCATIONS OF OPENINGS NOT DIMENSIONED OR SHOWN ON STRUCTURAL PLANS.	3.6. REIN 3.6.1	FORCING STEEL: DETAIL, FABRICATE, AND PLACE PER ACI-315 AND ACI-318. SUPPORT		C. ALL HIGH STRENGTH BOLTS SHALL BE INSTA SPECIFICATION FOR STRUCTURAL JOINTS US BOI TS (LATEST EDITION) BY THE RESEARCH	LLED PER THE SING HIGH-STRENGTH COUNCIL ON
1.6.5	6.5. SEE ARCHITECTURAL, MECHANICAL AND ELECTRICAL DRAWINGS FOR LOCATIONS AND WEIGHTS OF ALL MECHANICAL AND ELECTRICAL FOUIPMENT INCLUDING HOUSEKEEPING PADS	3.6.2	REINFORCEMENT WITH APPROVED CHAIRS, SPACERS, OR TIES. DEFORMED BAR REINFORCEMENT: ASTM A615 GR 60	524	STRUCTURAL CONNECTIONS (WWW.BOLTCO	DUNCIL.ORG).
1.6.6	6.6. FOR PIPES, CONDUITS, DUCTS AND MECHANICAL EQUIPMENT	3.6.3	WELDABLE DEFORMED BAR REINFORCEMENT: ASTM A706 GR 60 WHERE NOTED ON STRUCTURAL DRAWINGS	0.2.4.	A. THREADED RODS SHALL BE ALL-THREAD. (F_y	=36 KSI) U.N.O.
	METAL AND AIR CONDITIONING CONTRACTORS NATIONAL ASSOCIATION, INC., PUBLICATION "APPENDIX E: SEISMIC RESTRAINT	3.6.4	WELDED WIRE FABRIC: ASTM A-185 & ASTM A-82 Fy=65 KSI		B. WELDED HEADED STUDS: "NELSON STUDS" S STUD WELDING, INC. OR APPROVED EQUIVAL	SHALL BE BY NELSON LENT COMPLYING WITH
	MANUAL GUIDELINES FOR MECHANICAL SYSTEMS." ALL BRACING AND SUPPORTS SHALL BE DESIGNED FOR SEISMIC HAZARD LEVEL	3.6.5 3.6.6	DEFORMED BAR ANCHORS: ASTM A-496 EXCEPT AS NOTED SPECIFICALLY ON THE DRAWINGS, ALL CONCRETE		C. ANCHOR RODS: ANCHOR RODS SHALL BE AS	-" OF 65 KSI. STM F 1554, F _y =36 KSI.
	(SHL) B. SPRINKLER LINE ATTACHMENTS SHALL CONFORM TO NFPA PAMPHLET 13.		REINFORCEMENT SHALL BE LAP-SPLICED AS FOLLOWS: #6 AND SMALLER 48 X BAR DIAMETER		D. EXPANSION ANCHORS SHALL BE CARBON ST FOLLOWING TABLE. ANCHORS IN CONCRETE	TEEL AS NOTED IN THE E SHALL HAVE BEEN
1.6.7	6.7. THE STRUCTURE HAS BEEN DESIGNED TO RESIST CODE REQUIRED VERTICAL AND LATERAL FORCES AFTER THE CONSTRUCTION OF ALL		NO MORE THAN 50% HORIZONTAL OR VERTICAL BARS SHALL BE SPLICED AT ONE LOCATION		TESTED IN ACCORDANCE WITH ACI 355.2 ANI CRACKED CONCRETE AND SEISMIC APPLICA	D/OR ICC-ES AC193 FOF TIONS. ANCHORS
	STRUCTURAL ELEMENTS HAS BEEN COMPLETED. STABILITY OF THE STRUCTURE PRIOR TO COMPLETION IS THE SOLE RESPONSIBILITY OF THE GENERAL CONTRACTOR. THIS RESPONSIBILITY INCLUDES BUT IS	3.6.7	EXCEPT AS NOTED SPECIFICALLY ON THE DRAWINGS, PROVIDE CORNER BARS TO MATCH QUANTITY AND DIAMETER OF HORIZONTAL		SHALL HAVE A CURRENT CODE REPORT THA CURRENT EDITION OF THE IBC AND SHALL BI THE SEISMIC DESIGN CATEGORY NOTED IN I	T COMPLIES WITH THE E RATED FOR USE IN THE DESIGN CRITERIA
	NOT LIMITED TO JOB SITE SAFETY: ERECTION MEANS, METHODS, AND SEQUENCES; TEMPORARY SHORING, FORMWORK, AND		REINFORCEMENT AND LAP WITH HORIZONTAL REINFORCEMENT AS FOLLOWS:		SECTION OF THESE NOTES.	
	BRACING; USE OF EQUIPMENT AND CONSTRUCTION PROCEDURES. WHERE SHORING IS REQUIRED, A SHORING PLAN, STAMPED BY A LICENSED PROFESSIONAL/STRUCTURAL ENGINEER SHALL BE		#6 AND SMALLER 48 X BAR DIAMETER THESE CORNER BARS SHALL BE PLACED AT ALL CORNERS AND INTERSECTIONS IN CONCRETE FOOTINGS AND WALLS.		EXPANSION ANCHORS IN CONCRETE	CODE REPORT
\sim		3.6.8	LAP WELDED WIRE FABRIC 12" OR ONE SPACING PLUS 2", WHICHEVER IS MORE.			
. SITE PREI	REPARATION/SOIL REMEDIATION	3.7. CON OTHE	RETE COVER ON REINFORCING SHALL BE AS FOLLOWS (UNLESS SHOWN RWISE):		SIMPSON STRONG-BOLT 2	ICC ESR-3037
Z.1. SUIL	LLOWABLE SOIL PRESSURE 2500 PSF WHEN SITTING ON 2' OF STRUCTURAL		BOTTOM OF FOOTINGS 3" FORMED FARTH FACE 2"		DEWALT/POWERS POWER-STUD+ SD2	ICC ESR-2502
