

BELL APARTMENTS

Stormwater Site Plan Preliminary Drainage Report

FOR: Bell Place, LLC 409 E Pioneer Puyallup, WA 98372

- BY: Azure Green Consultants 409 East Pioneer Puyallup, WA 98372 253.770.3144
- DATE: March 29, 2023

JOB NO: 3256

ENGINEER: Robert A. Trivitt, P.E.

TABLE OF CONTENTS

DRAINAGE REPORT

Section I - Project Overview	3
Overview:	3
Project Requirements:	3
Discussion of Minimum Requirements	5
Figure 1. Site Location:	7
Topography:	8
Ground Cover:	8
Drainage:	8
Soils:	8
Floodplain	8
Section III – Off-Site Analysis	9
Upstream	9
Downstream	9
Problems	9
Section IV – Permanent Stormwater Control Plan	10
Conclusions	11
Section V – Construction Stormwater Pollution Prevention Plan	12
Section VI – Special Reports and Studies	12
Section VII – Other Permits	12
Section VIII – Operation and Maintenance Manual	12
Section IX – Bond Quantities Worksheet	12

APPENDICES

A – WWHM Analysis B – Soil Reports

MAPS

PRE-1-3 – Preliminary Storm Plan

Section I - Project Overview

Overview:

The project site is located on the northwest corner of the intersection of W Pioneer and 4th St SW. The site address is 204 4th St SW. The project will develop tax parcel numbers 5745001631, 5745001632, and 5745001641. Total site area is 32,085 sf = 0.737 acres. The project is an apartment building.

Improvements for the project will include the building, with in-building parking, storm connection at 5th St SW and W Meeker, utility services, and frontage improvements on W Pioneer, 4th St SW, and W Meeker.

Project Requirements:

Determination of Applicable Minimum Requirements

Per PMC 21.10.040 the City of Puyallup has adopted the Washington State Department of Ecology Stormwater Management Manual for Western Washington (SMMWW), with the version in effect being "the most current version approved for city use by the council." The city adopted the 2019 DOE Manual on July 1, 2022, and it is the controlling regulation and is referred to as "the Manual" or "SMMWW" hereinafter.

The project consists of 28,532 sf of new roof and 5,741 sf of paving overlay, 8,765 sf of new plus replaced sidewalk, and 564 sf of new plus replaced driveway. The existing hard surfaces onsite are 4,986 sf or approximately 15% of the project site and therefore, the project is considered new development. Since the total new plus replaced onsite hard surfaces for the project are greater than 5,000 square feet, and the value of improvements exceed 50% of the assessed value of the existing site improvements, all minimum requirements apply to the new and replaced onsite hard surfaces and converted vegetation areas. Note that all of the existing vegetated areas are already lawn/landscaping so therefore there are no converted vegetation areas. Therefore, the minimum requirements only apply to the new and replaced hard surfaces.

Figure I-3.1: Flow Chart for Determining Requirements for New Development

2019 Stormwater Management Manual for Western Washington

Volume I - Chapter 3 - Page 89

Discussion of Minimum Requirements

The Minimum Requirements per Section I-2.5 of the Manual:

Minimum Requirement #1: Preparation of Stormwater Site Plans

The Stormwater Site Plan consists of a report and construction plans. This report and the attached preliminary storm plan are preliminary versions of the Drainage Report and the site improvement plans that will be submitted for construction permits and will satisfy Minimum Requirement #1.

Minimum Requirement #2: Construction Stormwater Pollution Prevention (SWPPP)

The SWPPP consists of a narrative and drawings. The narrative will be addressed in Section V of the final version of the Drainage Report. The drawings will include a TESC plan, notes, and details as part of the site development construction plans. The narrative and drawings will be prepared and submitted at time of civil permit application.

Minimum Requirement #3: Source Control of Pollution

A Pollution Source Control Plan will be prepared in conformance with requirements of Volume IV of the Manual and will be submitted as a separate document at time of civil permit application.

Minimum Requirement #4: Preservation of Natural Drainage Systems and Outfalls

Currently, drainage from the site sheet flows both north into W Meeker and south into W Pioneer. Drainage in both roads flows west along the curb line into catch basins in 5th St SW. These catch basins are tied through 8-inch laterals into a 15-inch storm main that flows south. The proposed design will connect to this same closed conveyance system to preserve existing drainage systems and outfalls.

Minimum Requirement #5: On-site Stormwater Management

Typically a project that triggers MR #1-9, and is inside the urban growth area, is required to either meet the Low Impact Development Performance Standard, or use List #2 to determine applicable On-Site Stormwater Management BMPs. BMP T5.13, Post Construction Soil Quality and Depth will be used for lawn and landscaped areas to address MR #5, but all other surfaces will be tightlined to the existing public storm system per upcoming Municipal Code revisions, with payment required on a pro rata basis to improve the downstream conveyance system.

Minimum Requirement #6: Runoff Treatment

The only new PGHS for the project is 564 sf of driveway. Since this area is less than 5,000 sf, no runoff treatment is required.

Minimum Requirement #7: Flow Control

Runoff from all hard surfaces will be tightlined to the existing public storm system per upcoming Municipal Code revisions, with payment required on a pro rata basis to improve the downstream conveyance system.

Minimum Requirement #8: Wetlands Protection

There are no wetlands on or near the site.

Minimum Requirement #9: Operation and Maintenance

The stormwater facilities required for this project that require a maintenance plan are: conveyance system. Only a short run of roof drain from the building to the right-of-way will be on private property. All other stormwater facilities will be within the right-of-way and therefore owned, operated, and maintained by the City of Puyallup. Because the stormwater facilities consist of a typical closed conveyance system, commonly maintained by the City, an O&M plan is not required.

Figure 1. Site Location:

Section II – Existing Conditions Summary

Topography:

In existing conditions, the site is nearly flat, slightly sloping to the north and south, while overall dropping from east to west.

Ground Cover:

The site is developed as a single-family residence. The non-hard surface areas are covered with lawn and landscaping.

Drainage:

There is no defined drainage course onsite. Any surface runoff that does not infiltrate sheet flows north into W Meeker or south into W Pioneer.

Soils:

The NRCS Soil Survey of Pierce County indicates the soils on the site are Puyallup fine sandy loam (31A). Puyallup soils are hydrologic group A. Per the soils report for the site by GeoResources, the soils match the mapped soil type, primarily being sand. Groundwater monitoring was performed during the winter of 2022 with peak groundwater reaching elevation 42.0, approximately 3 feet deep. Infiltration testing was performed by GeoResources with a resulting long-term design infiltration rate of 1 in/hr. See Appendix B for soils reports. While the design infiltration rate is marginal for typical infiltration design, the depth to groundwater of 3 feet makes all infiltration BMPs infeasible given the proposed development.

Floodplain

The project site does not include a floodplain based on latest FIRM and Pierce County flood data.

Section III – Off-Site Analysis

Upstream

Existing topography and curbs in adjacent road result in no upstream area contributing drainage to the site.

Downstream

From the project site, runoff sheet flows north into W Meeker or south into West Pioneer, then west approximately 80 feet along curbing and into catch basins in 5th St SW. These catch basins have 8-inch leaders into a 15-inch storm main that flows south for about 640 feet into a 24-inch pipe in 4th Ave SW that flows west. The 24-inch pipe continues west, reaching the ¹/₄ mile downstream point approximately 150 feet west of 6th St SW.

Problems

There are no known drainage problems along this downstream route.

Section IV – Permanent Stormwater Control Plan

Existing Site Hydrology

WWHM2012 is used for hydrologic analysis. The project site is within the 42-inch, East rainfall zone and WWHM is run with 15-minute intervals. Due to the high groundwater, and marginal infiltration rate, the soils are classified as "C". The basin in existing conditions is delineated per the following table. See Appendix A for WWHM analysis.

Existing		
	sf	acre
C, Lawn, Flat	27347	0.6278
Impervious	sf	acre
Road, Flat	8732	0.2005
Roof	4986	0.1145
Sidewalk, Flat	3754	0.0862
Total Impervious	17472	0.4011
Total Area	44819	1.0289

The peak runoff rates calculated by WWHM2012 for existing conditions are:

Flow I	Fre	quency
Flow(cfs)	0501 15m
2 Year	=	0.1782
5 Year	=	0.2553
10 Year	=	0.3141
25 Year	=	0.3981
50 Year	=	0.4678
100 Year	=	0.5442

Developed Site Hydrology

Drainage Basin

The drainage basin for developed conditions is delineated per the following table.

