

City of Puyallup Development & Permitting Services ISSUED PERMIT							
Building	Planning						
Engineering	Public Works						
Fire OF W	Traffic						

ARC

Pioneer Park Restroom

Puyallup, WA

THE APPROVED CONSTRUCTION PLANS AND ALL ENGINEERING DOCUMENTS MUST BE POSTED ON THE JOB AT ALL INSPECTIONS IN A VISIBLE AND READILY ACCESSIBLE LOCATION.

Structural Calculations

CALCULATIONS INCLUDED:

Pages A01 through D07

These Calculations cover the structural design of the Pioneer Park Restroom renovation which includes a new wood framed roof, wood columns, wood walls and shear walls, and concrete footings and a slab on grade.

1601 5th Avenue, Suite 1600 Seattle, WA 98101 206.622.5822

KPFF Project No. 2200191

6/10/2022

Pioneer Park Restroom KPFF Proj. No. 2200191 Permit Submittal Structural Calculations

TABLE OF CONTENTS

A.	Pro	ject Overview	
	1.	Design Criteria & Loads Page A01	
Β.	Gra	avity Design	
	1. 2. 3. 4.	Design SummaryPage B02Roof Framing DesignPage B05Column DesignPage B08Non-Load Bearing Wall DesignPage B16	
C.	Lat	eral Design	
	1. 2.	Design Summary	
D.	Fo	undation Design	
	1. 2.	Design Summary	

Pioneer Park Restroom KPFF Proj. No. 2200191 Permit Submittal Structural Calculations

Chapter A Design Criteria

Pioneer Park Restroom Upgrade Design Criteria and Loads

KPFF Project No. 2200191

March 30, 2022

A02

TABLE OF CONTENTS

STRUCTURAL DESIGN AND SYSTEMS SUMMARY

CODES AND REFERENCES

COMPUTER PROGRAMS USED

MATERIALS SPECIFICATIONS AND STRENGTHS

BEAM DEFLECTION

LIVE LOADS

DEAD LOADS

- Exterior Wall Dead Loads
- Typical Floor and Roof Dead Loads

LATERAL LOADS

- Wind Loading for the Main Wind Force-Resisting System (MWFRS)
- Seismic Loading for Building
- Seismic Structural Irregularities
- Seismic Drift Limitations
- Seismic Loading for Elements of Structure and Nonstructural Components

STRUCTURAL DESIGN AND SYSTEMS SUMMARY

The project comprises of upgrading an existing 1-story restroom located in Puyallup Pioneer Park, Washington.

Gravity System

The gravity system consists of concealed conventionally framed wood construction with 5/8" tongue-and-groove plywood supported by 2x12 joists @ 24" oc. Roof joists are flush-framed with 5-1/8" x 12" glue laminated beams (24FV4) at approximately 10'-0" centers. The beams will be supported by HSS columns concealed in the exterior stud walls.

Lateral System

The lateral system consists of light-framed shear panels consisting of 15/32" plywood sheathing over wood studs.

Foundations

Foundations consist of continuous wall footings at exterior and interior walls.

Slabs on Grade

The first floor shall consist of slab on grade poured over a 10-mil vapor barrier and a 4" capillary break. 5-inch slabs on grade are recommended where concrete will be exposed with crack control joints spaced at 12'-0" centers maximum. Reinforce slabs on grade with #4 @ 18" o.c. each way centered. All exposed slabs on grade to be polished concrete.

Existing slabs on grade will receive a $\frac{1}{2}$ " cementitious overlay which will be polished.

CODES AND REFERENCES

- 2018 IBC with City of Puyallup Amendments
- 2018 IBC Standards
- Design Loads
 - o ASCE/SEI 7-16, Minimum Design Loads for Buildings and Other Structures
 - Snow Load Analysis for Washington, Second Edition (1995), by Structural Engineers Association of Washington.
 - WABO-SEAW White Paper Snow Load Regulations and Engineering Practice, Washington State (2000)
 - WABO-SEAW White Paper #8 Guidelines for Determining Snow Loads in Washington State (2010)
- Concrete Design
 - o ACI 318-14 Building Code Requirements for Structural Concrete
 - CRSI Design Handbook (2008)
 - AWS D1.4-11 Structural Welding Code Reinforcing Steel
- Masonry Design
 - o TMS 402-16 Building Code for Masonry Structures
 - o TMA 602-16 Specification for Masonry Structures
- Structural Steel Design
 - AISC 360-16 Specification for Structural Steel Buildings
 - o AISC 341-16 Seismic Provisions for Structural Steel Buildings
 - AWS D1.1-15 Structural welding Code Steel
- Wood Design
 - ANSI/AWC NDS-2018 National Design Specification for Wood Construction with 2018 Supplement
 - o ANSI/AWC SDPWS-2015 Special Design Provisions for Wind and Seismic

COMPUTER PROGRAMS USED

- Concrete Analysis and Design
 - Hilti PROFIS Engineering
- Wood Analysis and Design
 - o Forteweb

MATERIALS SPECIFICATIONS AND STRENGTHS

See Structural Notes.

Foundations and Soils

See Structural Notes.

BEAM DEFLECTION

Deflection Criteria

L/360	Live Load on Beams (uno)
L/240	Superimposed Dead + Live Load on Beams (uno)

LIVE LOADS

Roof

- 20 psf. For wood roofs (reducible per IBC Section 1607.9)
- 25 psf. Snow Load (nonreducible)

Drifted Snow per ASCE 7, Section 7 - Ground Snow Load = 20 psf., I_s = 1.0

DEAD LOADS

Exterior Wall Dead Loads

<u>Comments</u>

Curtain Wall/	Windows	10	psf.
Metal Panels	/Louvers	10	psf.
8" CMU Solic	78	psf.	
4" Brick		38	psf.
3 CM Stone	(including 6 psf - backup structure) (180 pcf stone weight)	24	psf.

Typical Floor and Roof Dead Loads

Refer to the following pages for typical floor and roof dead loads.

Typical Roof Loads

Wood Framing (Roof)

Comments

3/4" Plywood	1.98	psf	
Framing	4.55	psf	
	Joist DL 6.53	psf	
Superimposed Loads			
a. Lights, Ducts, Sprinklers	2	psf	
b. (2) 5/8" Gyp & Miscellaneous	7	psf	
	SDL <u>9</u>	psf	
	Total Joist DL + SDL 15.5	psf	
Partitions (seismic contribution)	5	psf	(10 psf/2 to roof)
	Seismic DL 20.5	psf	

Search Information

Address:	324 S Meridian, Puyallup, WA 98371, USA
Coordinates:	47.1895579, -122.2954133
Elevation:	47 ft
Timestamp:	2022-03-29T19:35:39.398Z
Hazard Type:	Snow

ASCE 7-05

ASCE 7-16

ASCE 7-10

Ground Snow Load A 18 lb/sqft The reported ground snow load applies at the query location of 47 feet up to a maximum elevation of 40 feet with a Ground Snow Load ... A 15 lb/sqft

The reported ground snow load applies at the query location of 47 feet up to a maximum elevation of 400 feet.

MIN GROUND

CITY AMENDMENT

Ground Snow Load A 15 lb/sqft

The reported ground snow load applies at the query location of 47 feet up to a maximum elevation of 400 feet.

The results indicated here DO NOT reflect any state or local a SNOW OF 20 PSF code adoption process. Users should confirm any output obtai [SEE PG-5 HERE] proceeding with design.

 delineation lines made during the building Authority Having Jurisdiction before

Disclaimer

tolerance of 100 feet.

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

A08

Chapter 17.04 **BUILDING CODES**

Sections:

- 17.04.010 Short title.
- 17.04.020 Purpose.
- 17.04.030 Adoption of codes by reference.
- 17.04.040 Local amendments of International Building Code.
- 17.04.050 Local amendments of International Residential Code.
- 17.04.060 Conflicts between codes.
- 17.04.070 Definitions.
- 17.04.080 Fees.
- 17.04.090 Construction plans.
- 17.04.100 Professional services.
- 17.04.110 Contractor registration.
- 17.04.120 Expiration of applications, permits or approvals.
- 17.04.130 Violation and enforcement.
- 17.04.140 Appeals.

17.04.010 Short title.

This title is known as and may be referred to as the "building code of the city of Puyallup." (Ord. 2962 § 6, 2010).

17.04.020 Purpose.

The purpose of this chapter is to promote the health, safety and welfare of the occupants or users of buildings and structures and the general public by the provision of building codes that are mandated throughout the state. (Ord. 2962 § 6, 2010).

A09

17.04.030 Adoption of codes by reference.

Chapter 17.04 BUILDING CODES

The city of Puyallup hereby adopts the following codes by reference, which are incorporated herein, as they currently exist or are hereafter amended:

(1) The current edition of the International Building Code, published by the International Code Council, Inc., as adopted by the Washington State Building Code Council in Chapter <u>51-50</u> WAC. The following appendix of the International Building Code is specifically adopted in its entirety:

(a) Appendix E: Supplementary Accessibility Requirements.

(2) The current edition of the International Residential Code, published by the International Code Council, Inc., as adopted by the Washington State Building Code Council in Chapter <u>51-51</u> WAC.

(3) The current edition of the International Mechanical Code, published by the International Code Council, Inc., as adopted by the Washington State Building Code Council in Chapter <u>51-52</u> WAC, except that the standards for liquefied petroleum gas installations shall be NFPA 58 (Storage and Handling of Liquefied Petroleum Gases) and ANSI Z223.1/NFPA 54 (National Fuel Gas Code).

(4) The current edition of the International Fuel Gas Code published by the International Code Council, Inc., as adopted by the Washington State Building Code Council in Chapter <u>51-52</u> WAC.

(5) Except as provided in RCW <u>19.27.170</u>, the current edition of the Uniform Plumbing Code and Uniform Plumbing Code Standards, published by the International Association of Plumbing and Mechanical Officials, as adopted by the Washington State Building Code Council in Chapters <u>51-56</u> and <u>51-57</u> WAC.

(6) The rules adopted by the Washington State Building Code Council establishing standards for making buildings and facilities accessible to and usable by the physically disabled or elderly persons as provided in RCW <u>70.92.100</u> through <u>70.92.160</u>, as they now exist or are hereafter amended.

(7) The current edition of the Washington State Energy Code, as adopted by the State Building Code Council in Chapter <u>51-11</u> WAC.

(8) The current edition of the National Electric Code, published by the National Fire Protection Association, as adopted by the Department of Labor and Industries in Chapter <u>296-46B</u> WAC, and Chapter <u>19.28</u> RCW.

(9) The 2012 Edition of the International Property Maintenance Code published by the International Code Council, Inc., effective July 1, 2013, and any subsequent editions published by the International Code Council, Inc., effective July 1st of the following calendar year. (Ord. 3043 § 4, 2013; Ord. 2962 § 6, 2010).

17.04.040 Local amendments of International Building Code.

The International Building Code adopted by reference in this chapter is hereby amended as follows:

(1) International Building Code (IBC) Section 101.1, entitled "Title," is hereby amended to read as follows:

A10

These regulations shall be known as the Building Code of the City of Puyallup, Washington, hereinafter referred to as "this code."

(2) IBC Section 104, entitled "Duties and Powers of Building Official," is hereby amended to add the following new subsection 104.12:

Sec. 104.12 Lot lines and setback lines. Notwithstanding the authority of the building official to administer and enforce the building code, the building official shall have no duty to verify or establish lot lines or setback lines. No such duty is created by this code, and none shall be implied.

(3) IBC Section 113, "Board of Appeals," is hereby amended to delete subsection 113.3, entitled "Qualifications."

(4) IBC Section 1612.3, regarding the establishment of flood hazard areas, is amended to read as follows:

Section 1612.3. To establish flood hazard areas, the City Council hereby adopts the flood hazard map and supporting data identified by the Federal Emergency Management Agency in an engineering report entitled "The Flood Insurance Study for the City of Puyallup," initially adopted in PMC <u>21.07.040</u>, as it currently exists or may be subsequently amended.

(Ord. 3043 § 5, 2013; Ord. 2962 § 6, 2010).

17.04.050 Local amendments of International Residential Code.

The International Residential Code adopted in this chapter is hereby amended as follows.

(1) Section R104, entitled "Duties and Powers of Building Official," is hereby amended to add subsection R104.12:

Section R104.12 Lot lines and setback lines. Notwithstanding the authority of the building official to administer and enforce the building code, the building official shall have no duty to verify or establish lot lines or setback lines. No such duty is created by this code, and none shall be implied.

(2) Section R105.2, entitled "Work exempt from permit," subsection 10, entitled "Building," is amended to read as follows:

Decks that are not more than 30 inches above adjacent grade at any point and are not over any basement or story.

(3) Section R110.1, entitled "Use and Occupancy," subsection entitled "Exception," is amended to read as follows:

Certificates of occupancy are not required for Group R, Division 3 occupancies and for work exempt from permits under Section R105.2.

(4) The following subsections are deleted from Section R112, "Board of Appeals": Subsection R112.3, "Qualifications."

(5) Table R301.2(1), Climatic and Geographical Design Criteria, is amended to read as follows:

Table R301.2(1)

Climatic and Geographical Design Criteria

Ground	Wi	Wind Design Seismic Subject to Damage fro			age from	Winter	Ice Shield	Flood	Air	Mean	
Snow	Speed ^d	Topographical	Design	Weath-	Frost	Termites ^c	Design	Underlay ^h	Hazards ^g	Freeze	Annual
Load	(mph)	effects ^k	Category ^f	ering ^a	Line		Temp ^e			Index ⁱ	Temp ^j
					Depth ^b						
20 lbs/ft	85	No	D-1	Moderate	12	Slight to	22°	No	Puyallup	160	51°
					inches	Moderate			Municipal		
									Code		
									21.07		

(Ord. 3043 § 6, 2013; Ord. 2962 § 6, 2010).

