THE APPROVED CONSTRUCTION PLANS AND ALL ENGINEERING DOCUMENTS MUST BE POSTED ON THE JOB AT ALL INSPECTIONS IN A VISIBLE AND READILY ACCESSIBLE LOCATION.

8600 W Bryn Mawr Avenue Suite 800N Chicago, IL 60631 847.788.9200 www.greenbergfarrow.com Designing Solutions Together

Reviewed 1/31/2023 DL Subject to field inspectors approvals.

STRUCTURAL CALCULATIONS FOR

RETAIL TENANT IMPROVEMENT

Bath & Body Works - SOUTH HILL MALL
Space No. 235
3500 S. Meridian Street
Puyallup, WA 98373

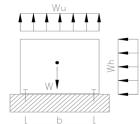
REV	Issue Date	Issue	Revised/Added Pages
	12/23/2022	POR REV 1	Initial Calc Submittal

GF Project # 20221012.0

Building Code: 2018 International Building Code

Bath&BodyWorks

South Hill


PROJECT NUMBER 20221012.0 **PROJECT LOCATION:** Puyallup, WA

ASCE 7-16 WIND LOADING ON MECHANICAL EQUIPMENT

Wind Design Crite	ria	$q_h = 0.00256 K_h K_{zt} K_d K_e V^2$ (Equation 26.10-1)					
		z =	19.00	ft	K _d =	0.85	(Table 26.6-1)
$F_v = q_h GC_r A_r$	(Eq. 29.4-3)	K _h =	0.89	(Table 26.10-1)	K _e =	0.98	(Table 26.9-1)
		K _{zt} =	1.00	(Section 26.8.2)	V =	97	mph
		$z_g =$	433.00	(ft)			
		g,=	17.98	psf			

Uplift on Mechanical Unit					
$F_v = q_h GC_r A_r$					
1.5	(Eq 29.4-3)				
26.97	x A _r				
	,= q _h GC 1.5				

	Uplift on Mechanical Units										
U	Jnit(s)	Weight	Ar	A _h	Х	Curb Length	Curb Width	F۷	Net Uplift 0.6W-0.6D	Curb Uplift	
		D (lbs)	(ft ²)	(ft ²)	(ft)	(ft)	(ft)	(lbs)	(lbs)	(plf)	
R	RTU 1	1093	21.47	19.83	2.87	5.48	3.41	579	-308	-17	
F	RTU 2	1252	32.77	28.85	3.12	7.04	4.20	884	-221	-10	

 A_r = Width x Length

 A_h = Height x Length

x = Component center of gravity above point of attachment

- Uplift = Unit Weight > Uplift Load

Connection Notes:

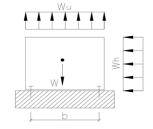
Connect RTU Curb to Framing w/ 1/8"x3" Plate w/ (2) #12 screws ea. side

Tallow = 383 lbs (Wood Connection)

Tallow = 353.75 lbs (Cold-Formed Connection)

Tallow = 1061.25 lbs per plate (Tension)

Straps have adequate capacity


PROJECT NUMBER 20221012.0 PROJECT LOCATION: Puyallup, WA

City of Puyallup Development & Permitting Services (ISSUED PERMIT Building Planning Engineering Public Works Fire Traffic

ASCE 7-16 WIND LOADING ON MECHANICAL EQUIPMENT

Wind Design Criter	ria	$q_h = 0.00256 K_h K_{zt} K_d K_e V^2$ (Equation 26.10-1)						
		z =	19.00	ft	K _d =	0.85	(Table 26.6-1)	
$F_h = q_h GC_r Af$	(Eq. 29.4-2)	K _h =	0.89	(Table 26.10-1)	$K_e =$	0.98	(Table 26.9-1)	
		K _{zt} =	1.00	(Section 26.8.2)	V =	97	mph	
		q _z =	17.98	psf				

Lateral on Mechanical Unit F _h = q _h GC _r A _f						
GC _r =	1.9	(Eq 29.4-2)				
F _h =	34.17	x A _f				