Developed Conditions		
	sf	acre
C, Lawn, Flat	1217	0.0279
Impervious	sf	acre
Road, Flat	5741	0.1318
Roof	28532	0.6550
Driveway, Flat	564	0.0129
Sidewalk, Flat	8765	0.2012
Total Impervious	43602	1.0010
Total Area	44819	1.0289

The peak runoff rates calculated by WWHM2012 for developed conditions (prior to detention) are:

Flow Frequency

Flow(cfs)	0801 15m
2 Year	=	0.3679
5 Year	=	0.4931
10 Year	=	0.5839
25 Year	=	0.7081
50 Year	=	0.8077
100 Year	=	0.9136

Conveyance System

The existing lateral to which the project will connect is 8-inch. For this preliminary report, Manning's Equation will be used to confirm if an 8-inch pipe at 0.5% slope is adequate to convey the 100-year runoff from the project area. This is simply to show feasibility. The final report will include a more precise analysis of runoff and pipe capacity.

Manning's Equa	tion Analysi	S						
100-year flow:	0.91	cfs						
Pipe Dia.	radius	n	slope	flow depth	Area	Hyd. Rad.	Q	V
in	ft		ft/ft	ft	sf	ft	cfs	fps
8	0.333	0.012	0.005	0.5383	0.3020	0.2029	0.9130	3.0231

Conclusions

The analysis shows that the project will result in an increase in flow of 0.37 cfs for the 100-year event and that an 8-inch pipe at 0.5% has adequate capacity to convey the 100-year event from the project area.

Section V – Construction Stormwater Pollution Prevention Plan

An SWPPP will be prepared and submitted for this project with the final engineering.

Section VI – Special Reports and Studies

See Geotech reports in Appendix B.

Section VII – Other Permits

A building permit will be required for construction of the future buildings. Water and sewer service permits will be required.

Section VIII – Operation and Maintenance Manual

An Operations and Maintenance Manual is required for all storm drainage improvements. The O&M Manual will be prepared and submitted with the final engineering.

Section IX – Bond Quantities Worksheet

Any required bond amounts will be calculated when required for permit issuance.

APPENDIX A

WWHM Analysis

<section-header>

General Model Information

Project Name:	Bell
Site Name:	Bell
Site Address:	
City:	Puyallup
Report Date:	3/29/2023
Gage:	42 IN EAST
Data Start:	10/01/1901
Data End:	09/30/2059
Timestep:	15 Minute
Precip Scale:	1.000
Version Date:	2019/09/13
Version:	4.2.17

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass:	No
GroundWater:	No
Pervious Land Use C, Lawn, Flat	acre 0.6278
Pervious Total	0.6278
Impervious Land Use ROADS FLAT ROOF TOPS FLAT SIDEWALKS FLAT	acre 0.2005 0.1145 0.0862
Impervious Total	0.4012
Basin Total	1.029
Element Flows To:	

Surface Interflow Groundwater

Mitigated Land Use

Basin 1 Bypass:	No
GroundWater:	No
Pervious Land Use C, Lawn, Flat	acre 0.0279
Pervious Total	0.0279
Impervious Land Use ROADS FLAT ROOF TOPS FLAT DRIVEWAYS FLAT SIDEWALKS FLAT	acre 0.1318 0.655 0.0129 0.2012
Impervious Total	1.0009
Basin Total	1.0288
Element Flows To: Surface	Interflow

Groundwater

Routing Elements Predeveloped Routing Mitigated Routing

Analysis Results POC 1

+ Predeveloped

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	0.6278
Total Impervious Area:	0.4012

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.0279 Total Impervious Area: 1.0009

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1 **Return Period** Flow(cfs) 0.178196 2 year 0.255256 5 year 10 year 0.31414 25 year 0.39805

50 year	0.467833
100 year	0.544173

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.367928
5 year	0.493081
10 year	0.58393
25 year	0.708145
50 year	0.807747
100 year	0.9136

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated

rear	Predeveloped	wiitigat
1902	0.176	0.434
1903	0.198	0.479
1904	0.339	0.549
1905	0.111	0.245
1906	0.111	0.268
1907	0.211	0.367
1908	0.147	0.302
1909	0.153	0.371
1910	0.209	0.354
1911	0.209	0.400

1912 1913 1914 1915 1916 1917 1918 1920 1921 1922 1923 1924 1925 1926 1927 1928 1927 1928 1929 1930 1931 1933 1934 1935 1936 1937 1938 1939 1940	0.511 0.120 0.700 0.117 0.190 0.078 0.149 0.149 0.138 0.244 0.152 0.215 0.106 0.172 0.149 0.128 0.280 0.232 0.129 0.129 0.129 0.139 0.141 0.289 0.102 0.102 0.170 0.231 0.117 0.231 0.117 0.241	0.664 0.289 1.227 0.250 0.460 0.187 0.368 0.231 0.306 0.261 0.407 0.283 0.525 0.428 0.365 0.225 0.428 0.365 0.263 0.526 0.542 0.263 0.526 0.542 0.269 0.287 0.284 0.284 0.464 0.252 0.345 0.459 0.251 0.301 0.552
1941	0.229	0.556
1942	0.239	0.412
1943	0.196	0.405
1944	0.325	0.587
1945	0.201	0.441
1946	0.190	0.345
1947	0.117	0.268
1948	0.173	0.370
1949	0.241	0.567
1950	0.133	0.331
1951	0.197	0.490
1952	0.404	0.549
1953	0.348	0.507
1954	0.145	0.299
1955	0.118	0.286
1956	0.104	0.259
1957	0.136	0.297
1958	0.229	0.372
1959	0.226	0.370
1960	0.130	0.297
1961	0.456	0.835
1962	0.164	0.355
1963	0.106	0.262
1964	0.432	0.774
1965	0.200	0.348
1966	0.134	0.289
1967	0.236	0.409
1968	0.160	0.340
1969	0.151	0.308

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1985 1986 1987 1988 1987 1988 1989 1990 1991	0.194 0.205 0.613 0.266 0.240 0.348 0.311 0.099 0.248 0.208 0.231 0.175 0.137 0.223 0.214 0.278 0.117 0.217 0.217 0.119 0.112 0.155 0.218 0.175 0.218 0.175 0.218 0.175 0.218 0.175 0.218 0.175 0.218 0.175 0.218 0.175 0.218 0.175 0.218 0.175 0.218 0.175 0.218 0.175 0.218 0.175 0.218 0.175 0.218 0.175 0.218 0.175 0.218 0.175 0.194 0.190	0.348 0.341 1.092 0.652 0.476 0.491 0.522 0.223 0.378 0.402 0.394 0.379 0.299 0.406 0.404 0.461 0.231 0.417 0.243 0.261 0.298 0.426 0.426 0.426 0.326
1995	0.119	0.256
1996	0.187	0.341
1997	0.146	0.305
1998	0.203	0.365
1999	0.166	0.403
2000	0.171	0.345
2000	0.177	0.343
2001	0.117	0.290
2002	0.348	0.512
2003	0.144	0.294
2004	0.201	0.441
2005 2006 2007	0.394 0.169	0.860
2007 2008 2009	0.223	0.367
2010 2011	0.163	0.357
2012 2013	0.168	0.350
2014 2015	0.142	0.324 0.548
2016	0.135	0.310
2017	0.241	0.537
2018	0.211	0.323
2019	0.318	0.482
2020	0.218	0.393
2021	0.170	0.329
2022	0.262	0.555
2023	0.288	0.692
2024	0.509	0.741
2025	0.145	0.361
2026	0.236	0.468
2027	0.186	0.437

2028	0.070	0.174
2029	0.147	0.283
2030	0.268	0.599
2031	0.081	0.180
2032	0.123	0.301
2033	0.151	0.377
2034	0.119	0.296
2035	0.221	0.366
2036	0.128	0.298
2037	0.160	0.398
2038	0.229	0.381
2039	0.318	0.769
2040	0.144	0.299
2041 2042 2043	0.183 0.227 0.196	0.378 0.435
2043 2044 2045	0.170	0.402
2046	0.144	0.297
2047	0.147	0.366
2048	0.122	0.300
2049	0.183	0.446
2050	0.169	0.333
2051	0.285	0.471
2052	0.143	0.357
2053	0.123	0.300
2054 2055 2056	0.409 0.159	0.609
2050 2057 2058	0.200	0.461 0.236 0.454
2059	0.280	0.554

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigate
1	0.6998	1.2272
2	0.6131	1.0923
3	0.5106	0.8603
4	0.5090	0.8345
5	0.4558	0.7736
6	0.4319	0.7690
7	0.4088	0.7410
8	0.4036	0.6922
9	0.3944	0.6644
10	0.3561	0.6518
11	0.3485	0.6093
12	0.3481	0.5989
13	0.3478	0.5874
14	0.3394	0.5668
15	0.3254	0.5561
16	0.3184	0.5548
17	0.3177	0.5542
18	0.3114	0.5520
19	0.2892	0.5488
20	0.2881	0.5486
21	0.2847	0.5481
22	0.2804	0.5424

23	0.2798	0.5365
24	0.2779	0.5262
25	0.2682	0.5247
26	0.2655	0.5218
27	0.2618	0.5121
28	0.2476	0.5071
29	0.2436	0.4914
30	0.2415	0.4896
31	0.2409	0.4818
32	0.2405	0.4816
33	0.2398	0.4809
34	0.2392	0.4792
35	0.2357	0.4763
36	0.2355	0.4759
37	0.2322	0.4759
38 39 40 41 42 43 44 45 46	$\begin{array}{c} 0.2314\\ 0.2311\\ 0.2294\\ 0.2292\\ 0.2289\\ 0.2274\\ 0.2261\\ 0.2230\\ 0.2226\end{array}$	$\begin{array}{c} 0.4684 \\ 0.4640 \\ 0.4611 \\ 0.4603 \\ 0.4592 \\ 0.4542 \\ 0.4459 \\ 0.4448 \\ 0.4411 \end{array}$
47	0.2212	0.4407
48	0.2181	0.4367
49	0.2178	0.4347
50	0.2172	0.4342
51	0.2148	0.4279
52	0.2145	0.4265
53	0.2114	0.4256
54	0.2106	0.4174
55	0.2093	0.4115
56	0.2089	0.4091
57	0.2076	0.4075
58	0.2048	0.4060
59	0.2025	0.4052
60	0.2010	0.4041
61	0.2005	0.4027
62	0.2005	0.4017
63	0.2002	0.3995
64	0.1980	0.3981
65	0.1966	0.3961
66	0.1965	0.3944
67	0.1963	0.3929
68	0.1944	0.3809
69	0.1938	0.3788
70	0.1905	0.3783
71	0.1897	0.3781
72	0.1896	0.3771
73	0.1866	0.3723
74	0.1859	0.3706
75	0.1832	0.3703
76	0.1831	0.3700
77	0.1824	0.3682
78	0.1821	0.3672
79	0.1773	0.3666
80	0.1764	0.3662

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	0.1753 0.1751 0.1735 0.1722 0.1709 0.1700 0.1697 0.1692 0.1691 0.1682 0.1691 0.1682 0.1635 0.1629 0.1629 0.1629 0.1629 0.1594 0.1594 0.1596 0.1594 0.1513 0.1512 0.1513 0.1512 0.1494 0.1489 0.1467 0.1459 0.1459 0.1450 0.1440 0.1437 0.1436 0.1416	0.3655 0.3650 0.3648 0.3612 0.3571 0.3571 0.3571 0.3520 0.3542 0.3542 0.3542 0.3497 0.3497 0.3478 0.3476 0.3453 0.3450 0.3425 0.3291 0.3257 0.3227 0.3243 0.3227 0.3257 0.3243 0.3227 0.3243 0.3227 0.3257 0.3243 0.3227 0.3056 0.3046 0.3020 0.3008 0.3001 0.3000
114 115 116 117 118 119 120 121 122 123 124 125 126 127	0.1436 0.1433 0.1416 0.1412 0.1388 0.1376 0.1373 0.1362 0.1347 0.1336 0.1328 0.1317 0.1201	0.3008 0.3001 0.2995 0.2993 0.2986 0.2983 0.2982 0.2973 0.2971 0.2967 0.2957 0.2936 0.2936
127 128 129 130 131 132 133 134 135 136 137 138	0.1301 0.1285 0.1283 0.1281 0.1266 0.1231 0.1229 0.1218 0.1195 0.1191 0.1189 0.1187	0.2902 0.2892 0.2886 0.2871 0.2860 0.2839 0.2828 0.2825 0.2771 0.2693 0.2693 0.2685 0.2679

139	0.1181	0.2673
140	0.1173	0.2633
141	0.1172	0.2620
142	0.1171	0.2615
143	0.1170	0.2611
144	0.1169	0.2587
145	0.1167	0.2556
146	0.1128	0.2515
147	0.1120	0.2510
148	0.1110	0.2496
149	0.1109	0.2453
150	0.1061	0.2433
151	0.1055	0.2357
152	0.1049	0.2312
153	0.1038	0.2312
154	0.1015	0.2253
155	0.0987	0.2232
156	0.0808	0.1871
157	0.0781	0.1797
158	0.0699	0.1740

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0891	4345	48703	1120	Fail
0.0929	3812	45212	1186	Fail
0.0967	3267	40886	1251	Fail
0.1006	2819	36997	1312	Fail
0 1044	2478	33517	1352	Fail
0 1082	2143	30382	1417	Fail
0.1121	1888	27473	1455	Fail
0 1159	1730	25512	1474	Fail
0 1197	1506	23135	1536	Fail
0 1235	1334	21052	1578	Fail
0 1274	1214	19152	1577	Fail
0 1312	1085	17451	1608	Fail
0 1350	973	15811	1624	Fail
0.1388	889	14786	1663	Fail
0.1000	797	13396	1680	Fail
0.1427	705	12100	1730	Fail
0.1403	630	11136	1767	Fail
0.1505	570	10166	1755	Fail
0.1541	5/0	0/00	1728	Fail
0.1500	J45 105	9490 8650	1720	Fail
0.1010	495	70//	1780	Fail
0.1604	444	7344	1808	Fail
0.1034	371	6637	1788	Fail
0.1733	335	6097	1810	Fail
0.1771	310	5600	1783	Fail
0.1009	206	5185	1765	Fail
0.1047	290	4801	1832	Fail
0.1000	202	4001	1760	Fail
0.1924	247	4007	17/0	Fail
0.1302	223	3605	1750	Fail
0.2000	105	3472	1780	Fail
0.2033	186	3200	1720	Fail
0.2017	170	2965	17//	Fail
0.2113	155	2750	1774	Fail
0.2100	142	2572	1811	Fail
0.2132	138	2407	17//	Fail
0.2250	126	22407	1777	Fail
0.2200	113	2070	1831	Fail
0.2345	105	1953	1860	Fail
0.2383	100	1805	1804	Fail
0.2000	91	1688	1854	Fail
0.2421	89	1598	1795	Fail
0.2403	83	1487	1791	Fail
0.2430	82	1307	1703	Fail
0.2574	78	1317	1688	Fail
0.2613	76	1232	1621	Fail
0.2651	74	1150	1554	Fail
0.2689	69	1007	1589	Fail
0 2727	64	1047	1635	Fail
0 2766	62	988	1593	Fail
0 2804	59	933	1581	Fail
0 2842	55	876	1592	Fail
0.2880	53	832	1569	Fail
0.2919	50	794	1588	Fail

0.2957 0.2995 0.3033 0.3072 0.3110 0.3148 0.3186 0.3225 0.3263 0.3263 0.3301 0.3339 0.3378 0.3416 0.3454 0.3454 0.3454 0.3454 0.3454 0.3569 0.3607 0.3645 0.3684 0.3722 0.3760 0.3798 0.3875 0.3913 0.3951 0.3990 0.4028 0.4066 0.4104 0.4143	50 49 45 44 43 41 40 38 36 34 32 31 31 28 27 25 24 24 24 22 21 20 20 20 19 18 18	$\begin{array}{c} 750 \\ 698 \\ 646 \\ 616 \\ 589 \\ 557 \\ 526 \\ 505 \\ 483 \\ 458 \\ 440 \\ 416 \\ 395 \\ 368 \\ 344 \\ 327 \\ 311 \\ 293 \\ 277 \\ 263 \\ 250 \\ 236 \\ 227 \\ 215 \\ 203 \\ 195 \\ 189 \\ 180 \\ 167 \\ 156 \\ 153 \\ 145 \end{array}$	$\begin{array}{c} 1500\\ 1424\\ 1435\\ 1400\\ 1369\\ 1358\\ 1315\\ 1328\\ 1315\\ 1328\\ 1341\\ 1347\\ 1294\\ 1300\\ 1274\\ 1187\\ 1228\\ 1211\\ 1151\\ 1172\\ 1154\\ 1095\\ 1041\\ 983\\ 986\\ 977\\ 922\\ 928\\ 945\\ 900\\ 835\\ 821\\ 850\\ 805\end{array}$	Fail Fail Fail Fail Fail Fail Fail Fail
0.3569	27	311	1151	Fail
0.3607	25	293	1172	Fail
0.3645	24	277	1154	Fail
0.3684	24	263	1095	Fail
0.3722	24	250	1041	Fail
0.3760	24	236	983	Fail
0.3798	23	227	986	Fail
0.3837	22	215	977	Fail
0.3875	22	203	922	Fail
0.3913	21	195	928	Fail
0.3951	20	189	945	Fail
0.3990	20	180	900	Fail
0.4028	20	167	835	Fail
0.4066	19	156	821	Fail
0.4104	18	153	850	Fail
0.4143 0.4181 0.4219 0.4258 0.4296	18 18 18 18 18 17	145 139 133 129 122	805 772 738 716 717	Fail Fail Fail Fail Fail Fail
0.4334	16	121	756	Fail
0.4372	15	111	740	Fail
0.4411	15	108	720	Fail
0.4449	15	105	700	Fail
0.4487	14	97	692	Fail
0.4525	13	96	738	Fail
0.4564	12	92	766	Fail
0.4602	12	88	733	Fail
0.4640	11	82	745	Fail
0.4678	11	80	727	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

	%	Basin 1.03ac	1			

Mitigated Schematic

	%	Basin 1.03ac	1			

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation END 3 0 START 1901 10 01 2059 09 30 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 Bell.wdm MESSU 25 PreBell.MES 27 PreBell.L61 28 PreBell.L62 POCBell1.dat 30 END FILES OPN SEOUENCE INGRP INDELT 00:15 16 PERLND 1 IMPLND 4 8 IMPLND IMPLND COPY 501 DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1

 # - #<-----Title----->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND

 1
 Basin 1

 MAX
 1
 2
 30
 9

 END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 501 1 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # in out 1 1 1 1 27 * * * 16 C, Lawn, Flat 0 END GEN-INFO *** Section PWATER*** ACTIVITY

 # # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***

 16
 0
 1
 0
 0
 0
 0
 0

 END ACTIVITY PRINT-INFO # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********

16 0 0 4 0 0 0 0 0 0 0 0 1 9 END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***
 # # CSNO RTOP UZFG
 VCS
 VUZ
 VNN VIFW
 VIRC
 VLE INFC
 HWT

 16
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</t END PWAT-PARM1 PWAT-PARM2 <PLS > PWATER input info: Part 2 ***
- # ***FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC
6 0 4.5 0.03 400 0.05 0.5 0.996 <PLS > 16 END PWAT-PARM2 PWAT-PARM3 <PLS > PWATER input info: Part 3 *** # - # ***PETMAX PETMIN INFEXP 16 0 0 2 INFILD DEEPFR BASETP AGWETP 2 0 0 0 END PWAT-PARM3 PWAT-PARM4

 'WA1-FANAL

 <PLS >
 PWATER input inic. Faic

 # - #
 CEPSC
 UZSN
 NSUR

 ^1
 0.25
 0.25

 * * * INTFW IRC LZETP *** 0.25 б 0.5 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # *** CEPS SURS UZS IFWS LZS AGWS 0 0 0 0 2.5 1 GWVS 16 1 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** # - # User t-series Engl Metr *** in out *** 1 1 27 0 1 ROADS/FLAT 1 4 ROOF TOPS/FLAT 1 1 1 27 0 8 SIDEWALKS/FLAT 1 1 1 27 0 END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL * * * 1 4 8 END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR 1 8 0 0 4 0 0 0 1 9 END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** * * * # - # CSNO RTOP VRS VNN RTLI 1 4 8 END IWAT-PARM1

IWAT-PARM2

 <PLS >
 IWATER input info: Part 2
 *

 # - # *** LSUR
 SLSUR
 NSUR
 RETSC

 1
 400
 0.01
 0.1
 0.1

 4
 400
 0.01
 0.1
 0.1

 8
 400
 0.01
 0.1
 0.1

 * * * <PLS > END IWAT-PARM2 IWAT-PARM3 IWATER input info: Part 3 * * * <PLS > # - # ***PETMAX PETMIN 0 0 1 4 0 0 0 8 0 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 1 0 0 4 0 0 8 0 0 END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # Basin 1*** PERLND 16 COPY 501 0.6278 12 PERLND 16 COPY 501 0.6278 13 COPY50115COPY50115COPY50115 IMPLND 1 0.2005 IMPLND 4 0.1145 0.0862 IMPLND 8 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <Name> # # *** <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer * * * * * * # - #<----- User T-series Engl Metr LKFG * * * in out END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GOFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ******** END PRINT-INFO HYDR-PARM1 * * * RCHRES Flags for each HYDR Section

END HYDR-PARM1 HYDR-PARM2 # - # FTABNO LEN DELTH STCOR KS DB50 * * * <----><----><----><-----> * * * END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section * * * END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # tem strg<-factor->strg <Name> # # <Name> # # *** WDM2PRECENGL1PERLND1999EXTNLPRECWDM2PRECENGL1IMPLND1999EXTNLPRECWDM1EVAPENGL1PERLND1999EXTNLPETINPWDM1EVAPENGL1IMPLND1999EXTNLPETINP END EXT SOURCES EXT TARGETS <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd *** <Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg***
COPY 501 OUTPUT MEAN 1 1 48.4 WDM 501 FLOW ENGL REPL END EXT TARGETS MASS-LINK <Volume> <-Grp> <-Member-><--Mult--> <Target> <-Grp> <-Member->*** <Name> <Name> # #<-factor-> <Name> <Name> # #*** MASS-LINK 12 PERLND PWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 12 MASS-LINK 13 PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13 MASS-LINK 15 IMPLND IWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 15

END MASS-LINK

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation END 3 0 START 1901 10 01 2059 09 30 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 Bell.wdm MESSU 25 MitBell.MES 27 MitBell.L61 28 MitBell.L62 POCBell1.dat 30 END FILES OPN SEOUENCE INGRP INDELT 00:15 16 PERLND 1 IMPLND 4 IMPLND 5 8 IMPLND IMPLND 501 COPY DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND Basin 1 1 MAX 1 2 30 9 END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 501 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM # K *** # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # * * * in out 16 C, Lawn, Flat 1 1 27 0 1 1 END GEN-INFO *** Section PWATER*** ACTIVITY # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *** 16 0 0 1 0 0 0 0 0 0 0 0 0 0 END ACTIVITY PRINT-INFO

END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***

 # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***

 16
 0
 0
 0
 0
 0
 0
 0

 END PWAT-PARM1 PWAT-PARM2
 VMAI-PARM2

 <PLS >
 PWATER input info: Part 2

 # # ***FOREST
 LZSN
 INFILT
 LSUR
 SLSUR
 KVARY
 AGWRC

 16
 0
 4.5
 0.03
 400
 0.05
 0.5
 0.996
 END PWAT-PARM2 PWAT-PARM3 PWAT-PARM3<PLS >PWATER input info: Part 3***# - # ***PETMAXPETMININFEXPINFILD1600220 BASETP AGWETP 0 0 0 END PWAT-PARM3 PWAT-PARM4 PWATER input info: Part 4 <PLS > * * *
 # - #
 CEPSC
 UZSN
 NSUR
 INTFW
 IRC
 LZETP ***

 16
 0.1
 0.25
 0.25
 6
 0.5
 0.25
 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 *** # *** CEPS SURS UZS IFWS LZS AGWS 0 0 0 0 0 2.5 1 GWVS 16 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** User t-series Engl Metr *** # - # in out *** ROADS/FLAT 1 4 ROOF TOPS/FLAT 5 DRIVEWAYS/FLAT 8 SIDEWALKS/FLAT END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IOAL * * * 0 0 1 0 0 0 1 4 5 8 END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** 1 4 5 8 END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** 1 0 0 0 0 0

4 0 0 0 5 0 0 0 8 0 0 0 END IWAT-PARM1	0 0 0 0 0 0		
IWAT-PARM2 <pls> IWATER ing # - # *** LSUR S 1 400 4 400 5 400 8 400 END IWAT-PARM2</pls>	Dut info: Part 2SLSURNSUR0.010.10.010.10.010.10.010.10.010.1	*** RETSC 0.1 0.1 0.1 0.1 0.1	
IWAT-PARM3 <pls> IWATER ing # - # ***PETMAX PH 1 0 4 0 5 0 8 0 END IWAT-PARM3</pls>	out info: Part 3 TMIN 0 0 0 0 0	* * *	
IWAT-STATE1 <pls> *** Initial cor # - # *** RETS 1 0 4 0 5 0 8 0 END IWAT-STATE1</pls>	nditions at start SURS 0 0 0 0 0	of simulation	
END IMPLND			
SCHEMATIC <-Source-> <name> # Basin 1*** PERLND 16 PERLND 16 IMPLND 1 IMPLND 4 IMPLND 5</name>	<area/> <-factor-> 0.0279 0.0279 0.1318 0.655 0.0129	<-Target-> MBLK *** <name> # Tbl# *** COPY 501 12 COPY 501 13 COPY 501 15 COPY 501 15 COPY 501 15</name>	
IMPLND 8	0.2012	COPY 501 15	
******Routing***** END SCHEMATIC			
NETWORK <-Volume-> <-Grp> <-Member <name> # <name> # COPY 501 OUTPUT MEAN</name></name>	r-> <mult>Tran # #<-factor->strg 1 48.4</mult>	- <-Target vols> <-Grp> <-Member- <name> # # <name> # DISPLY 1 INPUT TIMSER 1</name></name>	> *** # ***
<-Volume-> <-Grp> <-Member <name> # <name> END NETWORK</name></name>	r-> <mult>Tran # #<-factor->strg</mult>	<-Target vols> <-Grp> <-Member- <name> # # <name> #</name></name>	> *** # ***
RCHRES GEN-INFO RCHRES Name # - #< END GEN-INFO	Nexits Unit > User T	Systems Printer -series Engl Metr LKFG in out	* * * * * * * * *
ACTIVITY			
<pre></pre>	Active Sections * HTFG SDFG GQFG O	**************************************	