17.04.060 Conflicts between codes.

In case of conflict among the provisions of the State Building Code, i.e., the International Building Code, the International Residential Code, the International Mechanical Code, the International Fire Code, the Uniform Plumbing Code and Uniform Plumbing Code Standards, and the rules adopted by the Washington State Building Code Council establishing standards for making buildings and facilities accessible to and usable by the physically disabled or elderly persons, the first named code in this section shall govern over those that follow. In case of conflicts between other codes and provisions adopted by this chapter, the code or provision that is most restrictive, as determined by the city's building official, shall apply. (Ord. 2962 § 6, 2010).

17.04.070 Definitions.

(1) Unless the context requires otherwise, any reference to "jurisdiction," "department of building safety," "department of mechanical inspection," "department of inspection," "department of prevention," or "department of property maintenance inspection" shall be construed to mean the city of Puyallup.

(2) Unless the context requires otherwise, any reference to "building official" or "code official" shall be construed to mean the city's building code official in the absence of any specific written designation from the city manager.

(3) Unless the context requires otherwise, any reference to "fire code official" shall be construed to mean the city's fire code official in the absence of any specific written designation.

(4) Unless the context requires otherwise, any reference to "board of appeals" shall be construed to mean the hearing examiner. All appeals authorized by the codes adopted in the chapter shall be to the city's hearing examiner.

(5) Unless the context requires otherwise, any reference to "International Electric Code" shall be construed to mean the National Electric Code. (Ord. 2962 § 6, 2010).

17.04.080 Fees.

(1) Establishment. All fees and charges for permits, approvals, inspections or other services or items related to this title shall be established and amended from time to time by executive order of the city manager.

A12

LATERAL LOADS

Wind Loading for the Main Wind Force-Resisting System (MWFRS) Refer to the following pages for the wind loads

Hazards by Location

Search Information

Address:	324 S Meridian, Puyallup, WA 98371, USA
Coordinates:	47.1895579, -122.2954133
Elevation:	47 ft
Timestamp:	2022-03-29T19:35:13.551Z
Hazard Type:	Wind

ASCE 7-16

ASCE 7-10

ASCE 7-05

MRI 10-Year	67 mph	MRI 10-Year	72 mph	ASCE 7-05 Wind Speed
MRI 25-Year	73 mph	MRI 25-Year	79 mph	
MRI 50-Year	78 mph	MRI 50-Year	85 mph	
MRI 100-Year	82 mph	MRI 100-Year	91 mph	
Risk Category I	92 mph	Risk Category I	100 mph	
Risk Category II	97 mph	Risk Category II	110 mph	
Risk Category III 10	04 mph	Risk Category III-IV	115 mph	
Risk Category IV 10	08 mph			

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area - in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code building responsible for building code approval and interpretation for the https://hazards.atcouncil.org/#/wind?lat=47.1895579&Ing=-122.2954133&address=324 S Meridian%2C Puyallup%2C WA 98371%2C USA 1/210202 20958

85 mph

ATC Hazards by Location

building site described by latitude/longitude location in the report.

A15

1	Project Pione					er Park Building				by ASY		sheet no.	
	KP.	11		location		Р	Puyallup, WA				_{date} 5/2	6/2022	
1601	📕 1 5th Avenue,	Suite 1600		client			ARC						job no. 2200191
Seattle	, WA 98101	205 622-5822				١	Wind Load	S					2200101
Wind L			tions -		RS							1.0W	LRFD
Wind Spee	ad $V =$	97	mph	Eig 26 5-1	e)			a =	20.5	*K *K . nst	÷	Ea 26 10-1	
Building Er	nclosure	Enclosed	mpn	Sec. 26.12				Чz K _h =	0.57	N _z N _{zt} po		Tab. 26.10-	1
Mean Roof I	Height, h =	11	ft										
Risk Categ	jory	П		Tab. 1.5-1				p=q*G*Cp	- qi*(GCpi)			Eq. 27.3-1	
K _d =		0.85		Tab. 26.6-1			c	Rigid Struc	ture	f > 1 Hz			
R _i =		1.00		Eq. 26.13-1			ctio	C _p =	Windward	Leeward	Side	Fig. 27.3-1,2	2,3
K _e =		1.00	.,		X: L _x Y: B _y		Dire	, , , , , , , , , , , , , , , , , , ,	0.8	-0.27	-0.7		
		X	Y	X-Win	d 🔪	X: B _x	I-X	G =	0.88			Eq. 26.11-6	
vviath (± to	o wina)	ZZ	57.29167	п 4		Y: L _y		GCpi (+/-)	0.18	nof		Tab. 26.13-	1
Building Pe	rind T =	0.12	0.12	IL SPC		Wind		q _h –	11.7	psi		Eq. 20.10-1	
Damping F	Ratio $\beta =$	0.02	0.02	300	Ϋ́Γ			p=q*G*Cp	- gi*(GCpi)			Ea. 27.3-1	
Exposure (Category	B	B	Sec. 26.7.3				Rigid Struc	ture	f > 1 Hz		_9	
Topo. Effe	cts (K _{zt})	Con	istant	Sec. 26.8			ion	о С	Windward	Leeward	Side		
K ₁ =		0.72	0.72	Fig 26.8-1			rect	C _p =	0.8	-0.50	-0.7	⊢ıg. 27.3-1,2	2,3
K ₂ =		1.00	1.00	Fig 26.8-1			iO->	G =	0.86			Eq. 26.11-6	
γ =		1.00	1.00	Fig 26.8-1				GCpi (+/-)	0.18			Tab. 26.13-	1
L _h =		100	100	ft				q _h =	11.7	psf		Eq. 26.10-1	
K _{zt,roof} =		1.00	1.00	Eq. 26.8-1.									
K _{zt} =		1.00	1.00 Story Earoor	Eq. 26.8-1.	<u>_</u>		1		Story Earoon	V Directio			1
				. X - Directio	Total	a					Total	a. =	
	Level	Elevation, z (ft)	Story Width (ft)	Height (ft)	Pressure	Story Force (k)	Level	Elevation, z (ft)	Story Width (ft)	Trib. Story Height (ft)	Pressure	Story Force (k)	
					(psi)						(psi)		
	Roof	10.89	22	5.45	16.0	1.9	Roof	10.89	57	5.45	16.0	5.0	
	G Base Sheet	0.00 r	-	-	-	- 2 k	G Base Shear	0.00	-	-	-	- 5 4	4
	Overturning	g Moment				∠ κ 21 k-ft	Base Shear					54 k-ft	
	Level force	is taken as th	e wind press	ure at that lev	el over half ti	ne story heigh	nt above and	half the story	height below	Ι.	-		•

Vind Load Calculations	- Compone	ents & Cladding (X-Direction)		1.0W	LRFD
1601 Stn Avenue, Suite 1600 Seattle, WA 98101 205 622-5822		Wind Loads			2200191
	client	ARC			job no.
KDIT	location	Puyallup, WA	date	5/26/2022	
1	project	Pioneer Park Building	by	ASY	sheet no.

Calculations based on ASCE 7-16 Section 30.3 for low-rise buildings

V

Wind Speed, V =	97	mph	Fig. 26.5-1	p=qh*[G*Cp ⋅	- GCpi]		Eq. 30.3-1
Building Enclosure	Enclosed	•	Sec. 26.12	G =	0.88		Eq. 26.11-6
Building Height, h =	11	ft		GCpi (+/-)	0.18		Tab. 26.13-1
Risk Category	Ш		Tab. 1.5-1	q _z =	20.5	*K _z *K _{zt} psf	Eq. 26.10-1
K _d =	0.85		Tab. 26.6-1	K _{zt,roof} =	1.00		
R _i =	1.00		Eq. 26.13-1	K _h =	0.57		Tab. 26.10-1
Width (⊥ to wind)	22	ft		q _h =	11.7	psf	Eq. 26.10-1
Length (to wind)	57	ft					
Building Period, T =	0.12	sec		Roof Type = N	lonoslop	oe (3° < Θ ≤ 10°) Fig	j. 30.3-5A
Exposure Category	В		Sec. 26.7.3	Wall GC _p Factor =	0.9		

Walls	Fa	ctored Win	d Pressure	s for Buildi	ng Height a	and Area R	anges: X -	Direction (p	osf)
Fig. 30.3-1		≤ 10 sf Area			100 sf Area			> 500 sf Area	1
	Windward	Leev	ward	Windward	Leev	ward	Windward	Lee	ward
	GC _p	GCp	GCp	GC _p	GC _p	GCp	GCp	GCp	GCp
Height Range	Zone 4, 5	Zone 4	Zone 5	Zone 4, 5	Zone 4	Zone 5	Zone 4, 5	Zone 4	Zone 5
	0.9	-1.0	-1.3	0.74	-0.85	-0.95	0.6	-0.7	-0.7
480-500	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
460-480	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
440-460	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
420-440	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
400-420	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
380-400	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
360-380	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
340-360	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
320-340	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
300-320	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
280-300	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
260-280	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
240-260	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
220-240	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
200-220	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
180-200	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
160-180	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
140-160	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
120-140	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
100-120	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
90-100	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
80-90	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
70-80	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
60-70	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
50-60	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
40-50	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
30-40	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
20-30	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
15-20	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5
0-15	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5

Linear Interpolation is permitted for areas between 20 and 500 sf, 16 psf min, Kzt = 0.7 min. pressure per Sec 30.2.2

<u>oof</u>			Factor	ed Wind P	ressures fo	r Building	Height and	≤ 10 sf Are	a (psf)		
g. 30.3-5A	Zone 1'	Zone 1	Zone 2'	Zone 2	Zone 2e	Zone 2n	Zone 2r	Zone 3'	Zone 3	Zone 3e	Zone 3r
-	Inte	erior			Edges				Cor	ners	
GCp	N/A	-1.1	-1.6	-1.3	N/A	N/A	N/A	-2.6	-1.8	N/A	N/A
Total Pressure	N/A	-14.9	-20.8	-17.3	N/A	N/A	N/A	-32.4	-23.1	N/A	N/A
		Factored Wind Pressures for Building Height and 100 sf Area (psf)									
	Zone 1'	Zone 1	Zone 2'	Zone 2	Zone 2e	Zone 2n	Zone 2r	Zone 3'	Zone 3	Zone 3e	Zone 3r
	Inte	rior		Edges					Cor	ners	
GC_p	N/A	-1.1	-1.5	-1.2	N/A	N/A	N/A	-1.6	-1.2	N/A	N/A
Total Pressure	N/A	-14.9	-19.6	-16.1	N/A	N/A	N/A	-20.8	-16.1	N/A	N/A
			Factor	ed Wind Pr	essures for	r Building H	leight and	> 500 sf Are	ea (psf)		
	Zone 1'	Zone 1	Zone 2'	Zone 2	Zone 2e	Zone 2n	Zone 2r	Zone 3'	Zone 3	Zone 3e	Zone 3r
	Inte	rior		Edges				Cor	ners		
GCp	N/A	-1.1	-1.5	-1.2	N/A	N/A	N/A	-1.6	-1.2	-1.2	N/A
Total Pressure	N/A	-14.9	-19.6	-16.1	N/A	N/A	N/A	-20.8	-16.1	-16.1	N/A

1. Linear Interpolation is permitted for areas between 10 and 100 sf

2. N/A

N/A

3. qi = qh has been used for positive internal pressure calculations

4. Positive pressures on roofs and pressures on overhangs are not

included in this spreadsheet.

