5th Street Conditional Use Permit

Stormwater Site Plan Report

April 11, 2023

Prepared for

Samantha Keimig 1113 27th St. Pl. NW Puyallup, WA 98371

Samantha Keimig Samantha.n.keimig@gmail.com (360) 631-6019

Submitted by

ESM Consulting Engineers, LLC 33400 8th Avenue S, Suite 205 Federal Way, WA 98003

Brandon Loucks, P.E. (253) 838-6113 brandon.loucks@esmcivil.com

www.esmcivil.com

TABLE OF CONTENTS

1.	PROJECT (DVERVIEW	2					
2. I	EXISTING CONDTIONS SUMMARY3							
3 .	INFILTRATION RATES / SOILS REPORTS4							
4.	WELLS AND SEPTIC TANKS5							
5. I	FUEL TANKS 5							
6. I	FLOOD PLA	AIN ANALYSIS	5					
7.	OFFSITE ANALYSIS6							
8.	CRITICAL A	NREAS 1	1					
		ANCE GOALS AND STANDARDS						
10. I	PERMANEN	NT STORMWATER CONROL PLAN	12					
11. 1	DISCUSSIC	ON OF MINIMUM REQUIREMENTS	15					
		EPORTS AND STUDIES						
13. I	BOND QUA	NTITIES, DEDICATIONS, EASEMENTS	21					
		FIGURES						
Figur	e 1.1:	Vicinity Map						
Figur	re 3.1:	Boring and Sample Locations						
Figur	e 7.1:	Puyallup-White Water Resource Inventory Area (WRIA #10)						
Figur	e 7.2:	303(d) Map of Polluted Waters						
Figur	e 11.1:	Flow Chart for Determining Requirements for New Development						
Figur	re 11.2:	Flow Chart for Determining LID MR #5 Requirements						
		APPENDICES						
Appe	endix A:	Existing Conditions Map						
		Developed Conditions Map						
		Pre-Developed Basin Map						
		Developed Basin Map						
Appe	endix B:	Stormwater Design Calculations						
Appe	endix C:	NRCS Soil Map and Soil Unit Data						
Appe	endix D:	Federal Emergency Management Agency Flood Insurance Rate Panel						
Appe	endix E:	Bond Quantities, Declaration of Covenant for Privately Maintained Facilities						
	endix F:	Downstream Drainage Path						
\\esm8	\ENGR\ESM-JO)BS\2218\001\021\document\Rprt-003.docx						

1. PROJECT OVERVIEW

The proposed 5th Street Conditional Use Permit project is located on the south side of the alley between East Main and the railroad tracks, and between 5th Street SE and 7th Street SE within Section 20, Township 20 North, Range 04 East, W.M., City of Puyallup, WA. The site is located on Parcel 7282000112, addressed 111 5th Street SE, Puyallup, WA 98372, zoned CG (General Commercial) and encompasses an area of 10,000 square feet (0.23 acre). The City of Puyallup Comprehensive Plan classifies the site as Auto Oriented Commercial. The proposed use includes a combination of light industrial uses and ancillary storage associated with the primary use within the units. The CG zone does allow for the operation of light industrial uses as a conditional use, per Puyallup Municipal code 20.30.010.

The approximately 3,150 square foot building is proposed to be divided into (4) four units and used as partial workspace and storage of associated materials. Other proposed site improvements include but may not be limited to: 24.17-foot drive aisle, (4) four parking stalls, 5-foot walkway, 12-foot pedestrian plaza, landscape buffers and a 4-foot of Right-of-Way dedication to the City of Puyallup to provide a City standard 20-foot wide alley. Utility work will include a connection to the existing water line within 7th Street SE and storm connections to the existing catch basins within the alley to the north. Additionally, the sewer main from East Main will be extended south within 7th Street SE to the intersection of the alley, then west along the frontage of the site.

The project site contains no existing improvements. Proposed improvements will encompass the entire property. As such, the entire site will be cleared and grubbed. Runoff from the parking lot and sidewalk will be collected and piped to Structure D4-06593 within the alley north of the project site. Runoff from the driveway will sheet flow into the alley and into the same catch basin. Building roof runoff will be collected and piped to Structure D4-06625 within the alley north of the project site. Runoff from the Pedestrian Plaza will sheet flow into the alley and into the same catch basin. Both catch basins eventually discharge into the Puyallup River but take different flow paths to reach their respective discharge point into the River. See Section 7 of this report for a detailed discussion of the downstream flow path. See Figure 1.1 for a Vicinity Map and see Appendix 'A' for a Developed Conditions Map.

Figure 1.1: Vicinity Map

Stormwater design for the project is in accordance with the 2019 Washington State Department of Ecology Stormwater Management Manual for Western Washington (SWMMWW, the "Manual"), and the City of Puyallup Public Works Engineering & Construction Standards, which set the methodology and design criteria for the project. A Geotechnical Engineering Report and City of Puyallup Traffic Scoping Worksheet have been prepared for this project and are included with this submittal under separate cover.

2. EXISTING CONDTIONS SUMMARY

The project site is located on parcel 7282000112, which encompasses 10,000 square feet (0.23 acre). The site is trapezoidal in shape, measuring approximately 113.5-feet in the east-west direction and approximately 47- and 90.5-feet in the north-south direction. In general, this site is relatively flat, with elevations of approximately 49.5 along the north property line and between approximately 49.6 and 51.2 in the southwest and southeast property corners, respectively. There is a single low area near the center of the site with elevation of approximately 48.9 feet. Site slopes are generally between approximately 2- to 7-percent.

The property contains (2) Threshold Discharge Areas (TDAs). TDA #1 encompasses 1,678 sf (0.039 Ac.) on the western side of the site and TDA #2 encompasses the remaining 8,322 sf (0.191 Ac.). See the Pre-Developed Basin Map within Appendix 'A'.

The subject property is currently undeveloped and vacant. Land cover is primarily scrub grass and dirt. The project site is bordered to the east, north and west by a parking lot, an alleyway

and urban commercial development (single-story retail and warehouse structure), respectively. The property is bordered to the south by a double-track main rail line elevated about 2- to 3-feet above the property on an embankment of railroad ballast.

See Appendix 'A' for an Existing Conditions Map.

3. INFILTRATION RATES / SOILS REPORTS

The Natural Resources Conservation Service (NRCS) describes on-site soils as Puyallup Fine Sandy Loam (Map Unit 31A). See Appendix 'C' for the NRCS Data Soil Map and Soil Map Unit Data.

A Geotechnical Engineering Report was created by Icicle Creek Engineers (dated July 20, 2022, with the purpose of exploring and evaluating subsurface soil and groundwater conditions as a basis for evaluating foundation support and stormwater infiltration feasibility.

Subsurface conditions at the site were explored by drilling two test borings (Borings B-1 and B-2) to depths of 20 and 31.5 feet (respectively) on March 2, 2022. The soil types encountered in each boring is described in the following paragraphs.

Boring B-1: Boring B-1 encountered about $1\frac{1}{2}$ feet of Fill, consisting of loose gravel with silt and sand. Coarse-grained Alluvium was encountered from about $1\frac{1}{2}$ to 6 feet, consisting of loose fine to medium sand with silt. Fine-grained Alluvium was encountered from about 6 to $7\frac{1}{2}$ feet, consisting of soft silt. Coarse-grained Alluvium was encountered from about $7\frac{1}{2}$ to 17 feet, consisting of very loose to loose silty sand. Fine-grained Alluvium was encountered from about 17 to 20 feet at the completion depth of Boring B-1, consisting of medium stiff silt with sand.

Boring B-2: Boring B-2 encountered about $\frac{1}{2}$ foot of Fill, consisting of 5/8-inch-minus crushed rock. Coarse-grained Alluvium was encountered from about $\frac{1}{2}$ to $3\frac{1}{2}$ feet, consisting of very loose silty sand with gravel. Fine-grained Alluvium was encountered from about $3\frac{1}{2}$ to 6 feet, consisting of soft silt with sand. Coarse-grained Alluvium was encountered from about 6 to $15\frac{1}{2}$ feet, consisting of very loose to medium dense sand with occasional fine gravel. Fine-grained Alluvium was encountered from about $15\frac{1}{2}$ to $22\frac{1}{2}$ feet, consisting of stiff silt with sand. Coarse-grained Alluvium was encountered from about $22\frac{1}{2}$ to $31\frac{1}{2}$ feet at the completion depth of Boring B-2, consisting of medium dense sand with silt grading to silty sand at about $27\frac{1}{2}$ feet.

At the time of drilling, groundwater was encountered in Borings B-1 and B-2 at depths of about 4.4 feet and 4.8 feet, respectively.

A preliminary evaluation of infiltration rates in accordance with the Manual (Volume V, Section 5.4, Option 3: Soil Grain Size Analysis Method. Figure 3.1 provides the locations of the borings and samples and Table 3.1 provides the Short- and Long-term infiltration rates.

The Geotechnical Report also states that, due to the shallow groundwater table and the relatively shallow depth to low-permeability soil, disposal of stormwater by infiltration may be infeasible. However, permeable pavement may be feasible depending on subgrade elevation and depth of ponding within the base course.

Trace 1 Lient Phatague and Age 24, 200 attends from Garge Law.

Rail Line

Proposed Parking Area preliminary)

B-1(p)

Rail Line

Ra

Figure 3.1: Boring and Sample Locations

Table 3.1: Short and Long-Term Infiltration Rates

Test Boring / Sample Number	Short-Term Infiltration Rate (in./hr.)	Long-Term Infiltration Rate (in./hr.)
B-1 / S-1	31	8.4
B-2 / S-2 & S-3	0.6	0.16

The Geotechnical Engineering Report is included with this submittal under separate cover.

4. WELLS AND SEPTIC TANKS

There does not appear to be any groundwater wells or septic systems on-site or within 100 feet from the site. In the developed condition, domestic water and sewer will be provided by the City of Puyallup.

5. FUEL TANKS

There are no fuel tanks present to the best of our knowledge.

6. FLOOD PLAIN ANALYSIS

According to Federal Emergency Management Program Flood Insurance Rate Map 53053C10333E, effective 2017-03-07, the project lies within Zone X and is not screened, "Area of Minimal Flood Hazard". A FirmETTE has been created for this project and is presented as Appendix 'D'.

7. OFFSITE ANALYSIS

Study Area

The 5th Street CUP project is located within the Puyallup-White Watershed - Water Resource Inventory Area (WRIA) 10. See Figure 7.1 for a map of the Puyallup-White WRIA.

Kent Federal Way Tacoma Pierce PROJECT SITE Puyallup <u>Pierce</u>

Figure 7.1: Puyallup-White Water Resource Inventory Area (WRIA #10)

Adopted Basin Plans

The following document was located regarding the Puyallup-White Watershed an is incorporated into this document by reference

• Watershed Restoration and Enhancement Plan: WRIA 10 - Puyallup White Watershed

Tributary Run-on

There are no upstream areas that produce stormwater runoff tributary to the project site.

Downstream Analysis

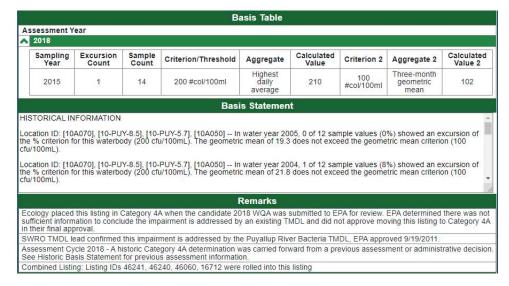
The project site contains two Threshold Discharge Areas. See Appendix 'F' for the downstream flow path for each TDA. Stormwater runoff from the project site that doesn't infiltrate into the underlying soils sheet flows to the alley to the north, where TDA #1 drains into Structure D4-06593, enters Pipe D1-08661 and flows approximately 130 feet west within a 12-inch PVC pipe to Structure D4-06591. TDA #2 drains into Structure D4-06625, flows approximately 158 feet east within an 8-inch pipe to Structure D4-06626.

Tables 7.1 and 7.2 provide the downstream flow paths for TDA #1 and #2, respectively.

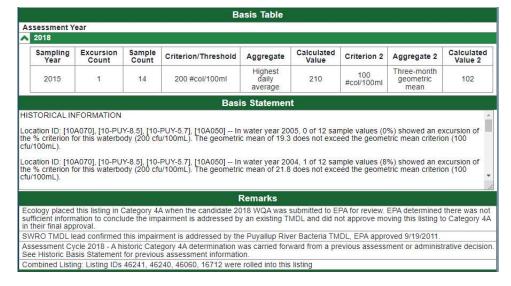
Table 7.1: Downstream Flow Path - TDA #1

Upstream Structure		Storm Pipe					Downstream Structure
ID	Туре	ID	Material	Dia. (in)	Length (ft)	Flow Direction	ID
D4-06593	CB1	D1-08661	PVC	12	130	West	D4-06591
D4-06591	CB1	D1-08662	PVC	12	102	North	D4-06588
D4-06588	CB2	D1-08665	PVC	12	53	Northwest	D5-00300
D5-00300	MH2	D1-08666	Conc.	15	43	North	D5-00301
D5-00301	MH2	D1-08674	Conc.	15	267	North	D5-00292
D5-00292	MH2	D1-08604	Conc.	18	141	North	D4-06543
D4-06543	CB2	D1-08605	Conc.	18	155	North	D5-00293
D5-00293	MH2	D1-08609	Conc.	24	200	North	D5-00294
D5-00294	MH2	D1-08610	Conc.	24	103	North	D5-00295
D5-00295	MH2	D1-08614	Conc.	24	47	East	Tee w/ 12"
Tee w/ 12".	Tee	D1-08616	Conc.	24	193	East	D4-06550
D4-06550	CB2	D1-08621	Conc.	24	227	East	D5-00297
D5-00297	MH2	D1-08630	Conc.	24	48	North	Unknown
Unknown		D1-08631	СМР	21	144	East / Northeast	Puyallup River

Table 7.2: Downstream Flow Path - TDA #2


Upstream \$	Structure	Storm Pipe					Downstream Structure
ID	Туре	ID	Material	Dia. (in)	Length (ft)	Flow Direction	ID
D4-06625	CB1	D1-08702	Conc.	8	158	East	D4-06626
D4-06626	CB1	D1-08704	Conc.	12	113	North	Pipe
Pipe		D1-08705	PVC	12	23	Northeast	D4-06621
D4-06621	CB1	D1-08698	PVC	12	34	North	D4-06620
D4-06620	CB1	D1-08707	Conc.	24	164	East	D4-06629
D4-06629	CB2	D1-08718	Conc.	24	139	East	D5-00305
D5-00305	MH2	D1-08735	Conc.	24	94	East	D4-06652
D4-06652	CB2	D1-08736	Conc.	24	132	East	D4-06653
D4-06653	CB2	D1-08739	Conc.	24	111	East	D5-00306
D5-00306	MH2	D1-08741	Conc.	24	30	East	D5-00303
D5-00303	MH2	D1-08744	Steel	18	260	North	Tee w/ 8"
Tee w/ 8"	Tee	D1-08748	Conc.	36	195	North	Puyallup River

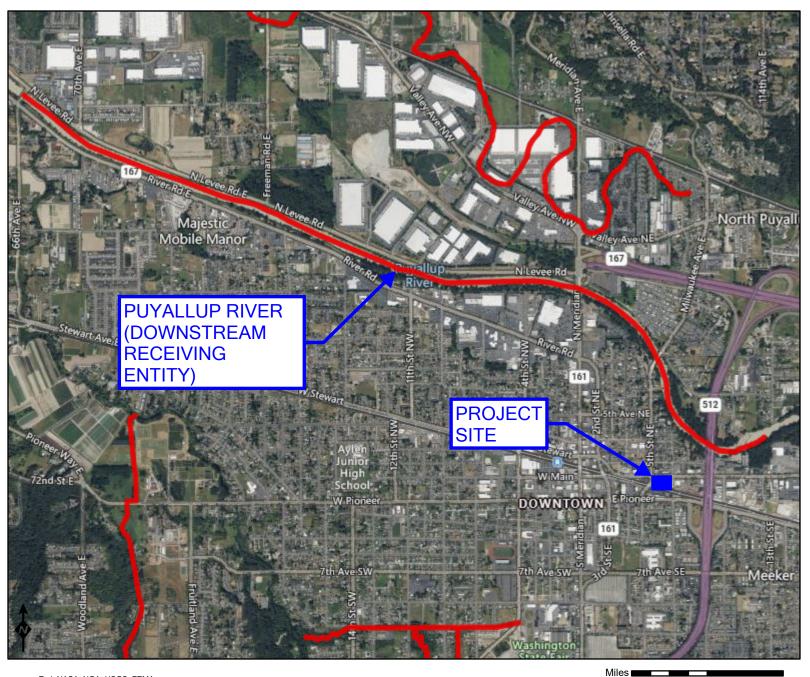
Water Quality Assessment


The Department of Ecology Water Quality Atlas was reviewed to see if there are any known downstream water quality concerns. Waters whose beneficial uses are impaired by pollutants that require a water improvement project are placed in the polluted water category (Category 5) and put on the 303(d) list. The 305(b) list all waters and all categories. Pollutants of concerns could be Bacteria, Dissolved Oxygen, Temperature, Metals, Phosphorus, Turbidity, or high pH.

The Puyallup River has (3) three Category 5 listings, as follows:

Bacteria - Fecal Coliform:

Temperature:



Mercury:

See Figure 7.2 for the 303(d) Map of Polluted Waters

FIGURE 7.2: 303(d) MAP OF POLLUTED WATERS

Assessed Water/Sediment

Water

Category 5 - 303d

Category 4C

Category 4B

Category 4A Category 2

Category 1

Sediment

Category 5 - 303d

Category 4C

Category 4B

Category 4A Category 2

Category 1

8. CRITICAL AREAS

The site and properties in the immediate vicinity were researched to determine the presence of any critical areas on-site such that any potential problems that may be created or aggravated by the proposed project can be identified and evaluated. The following items were investigated and determined to be present or suspected to be present:

- Lahar Hazard
- Critical Aquifer Recharge Area
- Geologic Hazard Area Volcanic Hazard Area
- Geologic Hazard Area Seismic Hazard Areas

9. PERFORMANCE GOALS AND STANDARDS

Hydrology Model

The approved hydrology model used for this project is the 2012 Western Washington Hydrology Model (WWHM) software, which incorporates all the methods required for determining compliance with the flow control and water quality standards specified below.

Flow Control

The project site is required to release stormwater to the performance standards provided in the 2019 Manual. To meet the prescriptive performance standards, stormwater discharges shall match Developed discharges to Pre-Developed durations for the range of Pre-Developed discharge rates from 50% of the 2-year peak flow up to the full 50-year peak flow. The Pre-Developed condition to be matched shall be a forested land cover unless:

- Reasonable, historic information is provided that indicates the site was prairie prior to settlement (modeled as pasture in the approved continuous simulation model); or
- The drainage area of the immediate stream and all subsequent downstream basins have had at least 40% total impervious area (TIA) since 1985. In this case, the Pre-Developed condition to be matched shall be the existing land cover condition.

This standard requirement is waived for sites that will reliably infiltrate all the runoff from hard surfaces and converted vegetation areas.

Runoff Treatment

Treatment facilities shall be sized for the entire area that drains to them, even if some of those areas are not pollution-generating or were not included in the project site threshold decisions or the treatment threshold decisions of this minimum requirement.

Water Quality Design Storm Volume:

 When using an approved continuous runoff model, the water quality design storm volume shall be equal to the simulated daily volume that represents the upper limit of the range of daily volumes that accounts for 91% of the entire runoff volume over a multi-decade period of record. Water Quality Design Flow Rate:

- Preceding Detention Facilities or when Detention Facilities are not required:
 - The flow rate at or below which 91% of the runoff volume, as estimated by an approved continuous runoff model, will be treated.
- Downstream of Detention BMPs:

The Water Quality Design Flow Rate Shall be the full 2-year release rate from the detention BMP

Conveyance

The 2019 Manual does not provide specific guidance on conveyance analysis. Sections 204.2(1), 204.2(3) and 204.2(4) of the City of Puyallup Standards for Public Works Engineering and Construction Manual (Revised 08/22) state the following:

- 204.2(1): All new pipe systems, both onsite and offsite, shall be designed with sufficient capacity to convey and contain (at minimum) the 25-year storm flow event, assuming developed conditions for onsite tributary areas, and existing conditions for any offsite tributary areas.
- 204.2(4): Pipe system structures may overtop for runoff events that exceed the 25-year design capacity provided the overflow from a 100-year runoff event does not create or aggravate an existing flooding problem or erosion problem. Any overflow occurring onsite for runoff events up to and including the 100-year event must discharge at the natural location for the project site. In residential subdivisions, this overflow must be contained within an onsite drainage easement, tract, covenant, or public right-of-way.
- 204.3(3): Pipe systems shall be designed to accommodate the developed condition 25-year storm flow event with a minimum 0-feet of freeboard without overtopping catch basins and manholes.

10. PERMANENT STORMWATER CONTROL PLAN

In the existing condition, stormwater generally sheet flows from south to north, with elevations of approximately 49.5 along the north property line and 51.2 along the south property line. A slight high point exists on the property line and alley to the north (approximate elevation 49.8) that creates two distinct downstream flow paths that do not combine within 1/4 mile downstream. As such, the two contributing Threshold Discharge Areas are analyzed separately. TDA #1 generally encompasses the western half of the project site and TDA #2 generally encompasses the eastern half. There are no properties that contribute tributary stormwater run-on to the project site.

Pre-Developed Site Hydrology

The project will disturb the entire site area of 0.23 acres. TDA #1 and TDA #2 are connected to Point of Compliance #1 and #2, respectively, such that they can be analyzed independently.

Table 10.1 presents the Pre-Developed land use and associated areas for both drainage basins. The Pre-Developed condition is modeled as "C, Forest, Flat" in accordance with the Manual.

Table 10.1: Pre-Developed Land Use & Area

TDA	C, Forest, Flat sf (ac)	C, Lawn, Flat** sf (ac)	Rooftops, Flat sf (ac)	Roads, Flat sf (ac)	Total sf (ac)
TDA #1 (POC #1)	1,678 (0.039)	-	-	-	1,678 (0.039)
TDA #2 (POC #2)	8,322 (0.191)	-	-	-	8,322 (0.191)
TOTAL:	10,000 (0.230)	-	-	-	10,000 (0.230)

Pre-Developed flows are presented in Table 10.3 and a Pre-Developed Basin Map is presented in Appendix 'A'

Developed Site Hydrology

In the Post-Construction scenario, existing TDAs are maintained to the maximum extent practicable. However, due to land cover and site constraints, TDA #1 area increased from 1,678 square feet to 3,369 square feet, an increase of 1,691 square feet (0.038 acre). TDA #2 decreased by the same amount to 6,631 square feet (0.152 acre.)

Runoff from the parking lot and sidewalk (TDA #1) will be collected and piped to Structure D4-06593 within the alley north of the project site. Runoff from the driveway will sheet flow into the alley and into the same catch basin.

It is proposed that the building roof runoff (TDA #2) be collected and piped to Structure D4-06625 within the alley north of the project site.

Table 10.2 is comprehensive summary of land use and areas for the Developed Condition. See Appendix 'A' for the Developed Basin Map.

Table 10.2: Developed Land Use and Areas

TDA	C, Pasture, Flat* sf (ac)	Parking, Flat sf (ac)	Rooftops, Flat sf (ac)	Roads, Flat sf (ac)	Sidewalks, Flat sf (ac)	Total sf (ac)
TDA #1 (POC #1)	1,124 (0.026)	2,061 (0.047)	-	-	184 (0.004)	3,369 (0.077)
TDA #2 (POC #2)	2,134 (0.049)	-	3,150 (0.073)	1,347 (0.031)	-	6,631 (0.153)
TOTAL:	3,258 (0.075)	2,061 (0.047)	3,150 (0.073)	1,358 (0.031)	184 (0.004)	10,000 (0.230)

*NOTE: All disturbed surfacing that will not receive hard surfacing in the final postconstructed condition shall utilize amended soil in accordance with BMP T5.13. As such, these lawn areas may be modeled as "Pasture" rather than "Lawn".

Table 10.3 presents the Pre-Developed and Developed peak flows (2-, 25-, and 100-Year storm recurrence events) for both Threshold Discharge Areas.

Table 10.3: Pre-Developed and Developed Flows

STORM RECURRENCE EVENT:	PRE-DEVELOPED PEAK FLOWS TDA #1 (POC #1) (CFS)	DEVELOPED PEAK FLOWS TDA #1 (POC #1) (CFS)	PRE- DEVELOPED PEAK FLOWS - TDA #2 (POC #2) (CFS)	DEVELOPED PEAK FLOWS TDA #2 (POC #2) (CFS)
2-Year	0.0008	0.0182	0.0040	0.0370
25-Year	0.0018	0.0351	0.0087	0.0715
100-Year	0.0021	0.0453	0.0101	0.0923

The increase in peak flow during the 100-Year Storm Recurrence Event is 0.0432 cfs and 0.0822 cfs for TDA #1 and TDA #2, respectively.

Flow Control System

Flow control is not required for either TDA #1 or TDA #2 as:

- Neither TDA has a total of 10,000 square feet or more of effective impervious surfaces,
- Neither TDA converts 3/4 acres or more of native vegetation, pasture, scrub/shrub, or unmaintained non-native vegetation to lawn or landscape, or convert 2.5 acres or more of native vegetation to pasture, and from which there is a surface discharge in a natural or man-made conveyance system from the TDA

 Neither TDA, through a combination of effective hard surfaces and converted vegetation areas, cause a 0.15 cfs or greater increase in the 100-year flow frequency as estimated using an approved continuous simulation and 15-minute time steps.

Water Quality System

Water Quality is not required for this project as:

- The project does not create 5,000 square feet or more of Pollution-Generating Hard Surface (PGHS) in a single Threshold Discharge Area.
- The project does not create (not including permeable pavements) a total of 3/4 or more
 of Pollution-Generating Pervious Surface (PGPS) in a single Threshold Discharge
 Area, and from which there will be a surface discharge in a natural or man-made
 conveyance system from the site.

Conveyance System Analysis and Design

The design of the stormwater conveyance system ensures that the peak stormwater runoff from the 100-Year Storm Recurrence event can be contained without any overtopping of structures. Calculations indicate that the peak runoff for the aforementioned 100-Year Storm Recurrence Events are 0.0453 cfs (TDA #1) and 0.0923 cfs (TDA #2). The smallest diameter/slope of pipe is a 6-inch pipe laid at 0.50%. Calculations indicate that this pipe can convey 0.462 cfs.

Pipe capacity was analyzed using Hydraflow Express. All stormwater calculations are presented in Appendix 'B'.

Flow Control BMPs / Low Impact Development BMPs

Due to infeasibility, which is discussed in detail within Section 11, Minimum Requirement #5 for each Flow Control/Low Impact Development BMP from List #2, the only BMP from List #2 that will be implemented on each lot to satisfy Minimum Requirement #5 is BMP T5.13: Post-Construction Soil Quality and Depth.

11. DISCUSSION OF MINIMUM REQUIREMENTS

Referencing Figure 11.1 (Flow Chart for Determining Requirements for New Development) of the Manual, the site does not have 35% or more of existing hard surface coverage and results in 5,000 square feet or greater of new plus replaced hard surface area. As such, all Minimum Requirements apply to the new and replaced hard surfaces and converted vegetation areas. Below are Minimum Requirements #1 though #9 with a discussion as to how each are applicable to this project. For each Minimum Requirement, the feasibility is applicable to both Threshold Discharge Area unless otherwise indicated.

Start Here See Redevelopment Project Yes Does the Site have 35% Thresholds and the Figure "Flow or more of existing hard Chart for Determining surface coverage? Requirements for Redevelopment". No Does the Project convert 3/4 acres or more of vegetation to Does the Project result in lawn or landscaped areas, or convert 2.5 acres or more of 5,000 square feet, or No native vegetation to pasture? greater, of new plus replaced hard surface area? No Yes Yes Does the Project result in 2,000 square feet, or greater, of new plus replaced hard surface area? All Minimum Requirements apply to the new and replaced hard surfaces and converted Nο Yes vegetation areas. Does the Project have land disturbing activities of 7,000 Minimum Requirements #1 square feet or greater? through #5 apply to the new Yes and replaced hard surfaces and the land disturbed. No Minimum Requirement #2 applies. Flow Chart for Determining Requirements for New Development Revised March 2019 DEPARTMENT OF ECOLOGY Please see http://www.ecy.wa.gov/copyright.html for copyright notice including permissions, State of Washington limitation of liability, and disclaimer.

Figure 11.1: Flow Chart for Determining Requirements for New Development

Minimum Requirement #1 - Preparation of Stormwater Site Plans

This Preliminary Storm Water Site Plan Report and the accompanying plans satisfy this requirement.

Minimum Requirement #2 - Construction Stormwater Pollution Prevention Plan (SWPPP)

A Construction Stormwater Pollution Prevention Plan (SWPPP) will be included as a separate report further in the Design/Approval/Permitting process.

The SWPPP will address each of the 13 required elements, unless site conditions render the element unnecessary and the exemption from that element is clearly justified in the narrative of the SWPPP.

Minimum Requirement #3 - Source Control of Pollution

All known, available and reasonable source control BMPs will be applied to the project. Applicable operational and structural source control BMPs, as described in Volume IV of the Manual will be implemented. Applicable construction BMPs, as described in Volume II of the Manual, will be applied and will be discussed in the Construction SWPPP. Operational and structural controls include, but are not limited to:

- BMPs for Dust Control at Disturbed Land Areas and Unpaved Roadways and Parking Lots (S407)
- BMPs for Illicit Discharges to Storm Drains (S410)
- BMPs for Landscaping and Lawn/Vegetation Management (S411)
- BMPs for Maintenance and Repair of Vehicles and Equipment (S414)
- BMPs for Maintenance of Stormwater Drainage and Treatment Systems (S417)
- BMPs for Parking and Storage of Vehicles and Equipment (S421)
- BMPs for Formation of a Pollution Prevention Team (S453)
- BMPs for Preventative Maintenance / Good Housekeeping (S454)
- BMPs for Spill Prevention and Cleanup (S455)
- BMPs for Employee Training (S456)
- BMPs for Inspections (S457)
- BMPs for Record Keeping (S458)

Minimum Requirement #4 - Preservation of Natural Drainage Systems and Outfalls

The project site maintains the natural drainage pattern of the existing site to the maximum extent practicable.

There are two Threshold Discharge Areas on the subject property. It is proposed that the discharge points to existing storm conveyance infrastructure be maintained in the asconstructed condition.

- TDA #1: Runoff from the parking lot and sidewalk will be collected and piped to Structure D4-06593 within the alley north of the project site. Runoff from the driveway will sheet flow into the alley and into the same catch basin.
- **TDA #2:** Building roof runoff will be collected and piped to Structure D4-06625 within the alley north of the project site. Runoff from the Pedestrian Plaza will sheet flow into the alley and into the same catch basin.

Minimum Requirement #5 - On-site Stormwater Management

Referencing Figure 11.2 (Flow Chart for Determining LID MR #5 Requirements) and Table 11.1 (Minimum Requirement #5 Compliance Options for Projects Triggering Minimum Requirements #1 - #9), this project:

- Does not quality as Flow Control exempt per Minimum Requirement #7.
- Triggers Minimum Requirements #1 #9 per the Project Thresholds in Applicability of the Minimum Requirements
- Is not located outside the UGA on a parcel that is 5 acres or larger

Therefore, it is required that, for each surface, the BMPs listed in List #2 be considered for that type of surface. The first BMP that is considered feasible shall be used. The other available option (not required) is to demonstrate achievement of the LID Performance Standard. This project uses the List #2 approach.

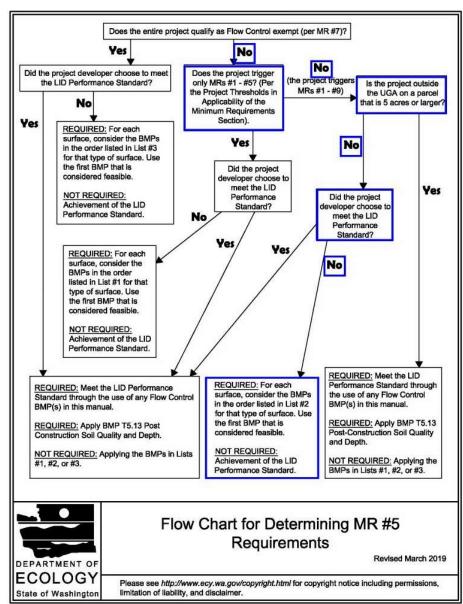


Figure 11.2: Flow Chart for Determining LID MR #5 Requirements

- Surface Lawn and Landscaped Areas
 - BMP T5.13: Post-Construction Soil Quality and Depth.
 - Feasible and implemented on the project for all disturbed areas that will not receive hard surfacing in the Post-Developed condition.
- Roofs (Only Applicable to TDA #2. TDA #1 contains no roof area)
 - BMP T5.30: Full Dispersion
 - Not Feasible: The required length of the vegetated flow path cannot be established.
 - BMP T5.10A: Downspout Full Infiltration.
 - Not feasible: Feasibility Criteria #3 of the Manual states, "Downspout Full Infiltration is considered feasible on lots or sites that meet all of the following:"
 - 3 feet or more of permeable soil from the proposed final grade to the seasonal high ground water table.
 - At least 1-foot of clearance from the expected bottom elevation of the infiltration trench or dry well to the seasonal high ground water table.
 - "From the Geotechnical Engineering Report, prepared by Icicle Creek Engineers, dated July 20, 2022, the locations of Boring B-1 and B-2 are within the parking area and proposed building area, respectively. As such, only the Boring location B-1 is acceptable due to the required 10-foot setback a trench must have from any structure. Figure 4 (Boring Log B-1) of the Report indicates that Approximate Ground Surface Elevation is 50 feet and groundwater was measured at 4.4' below (Elevation 45.6). Section 204.4(3) of the City of Puyallup Public Works Engineering & Construction Standards indicates that privately maintained pipes (with the exception of Ductile Iron) shall have 3-feet of cover. Three feet of cover places the top of infiltration pipe at elevation 47. Per Figure V-4.1 of the Manual, the infiltration piping consists of either 4" rigid or 6" flexible perforated pipe, for an invert elevation of 46.67 or 46.50, respectively. Figure V4.1 also shows 12-inches of washed rock below the trench. As such, the bottom of trench is 45.67 (4" rigid) or 45.50 (6" flexible). If 6-inches is placed underneath the perforated pipe, the elevations become 46.17 and 46.00, respectively. Vertical separation of 1-foot between bottom of trench and high water table cannot be achieved.
 - BMP T7.30: Bioretention
 - Not Feasible: Insufficient space. Per City of Puyallup Standard 02.07.01, 24-inches transition zone is required next to parking. Using 6-inches of freeboard at 3:1 side slopes, only 12-foot of area is left at the top of ponding, 0.4% of the roof area.

- BMP T5.10B: Downspout Dispersion Systems
 - Not feasible: Insufficient room available for the required setback and vegetated flow path.
- BMP T5.10C: Perforated Stub-Out Connection
 - Not Feasible: The Stub-Out Connection would be under impervious / or heavily compacted surfacing.

Other Hard Surfaces

- NOTE: Per the Pierce County Aquifer Recharge Areas Interactive Map, located at: (https://open.piercecountywa.gov/dataset/Aquifer-Recharge-Areas/aqr3-4b7t), the Site is within an Aquifer Recharge Area. Additionally, the 2021-07-27 Pre-Application Meeting notes state a Critical Aquifer Recharge Area is known or suspected on or in the vicinity of the subject site. As such, Water Quality treatment will be provided to protect groundwater from pollutants from PGIS runoff to the maximum extent practicable using Flow Control BMPs.
- BMP T5.30: Full Dispersion
 - Not Feasible: The required length of the vegetated flow path cannot be established.
- BMP T5.15: Permeable Pavements
 - Not Feasible: The vertical clearance of 3-feet between bottom of the Permeable Pavement section must be 3-feet above the groundwater table, which was encountered at 4.4-feet below grade. The section underneath the paved surface would be 12" permeable ballast over 6" treatment layer, for a total section depth of 4.5-feet, including the required vertical separation.
- BMP T7.30: Bioretention
 - Not Feasible: Insufficient space. Per City of Puyallup Standard 02.07.01, 24-inches transition zone is required next to parking. Using 6-inches of freeboard at 3:1 side slopes, only 12-foot of area is left at the top of ponding, which represents 0.58% and 0.89% of the parking area and pedestrian plaza, respectively.
- BMP T5.12: Sheet Flow Dispersion or BMP T5.11: Concentrated Flow Dispersion
 - Not Feasible: There is insufficient space for Sheet Flow Dispersion or Concentrated Flow Dispersion with the required vegetated Flowpath.