PRINT-INFO # - # HYDR ADCA CONS HEAT SED GOL OXRX NUTR PLNK PHCB PIVL PYR ******* END PRINT-INFO HYDR-PARM1 RCHRES Flags for each HYDR Section * * * # - # END HYDR-PARM1 HYDR-PARM2 # – # FTABNO LEN DELTH STCOR KS DB50 * * * <----><----><----><----> * * * END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section * * * # - # *** VOL Initial value of COLIND Initial value of OUT *** ac-ft for each possible exit for each possible exit Initial value of OUTDGT <----> <---><---><---><---> END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # # *** <Name> # <Name> # tem strg<-factor->strg <Name> # # WDM 2 PREC ENGL 1 PERLND 1 999 EXTNL PREC ENGL 1 ENGL 1 ENGL 1 ENGL 1 IMPLND1999EXTNLPRECPERLND1999EXTNLPETINPIMPLND1999EXTNLPETINP 2 PREC WDM 1 EVAP WDM WDM 1 EVAP END EXT SOURCES EXT TARGETS <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd *** <Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg*** 701 FLOWENGL801 FLOWENGL COPY ENGL REPL 1 OUTPUT MEAN 1 1 48.4 WDM 48.4 COPY 501 OUTPUT MEAN 1 1 WDM REPL END EXT TARGETS MASS-LINK <Volume> <-Grp> <-Member-><--Mult--> Name><-rember-><--Mult-->Name><Name> # #<-factor->MASS-LINK12 <-Grp> <-Member->*** <Target> <Name> # #*** <Name> <Name> PERLND PWATER SURO INPUT MEAN 0.083333 COPY END MASS-LINK 12 MASS-LINK 13 PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13 15 MASS-LINK IMPLND IWATER SURO COPY 0.083333 INPUT MEAN END MASS-LINK 15 END MASS-LINK

END ACTIVITY

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

APPENDIX B

Soil Reports

GEORESOURCES earth science & geotechnical engineering

4809 Pacific Hwy. E. | Fife, Washington 98424 | 253.896.1011 | www.georesources.rocks

August 5, 2022

Azure Green Consultants 409 E Pioneer Puyallup, WA 98372 (253) 770-3144

Attn: Jim Job jim@mailagc.com

> Soils Report Proposed Redevelopment 204 4th Street SW Puyallup, Washington PN: 57450016-31, -32, -41 Doc ID: AGC.4thStSW.SR

INTRODUCTION

This *Soils Report* summarizes our site observations and geotechnical data review and addresses the feasibility of stormwater infiltration for the proposed residential redevelopment to be constructed at 204 – 4th Street SW in Puyallup, Washington. The approximate site location is shown on Figure 1.

Our understanding of the project is based on our correspondence with Azure Green Consultants, our understanding of the City of Puyallup's development codes, and our experience in the site area. We understand that the site is currently developed with a single-family residence. Furthermore, we understand that you propose to demolish the existing residence and construct a new mixed use building at the site. We have not been provided with conceptual plans for the proposed structure at the time of this report, but we anticipate the new structure will consist of one to two stories of concrete construction with two to four stories of wood-framing above. Support for the proposed structure will likely consist of shallow foundations bearing on improved ground, or deep foundations such as continuous flight auger piles.

SCOPE

The purpose of our services was to evaluate the surface and subsurface conditions across the site as a basis for providing geotechnical recommendations and design criteria for the proposed restaurant. Specifically, the scope of services for this project included the following:

- 1. Reviewing the available geologic, hydrogeologic, and geotechnical data for the site area;
- 2. Exploring the subsurface conditions by observing four direct push Geoprobes and installing groundwater monitoring wells in each exploration at selected locations at the site;
- 3. Installing Leveloggers in each well and monitoring of groundwater levels within each groundwater monitoring well during the prescriptive wet season (December 21 through April 1);

- 4. Providing our opinion about the feasibility of onsite infiltration in accordance with the 2014 SWMMWW, including a preliminary design infiltration rate based on grain size analysis and in-situ testing, as applicable; and,
- 5. Preparing a *Soils Report* that satisfies the 2014 SWMMWW requirements and summarizes our site observations and conclusions, our geotechnical recommendations and design criteria, along with the supporting data.

The above scope of work was summarized in our *Proposal for Geotechnical Engineering Services* dated December 2, 2021. We received authorization to proceed from you the same day.

SITE CONDITIONS

Surface Conditions

As stated, the site is located at 204 – 4th Street SW in Puyallup, Washington. The site consists of three tax parcels that, when combined, are generally rectangular in shape, measure approximately 135 feet wide (north to south) by approximately 240 feet long (east to west), and encompasses approximately 0.74 acres. The site is bounded by existing residential development to the west, West Pioneer Avenue to the south, West Meeker to the north, and 4th Street SW to the east.

Based on topographic information obtained from Pierce County Public GIS and our site observations, the ground surface of the site is generally level with small rises and falls in elevation on the order of approximately 1 foot. The total topographic relief of the site is on the order of approximately 2 feet. The existing site configuration and topography are shown on the Site Vicinity Map, Figure 3.

Vegetation across the site generally consisted of maintained grass with typical residential landscaping. No seeps or springs were observed at the site however some small areas of standing water were observed. No signs of erosion or soil instability were observed during our site reconnaissance.

Site Soils

The Natural Resource Conservation Service (NRCS) Web Soil Survey maps the site as being underlain by Puyallup fine sandy loam (31A) soils. These soils are derived from alluvium, form on slopes of 0 to 3 percent, are considered to have a "slight" erosion hazard when exposed, and are included in hydrologic soils group A. A copy of the NRCS soils map is included as Figure 3.

Site Geology

According to the *draft Geologic map of the Puyallup 7.5-minute Quadrangle, Washington* by Troost, (in review) the site is mapped as being underlain by Quaternary Alluvium (Qal). Alluvial soils generally consist of normally consolidated, stratified deposits of sand, silt, clay, and occasional peat that were deposited along the Puyallup River channel. The existing topography, as well as the surficial and shallow soils in the area, are the result of fluvial action, including down-cutting by the river, channel meandering and migration, and flood deposits. An excerpt from the geologic map is included as Figure 4.

Subsurface Explorations

On December 22, 2021, a field representative from GeoResources visited the site and monitored 4 direct push probes (GeoProbes) to a depth of approximately 15 feet, logged the

subsurface conditions, and obtained representative soils samples. The probes were completed by a licensed drilling company working for GeoResources. The approximate locations of the probes are indicated in the attached Site & Exploration Plan, Figure 2.

A representative from GeoResources continuously monitored the borings, maintained logs of the subsurface conditions encountered, and obtained representative samples in sealed containers for transportation to our laboratory. The soil densities presented on the logs were based on the difficulty of excavation and our experience. The number and location of the explorations were selected in the field based on project information provided by Azure Green Consultants, consideration for underground utilities, existing site conditions, and current site usage. Each exploration was completed as a groundwater monitoring well.

The subsurface explorations excavated as part of this evaluation indicate the subsurface conditions at specific locations only, as actual subsurface conditions can vary across the site. Furthermore, the nature and extent of such variation would not become evident until additional explorations are performed or until construction activities have begun. Based on our experience in the area and extent of prior explorations in the area, it is our opinion that the soils encountered in the explorations are generally representative of the soils at the site.

The soils encountered were visually classified in accordance with the Unified Soil Classification System (USCS) and ASTM D: 2488. The approximate locations of our explorations are indicated on the attached Site & Exploration Map, Figure 2. The USCS is included in Appendix A as Figure A-1, while the descriptive logs of our explorations are included as Figures A-2 through A-5.

Subsurface Conditions

At the locations of our explorations, we encountered relatively uniform subsurface conditions that in our opinion generally confirmed the mapped stratigraphy at the site. Our explorations encountered approximately ³/₄ to 1 foot of topsoil. Underlying the topsoil we encountered approximately 2¹/₄ to 3 feet of brown poorly graded sand with some silt to brown sandy silt in a loose to medium dense/medium stiff, moist to wet condition. We interpret these soils to be weathered alluvium. Underlying the weathered alluvium we encountered brown-grey sand with varying amounts of silt interbedded with silt and varying amounts of sand. We interpret these soils to be alluvium. The alluvial soils were encountered to the full depth explored in each exploration.