1			project		Pione	er Park Bu	ilding			by ASY	sheet no.
	П		location		Р	uyallup, W	A			_{date} 5/26/2022	1
1-			client			ARC					job no.
1601 5th Avenue Seattle, WA 98101	, Sulte 1600 205 622-5822		Gient		١	Wind Loads	5				2200191
ind Load C		tions	- Comn	onent	s & Cl	addino	ה (Y-D	irectio	n)	1 0\	
ulations based on ASC	E 7-16 Section	on 30.3 for lo	w-rise buildings	5		adamg			·/		
Vind Speed, V =	97	mph	Fig. 26.5-1			p=qh*[G*C	o - GCpi]			Eq. 30.3-1	
Building Enclosure	Enclosed		Sec. 26.12			G =	0.86			Eq. 26.11-6	
Building Height, h =	11	ft				GCpi (+/-)	0.18			Tab. 26.13-1	
Risk Category	П		Tab. 1.5-1			$q_z =$	20.5	*K _z *K _{zt} psf		Eq. 27.3-1	
(_d =	0.85		Tab. 26.6-1			K _{zt roof} =	1.00				
ζ. =	1.00		Ea. 26.13-1			K _h =	0.57			Tab. 26.10-1	
' Vidth (⊥ to wind)	57	ft	-4			g _b =	11 7	psf		Ea. 27.3-1	
enath (II to wind)	22	ft				4 11		P. 0.		·····	
uilding Period T -	<u>مح</u> 10	sec			-	Poof Type -	Monoslon	ے (ع° < () < 1	0°) Fig. 30	3-54	
$\frac{1}{2}$	U. 1Z	350	Sec 2673		٦ ١٨/ماليا	GC Eactor -			o ji ig. 30.	0-071	
sposule Calegoly	D		Sec. 20.7.3		Wall		0.9				
Valls	Fa	actored Wi	nd Pressure	s for Buildi	na Heiaht :	and Area Ra	anges: X -	Direction (r	osf)	1	
ig. 30.3-1		≤ 10 sf Are	a		100 sf Area		U	> 500 sf Area	a – ,		
	Windward	Le	eward	Windward	Lee	ward	Windward	Lee	ward		
	GCp	GC _p	GCp	GCp	GCp	GCp	GC _p	GCp	GC _p		
Height Range	Zone 4, 5	Zone 4	Zone 5	Zone 4, 5	Zone 4	Zone 5	Zone 4, 5	Zone 4	Zone 5		
400 500	0.9	-1.0	-1.3	0.74	-0.85	-0.95	0.6	-0.7	-0.7		
480-500	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		
440-460	12.0	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		
420-440	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		
400-420	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		
380-400	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		
360-380	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		
340-360	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		
320-340	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		
300-320	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		
280-300	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		\sim
200-200	12.0	-13.7	-10.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		\frown
220-240	12.0	-13.7	-10.0	10.7	-12.0	-13.1	9.5	-10.5	-10.5		5
200-220	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5	Star HX	12
180-200	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
160-180	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5	I III	
140-160	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~
120-140	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		
100-120	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		
90-100	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5	2a	2a
80-90 70,80	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		0 =
60-70	12.0	-13.7	-10.0	10.7	-12.0	-13.1	9.5	-10.5	-10.5	4 3	2
50-60	12.0	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5	+	
30-00	12.6	-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5	0	2
40-50		-13.7	-16.8	10.7	-12.0	-13.1	9.5	-10.5	-10.5		-
40-50 30-40	12.6				40.0	13.1	95	-10.5	10.5		1
40-50 30-40 20-30	12.6 12.6	-13.7	-16.8	10.7	-12.0	-13.1	0.0	10.0	-10.5	4 3	
40-50 30-40 20-30 15-20	12.6 12.6 12.6	-13.7 -13.7	-16.8 -16.8	10.7 10.7	-12.0 -12.0	-13.1	9.5	-10.5	-10.5		- <u>-</u>

Root				Facto	Factored wind Pressures for Building Height and S 10 st Area (pst)									
Fig. 30.3-5A		Zone 1'	Zone 1	Zone 2'	Zone 2	Zone 2e	Zone 2n	Zone 2r	Zone 3'	Zone 3	Zone 3e	Zone 3r		
		Inte	erior			Edges				Cor	ners			
GC _p		N/A	-1.1	-1.6	-1.3	N/A	N/A	N/A	-2.6	-1.8	N/A	N/A		
Total Pressure	э	N/A	-14.9	-20.8	-17.3	N/A	N/A	N/A	-32.4	-23.1	N/A	N/A		

	Factored Wind Pressures for Building Height and 100 sf Area (psf)										
	Zone 1'	Zone 1	Zone 2'	Zone 2	Zone 2e	Zone 2n	Zone 2r	Zone 3'	Zone 3	Zone 3e	Zone 3r
	Inte	erior			Edges				Cor	ners	
GC _p	N/A	-1.1	-1.5	-1.2	N/A	N/A	N/A	-1.6	-1.2	N/A	N/A
Total Pressure	N/A	-14.9	-19.6	-16.1	N/A	N/A	N/A	-20.8	-16.1	N/A	N/A

		Factored Wind Pressures for Building Height and > 500 sf Area (psf)										
	Zone 1'	Zone 1	Zone 2'	Zone 2	Zone 2e	Zone 2n	Zone 2r	Zone 3'	Zone 3	Zone 3e	Zone 3r	
	Inte	erior	Edges					Corners				
GCp	N/A	-1.1	-1.5	-1.2	N/A	N/A	N/A	-1.6	-1.2	-1.2	N/A	
Total Pressure	N/A	-14.9	-19.6	-16.1	N/A	N/A	N/A	-20.8	-16.1	-16.1	N/A	

<u>Notes</u>
1. Linear Interpolation is permitted for areas between 10 and 100 sf
2. N/A

N/A

3. qi = qh has been used for positive internal pressure calculations

4. Positive pressures on roofs and pressures on overhangs are not

included in this spreadsheet.

A18

Seismic Loading for Building

Seismic Force-Resisting System: Light frame (wood) walls sheathed with wood structural panels rated for shear resistance.

Response Modification Coefficient:	R =	6.5	(ASCE 7 Table 12.2-1)
Overstrength Factor:	Ωo =	3	(ASCE 7 Table 12.2-1)
Deflection Amplification Factor:	C _d =	4	(ASCE 7 Table 12.2-1)

Earthquake Loads

$E = \rho Q_E \pm 0.2 S_{DS} D$	Seismic Load	(ASCE 7 Equa	ation 12.4-1, 2, 3	8, 4a, 4b)
$E_{m} = \Omega_{O} Q_{E} \pm 0.2 \ S_{DS} D$	Maximum Seismic Load	(ASCE 7 Equa	ation 12.4-4a, 4t	o, 5, 6, 7)
ρ = 1.0	Reliability/Redundancy F	actor	(ASCE 7 Sectio	n 12.3.4)

Refer to the following pages for the seismic loads.

OSHPD

324 S Meridian, Puyallup, WA 98371, USA

Latitude, Longitude: 47.1895579, -122.2954133

E Goo	6th St SV Meeker Elementary School	Anthem Coffee & Tea Pizza Time Puyallup Downtown Puyallup Pioneer Park Giorgio's Greek Cafe 4th Ave SW Bourbon Street Bar and Grill	4th St SE					
Date		4/4/2022, 10:35:20 AM						
Design (Code Reference Document	ASCE7-16						
Risk Cat	egory	II						
Site Clas	SS	D - Default (See Section 11.4.3)						
Туре	Value	Description						
SS	1.272	MCE _R ground motion. (for 0.2 second period)						
S ₁	0.438	MCE _R ground motion. (for 1.0s period)						
S _{MS}	1.526	Site-modified spectral acceleration value						
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value						
S _{DS}	1.018	Numeric seismic design value at 0.2 second SA						
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA						
Туре	Value	Description						
SDC	null -See Section 11.4.8	Seismic design category						
Fa	1.2	Site amplification factor at 0.2 second						
Fv	null -See Section 11.4.8	Site amplification factor at 1.0 second						
PGA	0.5	MCE _G peak ground acceleration						
F _{PGA}	1.2	Site amplification factor at PGA						
PGA _M	0.6	Site modified peak ground acceleration						
ΤL	6	Long-period transition period in seconds						
SsRT	1.272	Probabilistic risk-targeted ground motion. (0.2 second)						
SsUH	1.392	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration						
SsD	1.5	Factored deterministic acceleration value. (0.2 second)						
S1RT	0.438	Probabilistic risk-targeted ground motion. (1.0 second)						
S1UH	0.487	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.						
S1D	0.6	Factored deterministic acceleration value. (1.0 second)						
PGAd	0.5	Factored deterministic acceleration value. (Peak Ground Acceleration)						
C _{RS}	0.914	Mapped value of the risk coefficient at short periods						
C _{R1}	0.898	Mapped value of the risk coefficient at a period of 1 s						

A20

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC /OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

			project	Pione	er Park Bui	Iding	by	ASY	sheet no
			project	Pi	ivallup. W	<u>А</u>	5	/26/2022	
-	YP.		location		ΔRC		date	, _ 0, _ 0	ich no
1601 5 Section 1	Sth Avenue, S	Suite 1600	client	So	ismic Load	c			2200191
Solemic F	Raco St	oar Calcul	ation	56		3			
2018 IBC (Ch.	16) & ASCE	E 7-16 (Ch. 11, 12	2, & 22), Refer	ences per ASCE	7-16, UNO				
Loadi Lateral S (Ta Risk Cat Site Cl Design Ca	ng ystem ab. 12.2-1] egory ass ategory	X Direction A. BEARING 15. Light-fram II D by Default D	WALL SYST ned (wood) w [IBC Tab. 160 [ASCE 7 Ch [IBC Sec. 161	EMS alls sheathed 4.5] 20] 3.2.5; Tab. 1613	with wood s 3.2.5(1) & (2)	structural panels	s rated for sl	hear resista	nce
S _s	1.272	[IBC Fig. 1613.	2.1(1) or USG	S Seismic Haza	rd Data]				
S ₁	0.438	[IBC Fig. 1613.	2.1(2) or USG	S Seismic Haza	rd Dataj	C	0.02	ITab 1200	7
г _а Г	1.20	IBC Tab. 1613	2.2(1)				0.02	[Tab. 12.0-2	-] 01
Γ _V Sur	1.00	IBC Tab. 1013	61			x b	0.75 11 ft	[Idu. 12.0-2	-]) 11
S _{MS}	1.55	IBC Eqn. 16-3	0] 71			п _п т	0.12 coc	[Sec. 12.0.2	1] 71
S	1.02	IBC Eqn. 16-3	/] 91			r _a C	1 /	ITab 12.0-1	1
S _{DS}	0.54	IBC Eqn. 16-3	0] 91				1.4	[1au. 12.0-1] 7
0 0	1	IASCE 7-16 12	oj 2.3.41			'MODAL T	0.12 sec	[Sec. 12.8.2	-] 27
	1.00	[Tab. 1.5-2]				, T	6 sec	[Fig. 22-14]	-J
R	6.5	[Tab. 12.2-1]				Ts	0.53	[Sec. 11.3]	
Ω_0	3	[Tab. 12.2-1]							
C _d	4	[Tab. 12.2-1]			Building H	Height Limit (ft)	65	[Tab. 12.2-1]
	Gro	ound motion ha ($S_{D1} / T ($ $S_{D1} T_L / T^2 ($ izard analysis 0.044 $S_{DS} I \ge 0$ $0.5S_1 / ($	$R/I) = C_{s, max}$ $R/I) = C_{s, max}$ $s performed?$ $0.01 = C_{s, min}$ $R/I) = C_{s, min}$ $C_{s} (design)$	0.697 N/A No 0.045 N/A 0.157	[Eqn. 12.8-3] [Eqn. 12.8-4] [Sec. 11.4.8] [Eqn. 12.8-5] [Eqn. 12.8-6]	11.4.8 Facto	r 1.5	
Vertical Distr	ibution o	f Forces		W	47 k 7 k	[Sec. 12.8.1] [Fan_12_8-1]			
exponent rela	ted to stru	ictural period		E _b = οV	7 k	[Eqn. 12 4-3]			
k	1.00	[Sec. 12.8.3]		-11 P		[=q	Ean 10 0 111	(Ean 12 0 12)	1 (Eap 12 10 1)
_	Name	Weight, w _x	Height, h _x	Σw _x	w _x h _x ^ĸ	[Eqri. 12.6-12] C _{vx}	ρ x F _x	ρ x V _x	F _{px}
	Roof	47 k 0 k	11 ft 0 ft	47 k 47 k	510 k-ft 0 k-ft	1.000 0.000	7 k 0 k	7 k 7 k	10 k 0 k
	Σ	47 k		A22	510 k-ft	1.000	7 k		
				HZZ					

			project	Pione	er Park Bui	ilding	by	ASY	sheet no.
			loostion	Pu	uvallup, W	<u> </u>	data 5	/26/2022	-
	. P.		location		ARC		dale		iob no
1601 Septile	5th Avenue,	Suite 1600	client	50	ismic Load	c			2200191
Soiomio	Page Cl		otion	56		3			
2018 IBC (Ch.	16) & ASC	E 7-16 (Ch. 11, 12	ation , & 22), Refer	ences per ASCI	E 7-16, UNO				
Load	ding	Y Direction							
Lateral	System	A. BEARING	WALL SYST	EMS					
[] Risk Ca	Tab. 12.2-1] ategory	15. Light-fram	ed (wood) w	alls sheathed	with wood s	structural panel	s rated for s	hear resista	nce
Site C	Class	D by Default	[ASCE 7 Ch.	20]					
Design C	Category	D	[IBC Sec. 161	3.2.5; Tab. 161	3.2.5(1) & (2)]			
Ss	1.272	[IBC Fig. 1613.]	2.1(1) or USG	S Seismic Haza	rd Data]				
S ₁	0.438	[IBC Fig. 1613.]	2.1(2) or USG	S Seismic Haza	rd Data]				
Fa	1.20	[IBC Tab. 1613	.2.3(1)]			Ct	0.02	[Tab. 12.8-2	2]
F _ν	1.86	[IBC Tab. 1613]	.2.3(2)]			X	0.75	[Tab. 12.8-2	2]
S _{MS}	1.53	[IBC Eqn. 16-30	6] 			n _n T	11 ft	[Sec. 12.8.2	2.1]
S _{M1}	0.82	[IBC Eqn. 16-3]	7]				0.12 sec	[Eqn. 12.8-1	(] 17
S _{DS}	0.54	[IBC Eqn. 16-38 [IBC Eqn. 16-38	5] 31				1.4	[1au. 12.0-1 [Sec 12.8.2	7] 27
ρ	1	[ASCE 7-16 12.	3.4]			· MODAL	0.12 sec	[Sec. 12.8.2	-] 2]
	1.00	[Tab. 1.5-2]				T _L	6 sec	[Fig. 22-14]	
R	6.5	[Tab. 12.2-1]				١ _s	0.53	[Sec. 11.3]	
52 ₀	3	[Tab. 12.2-1]			Duilding I	loight limit (ft)	6 F	IT-6 100	47
Ud	4	[Tap. 12.2-1]			building r	height Linnit (it)	60	[1ap. 12.2-1	[]
			SD	$_{\rm S}$ / (R/I) = C $_{\rm s}$	0.157	[Eqn. 12.8-2]			
			S _{D1} / T (R/I) = C _{s, max}	0.697	[Eqn. 12.8-3]			
	-		$S_{D1} T_L / T^2 ($	$R/I) = C_{s, max}$	N/A	[Eqn. 12.8-4]			
	Gr	ound motion ha	zard analysis	s perfomed?	No	[Sec. 11.4.8]	11.4.8 Facto	r 1.5	
		0	.044S _{DS} I ≥ 0	$J.01 = C_{s, min}$	0.045	[Eqn. 12.8-5]			
			$0.5S_{1}/$	$(R/I) = C_{s, min}$	N/A 0 157	[Eqn. 12.8-6]			
Vertical Dist	tribution o	f Foross			47 k	[See 12.9.1]			
ASCE 7-16, S	ec. 12.8.3	or Forces		VV V	47 k 7 k	[Sec. 12.8.1] [Eqn. 12.8-1]			
exponent rel	ated to stri	ictural period		$F_{\rm v} = 0V$	7 k	IEan 12 4-31			
k	1.00	[Sec. 12.8.3]		⊏n p∙	7 K	[Eqn: 12.10]			
	Name	Weight, w _x	Height, h _x	Σw _x	w _x h _x ^ĸ	[Eqn. 12.8-12] C _{vx}	[Eqn. 12.8-11] ρ x F _x	[Eqn. 12.8-13] ρ x V _x] [Eqn. 12.10-1] F_{nx}
-		<u> </u>	<u> </u>			- VX	F A	<u> </u>	μx
	Roof -	47 k 0 k	11 ft 0 ft	47 k 47 k	510 k-ft 0 k-ft	1.000 0.000	7 k 0 k	7 k 7 k	10 k 0 k
-	Σ	47 k		4.55	510 k-ft	1.000	7 k		
				A23					