Minimum Requirement #6 - Runoff Treatment

Runoff treatment is not required for this project as the project does not exceed any of the thresholds within a single TDA. See Section 10 for additional discussion.

Minimum Requirement #7 - Flow Control

Flow Control is not required for this project as the project does not exceed any of the thresholds within a single TDA. See Section 10 for additional discussion.

Minimum Requirement #8 - Wetlands Protection

There are no wetlands on or in the vicinity of the project site.

Minimum Requirement #9 - Operations and Maintenance

An Operations and Maintenance Manual will be included as a separate report further in the Design/Approval/Permitting process.

12. SPECIAL REPORTS AND STUDIES

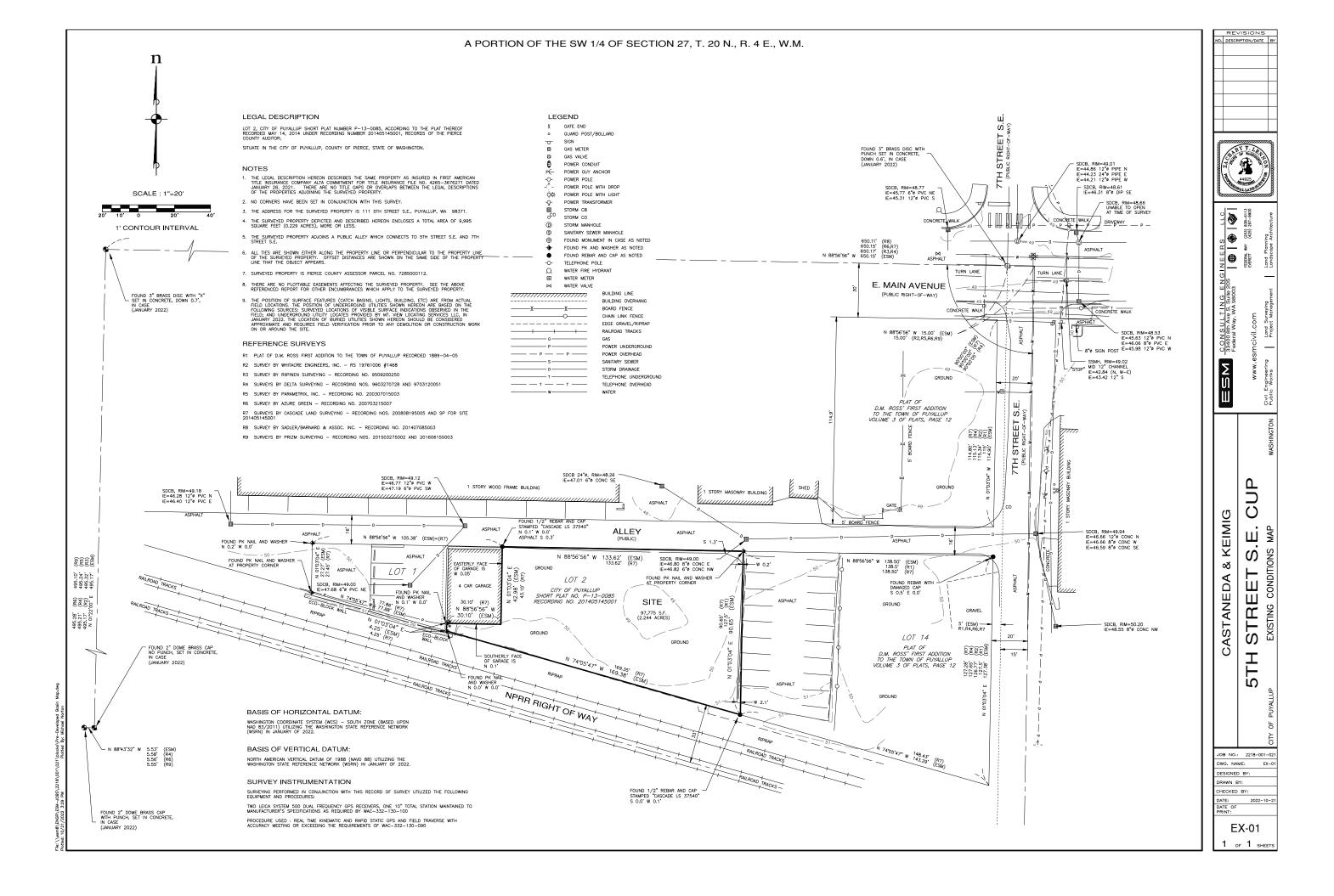
The following reports were prepared for this project, are incorporated into this Stormwater Site Plan Report by reference, and submitted under separate cover:

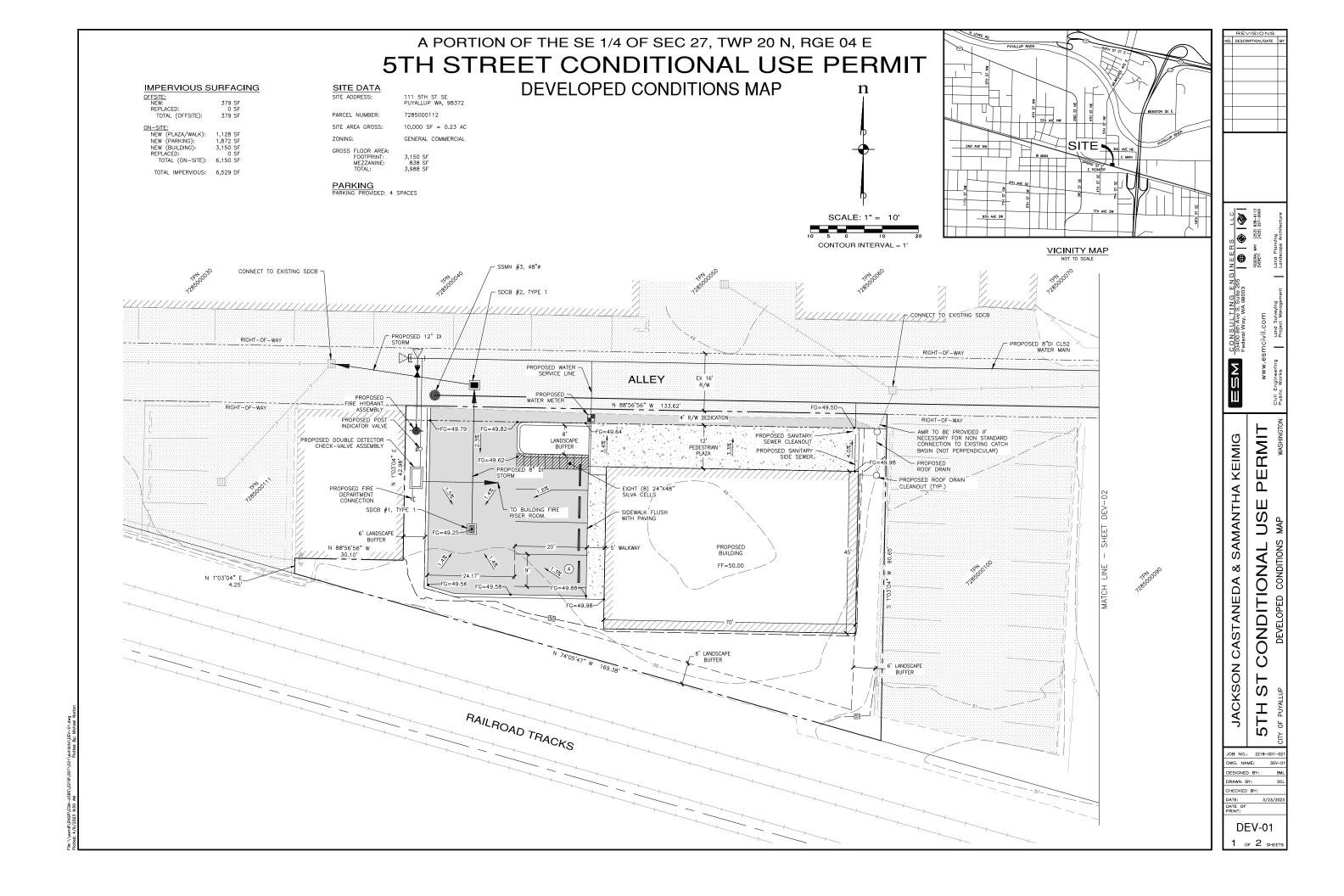
- Report Geotechnical Engineering Services, Icicle Creek Engineers, Dated July 20, 2022
- City of Puyallup Traffic Scoping Worksheet, Heath & Associates, May 8, 2022