			(Combined	l Lateral &	& Uplift or	n Mechani	ical Units			
Unit(s)	Weight	A _h	х	Curb Length	Curb Width	F _v	F _h	М _{от} (0.6W)	M _R (0.6D)	Tension (0.6W-0.6D)	Т
	D (lbs)	(ft ²)	(ft)	(ft)	(ft)	(lbs)	(lbs)	(lb-ft)	(lb-ft)	(lbs)	(plf)
RTU 1	1093	19.83	2.87	5.48438	3.40625	579	-308	61	1116.91	-310	-57
RTU 2	1252	28.85	3.12	7.04167	4.19792	884	-221	700	1576.74	-209	-30

A_h = Height x Length

x = Component center of gravity above point of attachment

- T = Resisting Moment > Overturning Moment, no tension loads

Connection Notes:

Connect RTU Curb to Framing w/ 1/8"x3" Plate w/ (2) #12 screws ea. side

Tallow = 383 lbs (Wood Connection)

Tallow = 353.75 lbs (Cold-Formed Connection)

Tallow = 1061.25 lbs per plate (Tension)

Straps have adequate capacity

South Hill

PROJECT NUMBER: 20221012.0
PROJECT LOCATION: Puyallup, WA

City of Puyallup Development & Permitting Services ISSUED PERMIT						
Building	Planning					
Engineering	Public Works					
Fire	Traffic					

ASCE 7-16 SEISMIC LOADING ON NONSTRUCTURAL COMPONENTS

Seismic Design Criteria $S_{DS} = 1.011$ ft

h = 19.00 ft (Average Roof Height)

ı	Component Input										
Component	Weight (lbs)	a _p	R_p	z (ft)	I _p	x (ft)	Length (ft)	Width (ft)	z/h		
RTU 1	1093	2.50	6.00	19.00	1.00	2.87	5.48	3.41	1.00		
RTU 2	1252	2.50	6.00	19.00	1.00	3.12	7.04	4.20	1.00		

 $a_p \& R_p = Per ASCE 7-16 Table 13.5-1 or 13.6-1$

x = Component center of gravity above point of attachment

	Component Seismic Calculations										
Fp Limit	Fp Limit	Fp Calculated	d (Eq. 13.3-1)	F _p Desi	gn (lbs)	± Vert Force (lbs)	M_{OT} (0.7E _h)	M _R (0.6D-0.7E _v)**	Tension	Tension	
(13.3-2)	(13.3-3)	Component	Connection	Component	Connection	(Section 13.3.1.2)	(ft-lbs)	(ft-lbs)	(plf)	(lbs)	
1768.0	331.5	552.5	552.5	552.5	552.5	221.0	1110.0	854.4	13.7	75.0	
2025.2	379.7	632.9	632.9	632.9	632.9	253.2	1382.2	1205.4	6.0	42.1	

Connection Notes:

Connect RTU Curb to Framing w/ 1/8"x3" Plate w/ (2) #12 screws ea. side

Tallow = 383 lbs (Wood Connection)
Tallow = 353.75 lbs (Cold-Formed Connection)
Tallow = 1061.25 lbs per plate (Tension)

Straps have adequate capacity

z = Height in structure of point of attachment w/ respect to base

^{**}M_R assumes worst case direction

⁻ Tension = Resisting Moment > Overturning Moment, no tension loads

GENERAL STANDARD JOIST ANALYSIS For Steel Joists Considered as Simple-Span Beams **Subjected to Non-Standard Loads** BBW SOUTH HILL Subject: RTU 1 Job Name: Originator: AD Checker: MH Job Number: 20221012.0 **Input Data:** е Joist Data: b. Designation = K-series а Span, L = 50.0000 we Modulus, E = 29000000 psi Inertia, Ix = 731.45 in.^4 Original Design or Capacity Loads: **Full Uniform:** RR 32LH07 @ 7'-6" w =366 lbs./ft. **Nomenclature** Start End We (lbs/ft.) P (lbs.) Distributed: b (ft.) Wb (lbs./ft.) e (ft.) **Point Loads:** a (ft.) #2: #2: #3: #3: #4: #4 #5: #5 #6: #6: #7: #7 #8: #8: #9: Moments: C (ft.) M (ft-lbs) #10: #1: #11 #2: #12: #3: #13: #14: #15: New Design Loads: **Full Uniform:** w = 277.5 lbs./ft. Start End We (lbs/ft.) P (lbs.) Distributed: b (ft.) Wb (lbs./ft.) e (ft.) **Point Loads:** a (ft.) 19.2500 382.55 26.4000 382.55 #2: #2 #3: #3: #4: #4 #5: #5 #6: #6: #7: #7 #8: #8: #9 Moments: M (ft-lbs) C (ft.) #10: #11: #1: #2: #12: #3: #13: #14: #15:

Results of Joist Analysis:

Original Design or Capacity Loads:

End Reactions:

Minimum Design Web Member Shear:

Vw(min) = 2287.5 lbs. (25% of maximum end reaction for K-series and LH-series joists per SJI Spec's.)