Laboratory Testing

Geotechnical laboratory tests were performed on two samples retrieved from the explorations to estimate index engineering properties of the soils encountered. Laboratory testing included visual soil classification per ASTM D:2487 and ASTM D:2488, moisture content determinations per ASTM D:2216, and grain size analyses per ASTM D:6913 standard procedures. The results of the laboratory tests are included in Appendix B.

Groundwater Conditions

We encountered ground water in all explorations at approximately 3.7 to 6.2 feet below existing ground surface at the time of drilling. Additionally, mottling was encountered as shallow as 1 to 2½ feet below existing ground surface. Mottling may be indicative of a seasonal or fluctuating groundwater surface, often associated with perched groundwater. Perched groundwater table develops when the vertical infiltration of precipitation through a more permeable soil, is slowed at depth by a deeper, less permeable soil type. We anticipate fluctuations in the local groundwater levels will occur in response to precipitation patterns, off-site construction activities, and site

utilization. Analysis or modeling of anticipated groundwater levels during construction is beyond the scope of this report.

We installed downhole pressure transducers in each groundwater monitoring well on January 5, 2022. Water temperature and pressure were collected on 12-hour intervals on each instrument. An additional pressure transducer was installed in one monitoring well above the water line to record barometric pressure. All instruments were removed on March 25, 2022.

Data sets were uploaded into Solinst Levelogger Software (v 4.40), where water level measurements captured by the deployed instruments were adjusted to compensate for barometric pressure variations. The resulting compensated water level dataset provides a barometrically corrected record of groundwater levels within each groundwater monitoring well.

Based on our groundwater monitoring over the wet season, it appears that seasonal high groundwater levels occurred between elevation 39 to 42 feet (NAVD 88) in early to mid-January. Graph 1, below, summarizes the groundwater levels recorded as part of our groundwater monitoring program during our monitoring period.

CONCLUSIONS AND RECOMMENDATIONS

Based on the results of our data review, site reconnaissance, and subsurface explorations, it is our opinion that soil conditions and shallow groundwater levels preclude the use of conventional infiltration facilities at the site. Low-impact development methods may be feasible, depending on site configuration. Additional discussion regarding stormwater management methods is included in the following sections.

Infiltration Recommendations

Low Impact Development (LID) BMPs

LID infiltration BMPs such as pervious pavement could be considered to manage stormwater for this project. Per the 2014 SWMMWW, Volume V, Chapter 5, BMP T5.15, permeable pavements are infeasible if saturated conditions would be created within 1 foot of the bottom elevation of the lowest layer and the seasonal high groundwater table or an underlying impermeable/low permeable layer.

Based on our groundwater monitoring measurements, the bottom of the proposed infiltration facilities should be no greater than 1.5 feet below existing grades, in order to meet the minimum 1 foot of vertical separation. We do not recommend infiltration in the area of MW-3. The surficial silty alluvium soils encountered at the surficial elevation of each exploration contain a significant amount of fines that will not support infiltration. The silty sands located at the surficial elevation in MW-1, MW-2, and MW-4 should be suitable for infiltration

Infiltration BMPs

Per the 2014 SWMMWW, Volume V, Chapter 4, BMP T5.10A, downspout infiltration is feasible on sites where 3 feet or more of permeable soil from the proposed final grade to the seasonal highwater table is available, and/or at least 1 foot of clearance from the bottom elevation of the infiltration trench to the seasonal high groundwater table is available. We observed 3 feet or more of permeable soil in MW-1, MW-2, and MW-4, however, based on our groundwater monitoring measurements to date, the vertical separation requirement from groundwater is not able to be met. Therefore, downspout infiltration does not appear feasible for this project. Stormwater runoff generated by the proposed impermeable surfaces should be collected and routed to an appropriate discharge location.

Design Infiltration Rate

We completed a soil gradation analyses on three representative soil sample from the site per the 2014 SWMMWW, Volume III, Section 3.3.6, Method 3 and in accordance with ASTM D6913. Based on our gradation analyses, we recommend a design infiltration rate of 0.5 inches per hour for permeable pavements or bio swales founded no greater than 1.5 feet below existing grades in the shallow silty sand alluvium soils encountered in the areas of MW-1, MW-2, and MW-4. Appropriate correction factors have been applied to these values in accordance with the 2014 SWMMWW, Volume III, Section 3.3.6, Table 3.3.1, including correction factors 0.33 for site variability (*F_{variability}*), 0.4 for testing method (*F_{testing}*) and 0.9 for maintenance for situation biofouling (F_{maintenance}).

Construction Considerations

We recommend that a representative from our firm be onsite at the time of excavation of the proposed infiltration facilities to verify that the soils encountered during construction are consistent with the soils observed in our subsurface explorations. Verification infiltration testing should also be performed at the time of construction to verify the recommended infiltration rates for infiltration facilities such as infiltration trenches and permeable pavements per the 2014 SWMMWW.

Appropriate design, construction and maintenance measures will be required to ensure the infiltration rate can be effectively maintained over time. Appropriate temporary erosion and sediment control methods should be included in the project plans and specifications to minimize the potential for fines contamination of infiltration facility utilized at the site. To further reduce the potential for fines migration, the infiltration system should not be connected to the stormwater runoff system until after construction is complete and the site area is landscaped, paved or otherwise protected.

Additional measures may also be taken during construction to minimize the potential of fines contamination of the proposed infiltration system, such as utilizing an alternative storm water management location during construction or leaving the bottom of the permanent systems 1 to 2 feet high, and subsequently excavating to the finished grade once the site soils have been stabilized. All contractors working on the site (builders and subcontractors) should divert sediment laden

stormwater away from proposed infiltration facilities during construction and landscaping activities. No concrete trucks should be washed or cleaned, and washout areas should not be within the vicinity of the proposed infiltration facilities. After construction activities have been completed, periodic sweeping of the paved areas will help extend the life of the infiltration system.

LIMITATIONS

We have prepared this report for use by Azure Green Consultants and other members of the design team, for use in the permitting and design of a portion of this project. The data used in preparing this report and this report should be provided to prospective contractors for their bidding or estimating purposes only. Our report, conclusions and interpretations are based on subsurface explorations and data from others and limited site reconnaissance, and should not be construed as a warranty of the subsurface conditions.

Variations in subsurface conditions are possible between the explorations and may also occur with time. A contingency for unanticipated conditions should be included in the budget and schedule. Sufficient monitoring, testing and consultation should be provided by our firm during construction to confirm that the conditions encountered are consistent with those indicated by the explorations, to provide recommendations for design changes should the conditions revealed during the work differ from those anticipated, and to evaluate whether earthwork and foundation installation activities comply with contract plans and specifications.

The scope of our services does not include services related to environmental remediation and construction safety precautions. Our recommendations are not intended to direct the contractor's methods, techniques, sequences or procedures, except as specifically described in our report for consideration in design.

If there are any changes in the loads, grades, locations, configurations or type of facilities to be constructed, the conclusions and recommendations presented in this report may not be fully applicable. If such changes are made, we should be given the opportunity to review our recommendations and provide written modifications or verifications, as appropriate.

*** * ***

We have appreciated the opportunity to be of service to you on this project. If you have any questions or comments, please do not hesitate to call at your earliest convenience.

Respectfully submitted, GeoResources, LLC

Andrew Schnitger, EIT Staff Engineer

Seth Mattos, LEG Associate

AES:STM/aes DocID: AGC.4thStSW.SR.U Attachments: Figure 1: Site Vicinity Map Figure 2: Site & Exploration Map Figure 3: NRCS Soils Map Figure 4: Geologic Map Appendix A – Subsurface Explorations Appendix B – Laboratory Test Results

Additional Notes:

Downhole pressure transducers installed in all wells, suspended via mason line secured under well cap Barometric pressure transducer installed in MW-1, suspended 18-inches below well cap Must secure mason line before removing well cap

Approximate Site Location

Map created from Web Soil Survey (http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx)

Soil Type	Soil Name	Parent Material	Slopes	Erosion Hazard	Hydrologic Soils Group	
31A	Puyallup fine sandy loam	Alluvium	0 to 3	Slight	A	

Appendix A

Subsurface Explorations

Topsoil

Sheet 1 of 1

Poorly graded sand with silt

Silt

LOG OF BORING

MW-1

FIG.