FILL OR 3 ASS	LL AND PRELOADED SITE. ALLOW 33-1/3% INCREASE FOR LOADS FROM WIND R SEISMIC ORIGIN. SEE GEOTECHNICAL ENGINEERING REPORT BY TERRA SSOCIATES INCLATED SEPTEMBER 2019. SEE GEOTECH REPORT FOR ALL		WALLS, WEATHER FACE1-1/2"WALLS, INSIDE FACE1"		E. ADHESIVE ANCHORS SHALL BE THREADED A	ANCHOR RODS OR
SUB	UBGRADE PREPARATION REQUIREMENTS AS WELL AS CAPILLARY BREAK AND APOR BARRIER RECOMMENDATIONS.	3.8. CON	TRUCTION AND CONTROL JOINTS		THE FOLLOWING TABLE. ANCHORS IN CONC BEEN TESTED IN ACCORDANCE WITH ACI 355	RETE SHALL HAVE 5.4 AND/OR ICC-ES AC-
1 2.2. Exe		3.8.1	UNLESS NOTED OTHERWISE, LOCATION OF THE CONSTRUCTION OR CONTROL JOINTS IN SLAB ON GRADE SHALL NOT EXCEED THE		308 FOR CRACKED CONCRETE AND SEISMIC ANCHORS SHALL HAVE A CURRENT CODE RE	APPLICATIONS. EPORT THAT COMPLIES
EXC EXC OR CAR	XCAVATE TO DEPTH SHOWN AND TO FIRM UNDISTURBED MATERIAL. OVER- XCAVATIONS SHALL BE BACKFILLED WITH LEAN CONCRETE (f _c =500-1200 PSI) R STRUCTURAL FILL AT THE CONTRACTOR'S EXPENSE. EXERCISE EXTREME ARE DURING EXCAVATION TO AVOID DAMAGE TO BURIED LINES, TANKS, AND		DISTANCES NOTED BELOW. JOINTS SHALL BE LOCATED ON COLUMN GRIDS OR UNDER PERMANENT PARTITIONS TO THE GREATEST EXTENT POSSIBLE. ADDITIONAL JOINTS SHALL BE REQUIRED AT REENTRANT CORNERS AND CORNERS OF SLAB DEPRESSIONS OR		WITH THE CURRENT EDITION OF THE IBC AND USE IN THE SEISMIC DESIGN CATEGORY NOT CRITERIA SECTION OF THESE NOTES.	D SHALL BE RATED FOR TED IN THE DESIGN
	THER CONCEALED ITEMS. UPON DISCOVERY, DO NOT PROCEED WITH WORK NTIL RECEIVING WRITTEN INSTRUCTIONS FROM THE ARCHITECT. A		PENETRATIONS. SEE ARCHITECTURAL DRAWINGS FOR JOINT LAYOUT AT EXPOSED CONCRETE CONDITIONS. PROVIDE JOINT		ADHESIVE ANCHORS	CODE
EXC	CAPETENT REPRESENTATIVE OF THE OWNER SHALL INSPECT ALL FOOTING XCAVATIONS FOR SUITABILITY OF BEARING SURFACES PRIOR TO PLACEMENT F REINFORCING STEEL, PROVIDE DRAINAGE AS NECESSARY TO AVOID		SEALANT PER SPECIFICATIONS - INSTALL PER MANUFACTURER RECOMMENDATIONS.			REPORT
WAT		3.9. CONI	7" SLAB ON GRADE 20'-0" O.C. MAX DUIT AND PIPING EMBEDDED IN CONCRETE		HILTI HIT HY-200 SAFE SET	ICC ESR-3187
BAC	ACKFILL AGAINST WALLS SHALL NOT BE PLACED UNTIL AFTER THE REMOVAL	3.9.1	ELECTRICAL CONDUIT SHALL NOT BE PLACED WITHIN A SLAB ON GRADE. BUT PLACED BELOW THE SLAB IN THE SUB-BASE.		DEWALT/POWERS PURE 110+	ICC ESR-3298
RET	ETAINING WALLS OR BASEMENT WALLS SHALL BE FREE DRAINING GRANULAR ATERIAL. STRUCTURAL FILL OTHER THAN PEA GRAVEL SHALL BE GRANULAR	3.10. GRO	JT FOR BEARING PLATES			SE ΜΔΤΕΡΙΔΙ
PLA DRY	LACED IN 6-INCH LIFTS AND COMPACTED TO AT LEAST 95% OF ITS MAXIMUM RY DENSITY AS DETERMINED BY ASTM D-1557 (MOD PROCTOR). PEA GRAVEL	THE (MAS	NON-SHRINK GROUT SHALL MEET ASTM C1107 GRADE B OR EQUIVALENT TERFLOW 928 BY BASF OR APPROVED EQUIVALENT). GROUT SHALL BE A		TEMPERATURE IS ABOVE 50 DEGREES FAHR EMBEDMENT GREATER THAN 12-INCHES FOF	ENHEIT OR FOR R LONGER GEL TIME.
FILL	LL SHALL HAVE A MAXIMUM PARTICLE SIZE OF 3/8" DIAMETER.	MIXE	D, PLACED AND CURED AS RECOMMENDED BY THE MANUFACTURER. PRESSIVE STRENGTH SHALL EXCEED 6000 PSI AT 28 DAYS.		SEE ICC ESR-2508 (CONC) AND IAPMO ER-265 F. POWDER ACTUATED FASTENERS: PDF'S OR	5 (MASONRY). PAF'S SHALL BE A
STRUCTU		3.11. TILT-	JP CONCRETE WALLS		MINIMUM 0.157" DIA KNURLED SHANK FASTEI FOLLOWING TABLE, UNLESS NOTED OTHERV	NER AS NOTED IN THE VISE. FASTENERS
3.1. GEN	ENERAL LL CONCRETE SHALL BE HARD ROCK CONCRETE MEETING THE	3.11.	I. TYPICAL AND SPECIAL REINFORCEMENT SHOWN ON PANEL ELEVATIONS IS DESIGNED FOR FORCES OCCURRING AFTER PANEL IS IN PLACE AND TIED TO ROOF AND FLOOR DIAPHRAGMS. LISE		DRIVEN INTO STEEL SHALL BE DRIVEN SO TH FASTENER COMPLETELY PENETRATES THE S AT TOPPING SLABS, PT SLABS OR SLABS WIT	HAT THE POINT OF THE STEEL BASE MATERIAL. TH RADIANT HEAT