Maximum Moments:

*Maximum Deflections:

$-\Delta(\max) =$	-2.790	in.	@ x =	25.00	
$+\Delta(\max) =$	0.000	in.	@ x =	0.00	ft.
Δ (ratio) =	L/215				_

*Note: deflections shown above include a 15% increase above the values calculated using traditional "simple-beam" flexure in order to more closely match actual test results obtained by SJI.

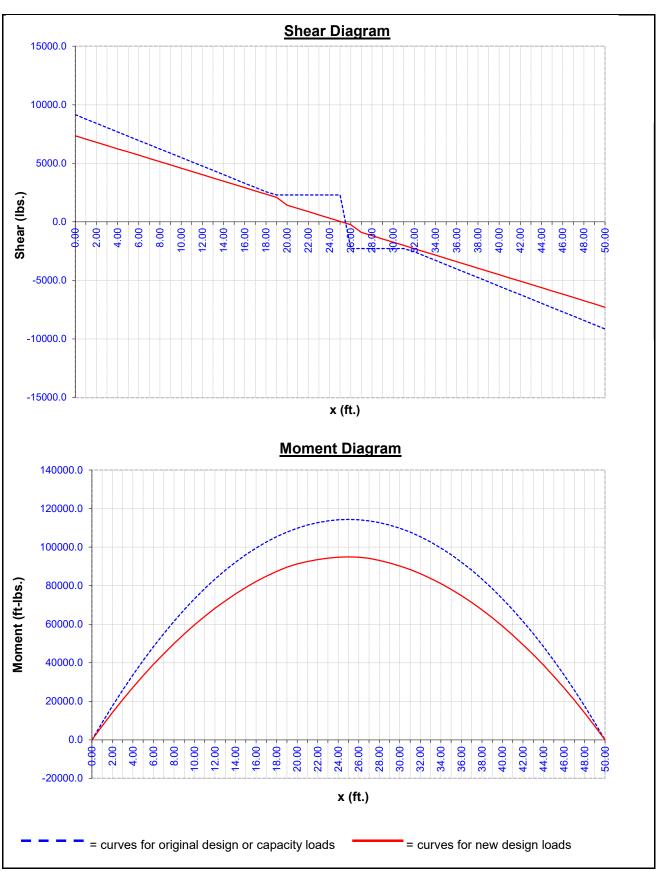
New Design Loads:

End Reactions:

					_
RL =	7353.3	lbs.	Rr =	7286.8	lbs.

Maximum Moments:

+Mx(max) =	94916.9	ft-lbs	@ x =	25.12	ft.
-Mx(max) =	0.0	ft-lbs	@ x =	0.00	ft.


*Maximum Deflections:

		<u> </u>	_		
$-\Delta(\max) =$	-2.295	in.	@ x =	24.96	ft.
$+\Delta(max) =$	0.000	in.	@ x =	0.00	ft.
$\Lambda(ratio) =$	L/261		-		_

*Note: deflections shown above include a 15% increase above the values calculated using traditional "simple-beam" flexure in order to more closely match actual test results obtained by SJI.

Maximum Stress Ratios:

Comments:

GENERAL STANDARD JOIST ANALYSIS For Steel Joists Considered as Simple-Span Beams **Subjected to Non-Standard Loads** BBW SOUTH HILL Subject: RTU 2 Job Name: Originator: AD Checker: MH Job Number: 20221012.0 **Input Data:** е Joist Data: b. Designation = K-series а Span, L = 50.0000 we Modulus, E = 29000000 psi Inertia, Ix = 731.45 in.^4 Original Design or Capacity Loads: **Full Uniform:** RR 32LH07 @ 7'-6" w = 366 lbs./ft. **Nomenclature** Start End P (lbs.) We (lbs/ft.) Distributed: b (ft.) Wb (lbs./ft.) e (ft.) **Point Loads:** a (ft.) #2: #2: #3: #3: #4: #4 #5: #5 #6: #6: #7: #7 #8: #8 #9: Moments: C (ft.) M (ft-lbs) #10 #1: #11 #2: #12: #3: #13: #14: #15: New Design Loads: **Full Uniform:** w = 277.5 lbs./ft. Start End We (lbs/ft.) P (lbs.) Distributed: b (ft.) Wb (lbs./ft.) e (ft.) **Point Loads:** a (ft.) 5.5000 438.2 12.5000 438.2 #2: #2 #3: #3: #4: #4 #5: #5 #6: #6: #7: #7 #8: #8: #9 Moments: M (ft-lbs) C (ft.) #10: #1: #11: #2: #12: #3: #13: #14: #15:

Results of Joist Analysis:

Original Design or Capacity Loads:

End Reactions:

Minimum Design Web Member Shear:

Vw(min) = 2287.5 lbs. (25% of maximum end reaction for K-series and LH-series joists per SJI Spec's.)

Maximum Moments:

+Mx(max) =	114375.0	ft-lbs	@ x =	25.00	ft.
-Mx(max) =	0.0	ft-lbs	@ x =	0.00	ft.

*Maximum Deflections:

		<u>- </u>	_		
$-\Delta(\max) =$	-2.790	in.	@ x =	25.00	ft.
$+\Delta(max) =$	0.000	in.	@ x =	0.00	ft.
Δ (ratio) =	L/215		_		_

*Note: deflections shown above include a 15% increase above the values calculated using traditional "simple-beam" flexure in order to more closely match actual test results obtained by SJI.

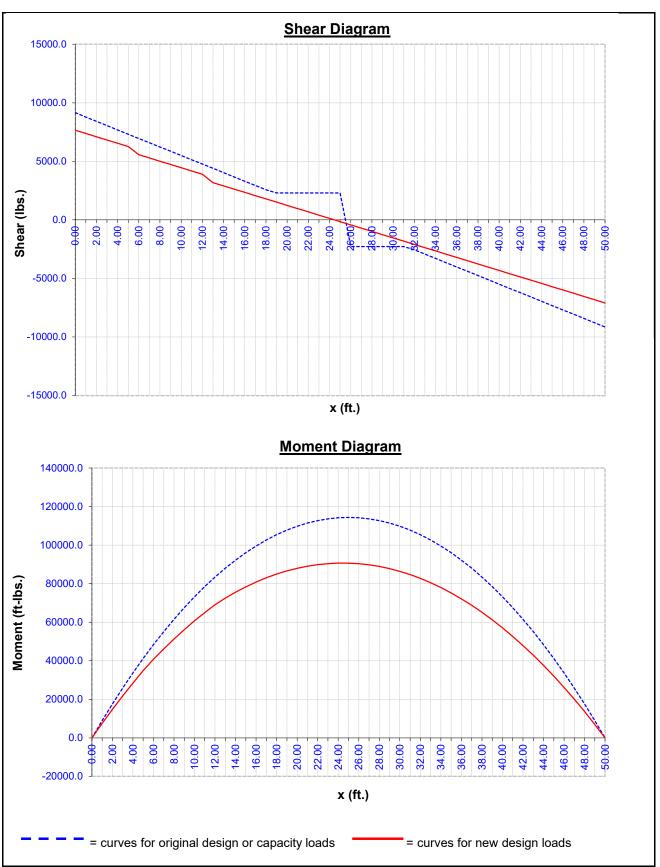
New Design Loads:

End Reactions:

	-				
RL=	7656.1	lbs.	Rr =	7095.3	lbs.

Maximum Moments:

$$+Mx(max) = 90707.4$$
 ft-lbs @ $x = 24.43$ ft
-M $x(max) = 0.0$ ft-lbs @ $x = 0.00$ ft


*Maximum Deflections:

	• • • • • • .	•			
$-\Delta(\max) =$	-2.224	in.		24.85	
$+\Delta(max) =$	0.000	in.	@ x =	0.00	ft.
$\Lambda(ratio) =$	1/270		_		_

*Note: deflections shown above include a 15% increase above the values calculated using traditional "simple-beam" flexure in order to more closely match actual test results obtained by SJI.

Maximum Stress Ratios:

Comments:

