City of Puyallup Development \& Permitting Services ISSUED PERMIT	
Building	Planning
Engineering	Public Works
Fire	Traffic

Pioneer Park Restroom

Puyallup, WA
THE APPROVED CONSTRUCTION
PLANS AND ALL ENGINEERING
DOCUMENTS MUST BE POSTED ON THE
JOB AT ALL INSPECTIONS IN A VISIBLE
AND READILY ACCESSIBLE LOCATION.

Structural Calculations

CALCULATIONS INCLUDED:

Pages A01 through D07

These Calculations cover the structural design of the Pioneer Park Restroom renovation which includes a new wood framed roof, wood columns, wood walls and shear walls, and concrete footings and a slab on grade.

1601 5th Avenue, Suite 1600
Seattle, WA 98101 206.622.5822
KPFF Project No. 2200191
6/10/2022

TABLE OF CONTENTS

A. Project Overview

1. Design Criteria \& Loads .. Page A01
B. Gravity Design
2. Design Summary ... Page B02
3. Roof Framing Design.. Page B05
4. Column Design.. Page B08
5. Non-Load Bearing Wall Design... Page B16
C. Lateral Design
6. Design Summary ... Page C02
7. Shear Wall Design ... Page C03
D. Foundation Design
8. Design Summary .. Page D02
9. Continuous Footing Design.. Page D03

Chapter A Design Criteria

Pioneer Park Restroom Upgrade Design Criteria and Loads

KPFF Project No. 2200191
March 30, 2022

1601 Fifth Avenue, Suite 1600
Seattle, WA 98101
(206) 622-5822

TABLE OF CONTENTS

STRUCTURAL DESIGN AND SYSTEMS SUMMARY
 CODES AND REFERENCES
 COMPUTER PROGRAMS USED
 MATERIALS SPECIFICATIONS AND STRENGTHS
 BEAM DEFLECTION

LIVE LOADS
DEAD LOADS

- Exterior Wall Dead Loads
- Typical Floor and Roof Dead Loads

LATERAL LOADS

- Wind Loading for the Main Wind Force-Resisting System (MWFRS)
- Seismic Loading for Building
- Seismic Structural Irregularities
- Seismic Drift Limitations
- Seismic Loading for Elements of Structure and Nonstructural Components

STRUCTURAL DESIGN AND SYSTEMS SUMMARY

The project comprises of upgrading an existing 1-story restroom located in Puyallup Pioneer Park, Washington.

Gravity System

The gravity system consists of concealed conventionally framed wood construction with $5 / 8^{\prime \prime}$ tongue-and-groove plywood supported by 2×12 joists @ 24 " oc. Roof joists are flush-framed with $5-1 / 8^{\prime \prime} \times 12^{\prime \prime}$ glue laminated beams (24FV4) at approximately $10^{\prime}-0^{\prime \prime}$ centers. The beams will be supported by HSS columns concealed in the exterior stud walls.

Lateral System

The lateral system consists of light-framed shear panels consisting of 15/32" plywood sheathing over wood studs.

Foundations

Foundations consist of continuous wall footings at exterior and interior walls.

Slabs on Grade

The first floor shall consist of slab on grade poured over a 10-mil vapor barrier and a 4" capillary break. 5-inch slabs on grade are recommended where concrete will be exposed with crack control joints spaced at 12'-0" centers maximum. Reinforce slabs on grade with \#4 @ 18" o.c. each way centered. All exposed slabs on grade to be polished concrete.
Existing slabs on grade will receive a $1 / 2^{\prime \prime}$ cementitious overlay which will be polished.

CODES AND REFERENCES

- 2018 IBC with City of Puyallup Amendments
- 2018 IBC Standards
- Design Loads
- ASCE/SEI 7-16, Minimum Design Loads for Buildings and Other Structures
- Snow Load Analysis for Washington, Second Edition (1995), by Structural Engineers Association of Washington.
- WABO-SEAW White Paper - Snow Load Regulations and Engineering Practice, Washington State (2000)
- WABO-SEAW White Paper \#8 - Guidelines for Determining Snow Loads in Washington State (2010)
- Concrete Design
- ACI 318-14 Building Code Requirements for Structural Concrete
- CRSI Design Handbook (2008)
- AWS D1.4-11 Structural Welding Code - Reinforcing Steel
- Masonry Design
- TMS 402-16 Building Code for Masonry Structures
- TMA 602-16 Specification for Masonry Structures
- Structural Steel Design
- AISC 360-16 Specification for Structural Steel Buildings
- AISC 341-16 Seismic Provisions for Structural Steel Buildings
- AWS D1.1-15 Structural welding Code - Steel
- Wood Design
- ANSI/AWC NDS-2018 National Design Specification for Wood Construction with 2018 Supplement
- ANSI/AWC SDPWS-2015 Special Design Provisions for Wind and Seismic

COMPUTER PROGRAMS USED

- Concrete Analysis and Design
- Hilti PROFIS Engineering
- Wood Analysis and Design
- Forteweb

MATERIALS SPECIFICATIONS AND STRENGTHS

See Structural Notes.

Foundations and Soils

See Structural Notes.

BEAM DEFLECTION

Deflection Criteria

L/360
L/240

Live Load on Beams (uno)
Superimposed Dead + Live Load on Beams (uno)

LIVE LOADS

Roof
20 psf. For wood roofs (reducible per IBC Section 1607.9)
25 psf. Snow Load (nonreducible)
Drifted Snow per ASCE 7, Section 7 - Ground Snow Load $=20$ psf., $I_{s}=1.0$

DEAD LOADS

Exterior Wall Dead Loads

Comments

Curtain Wall/Windows
Metal Panels/Louvers
8" CMU Solid Grouted Walls
4" Brick
3 CM Stone (including 6 psf - backup structure)
(180 pcf stone weight)

Typical Floor and Roof Dead Loads

Refer to the following pages for typical floor and roof dead loads.

Typical Roof Loads

- Wood Framing (Roof)

3/4" Plywood
Comments

Framing
Superimposed Loads
a. Lights, Ducts, Sprinklers

Partitions (seismic contribution)

Search Information

Address:	324 S Meridian, Puyallup, WA 98371, USA
Coordinates:	$47.1895579,-122.2954133$
Elevation:	47 ft
Timestamp:	$2022-03-29 T 19: 35: 39.398 Z$
Hazard Type:	Snow

ASCE 7-16
Ground Snow Load
The reported ground snow load apdies at
the query location of 47 feet up to a
maximum elevation of 40 feet with a

ASCE 7-10

Ground Snow Load ... A $15 \mathrm{lb} / \mathrm{sqft}$
The reported ground snow load applies at the query location of 47 feet up to a maximum elevation of 400 feet.

ASCE 7-05

Ground Snow Load $15 \mathrm{lb} / \mathrm{sqft}$
The reported ground snow load applies at the query location of 47 feet up to a maximum elevation of 400 feet. tolerance of 100 feet.