REG FOR SHA	EQUIREMENTS OF ACI-301, "SPECIFICATIONS FOR STRUCTURAL CONCRETE OR BUILDINGS." PROPORTIONING OF INGREDIENTS FOR EACH CONCRETE MIX HALL BE BY METHOD 2 OR THE ALTERNATE PROCEDURE GIVEN IN ACI-301		STRONGBACKS AND EXTRA REINFORCEMENT AS REQUIRED AND DIRECTED BY PANEL LIFT INSERT MANUFACTURER/SUPPLIER FOR		TUBES EMBEDDED WITHIN THE SLAB, LIMIT T TO 3/4" MAXIMUM AND COORDINATE WITH TE	THE PDF PENETRATION
PLA	LACE CONCRETE PER ACI-304 AND CONFORM TO ACI-604 (306) FOR WINTER ONCRETING AND ACI-605 (305) FOR HOT WEATHER CONCRETING. USE		ERECTION PURPOSES. LIFT INSERT MANUFACTURER/SUPPLIER SHALL ANALYZE PANELS FOR ADEQUACY DURING COMPLETE LIFTING		PLACEMENT AND COVER.	
INTE NOT	ITERIOR MECHANICAL VIBRATORS WITH 7,000 RPM MINIMUM FREQUENCY. DO OT OVER-VIBRATE. CONCRETE SHALL BE PLACED MONOLITHICALLY BETWEEN		TRANSPORT (WALKING) OF PANELS.		POWDER ACTUATED FASTENERS	CODE REPORT
PRE	REMATURE DRYING, EXCESSIVE HOT OR COLD TEMPERATURE FOR SEVEN AYS AFTER PLACING	3.11.	2. ALL PANEL DIMENSIONS ON FOUNDATION PLANS ARE TO CENTER LINES OF CONNECTIONS UNLESS NOTED OTHERWISE. DO NOT SCALE PANEL ELEVATIONS		HILTI X-U	ICC ESR-2269
3.2. STR	TRENGTH	3.11.	B. DO NOT CUT OR DRILL PANELS WITHOUT APPROVAL OF ENGINEER		SIMPSON PDPA	ICC ESR-2138
TWE	WENTY-EIGHT DAY COMPRESSIVE STRENGTHS SHALL BE AS FOLLOWS: SI ABS ON GRADE 4000 PSI	3.11.4	I. SEE ARCH FOR FINISHES, CURING, ETC.		DEWALT/POWERS CSI PIN	ICC ESR-2024
	FOOTINGS 3000 PSI	3.11.	 GROUT UNDER PANEL WITH A 9-SACK PEA GRAVEL CONCRETE GROUT MIX (fc=5000 PSI AT 28 DAYS). 	5.2.5	METAL PROTECTION: ALL STEEL EXPOSED TO	WEATHER. MOISTURF
	VERTICALLY FORMED WALLS 4000 PSI TILT UP WALL PANELS 4000 PSI	3.11.	5. PANELS DRAWN SHOW TYPICAL LOCATIONS OF PANEL CONNECTIONS AND ADDITIONAL REINFORCING FOR MOST PANEL OPENINGS NOT	0.2101	SOIL, OR AS NOTED SHALL BE GALVANIZED PEI AS APPLICABLE. ALL OTHER STEEL SURFACES	R ASTM A-123 OR A153 SHALL BE SHOP
CON 318	ONCRETE SUPPLIER TO PROVIDE TEST RECORDS PER SECTION 26.4 OF ACI		ALL EMBEDDED ITEMS AND MECHANICAL AND ELECTRICAL PENETRATIONS ARE SHOWN. CONTRACTOR SHALL COORDINATE		PRIMED AFTER FABRICATION. REPAIR ALL DAMAGED AREAS OF GALVANIZED	PARTS SUCH AS FIELD
3.3. MAT	ATERIALS		PENETRATIONS WITH MECHANICAL AND ELECTRICAL AND REINFORCING PER PLANS.		WELDS, ETC. APPLY REPAIR COATING THICKNI OR EQUAL TO ORIGINAL ZINC COATING THICKN	ESS GREATER THAN IESS.
3.3.7	3.1. CEMENT: ASTM C150, TYPE I OR TYPE II. ENGINEER'S APPROVAL IS NEEDED FOR USE OF TYPE III CEMENT.	3.11.	7. GENERAL CONTRACTOR SHALL INCLUDE AN ALLOWANCE FOR STACKING OF PANELS OR RAT SLABS AS REQUIRED WHERE	5.2.6.	STEEL COLUMNS: ALL VERTICAL LOAD CARRYII BEEN NOTED AS "COLUMNS" ON THE STRUCTU	NG MEMBERS HAVE RAL DRAWINGS. THIS
3.3.2	3.2. COARSE AND FINE AGGREGATE: ASTM C33. 3.3. WATER SHALL BE CLEAN AND POTABLE		ADEQUATE CASTING AREA IS NOT AVAILABLE AT INTERIOR BUILDING SLAB ON GRADE AREAS.		NOTATION DOES NOT IDENTIFY THESE MEMBER "COLUMNS" AS DEFINED BY THE LATEST OSHA	KS AS "POSTS" OR RULES REGARDING 29 CER DARTS 1026 754
3.3.4	3.4. FLYASH: ASTM C618 CLASS C OR CLASS F				AND 1926.755). THE GENERAL CONTRACTOR, S STEEL ERECTOR SHALL BE RESPONSIBLE TO D	ZE OFREARIS 1920.751 TEEL DETAILER, AND DETERMINE THE
3.3.5	3.5. GROUND GRANULATED BLAST FURNACE SLAG (GGBFS): SHALL NOT BE PERMITTED.				CORRECT OSHA DESIGNATION OF EACH MEMB THE NOTATION SHOWN ON THE STRUCTURAL I	ER REGARDLESS OF DRAWINGS.