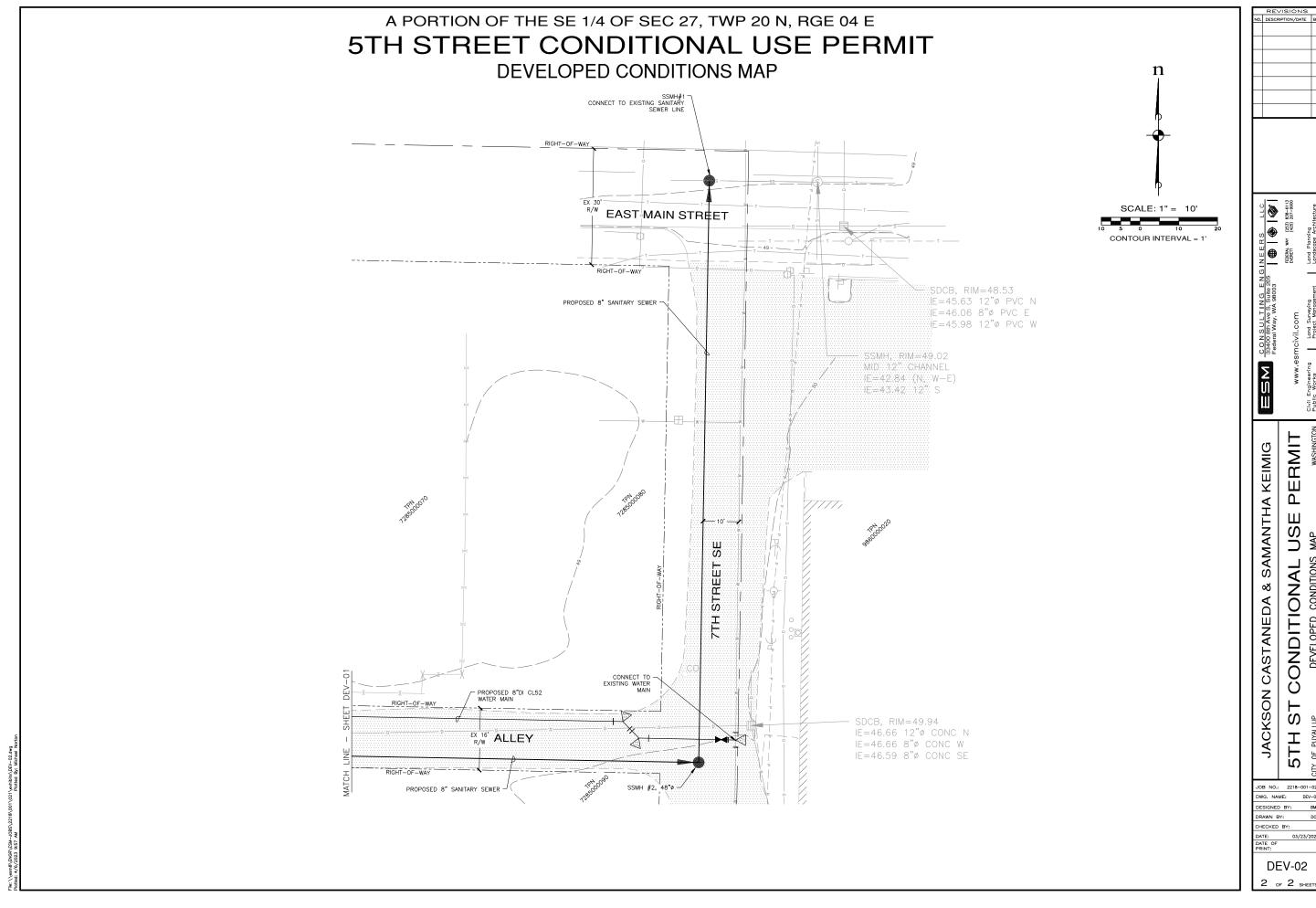
13. BOND QUANTITIES, DEDICATIONS, EASEMENTS

Paperwork and forms for any required Bond, Assignment of Funds, Construction Cost Estimate will be submitted further in the Design/Approval/Permitting process.

The following dedication is proposed for this project:

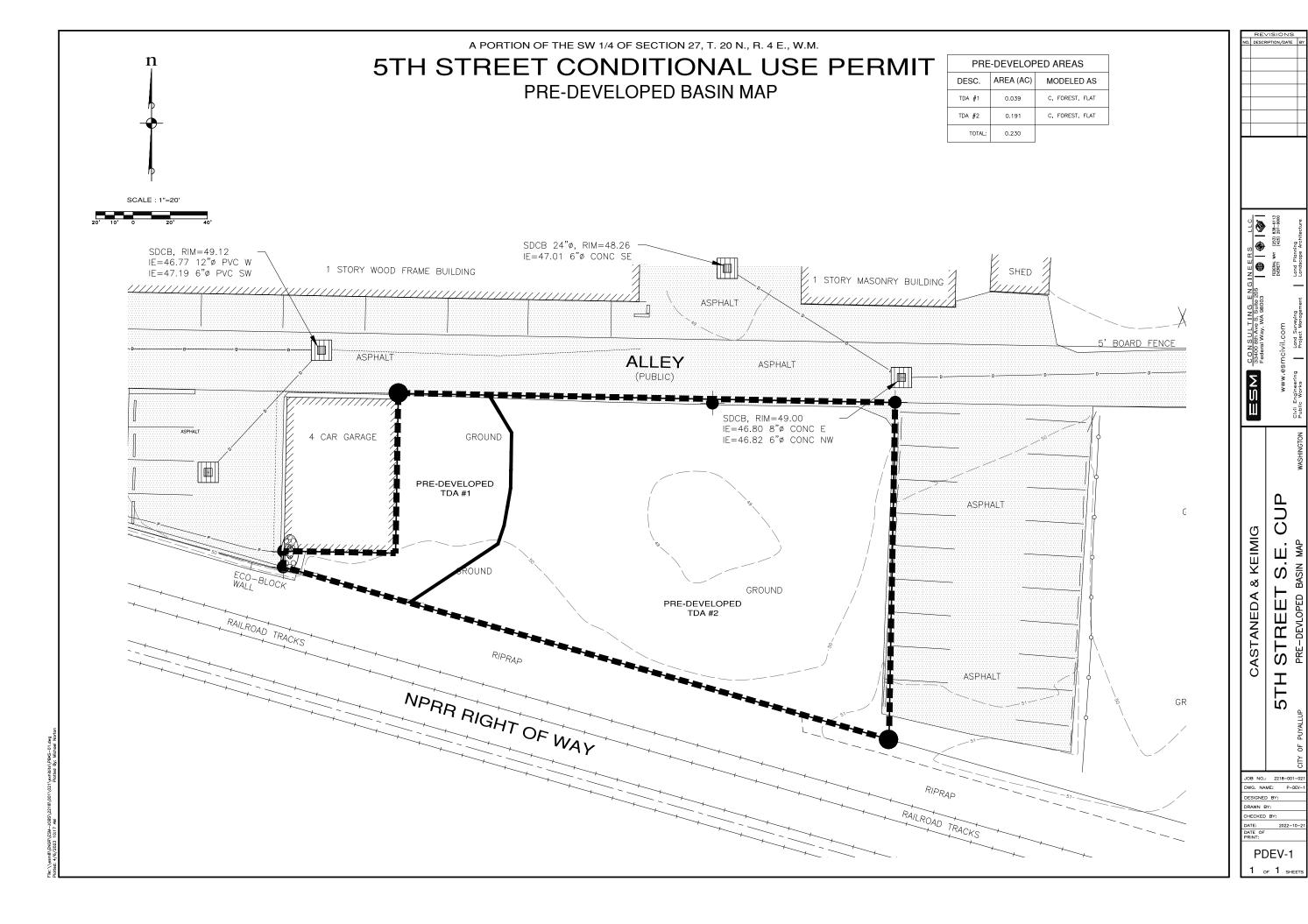

 Right-of-Way dedication along north property line to provide a City standard 20-foot wide alley