MIN GROUND The results indicated here DO NOT reflect any state pr local a SNOW OF 20 PSF code adoption process. Users should confirm any outpułebta proceeding with design.
/ delineation lines made during the building Authority Having Jurisdiction before

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Chapter 17.04
 BUILDING CODES

Sections:
17.04.010 Short title.
17.04.020 Purpose.
17.04.030 Adoption of codes by reference.
17.04.040 Local amendments of International Building Code.
17.04.050 Local amendments of International Residential Code.
17.04.060 Conflicts between codes.
17.04.070 Definitions.
17.04.080 Fees.
17.04.090 Construction plans.
17.04.100 Professional services.
17.04.110 Contractor registration.
17.04.120 Expiration of applications, permits or approvals.
17.04.130 Violation and enforcement.
17.04.140 Appeals.

17.04.010 Short title.

This title is known as and may be referred to as the "building code of the city of Puyallup." (Ord. 2962 § 6, 2010).

17.04.020 Purpose.

The purpose of this chapter is to promote the health, safety and welfare of the occupants or users of buildings and structures and the general public by the provision of building codes that are mandated throughout the state. (Ord. 2962 § 6, 2010).
17.04.030 Adoption of codes by reference.

The city of Puyallup hereby adopts the following codes by reference, which are incorporated herein, as they currently exist or are hereafter amended:
(1) The current edition of the International Building Code, published by the International Code Council, Inc., as adopted by the Washington State Building Code Council in Chapter 51-50 WAC. The following appendix of the International Building Code is specifically adopted in its entirety:
(a) Appendix E: Supplementary Accessibility Requirements.
(2) The current edition of the International Residential Code, published by the International Code Council, Inc., as adopted by the Washington State Building Code Council in Chapter 51-51 WAC.
(3) The current edition of the International Mechanical Code, published by the International Code Council, Inc., as adopted by the Washington State Building Code Council in Chapter 51-52 WAC, except that the standards for liquefied petroleum gas installations shall be NFPA 58 (Storage and Handling of Liquefied Petroleum Gases) and ANSI Z223.1/NFPA 54 (National Fuel Gas Code).
(4) The current edition of the International Fuel Gas Code published by the International Code Council, Inc., as adopted by the Washington State Building Code Council in Chapter 51-52 WAC.
(5) Except as provided in RCW 19.27.170, the current edition of the Uniform Plumbing Code and Uniform Plumbing Code Standards, published by the International Association of Plumbing and Mechanical Officials, as adopted by the Washington State Building Code Council in Chapters 51-56 and 51-57 WAC.
(6) The rules adopted by the Washington State Building Code Council establishing standards for making buildings and facilities accessible to and usable by the physically disabled or elderly persons as provided in RCW $\underline{70.92 .100}$ through $\underline{70.92 .160}$, as they now exist or are hereafter amended.
(7) The current edition of the Washington State Energy Code, as adopted by the State Building Code Council in Chapter 51-11 WAC.
(8) The current edition of the National Electric Code, published by the National Fire Protection Association, as adopted by the Department of Labor and Industries in Chapter 296-46B WAC, and Chapter 19.28 RCW.
(9) The 2012 Edition of the International Property Maintenance Code published by the International Code Council, Inc., effective July 1, 2013, and any subsequent editions published by the International Code Council, Inc., effective July 1st of the following calendar year. (Ord. 3043 § 4, 2013; Ord. 2962 § 6, 2010).

17.04.040 Local amendments of International Building Code.

The International Building Code adopted by reference in this chapter is hereby amended as follows:
(1) International Building Code (IBC) Section 101.1, entitled "Title," is hereby amended to read as follows:

These regulations shall be known as the Building Code of the City of Puyallup, Washington, hereinafter referred to as "this code."
(2) IBC Section 104, entitled "Duties and Powers of Building Official," is hereby amended to add the following new subsection 104.12:

Sec. 104.12 Lot lines and setback lines. Notwithstanding the authority of the building official to administer and enforce the building code, the building official shall have no duty to verify or establish lot lines or setback lines. No such duty is created by this code, and none shall be implied.
(3) IBC Section 113, "Board of Appeals," is hereby amended to delete subsection 113.3, entitled "Qualifications."
(4) IBC Section 1612.3, regarding the establishment of flood hazard areas, is amended to read as follows:

Section 1612.3. To establish flood hazard areas, the City Council hereby adopts the flood hazard map and supporting data identified by the Federal Emergency Management Agency in an engineering report entitled "The Flood Insurance Study for the City of Puyallup," initially adopted in PMC 21.07.040, as it currently exists or may be subsequently amended.
(Ord. 3043 § 5, 2013; Ord. 2962 § 6, 2010).

17.04.050 Local amendments of International Residential Code.

The International Residential Code adopted in this chapter is hereby amended as follows.
(1) Section R104, entitled "Duties and Powers of Building Official," is hereby amended to add subsection R104.12:

Section R104.12 Lot lines and setback lines. Notwithstanding the authority of the building official to administer and enforce the building code, the building official shall have no duty to verify or establish lot lines or setback lines. No such duty is created by this code, and none shall be implied.
(2) Section R105.2, entitled "Work exempt from permit," subsection 10, entitled "Building," is amended to read as follows:

Decks that are not more than 30 inches above adjacent grade at any point and are not over any basement or story.
(3) Section R110.1, entitled "Use and Occupancy," subsection entitled "Exception," is amended to read as follows:

Certificates of occupancy are not required for Group R, Division 3 occupancies and for work exempt from permits under Section R105.2.
(4) The following subsections are deleted from Section R112, "Board of Appeals": Subsection R112.3, "Qualifications."
(5) Table R301.2(1), Climatic and Geographical Design Criteria, is amended to read as follows:

Table R301.2(1)
Climatic and Geographical Design Criteria
A11
https://www.codepublishing.com/WA/Puyallup/html/Puyallup17/Puyallup1704, htm/\#12040400958

Ground Snow Load	Wind Design		Seismic Design Category ${ }^{f}$	Subject to Damage from			Winter Design Temp ${ }^{\text {e }}$	Ice Shield Underlay ${ }^{h}$	Flood Hazards ${ }^{9}$	Air Freeze Index ${ }^{\text {i }}$	Mean Annual Temp ${ }^{j}$
	$\begin{gathered} \text { Speed }^{\mathrm{d}} \\ (\mathrm{mph}) \end{gathered}$	Topographical effects k		Weathering ${ }^{\text {a }}$	Frost Line Depth ${ }^{\text {b }}$	Termites ${ }^{\text {c }}$					
$20 \mathrm{lbs} / \mathrm{ft}$	85	No	D-1	Moderate	12 inches	Slight to Moderate	22°	No	Puyallup Municipal Code 21.07	160	51°

(Ord. 3043 § 6, 2013; Ord. 2962 § 6, 2010).

17.04.060 Conflicts between codes.

In case of conflict among the provisions of the State Building Code, i.e., the International Building Code, the International Residential Code, the International Mechanical Code, the International Fire Code, the Uniform Plumbing Code and Uniform Plumbing Code Standards, and the rules adopted by the Washington State Building Code Council establishing standards for making buildings and facilities accessible to and usable by the physically disabled or elderly persons, the first named code in this section shall govern over those that follow. In case of conflicts between other codes and provisions adopted by this chapter, the code or provision that is most restrictive, as determined by the city's building official, shall apply. (Ord. 2962 § 6, 2010).