- BE PERMITTED.

PRE-ENGINEERED STEEL STAIRS AND CANOPIES: THE 5.2.7. MANUFACTURER SHALL SUBMIT SHOP DRAWINGS AND CALCULATIONS SEALED BY A PROFESSIONAL ENGINEER LICENSED IN THE STATE OF THE PROJECT.

- 5.3. WELDING
- 5.3.1. ALL WELDING SHALL BE IN ACCORDANCE WITH THE "STRUCTURAL WELDING CODE," AWS D1.1, AWS D1.4 AND AWS D1.8 AS APPROPRIATE.
- 5.3.2. ALL WELDING SHALL BE BY CERTIFIED WELDERS; USE 70 KSI LOW HYDROGEN FILLER METAL, AND SHALL BE PROTECTED PER AWS D1.1 UNTIL USE. FOR ALL FULL PENETRATION WELDS, FILLER METAL SHALL BE NOTCH TOUGH TO MEET CHARPY V-NOTCH OF 20 FOOT-POUND AT -20°F.
- 5.3.3. NO WELDING OF REINFORCING STEEL SHALL BE ALLOWED EXCEPT WHERE SHOWN. ALL WELDING OF REINFORCEMENT SHALL BE PER ANSI/AWS D1.4. THE FOLLOWING FILLER METAL SHALL BE USED WHEN WELDING REINFORCEMENT:
 - A. FOR WELDING OF ASTM A706 GR 60 REBAR, 80 KSI FILLER METAL.
 - B. FOR WELDING OF ASTM A615 GR 60 REBAR, NOT PERMITTED.
- C. FOR WELDING OF ASTM A615 GR 40 REBAR, NOT PERMITTED. 5.3.4. ALL FULL PENETRATION FIELD AND SHOP WELDS SHALL BE FULL TIME INSPECTED AND TESTED BY NON-DESTRUCTIVE PROCEDURES. RESULTS OF TESTS SHALL BE SUBMITTED FOR REVIEW BY THE
- STRUCTURAL ENGINEER.
- 5.4. WELDING PROCEDURE SPECIFICATION (WPS)
- 5.4.1. FOR ALL WELDING OF REINFORCING STEEL AND NON PREQUALIFIED WELDS CONTRACTOR SHALL SUBMIT A WELDING PROCEDURE SPECIFICATION (WPS) TO ENGINEER FOR APPROVAL. PRIOR TO WELDING, EACH WPS SHALL INCLUDE ALL NECESSARY INFORMATION REQUIRED BY AWS D1.1, AWS D1.4 AND AWS D1.8 AND AS FOLLOWS:
 - A. APPLICABLE BASE METAL TYPES AND THICKNESSES.
 - B. SKETCH OF JOINT INDICATING APPLICABLE DIMENSIONS. INDIVIDUAL PASSES SHALL BE IDENTIFIED AND NUMBERED TO IDENTIFY THE SEQUENCE. THE SKETCH SHALL IDENTIFY THE MAXIMUM THICKNESS AND BEAD WIDTH. IN NO CASE SHALL THE LAYER THICKNESS EXCEED 1/4" NOR THE BEAD WIDTH EXCEED 5/8." C. PREHEAT REQUIREMENTS.
 - D. ELECTRICAL CHARACTERISTICS (I.E., CURRENT, VOLTAGE, TRAVEL
 - SPEED, ETC.). E. ELECTRODE REQUIREMENTS SHALL MEET THE REQUIREMENTS OF
 - AWS A5.1, AWS A5.5, AWS A5.17, AWS A5.23, AWS A5.18, AWS A5.20, AWS A5.28, AND AWS A5.29, AS APPLICABLE FOR WELDING METHOD USED.
- 5.5. STEEL JOISTS AND JOIST GIRDERS
- 5.5.1. DESIGN LOADS SHALL BE AS STATED IN THE DESIGN CRITERIA SECTION OF THESE NOTES PLUS ANY SPECIAL LOADS INDICATED ON THE DRAWINGS. UNLESS OTHERWISE NOTED, MINIMUM DESIGN LOADS SHALL INCLUDE:
 - A. WHERE PRIMARY ROOF MEMBERS ARE EXPOSED TO A WORK FLOOR A SINGLE NON-CONCURRENT CONCENTRATED LIVE LOAD OF 2000 LBS SHALL BE LOCATED AT ANY PANEL POINT ALONG THE TRUSS BOTTOM CHORD.
 - B. AT ROOF JOISTS AND JOIST GIRDERS, A MINIMUM NET UPLIFT LOAD OF 10 PSF.
- 5.5.2. STEEL JOISTS AND JOIST GIRDERS SHALL BE MANUFACTURED PER THE LATEST EDITION OF THE STANDARD SPECIFICATIONS FOR STEEL JOISTS AND JOIST GIRDERS PUBLISHED BY THE STEEL JOIST INSTITUTE.
- 5.5.3. ALL STEEL JOISTS AND JOISTS GIRDERS SHALL BE MANUFACTURED BY A FABRICATOR CURRENTLY APPROVED BY ICC (INTERNATIONAL CODE COUNCIL). MANUFACTURER SHALL BE A MEMBER OF SJI, AND ALL STEEL JOISTS AND JOIST GIRDERS SHALL BE SJI APPROVED.
- 5.5.4. THE MANUFACTURER SHALL SUBMIT SHOP DRAWINGS AND CALCULATIONS SEALED BY A PROFESSIONAL ENGINEER LICENSED IN THE STATE OF THE PROJECT.
- 5.5.5. IT SHALL BE THE RESPONSIBILITY OF THE MANUFACTURER, THE GENERAL CONTRACTOR, AND THE ERECTOR TO MANUFACTURE AND INSTALL ALL STEEL JOISTS AND JOIST GIRDERS IN CONFORMANCE WITH THE MOST CURRENT OSHA RULES (OSHA 29 CFR PART 1926.757).
- 5.5.6. LIMIT LIVE LOAD AND/OR SNOW LOAD DEFLECTION TO L/240 FOR ROOF FRAMING MEMBERS.
- 5.5.7. THE JOIST MANUFACTURER SHALL DESIGN THE JOISTS FOR UNIFORM LOADS INDICATED ON THE STRUCTURAL DRAWINGS AS WELL AS ALL SPECIAL LOADS NOTED ON THE STRUCTURAL PLANS AND DETAILS. SPECIAL LOADS SHALL INCLUDE POINT LOADS FOR SUPPORT OF SECONDARY FRAMING, OVERFRAMING AND SUPPORTED EQUIPMENT (MECHANICAL UNITS, SUSPENDED EQUIPMENT, ETC.).
- 5.5.8. THE JOIST MANUFACTURER SHALL COORDINATE JOIST BRIDGING AT EXPOSED LOCATIONS FOR ARCHITECTURAL APPEARANCE. BRIDGING LOCATIONS SHALL ALSO BE COORDINATED TO AVOID CONFLICTS WITH MECHANICAL DUCTWORK, SKYLIGHTS AND OTHER BUILDING SYSTEMS.