Seismic Structural Irregularities

Horizontal Structural Irregularities (ASCE 7 Table 12.3-1)

Туре	Description	Yes	No	Notes
1a	Torsional Irregularity		Х	
1b	Extreme Torsional Irregularity		Х	
2	Reentrant Corner Irregularity		Х	
3	Diaphragm Discontinuity Irregularity			
4	Out-of-Plane Offset Irregularity		Х	
5	Nonparallel System Irregularity		Х	

Vertical Structural Irregularities (ASCE 7 Table 12.3-2)

Туре	Description	Yes	No	Notes
1a	Stiffness-Soft Story Irregularity		Х	
1b	Stiffness-Extreme Soft Story Irregularity		Х	
2	Weight (Mass) Irregularity		Х	
3	Vertical Geometric Irregularity		Х	
4	In-Plane Discontinuity in Vert. Lateral Force-Resisting Element Irregularity		Х	
5a	Discontinuity in Lateral Strength - Weak Story Irregularity		Х	
5b	Discontinuity in Lateral Strength - Extreme Weak Story Irregularity		Х	

Seismic Drift Limitations

Deflection of Level x:	$\delta_{\rm x} = \frac{C_{\rm d} \delta_{\rm xe}}{I_{\rm e}}$	(ASCE 7 Equation 12.8-15)
Drift at Level x:	$\Delta_{\rm x} = \delta_{\rm x} - \delta_{\rm x-1}$	

Maximum Allowable Inelastic Story Drift: $\Delta_a = 0.02 h_{sx}$ (ASCE 7 Table 12.12-1)

Where:

- δ_{xe} = calculated elastic drift considering torsional affects in accordance with ASCE 7 Section 12.12.1
- δ_{xe} is calculated without inclusion of ρ per ASCE 7 Section 12.3.4.1
- h_{sx} is the floor-to-floor height

Maximum period considerations need not be included in drift calculations

Seismic Loading for Elements of Structure and Nonstructural Components

 $F_p = k S_{DS} I_p W_p$

(ASCE 7 Section 13.3.1)

```
March 30, 2022
```

Where:
$$0.3 \le \left[k = 0.4 \frac{a_p}{R_p} (1 + 2\frac{z}{h})\right] \le 1.6$$

a _p = varies	Component Amplification Factor	(ASCE 7 Table 13.5-1 or 13.6-1)
R _p = varies	Component Response Factor	(ASCE 7 Table 13.5-1 or 13.6-1)
$\Omega_0 = varies$	Component Overstrength Factor	(ASCE 7 Table 13.5-1 or 13.6-1)
$z/h = varies \le 1.0$	Height of attachment of componer	It relative to mean roof height
l _p = varies	Importance Factor	(ASCE 7 Section 13.1.3)
W _p = varies	Weight of portion of structure or co	omponent

Pioneer Park Restroom KPFF Proj. No. 2200191 Permit Submittal Structural Calculations

Chapter B Gravity Framing

DESIGN SUMMARY

Date: 06/07/2022 By: ASY

Design: Gravity Framing

The following calculation were performed to determine suitable sizes for members that predominantly act to resist gravity loads and uplift from wind. Gravity framing consist of roof joists spanning east/west which are supported by glulam beams spanning north/south which are in turn supported by columns at the north and south ends of the building (there is also one additional column at both the east and west ends of the building). The roof joists and glulam beams are loaded using distributed loads along their lengths. The columns are checked for the reactions from the analysis of the glulam beams.

Several programs were used during design as follows:

- Forteweb: used to design the joists, glulam beams and one column type
- KPFF standard Excel spreadsheet: used to design two column type and non load bearing walls
- ENERCALC: used to design two column types

Roof, Roof: Joist

1 piece(s) 2 x 12 DF No.2 @ 24" OC

Overall Length: 10' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Roof
Member Reaction (lbs)	410 @ 1 1/2"	1406 (1.50")	Passed (29%)		1.0 D + 1.0 S (All Spans)	Member Type : Joist
Shear (lbs)	333 @ 1' 3/4"	2329	Passed (14%)	1.15	1.0 D + 1.0 S (All Spans)	Building Code : IBC 201
Moment (Ft-lbs)	1025 @ 5' 1 1/2"	2729	Passed (38%)	1.15	1.0 D + 1.0 S (All Spans)	Design Methodology : A
Live Load Defl. (in)	0.040 @ 5' 1 1/2"	0.333	Passed (L/999+)		1.0 D + 1.0 S (All Spans)	Member Pitch : 0/12
Total Load Defl. (in)	0.065 @ 5' 1 1/2"	0.500	Passed (L/999+)		1.0 D + 1.0 S (All Spans)	

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)						
Supports	Total	Available	Required	Dead	Roof Live	Snow	Wind	Seismic	Total	Accessories
1 - Hanger on 11 1/4" DF beam	1.50"	Hanger ¹	1.50"	164	205	256	-332	33/-33	658/- 365	See note 1
2 - Hanger on 11 1/4" DF beam	1.50"	Hanger ¹	1.50"	164	205	256	-332	33/-33	658/- 365	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

 \bullet 1 See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	10' o/c						
Bottom Edge (Lu)	10' o/c						
Maximum allowable bracing intervals based on applied load							

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A				
2 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A				
- Defer to manufacturer notes and instructions for meaner installation and use of all connectors									

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Roof Live	Snow	Wind	Seismic	
Vertical Load	Location (Side)	Spacing	(0.90)	(non-snow: 1.25)	(1.15)	(1.60)	(1.60)	Comments
1 - Uniform (PSF)	0 to 10' 3"	24"	16.0	20.0	25.0	-32.4	3.3	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes		6/7/2022 10:25:13 PM UTC
Alec Yeutter KPFF Consulting Engineers (206) 926-0787 alec.veutter@kpff.com	В	04 A	ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: Pioneer Park
	PRCN	20220958	Page 1 / 1

cial 8 SD

Roof, Roof Non-Edge Glulam 1 piece(s) 6 3/4" x 12" 24F-V8 DF Glulam

Sloped Length: 29' 10 7/8"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Member Length : 30' 7/8"

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7260 @ 22' 6"	26688 (6.00")	Passed (27%)		1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	4171 @ 21' 3 3/16"	16457	Passed (25%)	1.15	1.0 D + 1.0 S (Adj Spans)
Pos Moment (Ft-Ibs)	19258 @ 11' 8 1/8"	36551	Passed (53%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-Ibs)	-7763 @ 22' 6"	37260	Passed (21%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.504 @ 12' 1 1/4"	0.693	Passed (L/495)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.826 @ 12' 3/8"	1.039	Passed (L/302)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 2/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240). Upward deflection on left and right cantilevers exceeds overhang deflection criteria.

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 0.98 that was calculated using length L = 19' 3 7/8".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 8' 11 1/8".

• Upward deflection on right cantilever exceeds 0.4".

· -504 lbs uplift at support located at 22' 6". Strapping or other restraint may be required.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)							
Supports	Total	Available	Required	Dead	Roof Live	Snow	Wind	Seismic	Total	Accessories
1 - Column - steel	6.00"	6.00"	1.50"	2062	2322	2903	-1859	376/-376	7663/- 2235	Blocking
2 - Column - steel	6.00"	6.00"	1.63"	3097	3330	4163	-3937	185/-185	10775/- 4122	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	29' 11" o/c						
Bottom Edge (Lu)	29' 11" o/c						

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	Wind	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	(1.60)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 29' 6"	N/A	19.7					
1 - Uniform (PSF)	0 to 2' 2 3/8"	9' 9"	16.2	20.0	25.0	-16.1	3.3	Default Load
2 - Uniform (PSF)	2' 2 3/8" to 17' 4 3/16"	9' 9"	16.2	20.0	25.0	-14.9	3.3	
3 - Uniform (PSF)	17' 4 3/16" to 21' 9"	9' 9"	16.2	20.0	25.0	-20.8	-	
4 - Uniform (PSF)	21' 9" to 28' 6"	9' 9"	16.2	20.0	25.0	-31.5	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes
 6/7/2022 12:21:35 AM UTC

 Alec Yeutter
 KPFF Consulting Engineers
 ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16

 (206) 926-0787
 alec.yeutter@kpff.com
 File Name: Pioneer Park

 PRCNC 20220958
 Page 1 / 1

1 piece(s) 6 3/4" x 12" 24F-V8 DF Glulam

Sloped Length: 30' 4 15/16"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Passed (10%) Member Reaction (lbs) 2634 @ 23' 26688 (6.00") 1.0 D + 1.0 S (Adj Spans) 1.0 D + 1.0 S (Adj Spans) Shear (lbs) 1133 @ 11' 6 3/16" 16457 Passed (7%) 1.15 Pos Moment (Ft-lbs) 2273 @ 6' 9 7/16" 37260 Passed (6%) 1.15 1.0 D + 1.0 S (Alt Spans) Neg Moment (Ft-lbs) Passed (10%) 1.0 D + 1.0 S (Alt Spans) -3623 @ 23' 36613 1.15 Live Load Defl. (in) 0.056 @ 30' 0.473 Passed (2L/999+) 1.0 D + 1.0 S (Alt Spans) --Total Load Defl. (in) 0.096 @ 30' 0.710 Passed (2L/999+) 1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Flush Beam Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 2/12

Member Length : 30' 6 15/16"

 Deflection criteria: LL (L/360) and TL (L/240). • Overhang deflection criteria: LL (2L/360) and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 13/16".

• Critical negative moment adjusted by a volume factor of 0.98 that was calculated using length L = 19'.

• -295 lbs uplift at support located at 23'. Strapping or other restraint may be required.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

· Applicable calculations are based on NDS.

	В	earing Leng	th		L	oads to Sup	ports (Ibs)			
Supports	Total	Available	Required	Dead	Roof Live	Snow	Wind	Seismic	Total	Accessories
1 - Column - steel	6.00"	6.00"	1.50"	686	697	871	-657	114/-114	2368/- 771	Blocking
2 - Column - steel	6.00"	6.00"	1.50"	1063	1190	1487	-1299	181/-181	3921/- 1480	None
3 - Column - steel	6.00"	6.00"	1.50"	1193	1152	1441	-1685	13/-13	3799/- 1698	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	30' 5" o/c						
Bottom Edge (Lu)	30' 5" o/c						
Maximum allowable bracing intervals based on applied load							

			Dead	Roof Live	Snow	Wind	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	(1.60)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 30'	N/A	19.7					
1 - Uniform (PSF)	0 to 4' 4 13/16"	5'	16.2	20.0	25.0	-16.1	3.3	Default Load
2 - Uniform (PSF)	4' 4 13/16" to 17' 4 3/16"	5'	16.2	20.0	25.0	-19.6	3.3	
3 - Uniform (PSF)	17' 4 3/16" to 21' 9"	5'	16.2	20.0	25.0	-20.8	-	
4 - Uniform (PSF)	21' 9" to 28' 6"	5'	16.2	20.0	25.0	-31.5	-	

B06

PRCNC

Weverhaeuser

20220958

ForteWEB Software Operator Alec Yeutter KPFF Consulting Engineers (206) 926-0787 alec.yeutter@kpff.com

Job Notes

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Alec Yeutter KPFF Consulting Engineers (206) 926-0787
alec.yeutter@kptr.com

Job Notes

B07 Weyerhaeuser PRCNC20220958

6/7/2022 4:44:07 PM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: Pioneer Park Page 2 / 2