17.04.070 Definitions.

(1) Unless the context requires otherwise, any reference to "jurisdiction," "department of building safety," "department of mechanical inspection," "department of inspection," "department of prevention," or "department of property maintenance inspection" shall be construed to mean the city of Puyallup.
(2) Unless the context requires otherwise, any reference to "building official" or "code official" shall be construed to mean the city's building code official in the absence of any specific written designation from the city manager.
(3) Unless the context requires otherwise, any reference to "fire code official" shall be construed to mean the city's fire code official in the absence of any specific written designation.
(4) Unless the context requires otherwise, any reference to "board of appeals" shall be construed to mean the hearing examiner. All appeals authorized by the codes adopted in the chapter shall be to the city's hearing examiner.
(5) Unless the context requires otherwise, any reference to "International Electric Code" shall be construed to mean the National Electric Code. (Ord. 2962 § 6, 2010).

17.04.080 Fees.

(1) Establishment. All fees and charges for permits, approvals, inspections or other services or items related to this title shall be established and amended from time to time by executive order of the city manager.

LATERAL LOADS

Wind Loading for the Main Wind Force-Resisting System (MWFRS)
Refer to the following pages for the wind loads

Search Information

Address:	324 S Meridian, Puyallup, WA 98371, USA
Coordinates:	$47.1895579,-122.2954133$
Elevation:	47 ft
Timestamp:	$2022-03-29 T 19: 35: 13.551 Z$
Hazard Type:	Wind

ASCE 7-16		ASCE 7-10	
MRI 10-Year	67 mph	MRI 10-Year	72 mph
MRI 25-Year	73 mph	MRI 25-Year	79 mph
MRI 50-Year	78 mph	MRI 50-Year	85 mph
MRI 100-Year	82 mph	MRI 100-Year	91 mph
Risk Category I	92 mph	Risk Category I	100 mph
Risk Category II	97 mph	Risk Category II	110 mph
Risk Category III	104 mph	Risk Category III-IV	115 mph
Risk Category IV	108 mph		

ASCE 7-05

ASCE 7-05 Wind Speed 85 mph

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area - in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imnlv annroval bv the anvernina buildina codeAbdlies resnonsible for buildina code annroval and internretation for the https://hazards.atcouncil.org/\#/wind?lat=47.1895579\&Ing=-122.2954133\&address=324 S Meridian\%2Z Puyallup\%2C WA 98371\%2C USA
building site described by latitude/longitude location in the report.

lkpff 1601 5th Avenue, Suite 1600 Seattle, WA 98101206 622-5822	project	Pioneer Park Building	by	ASY	sheet no.
	Iocation	Puyallup, WA		5/26/2022	
	client	ARC			$\begin{array}{\|l\|} \hline \text { job no. } \\ -2200191 \end{array}$
		Wind Loads			

Wind Load Calculations - MWFRS
1.0W

LRFD
Calculations based on ASCE 7-16 Chapter 27 (Directional Procedure)

lkpff 1601 5th Avenue, Suite 1600 Seattle, WA 98101 206 622-5822	project	Pioneer Park Building	by	ASY	sheet no.
	location	Puyallup, WA	date	5/26/2022	
	client	ARC			$\begin{aligned} & \text { job no. } \\ & 2200191 \end{aligned}$
		Wind Loads			

Calculations based on ASCE 7-16 Section 30.3 for low-rise buildings

Wind Speed, V =	97	mph	Fig. 26.5-1	$p=q h^{*}\left[\mathrm{G}^{*} \mathrm{Cp}-\mathrm{GCpi}\right]$			Eq. 30.3-1
Building Enclosure	Enclosed		Sec. 26.12	G =	0.88		Eq. 26.11-6
Building Height, $\mathrm{h}=$	11	ft		GCpi (+/-)	0.18		Tab. 26.13-1
Risk Category	11		Tab. 1.5-1	$\mathrm{q}_{\mathrm{z}}=$	20.5	${ }^{*} \mathrm{~K}_{\mathrm{z}}{ }^{*} \mathrm{~K}_{\mathrm{zt}} \mathrm{psf}$	Eq. 26.10-1
$\mathrm{K}_{\mathrm{d}}=$	0.85		Tab. 26.6-1	$\mathrm{K}_{\text {zt,roof }}=$	1.00		
$\mathrm{R}_{\mathrm{i}}=$	1.00		Eq. 26.13-1	$\mathrm{K}_{\mathrm{h}}=$	0.57		Tab. 26.10-1
Width (\perp to wind)	22	ft		$\mathrm{q}_{\mathrm{h}}=$	11.7	psf	Eq. 26.10-1
Length (Il to wind)	57	ft					
Building Period, $\mathrm{T}=$	0.12	sec		Roof Type $=$ Monoslope ($\left.3^{\circ}<\Theta \leq 10^{\circ}\right)$ Fig. 30.3-5A			
Exposure Category	B		Sec. 26.7.3	Wall GC_{p} Factor $=$	0.9		

Linear Interpolation is permitted for areas between 20 and $500 \mathrm{sf}, 16 \mathrm{psf} \mathrm{min}, \mathrm{Kzt}=0.7 \mathrm{~min}$. pressure per Sec 30.2.2

Roof	Factored Wind Pressures for Building Height and ≤ 10 sf Area (psf)										
Fig. 30.3-5A	Zone 1'	Zone 1	Zone 2'	Zone 2	Zone 2e Edges	Zone 2n	Zone 2r	Zone 3'	$\text { Zone } 3$	$\begin{aligned} & \text { Zone } 3 \mathrm{e} \\ & \text { rs } \end{aligned}$	Zone 3r
GC_{p}	N/A	-1.1	-1.6	-1.3	N/A	N/A	N/A	-2.6	-1.8	N/A	N/A
Total Pressure	N/A	-14.9	-20.8	-17.3	N/A	N/A	N/A	-32.4	-23.1	N/A	N/A
	Factored Wind Pressures for Building Height and 100 sf Area (psf)										
	Zone 1' Zone 1Interior		Zone 2'	Zone 2	Zone 2e Edges	Zone 2n	Zone 2r	Zone 3'	$\text { Zone } 3$	Zone 3e rs	Zone 3r
GC_{p}	N/A	-1.1	-1.5	-1.2	N/A	N/A	N/A	-1.6	-1.2	N/A	N/A
Total Pressure	N/A	-14.9	-19.6	-16.1	N/A	N/A	N/A	-20.8	-16.1	N/A	N/A
	Factored Wind Pressures for Building Height and > 500 sf Area (psf)										
	Zone 1' Zone 1Interior		Zone 2'	Zone 2	Zone 2 e Edges	Zone 2n	Zone 2r	Zone 3'	$\text { Zone } 3$	Zone 3e ers	Zone 3r
GC_{p}	N/A	-1.1	-1.5	-1.2	N/A	N/A	N/A	-1.6	-1.2	-1.2	N/A
Total Pressure	N/A	-14.9	-19.6	-16.1	N/A	N/A	N/A	-20.8	-16.1	-16.1	N/A

Notes
Linear Interpolation is permitted for areas between 10 and 100 s
2. N / A

N/A
3. $\mathrm{qi}=\mathrm{qh}$ has been used for positive internal pressure calculations
4. Positive pressures on roofs and pressures on overhangs are not included in this spreadsheet.