6. CARPENTRY

DIMENSION LUMBER SHALL BE DF.#2 SAWN LUMBER BEAMS, HEADERS AND COLUMNS SHALL BE DF#2 OR AS SHOWN ON THE DRAWINGS. ALL 2" NOMINAL LUMBER SHALL BE KILN DRIED (KD). EACH PIECE OF LUMBER SHALL BEAR STAMP OF WEST COAST LUMBER INSPECTION BUREAU (WCLIB) AND/OR WESTERN WOOD PRODUCTS ASSOCIATION (WWPA) SHOWING GRADE MARK.

- 6.1. PRESSURE-PRESERVATIVE TREATMENT IN ACCORDANCE WITH AMERICAN WOOD PROTECTION ASSOCIATION (AWPA) STANDARD U1, LATEST EDITION TO THE USE CATEGORY AS FOLLOWS:
- 6.1.1. TREAT ALL WOOD IN CONTACT WITH CONCRETE, MORTAR, GROUT, MASONRY AND WITHIN 12" OF EARTH TO THE REQUIREMENTS OF USE CATEGORY UC2 (INTERIOR/DAMP).

6.2. CARPENTRY HARDWARE

- 6.2.1. MACHINE BOLTS SHALL BE ASTM A-307.
- 6.2.2. PROVIDE MALLEABLE IRON WASHERS (MIW) OR HEAVY PLATE CUT WASHERS WHERE BOLT HEADS, NUTS OR LAG SCREWS BEAR ON WOOD.
- 6.2.3. NAILS SHALL BE COMMON, AMERICAN OR CANADIAN MANUFACTURER ONLY WITH MIN. DIAMETERS AS FOLLOWS:

NAIL SIZE	MINIMUM NAIL SHANK DIAMETER	MINIMUM NAIL LENGTH	
3d	0.131"	2 1/2"	- City
10d	0.148"	3"	Development
12d	0.148"	3 1/4"	/ISSI
16d SINKER	0.148"	3 1/4"	Building
16d	0.162"	3 1/2"	Engineerii
20d	0.192"	4"	Fire

PRCTI20221709

NELSOR

Nelco Architecture, Inc.