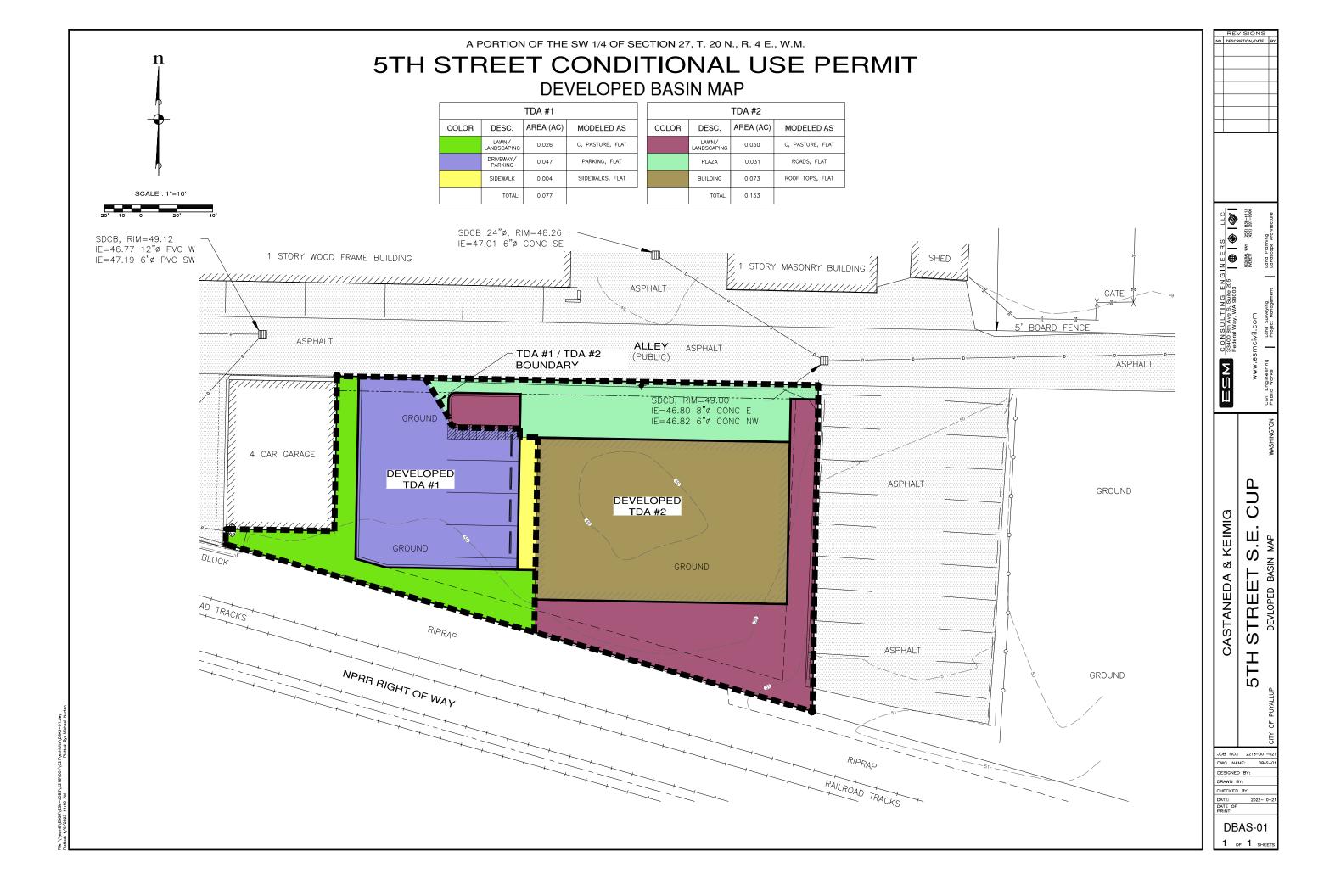

The following buffers are proposed as part of this project:


- North: 12-foot Plaza Space and Type II Landscaping
- South: 6-foot Type II Landscaping
- East: 6-foot Type III Landscaping
- West: 6-foot Type III Landscaping

APPENDIX A

Existing Conditions Map
Developed Conditions Map
Pre-Developed Basin Map
Developed Basin Map


PERMIT


US МАР CONDITIONAL

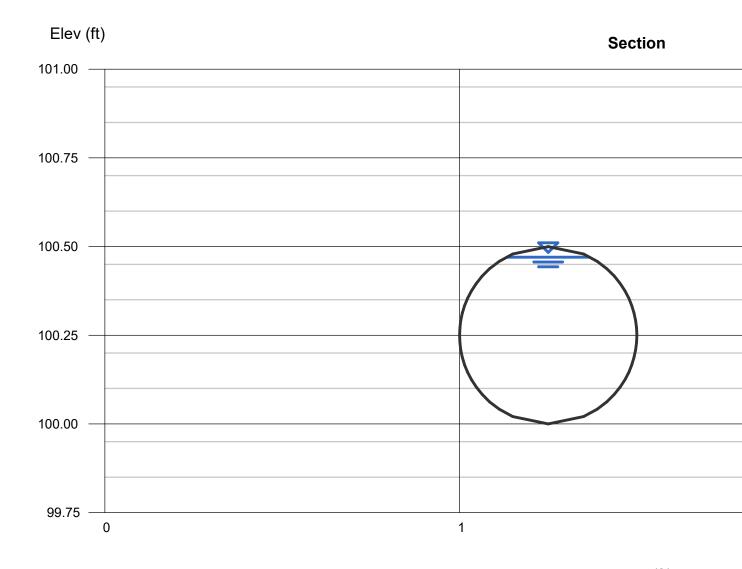
ST **5TH**

CHECKED BY:

DEV-02

APPENDIX B

Stormwater Design Calculations


Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Thursday, Apr 6 2023

TDA #2 6-Inch Roof Drain Capacity

Circular		Highlighted	
Diameter (ft)	= 0.50	Depth (ft)	= 0.47
		Q (cfs)	= 0.462
		Area (sqft)	= 0.19
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.41
Slope (%)	= 0.50	Wetted Perim (ft)	= 1.33
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.35
		Top Width (ft)	= 0.24
Calculations		EGL (ft)	= 0.56
Compute by:	Q vs Depth		
No. Increments	= 50		

5th Street Conditional Use Permit Site Storm Calculations 2023-04-06

WWHM2012 PROJECT REPORT

General Model Information

Project Name: 2023-04-06 5th Street Site Calculations

Site Name: 5th Street CUP
Site Address: 111 5th Street SE

City: Puyallup Report Date: 4/6/2023

Gage: 38 IN CENTRAL

Data Start: 10/01/1901
Data End: 09/30/2059
Timestep: 15 Minute
Precip Scale: 1.000

Version Date: 2021/08/18

Version: 4.2.18

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Low Flow Threshold for POC2: 50 Percent of the 2 Year

High Flow Threshold for POC2: 50 Year

Landuse Basin Data Predeveloped Land Use

TDA #1 Pre-Developed

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Flat 0.039

Pervious Total 0.039

Impervious Land Use acre

Impervious Total 0

Basin Total 0.039

Element Flows To:

TDA #2 Pre-Developed

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Flat 0.191

Pervious Total 0.191

Impervious Land Use acre

Impervious Total 0

Basin Total 0.191

Element Flows To:

Mitigated Land Use

TDA #1 Developed

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Flat 0.026

Pervious Total 0.026

Impervious Land Use acre SIDEWALKS FLAT 0.004 PARKING FLAT 0.047

Impervious Total 0.051

Basin Total 0.077

0.038 Acre Shifted from TDA #2

Element Flows To:

TDA #2 Developed

Bypass: No

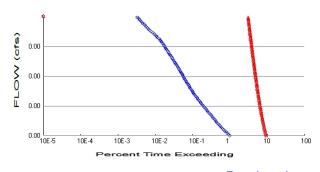
GroundWater: No

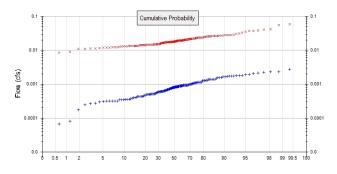
Pervious Land Use acre C, Pasture, Flat 0.049

Pervious Total 0.049

Impervious Land Use acre ROADS FLAT 0.031 ROOF TOPS FLAT 0.073

Impervious Total 0.104 0.038 Acre Shifted to TDA #2


Basin Total 0.153


Element Flows To:

Routing Elements Predeveloped Routing

Mitigated Routing

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 0.039 Total Impervious Area:

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.026 Total Impervious Area: 0.051

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

Return Period Flow(cfs) 2 year 0.000822 5 year 0.001279 10 year 0.001527 25 year 0.001779 50 vear 0.001929

100 year 0.002053

Increase = 0.0432 cfs < 1.5 cfs (**OK**)

Flow Frequency Return Periods for Mitigated. POC #1

Return Period Flow(cfs) 2 year 0.018166 5 year 0.024387 10 year 0.028909 25 year 0.035098 50 vear 0.040065 100 year 0.045348

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1902	0.001	0.021
1903	0.001	0.023
1904	0.001	0.028
1905	0.000	0.012
1906	0.000	0.013
1907	0.001	0.019
1908	0.001	0.015
1909	0.001	0.018
1910	0.001	0.017
1911	0.001	0.020

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961	0.003 0.001 0.000 0.001	0.035 0.014 0.059 0.012 0.023 0.008 0.018 0.011 0.015 0.013 0.021 0.017 0.013 0.026 0.027 0.013 0.014 0.023 0.012 0.017 0.025 0.012 0.027 0.025 0.015 0.027 0.025 0.015 0.027 0.025 0.015 0.027 0.025 0.015 0.027 0.015 0.027 0.025 0.015 0.027 0.025 0.027 0.027 0.025 0.027 0.027 0.025 0.027 0.027 0.027 0.027 0.028 0.028 0.028 0.028 0.029 0.015 0.028 0.029 0.015 0.029 0.015 0.029 0.017 0.029 0.029 0.017 0.029 0.029 0.029 0.017 0.029 0.029 0.017 0.029 0.029 0.029 0.017 0.029 0.029 0.017 0.029 0.029 0.017 0.029 0.029 0.017 0.029
1957	0.001	0.015
1958	0.002	0.019
1959	0.001	0.019
1960	0.000	0.014

0.001 0.002 0.001 0.001 0.002 0.001 0.000 0.002 0.000 0.001	0.018 0.017 0.055 0.032 0.023 0.025 0.026 0.011 0.019 0.019 0.015 0.020 0.020 0.023 0.012 0.020 0.012 0.011 0.015 0.021 0.021 0.021 0.015 0.021 0.015 0.021 0.017 0.015 0.018 0.017 0.015 0.018 0.017 0.016 0.016 0.022 0.018 0.017 0.016 0.017 0.016 0.017 0.016 0.027 0.016 0.027 0.016 0.027 0.017
0.002 0.002 0.001	0.017 0.025 0.020
	0.002 0.001 0.001 0.002 0.001 0.002 0.000 0.002 0.000 0.001