1601 5th Avenue, Suite 1600 Seattle, WA 98101206 622-5822	project	Pioneer Park Building	by	ASY	sheet no.
	location	Puyallup, WA	date	5/26/2022	
	client	ARC			$\begin{aligned} & \text { job no. } \\ & 2200191 \end{aligned}$
		Wind Loads			

Wind Speed, $\mathrm{V}=$	97		mph
Enclosed		Fig. 26.5-1	
Building Enclosure	Sec. 26.12		
Building Height, $\mathrm{h}=$	11	ft	
Risk Category	II		Tab. 1.5-1
$\mathrm{K}_{\mathrm{d}}=$	0.85		Tab. 26.6-1
$\mathrm{R}_{\mathrm{i}}=$	1.00		Eq. 26.13-1
Width (\perp to wind)	57	ft	
Length (II to wind)	22	ft	
Building Period, $\mathrm{T}=$	0.12	sec	
Exposure Category	B		Sec. 26.7.3

$\mathrm{p}=\mathrm{qh}^{*}[\mathrm{G} * \mathrm{Cp}-\mathrm{GCpi}]$	Eq. 30.3-1	
$\mathrm{G}=$	0.86	
$\mathrm{GCpi}(+/-)$	0.18	
$\mathrm{q}_{\mathrm{z}}=$	20.5	${ }^{*} \mathrm{~K}_{\mathrm{z}}{ }^{*} \mathrm{~K}_{\mathrm{zt}} \mathrm{psf}$
$\mathrm{K}_{\mathrm{zt}, \text { roff }}=$	1.00	
$\mathrm{~K}_{\mathrm{h}}=$	0.57	
$\mathrm{q}_{\mathrm{h}}=$	11.7	psf. 26.11-6

Roof Type $=$ Monoslope $\left(3^{\circ}<\Theta \leq 10^{\circ}\right)$ Fig. 30.3-5A Wall GC_{p} Factor $=0.9$

Linear Interpolation is permitted for areas between 20 and $500 \mathrm{sf}, 16 \mathrm{psf} \mathrm{min}$, $\mathrm{Kzt}=0.7 \mathrm{~min}$. pressure per Sec 30.2 .2

Roof	Factored Wind Pressures for Building Height and ≤ 10 sf Area (psf)										
Fig. 30.3-5A	Zone 1'	Zone 1	Zone 2'	Zone 2	Zone 2 e Edges	Zone 2n	Zone 2r	Zone 3'	Zone 3	one	Zone 3r
GC_{p}	N/A	-1.1	-1.6	-1.3	N/A	N/A	N/A	-2.6	-1.8	N/A	N/A
Total Pressure	N/A	-14.9	-20.8	-17.3	N/A	N/A	N/A	-32.4	-23.1	N/A	N/A

	Factored Wind Pressures for Building Height and 100 sf Area (psf)										
	Zone 1'	Zone 1	Zone 2'	Zone 2	Zone 2 e Edges	Zone 2	Zone 2r	Corners			Zone 3r
GC_{p}	N/A	-1.1	-1.5	-1.2	N/A	N/A	N/A	-1.6	-1.2	N/A	N/A
Total Pressure	N/A	-14.9	-19.6	-16.1	N/A	N/A	N/A	-20.8	-16.1	N/A	N/A

	Factored Wind Pressures for Building Height and > 500 sf Area (psf)										
	Zone 1	Zone 1	Zone 2'	Zone 2	Zone 2e Edges	Zone 2	Zone 2r	Corners			
GC_{p}	N/A	-1.1	-1.5	-1.2	N/A	N/A	N/A	-1.6	-1.2	-1.2	N/A
Total Pressure	N/A	-14.9	-19.6	-16.1	N/A	N/A	N/A	-20.8	-16.1	-16.1	N/A

Notes

1. Linear Interpolation is permitted for areas between 10 and 100 sf
2. N/A

N/A
3. $q i=q h$ has been used for positive internal pressure calculations
4. Positive pressures on roofs and pressures on overhangs are not included in this spreadsheet.

Seismic Loading for Building

Seismic Force-Resisting System: Light frame (wood) walls sheathed with wood structural panels rated for shear resistance.

Response Modification Coefficient: $\quad R=6.5$
(ASCE 7 Table 12.2-1)

Overstrength Factor:
Deflection Amplification Factor:
$\Omega_{0}=3$
$\mathrm{C}_{\mathrm{d}}=4$
(ASCE 7 Table 12.2-1)
(ASCE 7 Table 12.2-1)

Earthquake Loads

$$
\begin{array}{lll}
\mathrm{E}=\rho \mathrm{Q}_{\mathrm{E}} \pm 0.2 \mathrm{~S}_{\mathrm{DS}} \mathrm{D} & \text { Seismic Load } & \text { (ASCE } 7 \text { Equation 12.4-1, 2, 3, 4a, 4b) } \\
\mathrm{E}_{\mathrm{m}}=\Omega_{\mathrm{O}} \mathrm{Q}_{\mathrm{E}} \pm 0.2 \mathrm{~S}_{\mathrm{DS}} \mathrm{D} & \text { Maximum Seismic Load (ASCE } 7 \text { Equation 12.4-4a, 4b, 5, 6, 7) } \\
\rho=1.0 & \text { Reliability/Redundancy Factor } & \text { (ASCE } 7 \text { Section 12.3.4) }
\end{array}
$$

Refer to the following pages for the seismic loads.

324 S Meridian, Puyallup, WA 98371, USA

Latitude, Longitude: 47.1895579, -122.2954133

DISCLAIMER
While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

Roof	47 k	11 ft	47 k	$510 \mathrm{k}-\mathrm{ft}$	1.000	7 k	7 k	10 k
-	0 k	0 ft	47 k	$0 \mathrm{k}-\mathrm{ft}$	0.000	0 k	7 k	0 k
Σ	47 k		A 22	$510 \mathrm{k}-\mathrm{ft}$	1.000	7 k		

Roof	47 k	11 ft	47 k	$510 \mathrm{k}-\mathrm{ft}$	1.000	7 k	7 k	10 k
-	0 k	0 ft	47 k	0 kt	0.000	0 k	7 k	0 k
Σ	47 k		A 23	$510 \mathrm{k}-\mathrm{ft}$	1.000	7 k		

Seismic Structural Irregularities

Horizontal Structural Irregularities (ASCE 7 Table 12.3-1)

Type	Description	Yes	No	Notes
1 a	Torsional Irregularity		X	
1 b	Extreme Torsional Irregularity		X	
2	Reentrant Corner Irregularity		X	
3	Diaphragm Discontinuity Irregularity			
4	Out-of-Plane Offset Irregularity		X	
5	Nonparallel System Irregularity		X	