1 ()		project		Pioneer F	Park Buildin	g	by ASY		sheet no.
KOT		location		Puval	lup. WA	-	date 05/27/2	022	XXX
		-11							job no.
1601 5th Avenue, Suite 1600 Seattle, WA 98101 206 622-5822		chem	Nort	h and East	Columns: C	C-4 & C-4			2200191
, 	14//								
	~~~	100 31	UDS - AXI	IAL + LA I		- -			
	N factor lles of				LOAD INPU	T		10.0	
Lumber Type	visually G	raded Sav	vn Lumber		Lateral Pres	sure (Ultimate)	W _L =	16.8	psr
wood Species	Species =	Dougia	S FIR-Larch		Lateral Load	d Case	Case =	Wind	
Wood Grade	Grade =	2.0	stud		Service Loa	d Juur it	$W_{LS} =$	10.1	pst (0.6W)
Stud Size	Size =	2x8			Deflection L	Limit	L/Δ >	180	
Number of Studs	n =	4			Deflection L	-090	W _{LD} =	7.1	psf (0.42W
Stud Spacing	S =	16	in ft						
	6 _{ux} =	•	н 4		BUTTUNI P	LATE PROPERTIES	<b>C</b>	Davida	- The Lewsle
Unbraced Length - Y	C _{uy} =	4	π		wood Spec	les	Species =	Dougia	is Fir-Larch
	K _e =	1			wood Grad	e	Grade =		Stud
Sienderness Ratio - X	€ _e /u _x =	13.2					1 ^P		
Slenderness Ratio - Y	$\epsilon_e/a_y =$	32.0					PER PL	OP ATE	←
						-			
SECTION REDUCTION				-					←
Rows of Bolts	n =	0					-		
Diameter of Bolt	D =	0.75	in	У			570	ID	oad, w
	NDS Sunnlam	ont Tabla	<i>1</i> Λ )	VIII					ateral L
Bending Capacity	F⊾ =	700	psi	× K	- STUD5		54	EATHING	
	b		1	<u>~</u>	~~~~		9 8 -		←
Shear Parallel to Grain	F., =	180	psi		SUFA	THINKS	H H BO	ттом	
Shear Parallel to Grain Parallel Compressive Capacity	F _v = F _c =	180 850	psi psi	55	SHEA	THING	PL	ATE	
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Flasticity	F _v = F _c = F =	180 850 1,400,000	psi psi ) psi	SEC	CTION (		PL	ATE	
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min Modulus of Elasticity	F _v = F _c = E=	180 850 1,400,000 510,000	psi psi ) psi psi	SEC	CTION (		PL	ATE	<u> </u>
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity	F _v = F _c = E = E _{min} = F= =	180 850 1,400,000 510,000 625	psi psi ) psi psi psi	_ <u>5E</u> 0	CTION (		PL	ATE	<u>ـ</u> ـ
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity	F _v = F _c = E = E _{min} = F _{c,perp} =	180 850 1,400,000 510,000 625	psi psi ) psi psi psi	_ <u>SE</u>	CTION (		PL PL	ATE	<u>_</u>
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity NDS ADJUSTMENT FACTORS	F _v = F _c = E = E _{min} = F _{c,perp} =	180 850 1,400,000 510,000 625	psi psi ) psi psi psi	<u>_5E</u>	CTION (		Code Refere	nce	Ļ
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity NDS ADJUSTMENT FACTORS Adjustment Factor	F _v = F _c = E = E _{min} = F _{c,perp} =	180 850 1,400,000 510,000 625 <b>F</b> _c	psi psi psi psi psi <b>F</b> b	_ <u></u> 	CTION (	E	Code Refere	nce	<b>↓</b>
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity NDS ADJUSTMENT FACTORS Adjustment Factor Load Duration Factor	$F_v =$ $F_c =$ E = $E_{min} =$ $F_{c,perp} =$ $C_D =$	180 850 1,400,000 510,000 625 <b>F</b> _c 1.00	psi psi psi psi psi F _b 1.00	_ <u></u> F _v 1.00	F _{c,perp}	E -	Code Referen	nce 3.2	<b>↓</b>
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor	$F_v =$ $F_c =$ E = $E_{min} =$ $F_{c,perp} =$ $C_D =$ $C_M =$	180 850 1,400,000 510,000 625 <b>F</b> _c 1.00 1.00	psi psi psi psi psi <b>F</b> _b 1.00 1.00	 F _v 1.00 1.00	F _{c,perp} - 1.00	E 1.00	Code Referen NDS Table 2. NDS Supplen	nce 3.2 nent Table	e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Temperature Factor	$F_{v} =$ $F_{c} =$ $E =$ $E_{min} =$ $F_{c,perp} =$ $C_{D} =$ $C_{M} =$ $C_{t} =$	180 850 1,400,000 510,000 625 <b>F</b> _c 1.00 1.00 1.00	psi psi psi psi <b>F</b> _b 1.00 1.00 1.00	<b>F</b> v 1.00 1.00 1.00	F _{c,perp} - 1.00 1.00	E - 1.00 1.00	Code Referen NDS Table 2. NDS Supplen NDS Append	nce 3.2 nent Tabli	e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Temperature Factor Beam Stability Factor	$F_{v} =$ $F_{c} =$ $E =$ $E_{min} =$ $F_{c,perp} =$ $C_{D} =$ $C_{M} =$ $C_{t} =$ $C_{L} =$	180 850 1,400,000 625 <b>F</b> _c 1.00 1.00 1.00 -	psi psi psi psi <b>F</b> _b 1.00 1.00 1.00 0.96	<b>F</b> v 1.00 1.00 1.00 -	F _{c,perp} - 1.00 1.00 -	E - 1.00 1.00	Code Referen NDS Table 2. NDS Supplen NDS Append NDS Sec. 3.3.	nce 3.2 nent Tabli 3.2	e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Temperature Factor Beam Stability Factor Size Factor	$F_{v} =$ $F_{c} =$ $E =$ $E_{min} =$ $F_{c,perp} =$ $C_{D} =$ $C_{M} =$ $C_{t} =$ $C_{L} =$ $C_{F} =$	180 850 1,400,000 510,000 625 <b>F</b> _c 1.00 1.00 - 1.05	psi psi psi psi psi <b>F</b> _b 1.00 1.00 1.00 0.96 1.20	<b>F</b> v 1.00 1.00 1.00 - -	F _{c,perp} - 1.00 1.00 -	E - 1.00 1.00 -	Code Referen NDS Table 2. NDS Supplem NDS Append NDS Sec. 3.3. NDS Supplem	nce 3.2 nent Tabli ix C 3 nent Tabli	e 4A e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Temperature Factor Beam Stability Factor Size Factor Fire Treatment Factor	$F_{v} =$ $F_{c} =$ $E =$ $E_{min} =$ $F_{c,perp} =$ $C_{D} =$ $C_{M} =$ $C_{t} =$ $C_{L} =$ $C_{L} =$ $C_{F} =$ $C_{FT} =$	180 850 1,400,000 510,000 625 <b>F</b> c 1.00 1.00 - 1.05 1.00	psi psi psi psi <b>F</b> _b 1.00 1.00 1.00 0.96 1.20 1.00	<b>F</b> v 1.00 1.00 1.00 - - 1.00	F _{c,perp} - 1.00 1.00 - - 1.00	E - 1.00 1.00 - 1.00	Code Referen NDS Table 2. NDS Supplen NDS Append NDS Sec. 3.3 NDS Supplen	nce 3.2 nent Tabli 3 nent Tabli	e 4A e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Temperature Factor Beam Stability Factor Size Factor Fire Treatment Factor Incising Factor	$F_{v} =$ $F_{c} =$ $E =$ $E_{min} =$ $F_{c,perp} =$ $C_{D} =$ $C_{M} =$ $C_{t} =$ $C_{L} =$ $C_{F} =$ $C_{F} =$ $C_{F} =$ $C_{i} =$	180 850 1,400,000 510,000 625 <b>F</b> c 1.00 1.00 1.00 - 1.05 1.00 1.00	рsi psi psi psi psi <b>F</b> _b 1.00 1.00 1.00 1.20 1.20 1.00 1.00	<b>F</b> v 1.00 1.00 1.00 - - 1.00 1.00	F _{c,perp} - 1.00 1.00 - 1.00 1.00 1.00	E - 1.00 1.00 - - 1.00 1.00 1.00	Code Referen NDS Table 2. NDS Supplen NDS Append NDS Sec. 3.3. NDS Supplen NDS Table 4.	nce 3.2 nent Tabli ix C 3 nent Tabli 3.8	e 4A e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Temperature Factor Beam Stability Factor Size Factor Fire Treatment Factor Incising Factor Repetitive Member Factor	$F_{v} =$ $F_{c} =$ $E =$ $E_{min} =$ $F_{c,perp} =$ $C_{D} =$ $C_{M} =$ $C_{t} =$ $C_{L} =$ $C_{F} =$ $C_{F} =$ $C_{F} =$ $C_{r} =$ $C_{r} =$ $C_{r} =$	180 850 1,400,000 510,000 625 <b>F</b> c 1.00 1.00 1.00 - 1.05 1.00 1.00 - 7	psi psi psi psi psi <b>F</b> _b 1.00 1.00 1.00 1.20 1.20 1.00 1.00 1.00	<b>F</b> v 1.00 1.00 1.00 - - 1.00 1.00 1.00	F _{c,perp} - 1.00 1.00 - 1.00 1.00 - 1.00 1.00	E - 1.00 1.00 - - 1.00 1.00 -	Code Referen NDS Table 2. NDS Supplen NDS Sec. 3.3. NDS Supplen NDS Table 4. NDS Supplen	nce 3.2 nent Tabli ix C 3 nent Tabli 3.8 nent Tabli	e 4A e 4A e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Temperature Factor Beam Stability Factor Size Factor Fire Treatment Factor Incising Factor Repetitive Member Factor Column Stability Factor	$F_{v} =$ $F_{c} =$ $E =$ $E_{min} =$ $F_{c,perp} =$ $C_{D} =$ $C_{M} =$ $C_{L} =$ $C_{F} =$	180 850 1,400,000 510,000 625 <b>F</b> c 1.00 1.00 - 1.05 1.00 1.00 - 0.40	psi psi psi psi psi <b>F</b> _b 1.00 1.00 1.00 1.20 1.00 1.00 1.00	<b>F</b> v 1.00 1.00 1.00 - - 1.00 1.00 1.00 -	F _{c,perp} - 1.00 1.00 - 1.00 1.00 - - - - - - - - - - - - - - - - - -	E - 1.00 1.00 - - 1.00 1.00 - - -	Code Referen NDS Table 2. NDS Supplen NDS Append NDS Sec. 3.3. NDS Supplen NDS Table 4. NDS Supplen NDS Supplen NDS Eq. 3.7-	nce 3.2 nent Tabli ix C 3 nent Tabli 3.8 nent Tabli 1	e 4A e 4A e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Temperature Factor Beam Stability Factor Size Factor Fire Treatment Factor Incising Factor Repetitive Member Factor Column Stability Factor Bearing Area Factor	$F_{v} =$ $F_{c} =$ $E =$ $E_{min} =$ $F_{c,perp} =$ $C_{D} =$ $C_{M} =$ $C_{t} =$ $C_{t} =$ $C_{F} =$ $C_{F} =$ $C_{r} =$ $C_{r} =$ $C_{p} =$ $C_{p} =$ $C_{b} =$	180 850 1,400,000 510,000 625 <b>F</b> _c 1.00 1.00 1.00 - 1.05 1.00 1.00 - 0.40 -	psi psi psi psi psi <b>F</b> _b 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	<b>F</b> v 1.00 1.00 1.00 - - 1.00 1.00 1.00 - - - - - - - - - - - - - - - - - -	F _{c,perp} - 1.00 1.00 - 1.00 1.00 - 1.00 - 1.00	E - 1.00 1.00 - - - 1.00 1.00 - - - - -	Code Referen NDS Table 2. NDS Supplen NDS Append NDS Sec. 3.3 NDS Supplen NDS Table 4. NDS Supplen NDS Eq. 3.7- NDS Eq. 3.7-	nce 3.2 nent Tabli ix C 3 nent Tabli 3.8 nent Tabli 1 0.4	e 4A e 4A e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Temperature Factor Beam Stability Factor Size Factor Fire Treatment Factor Incising Factor Repetitive Member Factor Column Stability Factor Bearing Area Factor	$F_{v} =$ $F_{c} =$ $E =$ $E_{min} =$ $F_{c,perp} =$ $C_{D} =$ $C_{M} =$ $C_{t} =$ $C_{t} =$ $C_{F} =$ $C_{FT} =$ $C_{F} =$	180 850 1,400,000 510,000 625 <b>F</b> _c 1.00 1.00 1.00 - 1.05 1.00 1.00 - 0.40 -	psi psi psi psi psi F _b 1.00 1.00 1.00 1.20 1.00 1.00 1.00 1.00	<b>F</b> v 1.00 1.00 1.00 - - 1.00 1.00 - - - - -	F _{c,perp} - 1.00 1.00 - 1.00 1.00 - 1.00	E - 1.00 1.00 - - 1.00 1.00 - - - -	Code Referen NDS Table 2. NDS Supplen NDS Append NDS Sec. 3.3 NDS Supplen NDS Table 4. NDS Supplen NDS Eq. 3.7- NDS Sec. 3.1	nce 3.2 hent Tabli ix C 3 hent Tabli 1 0.4	e 4A e 4A e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Temperature Factor Beam Stability Factor Size Factor Fire Treatment Factor Incising Factor Repetitive Member Factor Column Stability Factor Bearing Area Factor ADJUSTED DESIGN VALUES Compression Design Value	$F_{v} =$ $F_{c} =$ $E =$ $E_{min} =$ $F_{c,perp} =$ $C_{D} =$ $C_{M} =$ $C_{t} =$ $C_{t} =$ $C_{F} =$ $C_{F} =$ $C_{F} =$ $C_{F} =$ $C_{p} =$ $C_{b} =$ $F_{c} =$ $F_{c} =$	180 850 1,400,000 510,000 625 <b>F</b> _c 1.00 1.00 1.00 - 1.05 1.00 1.00 - 0.40 - 361	psi psi psi psi psi F _b 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	<b>F</b> v 1.00 1.00 1.00 - - 1.00 1.00 - - - -	F _{c,perp} - 1.00 1.00 - 1.00 1.00 - 1.00	E - 1.00 1.00 - - 1.00 1.00 - - - -	Code Referen NDS Table 2. NDS Supplem NDS Append NDS Sec. 3.3 NDS Supplem NDS Table 4. NDS Supplem NDS Eq. 3.7- NDS Sec. 3.1	nce 3.2 nent Tabli ix C 3 nent Tabli 3.8 nent Tabli 1 0.4	e 4A e 4A e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Temperature Factor Beam Stability Factor Size Factor Fire Treatment Factor Incising Factor Repetitive Member Factor Column Stability Factor Bearing Area Factor <b>ADJUSTED DESIGN VALUES</b> Compression Design Value	$F_{v} =$ $F_{c} =$ $E =$ $E_{min} =$ $F_{c,perp} =$ $C_{D} =$ $C_{M} =$ $C_{t} =$ $C_{t} =$ $C_{r} =$ $C_{r} =$ $C_{r} =$ $C_{r} =$ $C_{p} =$ $C_{b} =$ $F_{c}' =$ $E_{min}' =$	180 850 1,400,000 510,000 625 <b>F</b> _c 1.00 1.00 1.00 1.00 1.00 - 0.40 - 361 510.000	psi psi psi psi psi <b>F</b> _b 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	<b>F</b> v 1.00 1.00 1.00 - - 1.00 1.00 - - - -	F _{c,perp} - 1.00 1.00 - 1.00 1.00 - 1.00	E - 1.00 1.00 - - 1.00 1.00 - - - -	Code Referen NDS Table 2. NDS Supplen NDS Supplen NDS Supplen NDS Table 4. NDS Supplen NDS Supplen NDS Eq. 3.7- NDS Sec. 3.1	nce 3.2 nent Tabli ix C 3 nent Tabli 3.8 nent Tabli 1 0.4	e 4A e 4A e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Temperature Factor Beam Stability Factor Size Factor Fire Treatment Factor Incising Factor Repetitive Member Factor Column Stability Factor Bearing Area Factor <b>ADJUSTED DESIGN VALUES</b> Compression Design Value Stiffness Design Value	$F_{v} =$ $F_{c} =$ $E =$ $E_{min} =$ $F_{c,perp} =$ $C_{D} =$ $C_{M} =$ $C_{t} =$ $C_{t} =$ $C_{F} =$ $C$	180 850 1,400,000 510,000 625 <b>F</b> _c 1.00 1.00 1.00 1.00 1.00 - 0.40 - 361 510,000 625	psi psi psi psi psi psi <b>F</b> _b 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	<b>F</b> v 1.00 1.00 1.00 - - 1.00 1.00 - - -	F _{c,perp} - 1.00 1.00 - 1.00 1.00 - 1.00	E - 1.00 1.00 - - 1.00 1.00 - - - -	Code Referen NDS Table 2. NDS Supplen NDS Append NDS Sec. 3.3. NDS Supplen NDS Table 4. NDS Supplen NDS Eq. 3.7- NDS Sec. 3.1	nce 3.2 nent Tabli ix C 3 nent Tabli 3.8 nent Tabli 1 0.4	e 4A e 4A e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Beam Stability Factor Size Factor Fire Treatment Factor Incising Factor Repetitive Member Factor Column Stability Factor Bearing Area Factor <b>ADJUSTED DESIGN VALUES</b> Compression Design Value Stiffness Design Value Bending Design Value	$F_{v} =$ $F_{c} =$ $E =$ $E_{min} =$ $F_{c,perp} =$ $C_{D} =$ $C_{M} =$ $C_{L} =$ $C_{F} =$ $C$	180 850 1,400,000 510,000 625 <b>F</b> _c 1.00 1.00 1.00 - 0.40 - 361 510,000 625 810	psi psi psi psi psi psi <b>F</b> _b 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	<b>F</b> v 1.00 1.00 1.00 - - 1.00 1.00 - - -	F _{c,perp} - 1.00 1.00 - 1.00 1.00 - 1.00	E - 1.00 1.00 - - 1.00 1.00 - - - -	Code Referen NDS Table 2. NDS Supplen NDS Append NDS Sec. 3.3. NDS Supplen NDS Table 4. NDS Supplen NDS Eq. 3.7- NDS Sec. 3.1	nce 3.2 nent Tabli ix C 3 nent Tabli 3.8 nent Tabli 1 0.4	e 4A e 4A e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Temperature Factor Beam Stability Factor Size Factor Fire Treatment Factor Incising Factor Repetitive Member Factor Column Stability Factor Bearing Area Factor <b>ADJUSTED DESIGN VALUES</b> Compression Design Value Stiffness Design Value Bending Design Value	$F_{v} =$ $F_{c} =$ $E =$ $E_{min} =$ $F_{c,perp} =$ $C_{D} =$ $C_{M} =$ $C_{t} =$ $C_{t} =$ $C_{F} =$ $C$	180 850 1,400,000 510,000 625 .00 1.00 1.00 .00 .00 .00 .00	psi psi psi psi psi psi <b>F</b> _b 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	<b>F</b> v 1.00 1.00 1.00 - - 1.00 1.00 - - -	F _{c,perp} - 1.00 1.00 - 1.00 1.00 - 1.00	E - 1.00 1.00 - - - 1.00 1.00 - - - -	Code Referen NDS Table 2. NDS Supplem NDS Append NDS Sec. 3.3 NDS Supplem NDS Table 4. NDS Supplem NDS Eq. 3.7- NDS Sec. 3.1	nce 3.2 nent Tabli ix C 3 nent Tabli 1 0.4	e 4A e 4A e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Min. Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Temperature Factor Beam Stability Factor Size Factor Fire Treatment Factor Incising Factor Repetitive Member Factor Column Stability Factor Bearing Area Factor Column Stability Factor Bearing Area Factor Compression Design Value Stiffness Design Value Perpendicular Design Value Bending Design Value Shear Design Value	$F_{v} =$ $F_{c} =$ $E =$ $E_{min} =$ $F_{c,perp} =$ $C_{D} =$ $C_{M} =$ $C_{L} =$ $C_{F} =$ $C$	180 850 1,400,000 510,000 625 F _c 1.00 1.00 1.00 - 0.40 - 0.40 - 361 510,000 625 810 180	psi psi psi psi psi psi <b>F</b> _b 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	<b>F</b> v 1.00 1.00 1.00 - - - 1.00 1.00 - - - - -	F _{c,perp} - 1.00 1.00 - 1.00 1.00 - 1.00	E - 1.00 1.00 1.00 - - - - -	Code Referen NDS Table 2. NDS Supplen NDS Append NDS Sec. 3.3 NDS Supplen NDS Table 4. NDS Supplen NDS Eq. 3.7- NDS Sec. 3.1	nce 3.2 hent Tabli ix C 3.8 hent Tabli 1 0.4	e 4A e 4A e 4A
Shear Parallel to Grain Parallel Compressive Capacity Modulus of Elasticity Perpendicular Load Capacity <b>NDS ADJUSTMENT FACTORS</b> Adjustment Factor Load Duration Factor Wet Service Factor Temperature Factor Beam Stability Factor Size Factor Fire Treatment Factor Incising Factor Repetitive Member Factor Column Stability Factor Bearing Area Factor <b>ADJUSTED DESIGN VALUES</b> Compression Design Value Stiffness Design Value Perpendicular Design Value Shear Design Value Shear Design Value	$F_{v} = F_{c} = F_{c} = F_{c,perp} = F_{c,perp} = F_{c,perp} = F_{c,perp} = F_{c,perp} = F_{c} = F_{$	180 850 1,400,000 510,000 625 F _c 1.00 1.00 1.00 - 0.40 - 0.40 - 361 510,000 625 810 180	psi psi psi psi psi psi <b>F</b> _b 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	<b>F</b> v 1.00 1.00 1.00 - - - 1.00 1.00 - - - - - - - - - - - -	F _{c,perp} - 1.00 1.00 - 1.00 1.00 - 1.00	E - 1.00 1.00 - - 1.00 1.00 - - - -	Code Referen NDS Table 2. NDS Supplem NDS Append NDS Sec. 3.3 NDS Supplem NDS Table 4. NDS Supplem NDS Eq. 3.7- NDS Sec. 3.1	nce 3.2 hent Tabli ix C 3 hent Tabli 1 0.4	e 4A e 4A e 4A

#### 15469 lbs/ft 20,391 lbs/ft 12 in oc lbs/ft NDS Sec. 3.9.2 16 in oc 11552 lbs/ft 78,006 24 in oc 7629 lbs/ft NDS Eq 3.9-3,-4 11,552 lbs/ft 11,552 lbs/ft B08

**Stud Wall Axial Capacities** 

Capacity

Stud Spacing

**Buckling Capacity** 

Sill Plate Capacity

Net Section Capacity

Edgewise Bending Capacity

Axial + Flexure Capacity

Allowable Axial Capacity

## PRCNC20220958

lbs/ft

lbs/ft

11,762

29,118

w =



PASSED

#### Roof, North and West Columns Column C-3

1 piece(s) 6 x 6 DF No.1

#### Post Height: 8'

Design Results	Actual	Allowed	Result	LDF	Load: Combination [Load Group]
Slenderness	17	50	Passed (35%)		
Compression (lbs)	2550	27326	Passed (9%)	1.15	1.0 D + 1.0 S [1]
Base Bearing (lbs)	2550	18906	Passed (13%)		1.0 D + 1.0 S [1]
Bending/Compression	0.07	1	Passed (7%)	1.15	1.0 D + 1.0 S [1]

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Member connection at both ends must be checked against an uplift of -236.

· Applicable calculations are based on NDS.

Supports	Туре		Material		
Base	Plate		Douglas Fir-Larch		
			-		
Max Unbraced Length		Comments			
Full Member Length		No bracing assumed			

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

#### Drawing is Conceptual

Vertical Load	Dead (0.90)	Roof Live (non-snow: 1.25)	Snow (1.15)	Wind (1.60)	Seismic (1.60)	Comments
1 - Point (lb)	1063	1190	1487	-1299	181/-181	Linked from: Roof Edge Glulam, Support 2

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Alec Yeutter KPFF Consulting Engineers (206) 926-0787 alec.yeutter@kpff.com Job Notes



6/7/2022 11:17:42 PM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: Pioneer Park Page 1 / 1

File: Glulam Column.ec6

KPFF CONSULTING ENGINEERS SEA

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24

Service loads entered. Load Factors will be applied for calculations.

#### Wood Column

Lic. # : KW-06007506

DESCRIPTION: South Columns Column C-1

#### **Code References**

Calculations per 2012 NDS, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : ASCE 7-16

#### **General Information**

Analysis Method : End Fixities Overall Column H	Allowable Top & Bo	e Stress Des ottom Pinned	ign 10 ft	M W W	/ood Section Name /ood Grading/Manuf. /ood Member Type	6.79 We GLE	<b>5x12</b> stern 3		
(Used for I Wood Species Wood Grade Fb + Fb - Fc - Prll Fc - Perp	non-slender calo GluLam Col L2D, >= 4 L 2,100.0 psi 2,000.0 psi 2,300.0 psi 650.0 psi	culations ) umn, Specie .aminations Fv Ft Density	s: DF 230.0 p 1,450.0 p 31.20 p	E E si cf	xact Width xact Depth Area Ix Iy	6.750 6.0 40.50 121.50 153.773	in Al in in^2 in^4 in^4	low Stress Modification Factors Cf or Cv for Bending Cf or Cv for Compression Cf or Cv for Tension Cm : Wet Use Factor Ct : Temperature Factor	1.0 1.0 1.0 1.0 1.0
E : Modulus of Ela	asticity Basic Minimum	x-x Bending 1,900.0	y-y Bending 1,900.0	Axial 1,900.0 ks	Si			Kf : Built-up columns Use Cr : Repetitive ?	1.0 NDS 15.3 No
	winninnunn	1,000.0	1,000.0	Br	race condition for de X-X (width) axis Y-Y (depth) axis	eflection (bu : Unbra ; : Unbra	ckling) ced Lei ced Lei	) along columns : ngth for buckling ABOUT Y-Y Axis = ngth for buckling ABOUT X-X Axis =	10 ft, K = 1.0 10 ft, K = 1.0

#### Applied Loads

Column self weight included : 87.750 lbs * Dead Load Factor AXIAL LOADS . . .

Load From Interior Glulam Beam: Axial Load at 10.0 ft, D = 3.097, Lr = 3.330, S = 4.163, W = -3.937, E = 0.1850 k

#### **DESIGN SUMMARY**

Bending	g & Shear Check Results								
PASS	Max. Axial+Bending Stress Ratio =	0.1049:1	Maximum SERVICE Lateral Load Reactions						
	Load Combination	+D+S	Top along Y-Y	0.0 k	Bottom along Y-Y		0.0 k		
	Governing NDS Forumla	Comp Only, fc/Fc'	Top along X-X	0.0 k		Bottom along X-X	0.0 k		
	Location of max.above base	0.0 ft	Maximum SERVICE L	oad Lateral Def	lection	S			
	At maximum location values are		Alona Y-Y	0.0 in	at	0.0 ft above base			
Applied Axial	7.348 k	for load com							
	Applied Mx	0.0 k-tt	Along X-X		at	0 0 ft above base			
	Applied My Fc : Allowable	0.0 k-tt 1 728 79 psi	for load com	bination : n/a	ut				
		1,120110 pt	Other Factors used to	calculate allov	vable st	tresses			
PASS	Maximum Shear Stress Ratio =	<b>0.0 : 1</b>			B	Bending Compression	Tension		
	Location of max above base	10.00D-0.70E							
	Applied Design Shear	0.0 psi							
	Allowable Shear	368.0 psi							

#### Load Combination Results

	~	0	Maximum Axial + Bending Stress Ratios			Maximum Shear Ratios		
Load Combination	СD	С _Р	Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.757	0.05018	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+Lr	1.250	0.616	0.09083	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+S	1.150	0.654	0.1049	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750Lr	1.250	0.616	0.07923	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S	1.150	0.654	0.09008	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.60W	1.600	0.506	0.01090	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750Lr+0.450W	1.600	0.506	0.05181	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S+0.450W	1.600	0.506	0.06009	PASS	0.0 ft	0.0	PASS	10.0 ft
+0.60D+0.60W	1.600	0.506	0.0	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.70E	1.600	0.506	0.04391	PASS	0.0 ft	0.0	PASS	10.0 ft
+D-0.70E	1.600	0.506	0.04048	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S+0.5250E	1.600	0.506	0.08484	PASS	0.0 ft	0.0	PASS	10.0 ft

File: Glulam Column.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 KPFF CONSULTING ENGINEERS SEA

#### **Wood Column**

Lic. # : KW-06007506

#### DESCRIPTION: South Columns

#### Load Combination Results

	•	~		Maximum	Axial +	Bending	Stress Ratios		Maxim	um Sh	ear Rati	<u>0S</u>	
Load Combination	CD	СР		Stress R	atio	Status	Location	Stree	ss Ratio	Sta	atus	Location	
+D+0.750S-0.5250E	1.600	0.506		0.082	27	PASS	0.0 ft		0.0	PA	ASS	10.0 ft	
+0.60D+0.70E	1.600	0.506		0.027	03	PASS	0.0 ft		0.0	P/	ASS	10.0 ft	
+0.60D-0.70E	1.600	0.506		0.023	60	PASS	0.0 ft		0.0	PA	ASS	10.0 ft	
Maximum Reactions								Note: O	nly non-	zero re	eactions	s are listed.	
	X-X Axis R	eaction	k	Y-Y Axis	Reactio	on Axi	al Reaction	My - End Mo	ments	k-ft	Mx - Ei	nd Moments	
Load Combination	@ Base	@ Top		@ Base	@ To	р	@ Base	@ Base	@ Top		@ Base	@ Тор	
D Only							3.185						_
+D+Lr							6.515						
+D+S							7.348						
+D+0.750Lr							5.682						
+D+0.750S							6.307						
+D+0.60W							0.823						
+D+0.750Lr+0.450W							3.911						
+D+0.750S+0.450W							4.535						
+0.60D+0.60W													
+D+0.70E							3.314						
+D+0.750S+0.5250E							6.404						
+0.60D+0.70E							2.040						
Lr Only							3.330						
S Only							4.163						
W Only													
E Only							0.185						
Maximum Deflections for Load Coml	oinations												

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance	
D Only	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+Lr	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+S	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+0.750Lr	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+0.750S	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+0.60W	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+0.750Lr+0.450W	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+0.750S+0.450W	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+0.70E	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+0.750S+0.5250E	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+0.60D+0.70E	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
Lr Only	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
S Only	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
E Only	0.0000 in	0.000 ft	0.0000 in	0.000 ft	

File: Glulam Column.ec6

#### **Wood Column** Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 KPFF CONSULTING ENGINEERS SEA Lic. # : KW-06007506

DESCRIPTION: South Columns

#### Sketches





File: Glulam Column.ec6

0.0 k

KPFF CONSULTING ENGINEERS SEA

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24

#### Wood Column

Lic. # : KW-06007506

DESCRIPTION: South Edge Columns Column C-2

#### **Code References**

Calculations per 2012 NDS, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used : ASCE 7-16

#### **General Information**

Analysis Method : End Fixities Overall Column H	Allowable Top & Bo	e Stress Des ottom Pinned	ign 10 ft	We We	ood Section Name ood Grading/Manuf. ood Member Type	<b>5.125x</b> Wester GLB	t <b>12</b> rn	
( Used for ) Wood Species Wood Grade Fb + Fb - Fc - Prll Fc - Perp	non-slender calo GluLam Col L2D, >= 4 L 2,100.0 psi 2,000.0 psi 2,300.0 psi 650.0 psi	<i>culations )</i> umn, Specie: .aminations Fv Ft Density	s: DF 230.0 p: 1,450.0 p: 31.20 pr	Ex Ex si si zf	act Width act Depth Area Ix Iy	<b>5.125</b> in <b>6.0</b> in 30.750 in ² 92.250 in ⁴ 67.306 in ⁴	Allow Stress Modification Factors Cf or Cv for Bending Cf or Cv for Compression Cf or Cv for Tension Cm : Wet Use Factor Ct : Temperature Factor	1.0 1.0 1.0 1.0 1.0
E : Modulus of Ela	asticity Basic Minimum	x-x Bending 1,900.0 1,000.0	y-y Bending 1,900.0 1,000.0	Axial 1,900.0 ksi Bra	ace condition for de X-X (width) axis : Y-Y (depth) axis	flection (bucklin Unbraced Unbraced	Kf : Built-up columns Use Cr : Repetitive ? ng) along columns : Length for buckling ABOUT Y-Y Axis = Length for buckling ABOUT X-X Axis =	1.0 1.0 NDS 15.3. No 10 ft, K = 1.0 10 ft, K = 1.0

#### **Applied Loads**

Column self weight included : 66.625 lbs * Dead Load Factor AXIAL LOADS . . .

Load From Interior Glulam Beam: Axial Load at 10.0 ft, D = 3.097, Lr = 3.330, S = 4.163, W = -3.937, E = 0.1850 k

#### **DESIGN SUMMARY**

#### Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = Maximum SERVICE Lateral Load Reactions . . 0.1756:1 Load Combination Top along Y-Y 0.0 k Bottom along Y-Y +D+S Governing NDS Forumla Comp Only, fc/Fc' Location of max.above base 0.0 ft Μ At maximum location values are . . . Applied Axial 7.327 k Applied Mx 0.0 k-ft Applied My 0.0 k-ft Fc : Allowable 1,356.52 psi 0 PASS Maximum Shear Stress Ratio = 0.0:1

Load Combination	+0.60D-0.70E
Location of max.above base	10.0 ft
Applied Design Shear	0.0 psi
Allowable Shear	368.0 psi

Top along X-X	0.0 k		Bottom along	X-X	0.0 k
aximum SERVICE Loa	ad Lateral Def	lections			
Along Y-Y	0.0 in	at	0.0 ft	above base	
for load combi	nation:n/a				
Along X-X	0.0 in	at	0.0 ft	above base	
for load combi	ination : n/a				
ther Factors used to o	alculate allow	able sti	resses		
		Be	ending (	Compression	Tension

Service loads entered. Load Factors will be applied for calculations.

#### Load Combination Results

	0	0	Maximum Axial	+ Bending S	Stress Ratios	Maximu	<u>atios</u>	
Load Combination	СD	СР	Stress Ratio	Status	Location	Stress Ratio	Status	Location
D Only	0.900	0.622	0.07991	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+Lr	1.250	0.478	0.1537	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+S	1.150	0.513	0.1756	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750Lr	1.250	0.478	0.1340	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S	1.150	0.513	0.1507	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.60W	1.600	0.384	0.01846	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750Lr+0.450W	1.600	0.384	0.08961	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S+0.450W	1.600	0.384	0.1040	PASS	0.0 ft	0.0	PASS	10.0 ft
+0.60D+0.60W	1.600	0.384	0.0	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.70E	1.600	0.384	0.07587	PASS	0.0 ft	0.0	PASS	10.0 ft
+D-0.70E	1.600	0.384	0.06991	PASS	0.0 ft	0.0	PASS	10.0 ft
+D+0.750S+0.5250E	1.600	0.384	0.1471	PASS	0.0 ft	0.0	PASS	10.0 ft

#### **Wood Column**

Lic. # : KW-06007506

#### DESCRIPTION: South Edge Columns

#### Load Combination Results

	0	•		Maximum	Axial -	- Bending	Stress Ratios		Maxim	um Sh	ear Rati	<u>0S</u>	
Load Combination	СD	СР		Stress R	atio	Status	Location	Stres	ss Ratio	Sta	atus	Locatio	n
+D+0.750S-0.5250E +0.60D+0.70E	1.600 1.600	0.384 0.384		0.14 0.046	26 72	PASS PASS	0.0 ft 0.0 ft		0.0 0.0	P/ P/	488 488	10. 10.	.0 ft .0 ft
+0.60D-0.70E	1.600	0.384		0.040	75	PASS	0.0 ft		0.0	PA	ASS	10.	.0 ft
Maximum Reactions								Note: Or	nly non-	zero re	eaction	s are li	sted.
	X-X Axis R	eaction	k	Y-Y Axis	Reaction	on Axia	al Reaction	My - End Mo	ments	k-ft	Mx - E	nd Morr	nents
Load Combination	@ Base	@ Top		@ Base	@ To	ор	@ Base	@ Base	@ Top		@ Base	. @	Тор
D Only							3.164						
+D+Lr							6.494						
+D+S							7.327						
+D+0.750Lr							5.661						
+D+0.750S							6.286						
+D+0.60W							0.801						
+D+0.750Lr+0.450W							3.889						
+D+0.750S+0.450W							4.514						
+0.60D+0.60W													
+D+0.70E							3.293						
+D+0.750S+0.5250E							6.383						
+0.60D+0.70E							2.028						
Lr Only							3.330						
S Only							4.163						
W Only													
E Only							0.185						
Maximum Deflections for Load Com	binations												

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance	
D Only	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+Lr	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+S	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+0.750Lr	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+0.750S	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+0.60W	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+0.750Lr+0.450W	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+0.750S+0.450W	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+0.70E	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+D+0.750S+0.5250E	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
+0.60D+0.70E	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
Lr Only	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
S Only	0.0000 in	0.000 ft	0.0000 in	0.000 ft	
E Only	0.0000 in	0.000 ft	0.0000 in	0.000 ft	

# Wood Column File: Glulam Column.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 Lic. # : KW-06007506 KPFF CONSULTING ENGINEERS DESCRIPTION: South Edge Columns

#### Sketches





1		project		Pioneer P	ark Buildin	g	by ASY	sheet no.
KOIT		location		Puyal	lup, WA		date 05/27/2022	XXX
		client		Α	RC			job no.
1601 5th Avenue, Suite 1600 Seattle, WA 98101 206 622-5822			avT	Non-Load Be	aring Exter	rior Wall		2200191
	WC		$\frac{1}{105 - 4}$					
		02 01	020 /0	.,,		т		
Lumber Type	Visually G	raded Sav	n Lumber	_	Lateral Pres	ssure (Ultimate)	w, = 16.8	psf
Wood Species	Species =	Douglas	s Fir-Larch		Lateral Loa	d Case	Case = Wind	F.
Wood Grade	Grade =	S	tud		Service Loa	d	w ₁₅ = 10.1	psf (0.6W)
Stud Size	Size =	2x6			Deflection	Limit	L/Δ > 240	
Number of Studs	n =	1			Deflection	Load	w _{LD} = 7.1	psf (0.42W)
Stud Spacing	s =	16	in					
Unbraced Length - X	e _{ux} =	10.25	ft		BOTTOM P	LATE PROPERTIES		
Unbraced Length - Y	e _{uy} =	6	ft		Wood Spec	ies	Species = Dougl	as Fir-Larch
Buckling Length Coefficient	k _e =	1			Wood Grad	le	Grade =	Stud
Slenderness Ratio - X	$\ell_e/d_x =$	22.4					IP	
Slenderness Ratio - Y	$\ell_{\rm e}/d_{\rm y} =$	48.0					TOP	
							PLATE	
SECTION REDUCTION				-		(1)		
Rows of Bolts	n =	0						
Diameter of Bolt	D =	0.75	in	y 1			STUD	.oad, w
	NDS Sunnlom	ont Tabla	44)	VIII		-		ateral L
Bending Canacity	F -	700	nsi	- × 🕅	- STUD5	X	SHEATHINK	<b>;</b> •
Shear Parallel to Grain	г _ь –	180	psi	and the second s	C		BOTTOM	←
Parallel Compressive Canacity	F =	850	nsi	05	SHE	ATHING	PLATE	
Modulus of Flasticity	F =	1 400 000	nsi	SEC	LITON			$\leftarrow$
Min. Modulus of Elasticity	E = F =	510.000	nsi			-		
Perpendicular Load Capacity	$F_{c nern} =$	625	psi					
	6,9619		•					
NDS ADJUSTMENT FACTORS							Code Reference	
Adjustment Factor		Fc	F _b	Fv	F _{c,perp}	E		
Load Duration Factor	C _D =	1.00	1.00	1.00	-	-	NDS Table 2.3.2	
Wet Service Factor	C _M =	1.00	1.00	1.00	1.00	1.00	NDS Supplement Tab	le 4A
Temperature Factor	C _t =	1.00	1.00	1.00	1.00	1.00	NDS Appendix C	
Beam Stability Factor	C _L =	-	0.97	-	-	-	NDS Sec. 3.3.3	
Size Factor	C _F =	1.00	1.00	-	-	-	NDS Supplement Tab	le 4A
Fire Treatment Factor	C _{FT} =	1.00	1.00	1.00	1.00	1.00	NDC Table 4.2.0	
Incising Factor	C =	1.00	1.00	1.00	1.00	1.00	NDS Table 4.3.8	10.44
Column Stability Factor	C _r =	-	1.00	-	-	-	NDS Supplement Tab.	le 4A
Rearing Area Factor	C _P -	-	_	_	- 1 25	-	NDS Eq. 3.7-1 NDS Sec. 3.10.4	
	C _b –				1.25		1120 500 5110.1	
ADJUSTED DESIGN VALUES								
Compression Design Value	F _c ' =	173	psi					
Stiffness Design Value	E _{min} ' =	510,000	psi					
Perpendicular Design Value	F _{c,perp} ' =	781	psi					
Bending Design Value	F _{bx} ' =	681	psi					
Shear Design Value	F _v ' =	180	psi					
RESULTS				Code Refer	ence			
Lateral Deflection	Δ =	0.08	in Off					
Deflection Ratio	L/Δ =	1533	OK					
Buckling Canacity		1 071	lhs/ft			Stud Wall	Axial Capacities	
Net Section Canacity		5 259	lbs/ft			Stud Spacing	Canacity	
Sill Plate Capacity		4,834	lbs/ft			12 in oc	1134 lbs/ft	
Edgewise Bending Capacity		5.186	lbs/ft	NDS Sec. 3	9.2	16 in oc	769 lbs/ft	
Axial + Flexure Canacity		700		NDC 5- 2.0	_	24 in oc	202 lbs/ft	
		769	IDS/IT	NDS EQ 3.9-	3,-4	24 11 00	393 IDS/TL	



Pioneer Park Restroom KPFF Proj. No. 2200191 Permit Submittal Structural Calculations

# Chapter C Lateral Force Resisting System





### DESIGN SUMMARY

06/07/2022 Date: ASY

By:

Lateral Force Resisting System Design:

The following calculation was performed to determine the sheathing and nailing requirements for the wood shear walls. Two wood shear walls are provided in each direction to resist lateral loads as shown on the following page. The building has a flexible diaphragm so the loading on each shear wall was determined using tributary areas of the building's mass. After the per lineal foot load was determined on each wood shear wall, the demand was compared to the shear wall capacities listed in the structural drawings and an appropriate design was selected.





Pioneer Park Restroom KPFF Proj. No. 2200191 Permit Submittal Structural Calculations

# Chapter D Foundations



### **DESIGN SUMMARY**

Date: 06/07/2022 By: ASY

Design: Foundations

The following calculations were performed to determine the suitability of foundation sizes to resist gravity and lateral loads and to verify the stability of the foundations under lateral loading. Continuous footings are used to support columns and shear walls throughout the structure.

Items to note:

- A 5 ft. effective width of slab was used to help resist uplift forces.
- An effective 2 ft. x 3 ft. footing was used for bearing checks with column loads.
- A portion of continuous footing at the ends of the building is used to help resist sliding.

1		project	Pioneer Par	by	ASY	sheet no.		
KDIT		location	Puyallup	o, WA		date	05/31/22	
		client	AR	2				job no.
1601 5th Avenue, Suite 1600 Seattle, WA 98101 206 622-5822			Foundation	oundation Design				2200191
						•		
Design Values:								
Allowable Bearing Pressure		15	00 psf	(Non-T	Transient Loads)			
Allowable Bearing Pressure		20	000 psf	(Trans	ient Loading)			
Lateral Bearing Pressure		1	.50 psf					
Coefficient of Friction		(	0.4					
Concrete Desnisty		1	.45 pcf					
Geometry:								
Shear Wall A Footing	Width:			1.50 ft.				
	Depth:			0.83 ft.				
	Minimum Bı	urried Depth:		1.00 ft.				
	Overbuild W	riath:		0.60 ft.				
		epuii:		1.50 ft.				
	Slab Dooth	incribuiting Slab Width:		5.00 TT.				
	Sian Debtu			0.30 H.				
Shear Wall B Footing	Width			2.00 ft.				
	Depth			0.83 ft.				
	Minimum Bu	urried Depth:		1.00 ft.				
	Overbuild W	/idth		0.60 ft.				
	Overbuild De	epth:		1.50 ft.				
	Effective Cor	ntribuitng Slab Width:		10.00 ft.				
	Siab Depth			0.50 ft.				
Shear Wall 1 Footing	Width			2.00 ft.				
	Depth			0.83 ft.				
	Minimum Bu	urried Depth:		1.00 ft.				
	Overbuild W	ʻidth		1.15 ft.				
	Overbuild De	epth:		1.00 ft.				
	Effective Cor	ntribuitng Slab Width:		5.00 ft.				
	Slab Depth			0.50 ft.				
Shear Wall 2 Footing	Width			2.00 ft.				
	Depth			0.83 ft.				
	Minimum Bu	urried Depth:		1.00 ft.				
	Overbuild W	'idth		0.60 ft.				
	Overbuild De	epth:		1.50 ft.				
	Effective Cor	ntribuitng Slab Width:		5.00 ft.				
	Slab Depth			0.50 ft.				

1		Project Pioneer Park Building	by ASY	sheet no.		
KOTT		location Puyallup, WA	_{date} 05/31/22			
I		client ARC		job no.		
1601 5th Avenue, Suite 1600 Seattle, WA 98101 206 622-5822		Foundation Design		2200191		
Effective "Isolated" Footing	Width	2.00 ft.				
	Length	3.00 ft.				
	Depth	1.00 ft.				
Wall A	Length	27.75 ft.				
	Height	8.50 ft.				
	Thickness	(2) 2x8 @ 16" OC				
	Weight	4.40 psf				
Wall R	Longth	10 50 ft				
	Hoight	10.50 ft.				
	Thickness	(1) 2×8 @ 16" OC				
	Weight	(1) 2X8 @ 10 000 2 20 nsf				
	Weight	2.20 p31				
Wall 1	Length	9.50 ft.				
	Height	10.00 ft.				
	Thickness	(2) 2x6 @ 16" OC				
	Weight	3.40 psf				
Wall 2	Length	9.50 ft				
	Height	10.00 ft				
	Thickness	(1) 2×8 @ 16" OC				
	Woight	2 20 pcf				
	weight	2.20 psi				

1	project	Pioneer Park Building	by	ASY	sheet no.
KDIT	location	Puyallup, WA	date	05/31/22	
	client	ARC			job no.
1601 5th Avenue, Suite 1600 Seattle, WA 98101 206 622-5822		Foundation Design			2200191

Loads:		
Shear Wall A:	Lateral Seismic	3.05 kip
	Seismic Overturning Forces:	0.93 kip
	Wind	0.71 kip
	Wind Overturning Forces:	0.22 kip
Shear Wall B:	Lateral Seismic	4.86 kip
	Seismic Overturning Forces:	5.09 kip
	Wind	1.29 kip
	Wind Overturning Forces:	1.35 kip
Shear Wall 1:	Lateral Seismic	2.94 kip
	Seismic Overturning Forces:	3.09 kip
	Wind	2.50 kip
	Wind Overturning Forces:	2.63 kip
Shear Wall 2:	Lateral Seismic	4.96 kip
	Seismic Overturning Forces:	5.22 kip
	Wind	2.50 kip
	Wind Overturning Forces:	2.63 kip
North Column:	Dead	2.06 kip
	Live Roof	2.32 kip
	Snow	2.90 kip
	Vertical Seismic	0.38 kip
	Wind	-1.86 kip
Load Combinations	1. D	2.06 kip
	3.a D+Lr	4.38 kip
	3.b D + S	4.97 kip
	5. D+0.6W	0.95 kip
	6.a D+0.45W+0.75Lr	2.97 kip
	6.b D+0.45W+0.75S	3.40 kip
	7. 0.6D+0.6W	0.12 kip
	8. 1.0D+0.7Ev	2.33 kip
	9. 1.0D+0.525Ev+0.75S	4.44 kip
	10. 0.6D-0.7Ev	0.97 kip
South Column:	Dead	3.10 kip
	Live Roof	3.33 kip
	Snow	4.16 kip
	Vertical Seismic	0.19 kip
	Wind	-3.94 kip
Load Combinations	1. D	3.10 kip
	3.a D+Lr	6.43 kip
	3.6 D + S	7.26 kip
	5. D+0.6W	0.73 kip
		3.82 kip
	6.D D+0.45W+0.75S	4.45 kip
	/. U.bD+U.bW	-0.50 kip
	8. 1.0D+0.7EV	3.23 KIP
	9. 1.0D+0.525EV+0.755	6.32 KIP
	τυ. υ.σD-υ./Εν	1.73 кір

D05

1 ((	project Pic	Project Pioneer Park Building		by ASY	sheet no.
	location	location Puyallup, WA		_{date} 05/31/22	
	client	ARC			job no.
1601 5th Avenue, Suite 1600 Seattle, WA 98101 206 622-5822	F	oundation Design			2200191
Design Checks:					
Shear Wall Hold Downs:					
Shear Wall A: 7. 0.6D+0	.6W	-0.01 kip	*Includes Axia	al Load from North C	olumns
10. 0.6D+	0./Emh	0.32 kip	*Includes Axia	al Load from North C	olumns
Shear Wall R: 7.06D±0	6W	-0.81 kin			
10. 0.6D+	0.7Emh	-3.56 kip			
Shear Wall 1: 7. 0.6D+0	.6W	-1.58 kip			
10. 0.6D+	0.7Emh	-2.17 kip			
	<i></i>				
Snear Wall 2: 7. 0.6D+0.	.6W 0.75mh	-1.58 KIP			
10. 0.00+	0.7 EIIIII	-5.05 KIP			
Uplift:					
Shear Wall A: Minimum	Effective Footing Length	1.00 ft.			
7. 0.6D+0	.6W	-0.07 kip	*Includes 1/2 Axial Load from North Columns		
10. 0.6D+	0.7Emh	-0.17 kip	*Includes 1/2	Axial Load from Nor	th Columns
Capacity		0.43 kip			
DCR		0.39			
Shear Wall B. Minimum	Effective Footing Length	6.00 ft.			
7. 0.6D+0	.6W	-0.81 kip			
10. 0.6D+	0.7Emh	-3.56 kip			
Capacity		4.04 kip			
DCR		0.88			
	Effective Fecting Length	F 00 th			
Shear Wali 1: Minimum 7_0 6D+0	6W	-1 58 kin			
10.0.6D+	0.7Emh	-2.17 kip			
Capacity		2.41 kip			
DCR		0.90			
Shear Wall 2: Minimum	Effective Footing Length	9.00 ft.			
7. 0.6D+0.	.6W	-1.58 KIP			
Capacity		4.09 kip			
DCR		0.89			
Shear Wall Soil Bearing Pressure:					
Shear Wall A: Minimum	Effective Footing Length	2.00 ft.	* Includ * *	alload from Month C	alumna
5. D+0.6W	/ mh	1.78 kip 3.68 kip	*Includes Axia	al Load from North C	olumns
Capacity:		6.00 kip	includes Axia		olumna
DCR		0.61			
Shear Wall B: Minimum	Effective Footing Length	2.00 ft.			
5. D+0.6W	/	1.61 kip			
8. D+0./E	mn	4.36 KIP			
DCR		0.73			
20.1					
Shear Wall 1: Minimum	Effective Footing Length	2.00 ft.			
5. D+0.6W	1	2.46 kip			
8. D+0.7E	mh	3.05 kip			
Capacity:		6.00 kip			
DCR		0.51			
Shear Wall 2: Minimum	Effective Footing Length	2.00 ft.			
5. D+0.6W	-	2.37 kip			
8. D+0.7E	mh	4.44 kip			
Capacity:		6.00 kip			
DCR	D06	0.74			

				I	
1	project	project Pioneer Park Building			sheet no.
KDII	location	location Puyallup, WA			
	client	ARC			job no.
1601 5th Avenue, Suite 1600 Seattle, WA 98101 206 622-5822		Foundation Design			2200191
0.000, 177, 50101 200 012 5012		roundation Design			
Column Unlift:					
North Column:	Demand:	0.12 kin			
	Capacity:	0.52 kip			
	DCR	0.00	No Uplift		
South Column:	Demand:	-0.50 kip			
	Capacity:	0.52 kip			
	DCR	0.97			
Column Soil Bearing:					
North Column:	Demand (Non-Transient):	4.97 kip			
	Capacity (Non-Transient):	9.00 kip			
	Demand (Transient):	4.44 kip			
	Capacity (Transient):	12.00 kip			
	DCR	0.55			
South Column:	Demand (Non-Transient):	7.26 kip			
	Capacity (Non-Transient):	9.00 kip			
	Demand (Transient):	6.32 kip			
	Capacity (Transient):	12.00 kip			
	DCR	0.81			
Sliding					
Shear Wall A	Effective Lateral Bearing Width	5 ft			
	Demand:	2 14 kin			
	Gravity Load:	11.86 kip	*Includes we	ight of wall above	
	Capacity:	6.12 kin	includes he	Birton man abore	
	DCR	0.35			
Shear Wall B	Effective Lateral Bearing Width:	10 ft.			
	Demand:	3.40 kip			
	Gravity Load:	7.07 kip	*Includes we	ight of wall above	
	Capacity:	5.58 kip			
	DCR	0.61			
Shear Wall 1	Effective Lateral Bearing Width:	5 ft.			
	Demand:	2.06 kip			
	Gravity Load:	4.58 kip	*Includes we	ight of wall above	
	Capacity:	3.21 kip			
	DCR	0.64			
Shoor Mall 2	Effective Lateral Decrine Width	- fr			
Shear wall Z	Enective Lateral Bearing Width:	5 IT.			
	Gravity Load:	5.47 KIP	*Includes	ight of wall above and	1/2 Column Load
	Canacity:	3.50 KIP	includes We	ight of wall above all	
	DCR	0.07			
	Den	0.57			