1200 Fifth Ave. Suite 1300 Seattle, WA 98101 Phone: (206) 408-8500 WWW.NELSONWORLDWIDE.COM

P A N A T T O N I[®]

PANATTONI DEVELOPMENT 1821 DOCK ST SUITE 100 TACOMA, WA 98402

PUYALLUP CORPORATE CENTER

EAST MAIN AVENUE AT LINDEN LANE PUYALLUP, WASHINGTON

 $\overline{1}$

Description	
PERMIT SUBMITTAL	
PRICING SET	
PERMIT RESUBMITTAL	

Date 04/03/2020 07/21/2020 08/24/2020

2215 North 30th Street, Suite 300 Tacoma, WA 98403 253.383.2422 TEL 253.383.2572 FAX www.ahbl.com WEB

STRUCTURAL NOTES

Proj. No: 2190390.20 Reviewed By: LAH/CLR

FOOTING SCHEDULE				
MARK	SIZE	REINFORCING	REMARKS	
F6.0	6'-0" x 6'-0" x 1'-2"	(7) #5 EACH WAY AT BOTTOM OF FOOTING		
F7.5	7'-6" x 7'-6" x 1'-4"	(7) #6 EACH WAY AT BOTTOM OF FOOTING		

FOOTINGS SCHEDULE NOTES:

- 1. TOP OF FOOTING ELEVATION = -1'-0" UNLESS NOTED OTHERWISE ON PLAN.
- 2. FOOTING DESIGN BASED ON 2500 PSF ALLOWABLE SOIL BEARING PRESSURE.
- 3. EQUALLY SPACE REINFORCING IN EACH DIRECTION.
- 4. PROVIDE 3" CLEAR TO REINFORCING AT BOTTOM OF FOOTING.

FOUNDATION NOTES:

- 1. SEE SHEET S0.1 AND S0.2 FOR GENERAL NOTES. SEE SHEET S0.4 FOR TYPICAL DETAILS. SEE SHEET S0.3 FOR TESTING AND INSPECTION NOTES.
- 2. SEE GEOTECHNICAL ENGINEERING REPORT FOR ALL FOUNDATION AND SLAB SUPPORT REQUIREMENTS. THIS INCLUDES ALL EXCAVATION, FILL AND FILL PLACEMENT REQUIREMENTS.
- 3. SEE ARCHITECTURAL/MECHANICAL DRAWINGS FOR DRAINS, SLOPES, AND OTHER FLOOR DEPRESSIONS NOT SHOWN.
- 4. SEE ARCHITECTURAL DRAWINGS FOR DIMENSIONS, ELEVATIONS, AND WALLS NOT SHOWN.
- 5. VERIFY ALL WINDOW AND DOOR WIDTH AND HEIGHTS WITH ARCHITECTURAL DRAWINGS.
- 6. SEE ARCHITECTURAL DRAWINGS FOR STUD SIZE, SPACING, AND CALLOUTS AT NON-STRUCTURAL WALLS. 7. FOR TYPICAL CONNECTION OF NON-LOAD BEARING WALLS TO SLAB, USE POWER
- ACTUATED FASTENERS AT 16" O.C. 8. PANEL DIMENSIONS SHOWN ARE TO CENTERLINE OF PANEL JOINT. SEE ARCHITECTURAL DRAWINGS FOR ADDITIONAL PANEL DIMENSIONS.
- 9. ELEVATIONS OF PANELS ARE SHOWN STARTING ON SHEET S5.1 THROUGH S5.6.
- 10. UNLESS NOTED OTHERWISE, TILT-UP PANEL ELEVATIONS SHOW PANELS VIEWED FROM INSIDE OF BUILDING LOOKING TOWARDS BUILDING EXTERIOR.
- 11. POUR STRIP CONTROL JOINTS, LOCATE AT PANEL JOINTS AND MIDWAY BETWEEN. AT TURNS IN POUR STRIP ADD JOINTS FROM MAIN SLAB TO OUTSIDE WALL.
- 12. SEE 1/S3.2 FOR TRASH ENCLOSURE. SEE ARCHITECTURAL SITE PLAN FOR LOCATION.

LEGEND:

TILT-UP CONCRETE WALL. FOR REINFORCING REQUIREMENTS AND JOINT LOCATIONS, SEE TILT-UP CONCRETE PANEL ELEVATIONS ON SHEETS S5.1 THRU S5.6.

PANEL JOINT BETWEEN TILT-UP CONCRETE WALL PANELS.

Nelco Architecture, Inc.