AGC.4thStSW 204 4th Street SW Puyallup, WA

 Refer to log key for definition of symbols, abbreviations, and codes USCS disination is based on visual manual classification and selected lab testing Groundwater level, if indicated, is for the date shown and may vary NE = Not Encountered ATD = At Time of Drilling HWM = Highest Groundwater Level Notes: East side of site 			Drilling Company: Drilling Method: Drilling Rig: Sampler Type: Hammer Type: Hammer Weight:	Direct	ESN NW tt push/Geoprobe Truck Dual Tube				Logged By: Drilling Date: Datum: Elevation: Termination Depth: Latitude: Longitude:				D 12/22/202 NAVD 8 4 :1		
Depth (feet)	Elevation (feet)	Exploration notes	So	il description		STP Blowcounts	Sampler	Symbol	Plastic I % Fines % Wate	-imit ⊨ (<0.075i r Conter	Test R mm) ◇ t ●	esults	- Liq	uid Limi	groundwater f
0 -	-		Topsoil					****		2 				<u>%</u>	
- - 2.5 —	 		Brown poorly graded sna dense, moist to wet) (SP-S	d with some silt (loose to me iM) (Weathered Alluvium)	dium										
-	-	•	Poorly graded SAND with	some silt (SP-SM)						 ● 					<u> </u>
	- 37.5 		Brown-grey SILT with trac (Alluvium) Brown poorly graded SAN	e sand (medium stiff, moist) ID with some SILT (loose to n	(ML) nedium										ATD
- - 7.5 –	- - - 35 -		dense, moist to wet) (SP-S	5M) (Alluvium)											
10	- - - 32.5 -		Grey SILT, trace organics ((stiff, moist) (ML) (Alluvium)											
- - 12.5 – -	- 30 		(Alluvium)	n dense, moist to wet) (SM)											
- - 15 - -	- - 27.5 - -		(Terminatio	on Depth - 12/22/2021)											

Topsoil

Sheet 1 of 1

Poorly graded sand with silt

Silt

LOG OF BORING

MW-2

FIG.

AGC.4thStSW 204 4th Street SW Puyallup, WA

1. Refer	to log key f	or definition of symbo	Drilling Company:			ESN	INW	Logge	Logged By:				DC	
2. USCS (disination i	s based on visual man	ual classification	Drilling Method: Dir	ect p	ush/Į	geop	robe	Drillir	ng Dat	:e:	12	/22/20	021
3. Groun	dwater lev	el, if indicated, is for	the date shown and may vary	, Drilling Rig:			1	truck	Datur	n:			NAVD	88
4. NE =	Not Encou	ntered f Drilling		Sampler Type:		D)ual [·]	Tube	Eleva	tion:				42
6. HWM	= Highest G	iroundwater Level		Hammer Type:					Termi	inatio	n Dep	th:		15
				Hammer Weight:					Latitu	ide:				
Notes	: Southei	rn portion of site				<u> </u>		1	Longi	tude:				1
_	c				ounts		_	Plastic	Limit L	Test F	Results		uid Limi	ater
epth eet)	/atio eet)	Exploration	Soi	il description		n pla	- oqu	% Fines	s (<0.075n	nm) 💠				' pu
Δ£	Elev (f	notes			P Blo	Sal	S	% Wate	er Conten	t •				irou
					5	5	_	Penetra	ation -	(blo	ws per fo	oot)		
0 -		10	Topsoil		_			······	<u>-</u>	·		<u>}</u>	<u>ß</u>	-
-					_]						:
	_		Brown poorly graded SAN	ID interbedded with thin silt layers moist to wet) (SP-SM) (Weathered	s		1911 1911							
			Alluvium)											:
_	-						1211							:
-	- 40							1						
2.5 –	-						7211							:
-	-				_					· · · · · • •	•			
-	-													
	_	• •												
	07 F						i an ti Turti							
_	- 37.5													:
5 -	-													
-	-	[<u>]</u>]	Brown sandy SILT (mediur	m stiff, wet) (ML) (Alluvium)										:
-	-			···· 5(:::), ···c() (:::2) ()arta)					· · · · · · · · · · · · · · · · · · ·					:
_	_													:
	- 25													:
	- 33													-
/.5 -	-													:
-	-													
-	-		Grev SILT with trace organ	nics (stiff, moist) (ML) (Alluvium)	_									:
-	-													
_	- 32.5													
10 -	_													<u>.</u>
10			Brown silty SAND (mediun	m dense, moist) (SM) (Alluvium)										
	-													:
-	-		Brown sandy SILT (mediur	m stiff, wet) (Alluvium)										
-	-													:
-	- 30													
12.5 -	-													:
	_													:
														:
														:
-	F													
-	- 27.5													:
15 –	-	¦•⊟•1			_		μш	II		<u></u>			<u> </u>	÷
-	-		(Terminatio	on Depth - 12/22/2021)										:
	L													:
								L	1		l	L	1	<u>.</u>

Silty sand

JOB:

Poorly graded sand with silt

Sheet 1 of 1

LOG OF BORING

MW-3

FIG.

AGC.4thStSW 204 4th Street SW Puyallup, WA

1. Refer	to log key f	or definition of symbo	ols, abbreviations, and codes	Drilling Company:			ESN	INW	Logge	d By:				DC
and se	lected lab	s based on visual man testing	iual classification	Drilling Method: Dire	ct pus	sh/G	ieop	robe	Drillin	ng Dat	e:	12	/22/2	021
3. Groun	dwater lev	el, if indicated, is for	the date shown and may vary	, Drilling Rig:			t	ruck	Datu	n: tion:			NAVE	0.88
4. NE = 5. ATD =	At Time o	f Drilling				D	ual	lube	Torm	inotio	n Dont	·h·		42
6. HWM :	= Highest G	iroundwater Level		Hammer Weight:					Latitu	inatio ido:	i Depi			15
Notes	Northe	n nortion of site								tude.				
Hotes.	Tiortifici	in portion of site			ts				201151	Test R	esults			
50	u (j	Evoloration			unoc	e	ō	Plastic	Limit -			Liq	uid Limi	vate
Dept (feet	evati (feet	notes	Soi	il description	lowe	dme	dmk	% Fines	s (<0.075n	nm) 💠				hun
	Ĕ				L L	N N	0	% Wale	Conten	. •				Gro
								Penetra	ation -	(blo	ws per fo	oot)	0	
0 -		10	Topsoil		1				<u> </u>	1	·····		f	
-	-]						::
-	-		Brown sandy SILT (mediu	m stiff, moist to wet) (ML)			m							
	_		(Weathered Alluvium)										: ::::::	::
	- 40													
	40													::
2.5 -	-												: ::::::	::
-	-													
-	-													
-	-	· ·	Prown poorly graded SAN	ID with some SILT (lease to medium	_		Щ							
	- 37.5		dense, moist to wet) (SP-S	SM) (Alluvium)	"								:	
5	_													AID
5														
	-												: ::::::	::
-	-						2417 2317							
-	-													
-	- 35						23717 23417							
75-	_													
1.5			grey-blue SILT, trace organ	nics (Stiff, moist) (ML) (Alluvium)									:	::
	-												:	::
	-													
-	- 32.5													
10 -	-							<u></u>		<u></u>	<u></u>	<u></u>		
-	-													
	_													
			Brown-grey sandy silt (me	edium stiff, wet) (ML) (Alluvium)										
	-	•											: ::::::	
-	- 30													
12.5 –	-												: ::::::	::
-	-													
-	-												: ::::::	::
	_													
	- 27 5													
_]	- 27.5								i				: :::::	::
15 -	-		(Tama i si	on Donth 12/22/2021	1									
-	-		(Terminatio	on Depth - 12/22/2021)										
-	-													
Тор	soil	Poorly with s	/ graded sand Silt	Silty sand										

JOB:

Poorly graded sand with silt

Sheet 1 of 1

LOG OF BORING

MW-4

FIG.