Vertical Structural Irregularities (ASCE 7 Table 12.3-2)

Type	Description	Yes	No	
1 a	Stiffness-Soft Story Irregularity		X	
1b	Stiffness-Extreme Soft Story Irregularity		X	
2	Weight (Mass) Irregularity		X	
3	Vertical Geometric Irregularity		X	
4	In-Plane Discontinuity in Vert. Lateral Force-Resisting Element Irregularity		X	
5 a	Discontinuity in Lateral Strength - Weak Story Irregularity		X	
5 b	Discontinuity in Lateral Strength - Extreme Weak Story Irregularity		X	

Seismic Drift Limitations

Deflection of Level x :

$$
\delta_{\mathrm{x}}=\frac{\mathrm{C}_{\mathrm{d}} \delta_{\mathrm{xe}}}{\mathrm{I}_{\mathrm{e}}}
$$

Drift at Level x :
$\Delta_{\mathrm{x}}=\delta_{\mathrm{x}}-\delta_{\mathrm{x}-1}$
Maximum Allowable Inelastic Story Drift: $\quad \Delta_{\mathrm{a}}=0.02 \mathrm{~h}_{\mathrm{sx}}$
(ASCE 7 Equation 12.8-15)
$\Delta_{x}=\delta_{x}-\delta x-1$
(ASCE 7 Table 12.12-1)
Where:

- $\delta_{\mathrm{xe}}=$ calculated elastic drift considering torsional affects in accordance with ASCE 7 Section 12.12.1
- $\delta_{x e}$ is calculated without inclusion of ρ per ASCE 7 Section 12.3.4.1
- $h_{\text {sx }}$ is the floor-to-floor height

Maximum period considerations need not be included in drift calculations

Seismic Loading for Elements of Structure and Nonstructural Components

$F_{p}=k S_{D S} I_{p} W_{p}$
(ASCE 7 Section 13.3.1)

Where: $0.3 \leq\left[k=0.4 \frac{a_{p}}{R_{p}}\left(1+2 \frac{z}{h}\right)\right] \leq 1.6$

$a_{p}=$ varies	Component Amplification Factor	(ASCE 7 Table 13.5-1 or 13.6-1)
$R_{p}=$ varies	Component Response Factor	(ASCE 7 Table 13.5-1 or 13.6-1)
$\Omega_{0}=$ varies	Component Overstrength Factor	(ASCE 7 Table 13.5-1 or 13.6-1)
$z / h=$ varies ≤ 1.0	Height of attachment of component relative to mean roof height	
$I_{p}=$ varies	Importance Factor	
$W_{p}=$ varies	Weight of portion of structure or component	

Chapter B Gravity Framing

Seattle, WA 98101206 622-5822

DESIGN SUMMARY

Date:	06/07/2022
By:	ASY
Design:	Gravity Framing

The following calculation were performed to determine suitable sizes for members that predominantly act to resist gravity loads and uplift from wind. Gravity framing consist of roof joists spanning east/west which are supported by glulam beams spanning north/south which are in turn supported by columns at the north and south ends of the building (there is also one additional column at both the east and west ends of the building). The roof joists and glulam beams are loaded using distributed loads along their lengths. The columns are checked for the reactions from the analysis of the glulam beams.

Several programs were used during design as follows:

- Forteweb: used to design the joists, glulam beams and one column type
- KPFF standard Excel spreadsheet: used to design two column type and non load bearing walls
- ENERCALC: used to design two column types

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$410 @ 11 / 2^{\prime \prime}$	$1406(1.50 ")$	Passed (29\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$333 @ 1^{\prime} 3 / 4^{\prime \prime}$	2329	Passed (14\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Member Type : Joist					
Moment (Ft-lbs)	$1025 @ 5^{\prime} 11 / 2^{\prime \prime}$	2729	Passed (38\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.040 @ 5^{\prime} 11 / 2^{\prime \prime}$	0.333	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Building Code : IBC 2018					
Design Methodology : ASD					
Total Load Defl. (in)	$0.065 @ 5^{\prime} 11 / 2^{\prime \prime}$	0.500	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)						Accessories
	Total	Available	Required	Dead	Roof Live	Snow	Wind	Seismic	Total	
1 - Hanger on 11 1/4" DF beam	1.50"	Hanger ${ }^{1}$	1.50"	164	205	256	-332	33/-33	$\begin{gathered} 658 /- \\ 365 \end{gathered}$	See note ${ }^{1}$
2 - Hanger on 11 1/4" DF beam	1.50"	Hanger ${ }^{1}$	1.50"	164	205	256	-332	33/-33	$\begin{gathered} \hline 658 /-1 \\ 365 \end{gathered}$	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$10^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$10^{\prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A		
2 - Top Mount Hanger	Connector not found	N/A	N/A	N / A		

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead $(\mathbf{0 . 9 0})$	Roof Live (non-snow: 1.25)	Snow (1.15)	Wind (1.60)	Seismic (1.60)
Comments							

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$7260 @ 22^{\prime} 6^{\prime \prime}$	$26688\left(6.00^{\prime \prime}\right)$	Passed (27\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Adj Spans)
Shear (lbs)	$4171 @ 21^{\prime} 33 / 16^{\prime \prime}$	16457	Passed (25\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Adj Spans)
Pos Moment (Ft-lbs)	$19258 @ 11^{\prime} 81 / 8^{\prime \prime}$	36551	Passed (53\%)	1.15	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Neg Moment (Ft-lbs)	-7763 @ $22^{\prime} 6^{\prime \prime}$	37260	Passed (21\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.504 @ 12^{\prime} 11 / 4^{\prime \prime}$	0.693	Passed (L/495)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Total Load Defl. (in)	$0.826 @ 12^{\prime} 3 / 8^{\prime \prime}$	1.039	Passed (L/302)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: $\operatorname{LL}(2 L / 360)$ and $T L(2 L / 240)$. Upward deflection on left and right cantilevers exceeds overhang deflection criteria.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 0.98 that was calculated using length $L=19{ }^{\prime} 37 / 8^{\prime \prime}$.
- Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length $L=8^{\prime} 111 / 8^{\prime \prime}$
- Upward deflection on right cantilever exceeds 0.4"
- -504 lbs uplift at support located at $22^{\prime} 6^{\prime \prime}$. Strapping or other restraint may be required.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)						Accessories
	Total	Available	Required	Dead	Roof Live	Snow	Wind	Seismic	Total	
1 - Column - steel	6.00"	6.00"	1.50"	2062	2322	2903	-1859	376/-376	$\begin{gathered} 7663 /- \\ 2235 \end{gathered}$	Blocking
2-Column - steel	6.00"	6.00"	1.63"	3097	3330	4163	-3937	185/-185	$\begin{gathered} \hline 10775 /- \\ 4122 \end{gathered}$	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$29^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$29^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Roof Live (non-snow: 1.25)	Snow (1.15)	Wind (1.60)	Seismic (1.60)	Comments
0-Self Weight (PLF)	0 to 29' 6"	N/A	19.7	--	--	--	--	
1-Uniform (PSF)	0 to $2^{\prime} 23 / 8{ }^{\prime \prime}$	9'9"	16.2	20.0	25.0	-16.1	3.3	Default Load
2 - Uniform (PSF)	$2^{\prime} 23 / 8{ }^{\prime \prime}$ to 17' 4 3/16"	9'9"	16.2	20.0	25.0	-14.9	3.3	
3 - Uniform (PSF)	$17^{\prime} 43 / 16^{\prime \prime}$ to 21' 9'	9'9"	16.2	20.0	25.0	-20.8	-	
4 - Uniform (PSF)	21'9" to $28^{\prime \prime} 6^{\prime \prime}$	9'9"	16.2	20.0	25.0	-31.5	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2634 @ 23^{\prime}$	$26688\left(6.00{ }^{\prime \prime}\right)$	Passed (10\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Adj Spans)
Shear (lbs)	$1133 @ 11^{\prime} 63 / 16^{\prime \prime}$	16457	Passed (7\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Adj Spans)
Pos Moment (Ft-lbs)	$2273 @ 6^{\prime} 97 / 16^{\prime \prime}$	37260	Passed (6\%)	1.15	$1.0 \mathrm{D}+1.0$ S (Alt Spans)
Neg Moment (Ft-lbs)	$-3623 @ 23^{\prime}$	36613	Passed (10\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Live Load Defl. (in)	$0.056 @ 30^{\prime}$	0.473	Passed (2L/999+)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~S} \mathrm{(Alt} \mathrm{Spans)}$
Total Load Defl. (in)	$0.096 @ 30^{\prime}$	0.710	Passed (2L/999+)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~S} \mathrm{(Alt} \mathrm{Spans)}$

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=9$ ' $13 / 16^{\prime \prime}$.
- Critical negative moment adjusted by a volume factor of 0.98 that was calculated using length $L=19$.
- -295 lbs uplift at support located at 23'. Strapping or other restraint may be required.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)						Accessories
	Total	Available	Required	Dead	Roof Live	Snow	Wind	Seismic	Total	
1 - Column - steel	6.00"	$6.00 "$	1.50"	686	697	871	-657	114/-114	$\begin{gathered} 2368 /- \\ 771 \end{gathered}$	Blocking
2 - Column - steel	6.00"	6.00"	1.50"	1063	1190	1487	-1299	181/-181	$\begin{gathered} \hline 3921 /- \\ 1480 \end{gathered}$	None
3-Column - steel	6.00"	6.00"	1.50"	1193	1152	1441	-1685	13/-13	$\begin{gathered} 3799 /- \\ 1698 \end{gathered}$	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$30^{\prime} 55^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$30^{\prime} 5 \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Roof Live (non-snow: $\mathbf{1 . 2 5)}$	Snow $(\mathbf{1 . 1 5)}$	Wind $(\mathbf{1 . 6 0})$	Seismic $(\mathbf{1 . 6 0})$	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Alec Yeutter KPF Consulting Engineers (206) 926-0787 ale..yeutter@kfff.com	

1 piece(s) 6×6 DF No. 1

Post Height: 8'

Design Results	Actual	Allowed	Result	LDF	Load: Combination [Load Group]
Slenderness	17	50	Passed (35\%)	--	--
Compression (lbs)	2550	27326	Passed (9\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}[1]$
Base Bearing (lbs)	2550	18906	Passed (13\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}[1]$
Bending/Compression	0.07	1	Passed (7\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}[1]$

- Input axial load eccentricity for this design is 16.67% of applicable member side dimension.
- Member connection at both ends must be checked against an uplift of -236 .
- Applicable calculations are based on NDS.

Supports	Type	Material
Member Type : Free Standing Post Building Code : IBC 2018		
Base	Plate	Douglas Fir-Larch
Design Methodology : ASD		

Drawing is Conceptual

Vertical Load	Dead $(\mathbf{0 . 9 0})$	Roof Live (non-snow: 1.25)	Snow $\mathbf{(1 . 1 5)}$	Wind $\mathbf{(1 . 6 0)}$	Seismic $\mathbf{(1 . 6 0)}$	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	File: Glulam Column.ec6 Lic. \#: KW-06007506
DESCRIPTION:	South Columns
	Column C-1
Codere	

Calculations per 2012 NDS, IBC 2012, CBC 2013, ASCE 7-10
Load Combinations Used : ASCE 7-16

General Information

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Column self weight included : 87.750 lbs * Dead Load Factor
AXIAL LOADS . . .
Load From Interior Glulam Beam: Axial Load at $10.0 \mathrm{ft}, \mathrm{D}=3.097, \mathrm{Lr}=3.330, \mathrm{~S}=4.163, \mathrm{~W}=-3.937, \mathrm{E}=0.1850 \mathrm{k}$

DESIGN SUMMARY

Bending \& Shear Check Results
PASS Max. Axial+Bending Stress Ratio =

Load Combination Results

Load Combination	$C_{\text {D }}$	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.757	0.05018	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+Lr	1.250	0.616	0.09083	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+S	1.150	0.654	0.1049	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750Lr	1.250	0.616	0.07923	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S	1.150	0.654	0.09008	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.60W	1.600	0.506	0.01090	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750Lr+0.450W	1.600	0.506	0.05181	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S +0.450 W	1.600	0.506	0.06009	PASS	0.0 ft	0.0	PASS	10.0 ft
$+0.60 \mathrm{D}+0.60 \mathrm{~W}$	1.600	0.506	0.0	PASS	0.0 ft	0.0	PASS	10.0 ft
$+\mathrm{D}+0.70 \mathrm{E}$	1.600	0.506	0.04391	PASS	0.0 ft	0.0	PASS	10.0 ft
+D-0.70E	1.600	0.506	0.04048	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S+0.5250E	1.600	0.506	0.08484	PASS	0.0 ft	0.0	PASS	10.0 ft

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	File: Glulam Column.ec6
Lic. \#: KW-06007506	Software copyright ENERCALC, INC. $1983-2020$, Build:12.20.8.24
KPFF CONSULTING ENGINEERS	SEA

DESCRIPTION: South Columns
Load Combination Results

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance		Max. Y-Y Deflection	Distance	
D Only	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+Lr	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+S	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+0.750Lr	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+0.750S	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+0.60W	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+0.750Lr+0.450W	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+0.750S+0.450W	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+0.70E	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+0.750S+0.5250E	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+0.60D+0.70E	0.0000 in	0.000	ft	0.0000 in	0.000	ft
Lr Only	0.0000 in	0.000	ft	0.0000 in	0.000	ft
S Only	0.0000 in	0.000	ft	0.0000 in	0.000	ft
E Only	0.0000 in	0.000	ft	0.0000 in	0.000	ft

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column
File: Glulam Column.ec6
Lic. \# : KW-06007506
DESCRIPTION: South Columns
Sketches

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	File: Glulam Column.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
Lic. \#: KW-06007506	KPFF CONSULTING ENGINEERS SEA
DESCRIPTION: South Edge Columns Column C-2	
Code References	