NELSON

1200 Fifth Ave. Suite 1300 Seattle, WA 98101 Phone: (206) 408-8500 WWW.NELSONWORLDWIDE.COM

PANATTONI DEVELOPMENT 1821 DOCK ST SUITE 100 TACOMA, WA 98402

PUYALLUP CORPORATE CENTER

EAST MAIN AVENUE AT LINDEN LANE PUYALLUP, WASHINGTON

Description:	IN
PERMIT SUBMITTAL	
PRICING SET	
PERMIT RESUBMITTA	L

Date: △ 04/03/2020 07/21/2020 08/24/2020

2215 North 30th Street, Suite 300 Tacoma, WA 98403 253.383.2422 TEL 253.383.2572 FAX www.ahbl.com WEB

OVERALL FOUNDATION PLAN

Proj. No: 2190390.20

Reviewed By: LAH/CLR

S1.0

PRCTI20221709

	
S1.4	S1.1
S1.3	S1.2

KEY PLAN

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

Search Information

Coordinates:	47.19119836700967, -122.2611706795929
Elevation:	55 ft
Timestamp:	2022-10-05T02:44:43.491Z
Hazard Type:	Wind

Mao data ©2022 Imagery ©2022, Maxar Technologies, U.S. Geological Survey, USDA/FPAC/GEO

ASCE 7-16		ASCE 7-10		ASCE 7-05	
MRI 10-Year 67	mph	MRI 10-Year	72 mph	ASCE 7-05 Wind Speed	85 mph
MRI 25-Year 73	3 mph	MRI 25-Year	79 mph		
MRI 50-Year 78	3 mph	MRI 50-Year	85 mph		
MRI 100-Year 82	2 mph	MRI 100-Year	91 mph	PRCTI20221709	
Risk Category I	2 mph	Risk Category I	100 mph		
Risk Category II 97	mph	Risk Category II	110 mph		
Risk Category III 104	mph	Risk Category III-IV	115 mph		
Risk Category IV 108	3 mph				

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination services verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of select the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information interpreting and applying the output of this website does not imply approval by the governing building code approval and interpretation for the building site described by latitude/longitude location in the report.

A This is a beta release of the new ATC Hazards by Location website. Please <u>contact us</u> with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Search Information

Coordinates:	47.19119836700967, -122.2611706795929
Elevation:	55 ft
Timestamp:	2022-10-05T02:47:09.267Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	II
Site Class:	D-default

Survey, USDA/FPAC/GEO

PRCTI20221709

Basic Parameters

Name	Value	Description
S _S	1.258	MCE _R ground motion (period=0.2s)
S ₁	0.433	MCE _R ground motion (period=1.0s)
S _{MS}	1.509	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	1.006	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1.2	Site amplification factor at 0.2s
Fv	* null	Site amplification factor at 1.0s
CR _S	0.914	Coefficient of risk (0.2s)
CR ₁	0.898	Coefficient of risk (1.0s)
PGA	0.5	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA

https://hazards.atcouncil.org/#/seismic?lat=47.19119836700967&lng=-122.2611706795929&address=

PGA _M	0.6	Site modified peak ground acceleration	
ΤL	6	Long-period transition period (s)	
SsRT	1.258	Probabilistic risk-targeted ground motion (0.2s)	PRCTI20221709
SsUH	1.376	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)	
SsD	1.5	Factored deterministic acceleration value (0.2s)	
S1RT	0.433	Probabilistic risk-targeted ground motion (1.0s)	
S1UH	0.482	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)	
S1D	0.6	Factored deterministic acceleration value (1.0s)	
PGAd	0.5	Factored deterministic acceleration value (PGA)	

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

September 27, 2019 Project No. T-8222

3.3 Groundwater

We observed light to moderate groundwater seepage in 6 of the 14 test pits at depths ranging from 7.5 to 10 feet below existing site grades. Additionally, we observed wet soil from 7.5 to 10 feet in 8 of the test pits. We performed two pore water dissipation tests. One at CPT-1 and one at CPT-5. Based on the test results, the static groundwater level was indicated to be at a depth of four to seven feet below current site grades. Fluctuations in the static groundwater level will occur seasonally. Based on the time of year of our testing, we expect the groundwater levels indicated to be near their seasonal lows. Typically, groundwater will reach maximum levels during the wet winter months.

3.4 Seismic

Liquefaction is a phenomenon where there is a reduction or complete loss of soil strength due to an increase in water pressure induced by vibrations. Liquefaction mainly affects geologically recent deposits of fine-grained sands underlying the groundwater table. Soils of this nature derive their strength from intergranular friction. The generated water pressure or pore pressure essentially separates the soil grains and eliminates this intergranular friction; thus, eliminating the soil's strength.

We completed a liquefaction analysis using the computer program LiquefyPro published by CivilTech Corporation. The analysis was completed using a ground acceleration value of 0.55g, which is the ASCE 7-16 site-modified peak ground acceleration value (PGA_M) determined using the map-based online ground motion parameter calculator at https://seismicmaps.org/ for Latitude 47.191033°N and Longitude 122.261465°W. The results of the liquefaction analysis are attached in Appendix B.

The results of our analysis indicate soil liquefaction could occur during the design earthquake event. Analysis indicates that liquefaction of the alluvial soil layers could result in total settlements between three and three and one half inches, half of which could be differential. If unmitigated, these settlements would result in some cracking of building walls and floor slabs, as well as distortion of doors and windows, but would not structurally impair the building's use, in our opinion. If the Owner is not willing to accept the risk associated with the potential settlements due to liquefaction of the site soils, the building should be supported on densified aggregate piers.

Based on the soil conditions encountered and the local geology, the 2018 International Building Code (IBC) indicates that site class "D" should be used in structural design.

4.0 DISCUSSION AND RECOMMENDATIONS

4.1 General

Based on our study, in our opinion, development of the site as proposed is feasible from a geotechnical engineering standpoint. The primary geotechnical concern at the site is the presence of compressible soil strata susceptible to consolidation under the planned fill placement and building loads. If unmitigated, compression of these city of Povalue under project loads would result in unacceptable levels of differential settlement.