AGC.4thStSW 204 4th Street SW Puyallup, WA

 Refer to log key for definition of symbols, abbreviations, and codes USCS disination is based on visual manual classification and selected lab testing Groundwater level, if indicated, is for the date shown and may vary NE = Not Encountered ATD = At Time of Drilling HWM = Highest Groundwater Level Notes: Southwest portion of the Site				Drilling Company: Drilling Method: Dir Drilling Rig: Sampler Type: Hammer Type: Hammer Weight:	ect pı	ESN NW ush/geprobe truck Dual Tube			Logged By: Drilling Date: Datum: Elevation: Termination Depth: Latitude:			12 h:	D 12/22/202 NAVD 8 4 : 1		
Depth (feet)	(feet)	Exploration	So	il description	STP Blowcounts	Sampler	Symbol	Plastic l % Fines % Wate	Limit (<0.075r r Conten	Test R nm) ♦	esults	- Liqu	uid Limit	Groundwater	
0			Topsoil Dark brown poorly graded medium dense, moist to v	d SAND with some silt (loose to wet) (SP-SM) (Weathered Alluvium)	_			Penetra			ws per to	ot)	2 		
- 2.5 — -	- 40 - -		Brown poorly graded SAN dense, moist to wet) (SP-S Brown sandy SILT (mediu	ID with some silt (loose to medium iM) (Alluvium) m stiff, wet) (ML) (Alluvium)	_		Jiert Afri Autr Autr Dist Autr Dist Autr								
- - 5 — -	- - 37.5 - -		Brown silty SAND (mediur	n dense, moist, wet) (SM)	_										
	- - 35 -		(Alluvium)	organise this cand longer (stiff	_									ATD	
- - - 10 -	- - - 32.5 - -		moist) (ML) (Alluvium)	organics, chin sand lenses (schi,											
- - 12.5 — -	- - 30 - -													· · · · · · · · · · · · · · · · · · ·	
	- - 27.5 - -		(Terminatio	on Depth - 12/22/2021)											
Тор	osoil	Poorly with a	y graded sand Silt	Silty sand					1					1	

JOB:

Appendix B

Laboratory results

4809 Pacific Hwy. E. | Fife, Washington 98424 | 253.896.1011 | www. georesources.rocks

September 27, 2022

Jody Miller Construction PO Box 44628 Tacoma, Washington 98448 (253) 405-1490 jody@jodymillerconstruction.com CC: Azure Green Consultants

> Soils Report Addendum: Infiltration Testing Proposed Redevelopment 204 – 4th Street Southwest Puyallup, Washington PN: 5745001631, -32, -41 Doc ID: JodyMillerConst.4thStSW.SRa

INTRODUCTION

This *Addendum* to our soils report summarizes the results of our in-situ infiltration testing performed at 204 – 4th Stret Southwest in Puyallup, Washington. The site consists of a three adjacent tax parcels.

On September 23, 2022, we performed two small-scale Pilot Infiltration Tests (PITs) in accordance with the 2019 Ecology Manual at two locations at the site. The location of our PITs is shown on Figure 1. Our PITs were performed at about 1.0 to 1.5 feet below existing grades in the silty sand which we had initially provided a preliminary design infiltration rate of 0.5 inches per hour based on grain size analysis in our *Soils Report* dated August 5, 2022. The exploration logs of our PITs are included in Appendix A.

During our PITs, we measured an infiltration rate of 8.0 inches per hour. Applying correction factors of 0.5 for test method, 0.3 for site variability and 0.9 for maintenance gives a design infiltration rate of 1.0 inch per hour. We over excavated the PIT and observed a restrictive layer at about 2.7 feet below existing grades. Groundwater was observed at 2.5 feet below existing grades in PIT-2. No groundwater was observed in PIT-1 during the over excavation.

LIMITATIONS

We have prepared this report for use by Jody Miller Construction, Azure Green Consultants, and other members of the design team, for use in the design of a portion of this project. The data used in preparing this report and this report should be provided to prospective contractors for their bidding or estimating purposes only. Our report, conclusions and interpretations are based on our subsurface explorations, data from others and limited site reconnaissance, and should not be construed as a warranty of the subsurface conditions.

Variations in subsurface conditions are possible between the explorations and may also occur with time. A contingency for unanticipated conditions should be included in the budget and schedule. Sufficient monitoring, testing and consultation should be provided by our firm during construction to confirm that the conditions encountered are consistent with those indicated by the explorations, to

JodyMillerConst.4thStSW.SRa September 27, 2022 page | **2**

provide recommendations for design changes should the conditions revealed during the work differ from those anticipated, and to evaluate whether earthwork and foundation installation activities comply with contract plans and specifications.

The scope of our services does not include services related to environmental remediation and construction safety precautions. Our recommendations are not intended to direct the contractor's methods, techniques, sequences or procedures, except as specifically described in our report for consideration in design.

If there are any changes in the loads, grades, locations, configurations or type of facilities to be constructed, the conclusions and recommendations presented in this report may not be fully applicable. If such changes are made, we should be given the opportunity to review our recommendations and provide written modifications or verifications, as appropriate.

• • •

We have appreciated working for you on this project. Please do not hesitate to call at your earliest convenience if you have any questions or comments.

Respectfully submitted, GeoResources, LLC

Seth T. Mattos, LEG Associate

AES:STM/aes Doc ID: JodyMillerConst.4thStSW.SRa Attachments: Figure 1: Site & Exploration Map Appendix A – Subsurface Explorations

Andrew Schnitger, EIT Staff Engineer

<u>Notes:</u> An excerpt from the Pierce County Public GIS Approximate location of PITs GEORESOURCES earth science & geotechnical engineering 4809 Pacific Hwy. E. | Fife, WA 98424 | 253.896.1011 | www. georesources.rocks

Scale: Not to scale

Site & Exploration Map

Proposed Redevelopment 204 – 4th Street Southwest Puyallup, Washington PN: 57450016-31, -32, -41

Doc:ID: JodyMillerConst.4thStSW.Fa

September 2022

Appendix A Subsurface Explorations

MĄ	JOR DIVISIONS		GROUP SYMBOL	GROUP NAME
	GRAVEL	CLEAN	GW	WELL-GRADED GRAVEL, FINE TO COARSE GRAVE
60 LD65		GRAVEL	GP	POORLY-GRADED GRAVEL
GRAINED	More than 50%	GRAVEL	GM	SILTY GRAVEL
SUILS	Retained on No. 4 Sieve	WITH FINES	GC	CLAYEY GRAVEL
	SAND	CLEAN SAND	SW	WELL-GRADED SAND, FINE TO COARSE SAND
More than 50%			SP	POORLY-GRADED SAND
Retained on No. 200 Sieve	More than 50%	SAND	SM	SILTY SAND
	Passes No. 4 Sieve	WITH FINES	SC	CLAYEY SAND
	SILT AND CLAY	INORGANIC	ML	SILT
FINE			CL	CLAY
GRAINED SOILS	Liquid Limit Less than 50	ORGANIC	OL	ORGANIC SILT, ORGANIC CLAY
	SILT AND CLAY	INORGANIC	МН	SILT OF HIGH PLASTICITY, ELASTIC SILT
More than 50%			СН	CLAY OF HIGH PLASTICITY, FAT CLAY
Passes No. 200 Sieve	Liquid Limit 50 or more	ORGANIC	ОН	ORGANIC CLAY, ORGANIC SILT
HIG	HLY ORGANIC SOILS		PT	PEAT

NOTES:

- Field classification is based on visual examination of soil 1. in general accordance with ASTM D2488-90.
- 2. Soil classification using laboratory tests is based on ASTM D2487-90.
- 3. Description of soil density or consistency are based on interpretation of blow count data, visual appearance of soils, and or test data.

SOIL MOISTURE MODIFIERS:

- Absence of moisture, dry to the touch Dry-
- Damp, but no visible water Moist-
- Wet-Visible free water or saturated, usually soil is obtained from below water table

DocID: PIT Logs

Unified Soils Classification System

Proposed Redevelopment 204 – 4th Street Southwest Puyallup, Washington PN: 57450016-31, -32, -41

Sep 2022

Pilot Infiltration Test PIT-1

Location: North portion of site Approximate Elevation: 42'

Depth (ft)	Soil Type	Soil Description
0 - 0.5	-	Topsoil
0.5 - 2.7	SM	Brown silty SAND (loose, moist to wet)
2.7 - 4.0	SM	Gray, orange iron oxide stained silty SAND (loose to medium dense, moist)
		PIT performed at 1.0 feet below existing grades.
		Measured 8 inches per hour.
		PIT overdug to 4.0 feet below ground surface.
		No caving observed at the time of excavation.
		No groundwater seepage observed.
		Dilat Infiltration Test DIT 2
		Location: East portion of site
		Approximate Elevation: 42'
Depth (ft)	Soil Type	Soil Description
0 - 0.5	-	Topsoil
0.5 - 2.7	SM	Brown to black poorly graded silty SAND (loose, moist to wet)
2.7 - 3.0	SM	Gray, orange iron oxide stained silty SAND (loose to medium dense, moist)
		PIT performed at 1.5 feet below existing grades
		Measured 8 inches per hour
		PIT overdug to 3.0 feet below ground surface
		No caving observed at the time of excavation
		Static groundwater observed at 2.5 feet below existing grades during overdig.

Logged by: AES

G

ORESOURCES

earth science & geotechnical engineering 4809 Pacific Hwy. E. | Fife, WA 98424 | 253.896.1011 | www.georesources.rocks Excavated on: September 23, 2022

PIT Logs

Proposed Redevelopment 204 – 4th Street Southwest Puyallup, Washington PN: 57450016-31, -32, -41

DocID: PIT Logs

Sep 2022 A-2