Calculations per 2012 NDS, IBC 2012, CBC 2013, ASCE 7-10
Load Combinations Used : ASCE 7-16

General Information

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Column self weight included : 66.625 lbs * Dead Load Factor
AXIAL LOADS . . .
Load From Interior Glulam Beam: Axial Load at $10.0 \mathrm{ft}, \mathrm{D}=3.097, \mathrm{Lr}=3.330, \mathrm{~S}=4.163, \mathrm{~W}=-3.937, \mathrm{E}=0.1850 \mathrm{k}$

DESIGN SUMMARY

Bending \& Shear Check Results
PASS Max. Axial+Bending Stress Ratio =

Load Combination Results

Load Combination	$C_{\text {D }}$	C_{P}	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
			Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.622	0.07991	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+Lr	1.250	0.478	0.1537	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+S	1.150	0.513	0.1756	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750Lr	1.250	0.478	0.1340	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S	1.150	0.513	0.1507	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.60W	1.600	0.384	0.01846	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750Lr+0.450W	1.600	0.384	0.08961	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S+0.450W	1.600	0.384	0.1040	PASS	0.0 ft	0.0	PASS	10.0 ft
+0.60D+0.60W	1.600	0.384	0.0	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.70E	1.600	0.384	0.07587	PASS	0.0 ft	0.0	PASS	10.0 ft
+D-0.70E	1.600	0.384	0.06991	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S+0.5250E	1.600	0.384	0.1471	PASS	0.0 ft	0.0	PASS	10.0 ft

Project Title:
Engineer:
Project ID:
Project Descr:

Wood Column	File: Glulam Column.ec6 Lic. \#: KW--06007506

DESCRIPTION: South Edge Columns
Load Combination Results

Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance		Max. Y-Y Deflection	Distance	
D Only	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+Lr	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+S	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+0.750Lr	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+0.750S	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+0.60W	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+0.750Lr+0.450W	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+0.750S+0.450W	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+0.70E	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+D+0.750S+0.5250E	0.0000 in	0.000	ft	0.0000 in	0.000	ft
+0.60D+0.70E	0.0000 in	0.000	ft	0.0000 in	0.000	ft
Lr Only	0.0000 in	0.000	ft	0.0000 in	0.000	ft
S Only	0.0000 in	0.000	ft	0.0000 in	0.000	ft
E Only	0.0000 in	0.000	ft	0.0000 in	0.000	ft

Engineer:
Project ID:
Project Descr:

Wood Column
File: Glulam Column.ec6
Lic. \# : KW-06007506
DESCRIPTION: South Edge Columns
Sketches

Chapter C

 Lateral Force Resisting System
DESIGN SUMMARY

Date:	06/07/2022
By:	ASY
Design:	Lateral Force Resisting System

The following calculation was performed to determine the sheathing and nailing requirements for the wood shear walls. Two wood shear walls are provided in each direction to resist lateral loads as shown on the following page. The building has a flexible diaphragm so the loading on each shear wall was determined using tributary areas of the building's mass. After the per lineal foot load was determined on each wood shear wall, the demand was compared to the shear wall capacities listed in the structural drawings and an appropriate design was selected.

Chapter D Foundations

DESIGN SUMMARY

Date:	06/07/2022
By:	ASY
Design:	Foundations

The following calculations were performed to determine the suitability of foundation sizes to resist gravity and lateral loads and to verify the stability of the foundations under lateral loading.
Continuous footings are used to support columns and shear walls throughout the structure.
Items to note:

- A 5 ft . effective width of slab was used to help resist uplift forces.
- An effective 2 ft . $\times 3 \mathrm{ft}$. footing was used for bearing checks with column loads.
- A portion of continuous footing at the ends of the building is used to help resist sliding.

Design Values:

Allowable Bearing Pressure	1500 psf	(Non-Transient Loads)
Allowable Bearing Pressure	2000 psf	150 psf
Lateral Bearing Pressure	0.4	
Coefficient of Friction	145 pcf	
Concrete Desnisty		

Geometry:		
Shear Wall A Footing	Width:	1.50 ft .
	Depth:	0.83 ft .
	Minimum Burried Depth:	1.00 ft .
	Overbuild Width:	0.60 ft .
	Overbuild Depth:	1.50 ft .
	Effective Contribuitng Slab Width:	5.00 ft .
	Slab Depth	0.50 ft .
Shear Wall B Footing	Width	2.00 ft .
	Depth	0.83 ft .
	Minimum Burried Depth:	1.00 ft .
	Overbuild Width	0.60 ft .
	Overbuild Depth:	1.50 ft .
	Effective Contribuitng Slab Width:	10.00 ft .
	Slab Depth	0.50 ft .
Shear Wall 1 Footing	Width	2.00 ft .
	Depth	0.83 ft .
	Minimum Burried Depth:	1.00 ft .
	Overbuild Width	1.15 ft .
	Overbuild Depth:	1.00 ft .
	Effective Contribuitng Slab Width:	5.00 ft .
	Slab Depth	0.50 ft .
Shear Wall 2 Footing	Width	2.00 ft .
	Depth	0.83 ft .
	Minimum Burried Depth:	1.00 ft .
	Overbuild Width	0.60 ft .
	Overbuild Depth:	1.50 ft .
	Effective Contribuitng Slab Width:	5.00 ft .
	Slab Depth	0.50 ft .

1601 5th Avenue, Suite 1600 Seattle, WA 98101 206 622-5822	project	Pioneer Park Building		ASY	sheet no.
	location	Puyallup, WA		05/31/22	
	client	ARC			job no.2200191
		Foundation Design			

Effective "Isolated" Footing	Width	2.00 ft .
	Length	3.00 ft .
	Depth	1.00 ft .
Wall A	Length	27.75 ft .
	Height	8.50 ft .
	Thickness	(2) 2×8 @ 16" OC
	Weight	4.40 psf
Wall B	Length	10.50 ft .
	Height	11.00 ft .
	Thickness	(1) 2×8 @ 16" OC
	Weight	2.20 psf
Wall 1	Length	9.50 ft .
	Height	10.00 ft .
	Thickness	(2) 2×6 @ 16" OC
	Weight	3.40 psf
Wall 2	Length	9.50 ft .
	Height	10.00 ft .
	Thickness	(1) 2×8 @ 16" OC
	Weight	2.20 psf