Development & Permitting Services ISSUED PERMIT	
Building	Planning
Engineering	Public Works
Fire OF W	Traffic

4.4 Foundations

Spread Footings

The industrial building may be supported on conventional spread footing foundations bearing on foundation subgrade prepared as recommended in Section 4.2 of this report. Perimeter foundations exposed to the weather should bear at a minimum depth of 1.5 feet below final exterior grades for frost protection. Interior foundations can be constructed at any convenient depth below the floor slab.

Following the completion of a successful surcharge program, we recommend designing foundations for a net allowable bearing capacity of 2,500 pounds per square foot (psf). For short-term loads, such as wind and seismic, a one-third increase in this allowable capacity can be used in design. Following successful completion of the surcharge program, with structural loading as anticipated and this bearing stress applied, estimated immediate foundation settlements of about 1-inch and differential settlement of ½-inch should be expected.

For designing foundations to resist lateral loads, a base friction coefficient of 0.35 can be used. Passive earth pressures acting on the sides of the footings can also be considered. We recommend calculating this lateral resistance using an equivalent fluid weight of 300 pounds per cubic foot (pcf). We recommend not including the upper 12 inches of soil in this computation because it can be affected by weather or disturbed by future grading activity. This value assumes the foundations will be backfilled with structural fill, as described in Section 4.2 of this report. The values recommended include a safety factor of 1.5.

Ground Improvement

As discussed above, as a foundation support alternative in lieu of implementing a surcharge fill program, we recommend using ground improvement techniques to establish support for conventional spread footing designs. Methods that could be considered include vibrated stone columns or aggregate rammed piers. Both of these methods create highly densified columns of graded aggregate that would extend through the upper softer soils into the underlying medium dense soils.

Because of the methods used to construct the columns, some improvement of the adjacent soils is also realized. Moreover, these methods can provide liquefaction mitigation by providing drainage paths and reduced pore pressures during ground shaking, and by constructing relatively high strength, non-liquefiable inclusions in the soils. Once constructed, conventional spread footing foundations can be designed to bear immediately above the stone column/aggregate pier locations.

These ground improvement techniques are typically completed on a design/build approach with both design and construction completed by a specialty contractor. We can assist in selecting the specialty contractor, if desired.

4.5 Slab-on-Grade Floors

Slab-on-grade floors may be supported on a subgrade as recommended in Section 4.2. Immediately below the floor slab, we recommend placing a four-inch thick capillary break layer composed of clean, coarse sand or fine grave that has less than three percent passing the No. 200 sieve. This material will reduce the potential Performent A period in Section 200 sieve. This material will reduce the potential Performent A period is severe through the underlying soil and subsequent wetting of the floor slab.

The capillary break layer will not prevent moisture intrusion through the slab caused by water vapor transmission. Where moisture by vapor transmission is undesirable, such as covered floor areas, a common practice is to place a durable plastic membrane on the capillary break layer and then cover the membrane with a layer of clean sand or fine gravel to protect it from damage during construction, and to aid in uniform curing of the concrete slab. It should be noted that if the sand or gravel layer overlying the membrane is saturated prior to pouring the slab, it will not be effective in assisting uniform curing of the slab and can actually serve as a water supply for moisture bleeding through the slab, potentially affecting floor coverings. Therefore, in our opinion, covering the membrane with a layer of sand or gravel should be avoided if floor slab construction occurs during the wet winter months and the layer cannot be effectively drained. We recommend floor designers and contractors refer to the current American Concrete Institute (ACI) Manual of Concrete Practice for further information regarding vapor barrier installation below slab-on-grade floors.

4.6 Infiltration Feasibility

Based on our study, it is our opinion that subsurface conditions are generally not favorable for infiltration of site stormwater. The native soils observed at the site contain a high percentage of soil fines that would impede any downward migration of site stormwater. Additionally, mottling was observed that indicates a shallow groundwater table develops at the site that would further impede any stormwater migration. Even low impact development (LID) techniques would likely fill up and overtop during rain events and cause minor local flooding. The USDA Natural Resources Conservation Service (NRSC) categorizes the soils at the lower southern portion of the site as Briscot loam. These soils fall into Hydrologic Group C as outlined in Table B.5 in Appendix III-B of the 2015 Pierce County Stormwater and Site Development Manual (PCSSDM) and are classified as having low infiltration rates when wetted. Based on these soil conditions, it is our opinion that the stormwater should be managed using a conventional system.

4.7 Lateral Earth Pressures

The magnitude of earth pressure development on retaining walls will partly depend on the quality of wall backfill. Where fill is placed behind retaining walls, we recommend placing and compacting it as structural fill as described in Section 4.2. To guard against the build-up of hydrostatic pressure, wall drainage must also be installed. We recommend that wall drainage consist of a minimum 12-inch thick layer of washed gravel placed adjacent to the wall. Alternatively, a composite drainage panel such as Mirafi G100N or equal can be used. A four-inch diameter perforated pipe should be placed on a bed of gravel along the base of the wall footing and directed to a suitable outlet. A typical wall drainage detail is attached as Figure 4.

With granular backfill placed and compacted as recommended and drainage properly installed, we recommend designing restrained (not free to deflect) retaining walls for an at-rest earth pressure equivalent to a fluid weighing 50 pcf. A value of 35 pcf may be used for the case where the wall is unrestrained. These values do not include other surcharge loading such as from fill backslopes or adjacent footings that may act on the wall. If such conditions will exist, then the imposed loading must be included in wall design. Values of friction at the base include foundations and passive earth pressure that are used in design to resist lateral loads are provided in Building Planning Pl