Loads:		
Shear Wall A:	Lateral Seismic	3.05 kip
	Seismic Overturning Forces:	0.93 kip
	Wind	0.71 kip
	Wind Overturning Forces:	0.22 kip
Shear Wall B:	Lateral Seismic	4.86 kip
	Seismic Overturning Forces:	5.09 kip
	Wind	1.29 kip
	Wind Overturning Forces:	1.35 kip
Shear Wall 1:	Lateral Seismic	2.94 kip
	Seismic Overturning Forces:	3.09 kip
	Wind	2.50 kip
	Wind Overturning Forces:	2.63 kip
Shear Wall 2:	Lateral Seismic	4.96 kip
	Seismic Overturning Forces:	5.22 kip
	Wind	2.50 kip
	Wind Overturning Forces:	2.63 kip
North Column:	Dead	2.06 kip
	Live Roof	2.32 kip
	Snow	2.90 kip
	Vertical Seismic	0.38 kip
	Wind	-1.86 kip
Load Combinations	1. D	2.06 kip
	3.a D+Lr	4.38 kip
	3.b D + S	4.97 kip
	5. $\mathrm{D}+0.6 \mathrm{~W}$	0.95 kip
	6.a $\mathrm{D}+0.45 \mathrm{~W}+0.75 \mathrm{Lr}$	2.97 kip
	6.b D+0.45W+0.75S	3.40 kip
	7. $0.6 \mathrm{D}+0.6 \mathrm{~W}$	0.12 kip
	8. $1.0 \mathrm{D}+0.7 \mathrm{Ev}$	2.33 kip
	9. 1.0D $+0.525 \mathrm{Ev}+0.75 \mathrm{~S}$	4.44 kip
	10. 0.6D-0.7Ev	0.97 kip
South Column:	Dead	3.10 kip
	Live Roof	3.33 kip
	Snow	4.16 kip
	Vertical Seismic	0.19 kip
	Wind	-3.94 kip
Load Combinations	1. D	3.10 kip
	3.a D+Lr	6.43 kip
	3.b D + S	7.26 kip
	5. $\mathrm{D}+0.6 \mathrm{~W}$	0.73 kip
	6.a $\mathrm{D}+0.45 \mathrm{~W}+0.75 \mathrm{Lr}$	3.82 kip
	6.b $D+0.45 \mathrm{~W}+0.75 \mathrm{~S}$	4.45 kip
	7. $0.6 \mathrm{D}+0.6 \mathrm{~W}$	-0.50 kip
	8. $1.0 \mathrm{D}+0.7 \mathrm{Ev}$	3.23 kip
	9. 1.0D $+0.525 \mathrm{Ev}+0.75 \mathrm{~S}$	6.32 kip
	10. 0.6D-0.7Ev	1.73 kip

1601 5th Avenue, Suite 1600 Seattle, WA 98101 206 622-5822	project	Pioneer Park Building		ASY	sheet no.
	location	Puyallup, WA		05/31/22	
	client	ARC			job no.2200191
		Foundation Design			

Design Checks:

Shear Wall A:	7. $0.6 \mathrm{D}+0.6 \mathrm{~W}$	-0.01 kip
	10.0.6D+0.7Emh	0.32 kip
Shear Wall B:	7. $0.6 \mathrm{D}+0.6 \mathrm{~W}$	-0.81 kip
	10. $0.6 \mathrm{D}+0.7 \mathrm{Emh}$	-3.56 kip
Shear Wall 1:	7. $0.6 \mathrm{D}+0.6 \mathrm{~W}$	-1.58 kip
	10. $0.6 \mathrm{D}+0.7 \mathrm{Emh}$	-2.17 kip
Shear Wall 2:	7. $0.6 \mathrm{D}+0.6 \mathrm{~W}$	-1.58 kip
	10. $0.6 \mathrm{D}+0.7 \mathrm{Emh}$	-3.65 kip
Uplift:		
Shear Wall A:	Minimum Effective Footing Length	1.00 ft .
	7. $0.6 \mathrm{D}+0.6 \mathrm{~W}$	-0.07 kip
	10. $0.6 \mathrm{D}+0.7 \mathrm{Emh}$	-0.17 kip
	Capacity	0.43 kip
	DCR	0.39
Shear Wall B:	Minimum Effective Footing Length	6.00 ft .
	7. $0.6 \mathrm{D}+0.6 \mathrm{~W}$	-0.81 kip
	10. $0.6 \mathrm{D}+0.7 \mathrm{Emh}$	-3.56 kip
	Capacity	4.04 kip
	DCR	0.88
Shear Wall 1:	Minimum Effective Footing Length	5.00 ft .
	7. $0.6 \mathrm{D}+0.6 \mathrm{~W}$	-1.58 kip
	10. $0.6 \mathrm{D}+0.7 \mathrm{Emh}$	-2.17 kip
	Capacity	2.41 kip
	DCR	0.90
Shear Wall 2:	Minimum Effective Footing Length	9.00 ft .
	7. $0.6 \mathrm{D}+0.6 \mathrm{~W}$	-1.58 kip
	10. $0.6 \mathrm{D}+0.7 \mathrm{Emh}$	-3.65 kip
	Capacity	4.09 kip
	DCR	0.89

Shear Wall Soil Bearing Pressure:

Shear Wall A:	Minimum Effective Footing Length	2.00 ft .
	5. D+0.6W	1.78 kip
	8. D+0.7Emh	3.68 kip
	Capacity:	6.00 kip
	DCR	0.61
Shear Wall B:	Minimum Effective Footing Length	2.00 ft .
	5. D+0.6W	1.61 kip
	8. D+0.7Emh	4.36 kip
	Capacity:	6.00 kip
	DCR	0.73
Shear Wall 1:	Minimum Effective Footing Length	2.00 ft .
	5. D+0.6W	2.46 kip
	8. D+0.7Emh	3.05 kip
	Capacity:	6.00 kip
	DCR	0.51
Shear Wall 2:	Minimum Effective Footing Length	2.00 ft .
	5. D+0.6W	2.37 kip
	8. D+0.7Emh	4.44 kip
	Capacity:	6.00 kip
	DCR	0.74

Column Uplift:			
North Column:	Demand:	0.12 kip	
	Capacity:	0.52 kip	
	DCR	0.00	No Uplift
South Column:	Demand:	-0.50 kip	
	Capacity:	0.52 kip	
	DCR	0.97	
Column Soil Bearing:			
North Column:	Demand (Non-Transient):	4.97 kip	
	Capacity (Non-Transient):	9.00 kip	
	Demand (Transient):	4.44 kip	
	Capacity (Transient):	12.00 kip	
	DCR	0.55	
South Column:	Demand (Non-Transient):	7.26 kip	
	Capacity (Non-Transient):	9.00 kip	
	Demand (Transient):	6.32 kip	
	Capacity (Transient):	12.00 kip	
	DCR	0.81	
Sliding:			
Shear Wall A	Effective Lateral Bearing Width:	5 ft .	
	Demand:	2.14 kip	
	Gravity Load:	11.86 kip	*Includes weight of wall above
	Capacity:	6.12 kip	
	DCR	0.35	
Shear Wall B	Effective Lateral Bearing Width:	10 ft .	
	Demand:	3.40 kip	
	Gravity Load:	7.07 kip	*Includes weight of wall above
	Capacity:	5.58 kip	
	DCR	0.61	
Shear Wall 1	Effective Lateral Bearing Width:	5 ft .	
	Demand:	2.06 kip	
	Gravity Load:	4.58 kip	*Includes weight of wall above
	Capacity:	3.21 kip	
	DCR	0.64	
Shear Wall 2	Effective Lateral Bearing Width:	5 ft .	
	Demand:	3.47 kip	
	Gravity Load:	5.56 kip	*Includes weight of wall above and 1/2 Column Load
	Capacity:	3.60 kip	
	DCR	0.97	