2028	0.000	0.008
2029	0.001	0.014
2030	0.002	0.028
2031 2032	0.001 0.000	0.009 0.015
2032	0.000	0.013
2034	0.000	0.014
2035	0.002	0.019
2036	0.001	0.014
2037	0.000	0.019
2038	0.001	0.019
2039	0.000	0.037
2040	0.000	0.015
2041	0.001	0.018
2042 2043	0.002 0.001	0.021 0.024
2043	0.001	0.024
2045	0.001	0.013
2046	0.001	0.015
2047	0.001	0.018
2048	0.001	0.015
2049	0.001	0.022
2050	0.001	0.017
2051	0.001	0.024
2052	0.001	0.018
2053	0.001	0.015
2054 2055	0.001 0.000	0.030 0.018
2056	0.000	0.018
2057	0.001	0.012
2058	0.001	0.022
2059	0.001	0.027

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Rank

Predeveloped Mitigated

Rank	Predeveloped	Mitigated
1	0.0027	0.0587
2	0.0023	0.0549
2 3	0.0023	0.0413
4	0.0022	0.0407
5	0.0021	0.0384
6	0.0021	0.0378
7	0.0020	0.0371
8	0.0019	0.0352
9	0.0018	0.0337
10	0.0018	0.0318
11	0.0018	0.0303
12	0.0018	0.0285
13	0.0017	0.0283
14	0.0017	0.0277
15	0.0017	0.0277
16	0.0017	0.0277
17	0.0016	0.0275
18	0.0016	0.0273
19	0.0016	0.0271
20	0.0015	0.0269
21	0.0015	0.0268
22	0.0014	0.0265

23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 55 56 57 58 59 60 61 66 66 67 67 67 77 77 77 77 77	0.0014 0.0014 0.0014 0.0013 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0010 0.0010 0.0010 0.0010 0.0010 0.0009	0.0262 0.0260 0.0260 0.0260 0.0256 0.0254 0.0251 0.0247 0.0239 0.0237 0.0235 0.0234 0.0234 0.0234 0.0234 0.0231 0.0225 0.0221 0.0219 0.0215 0.0215 0.0215 0.0215 0.0215 0.0215 0.0210 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0201 0.0199 0.0199 0.0199 0.0199 0.0193 0.0193 0.0193 0.0193 0.0193 0.0193 0.0185 0.0185
72	0.0008	0.0187
73	0.0008	0.0187
74	0.0008	0.0185

81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 123 124 125 127 128 129 130 131 131 131 131 131 131 131 131 131	0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0006 0.0005	0.0180 0.0179 0.0179 0.0176 0.0176 0.0175 0.0175 0.0175 0.0174 0.0173 0.0173 0.0173 0.0173 0.0171 0.0169 0.0168 0.0167 0.0166 0.0163 0.0163 0.0157 0.0152 0.0151 0.0152 0.0151 0.0149 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140
130 131 132	0.0004 0.0004 0.0004	0.0142 0.0140

139	0.0004	0.0133
140	0.0004	0.0132
141	0.0004	0.0131
142	0.0003	0.0130
143	0.0003	0.0130
144	0.0003	0.0127
145	0.0003	0.0123
146	0.0003	0.0122
147	0.0003	0.0122
148	0.0003	0.0120
149	0.0003	0.0119
150	0.0003	0.0119
151	0.0003	0.0115
152	0.0003	0.0113
153	0.0003	0.0112
154	0.0002	0.0111
155	0.0002	0.0109
156	0.0001	0.0089
157	0.0001	0.0085
158	0.0000	0.0084

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	
0.0004	54243	518716	956	Fail
0.0004	50226	508799	1013	<u>Fail</u>
0.0004	46697	499825	1070	Fail
0.0005	43301	490296	1132	Fail
0.0005	40304	481930	1195	Fail
0.0005 0.0005	37556 34891	473842 465476	1261 1334	Fail Fail
0.0005	32603	458052	1404	Fail
0.0005	30409	450906	1482	Fail
0.0005	28260	443593	1569	Fail
0.0006	26448	436779	1651	Fail
0.0006	24842	430297	1732	Fail
0.0006	23279	423538	1819	Fail
0.0006	21944	417388	1902	Fail
0.0006	20681	411405	1989	Fail
0.0006	19407	405256	2088	Fail
0.0007	18304	399771	2184	<u>Fail</u>
0.0007	17263	394286	2283	Fail
0.0007	16149	388635	2406	Fail
0.0007	15158	383594	2530	Fail
0.0007 0.0007	14304 13446	378663 373456	2647 2777	Fail Fail
0.0007	12676	368802	2909	Fail
0.0007	11967	364148	3042	Fail
0.0008	11235	359384	3198	Fail
0.0008	10582	355063	3355	Fail
0.0008	9994	350741	3509	Fail
0.0008	9374	346476	3696	Fail
0.0008	8859	342431	3865	Fail
0.0009	8349	338387	4053	Fail
0.0009	7856	334177	4253	Fail
0.0009	7468	330299	4422	Fail
0.0009	7047	326642	4635	Fail
0.0009	6609 6277	322764 319163	4883 5084	Fail
0.0009 0.0009	5989	315617	5269	Fail Fail
0.0009	5701	311906	5471	Fail
0.0010	5446	308637	5667	Fail
0.0010	5208	305258	5861	Fail
0.0010	4943	301878	6107	Fail
0.0010	4707	298776	6347	Fail
0.0010	4519	295618	6541	Fail
0.0011	4335	292405	6745	Fail
0.0011	4159	289358	6957	Fail
0.0011	3964	286255	7221	Fail
0.0011	3766	283097	7517 7044	Fail
0.0011	3586	280216	7814 8440	Fail
0.0011 0.0011	3421	277446 274344	8110 840 7	Fail Fail
0.0011	3263 3135	274344 271685	8407 8666	Fail
0.0012	3030	268970	8876	Fail
0.0012	2928	266200	9091	Fail
0.0012	2815	263541	9362	Fail
0.0012	2685	260937	9718	Fail

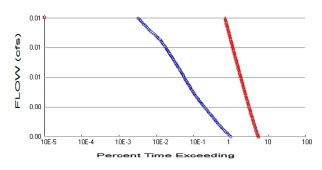
Duration does need to pass as the threshold for flow control has not been exceeded.

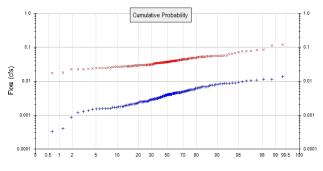
0.0012	2556	258167	10100	Fail
0.0013	2454	255674	10418	Fail
0.0013	2364	253236	10712	Fail
0.0013	2256	250632	11109	Fail
0.0013	2143	248195	11581	Fail
0.0013	2043	245868	12034	Fail
0.0013	1952	243375	12467	Fail
0.0013	1862	240993	12942	Fail
0.0014	1786	238666	13363	Fail
0.0014	1690	236284	13981	Fail
0.0014	1620	234123	14452	Fail
0.0014	1564	231962	14831	Fail
0.0014	1483	229636	15484	Fail
0.0014	1410	227530	16136	Fail
0.0015	1343	225370	16781	Fail
0.0015	1270	223098	17566	Fail
0.0015	1219	221104	18138	Fail
0.0015	1166	219110	18791	Fail
0.0015	1103	217060	19679	Fail
0.0015	1057	215065	20346	Fail
0.0015	1008	213182	21149	Fail
0.0016	964	211243	21913	Fail
0.0016	920	209193	22738	Fail
0.0016	874	207254	23713	Fail
0.0016	815	205315	25192	Fail
0.0016	776	203487	26222	Fail
0.0016	738	201714	27332	Fail
0.0017	695	199775	28744	Fail
0.0017	638	198002	31034	Fail
0.0017	602	196174	32587	Fail
0.0017	555	194235	34997	Fail
0.0017	517	192517	37237	Fail
0.0017	478	190855	39927	Fail
0.0017	434	189138	43580	Fail
0.0017	394	187365	47554	Fail
0.0018	364	185758	51032	Fail
0.0018	339	184096	54305	Fail
0.0018	311	182490	58678	Fail
0.0018	297	180883	60903	Fail
0.0018	273	179276		Fail
			65668	
0.0019	253 227	177725 176174	70247	Fail Fail
0.0019	237	176174	74335	
0.0019	223	174623	78306	Fail
0.0019	206 105	173127	84042	Fail
0.0019	195	171631	88015	Fail
0.0019	180	170025	94458	Fail

Duration does need to pass as the threshold for flow control has not been exceeded.

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.


Water Quality


Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0 acre-feet
On-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.
Off-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment?	Total Volume Needs Treatment (ac-ft)		Volume	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

POC 2

+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC #2

Total Pervious Area: 0.191
Total Impervious Area: 0

Mitigated Landuse Totals for POC #2
Total Pervious Area: 0.049
Total Impervious Area: 0.104

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #2

 Return Period
 Flow(cfs)

 2 year
 0.004025

 5 year
 0.006262

 10 year
 0.007477

 25 year
 0.008714

 50 year
 0.009449

 100 year
 0.010054

Increase = 0.0822 cfs < 1.5 cfs (OK)

Flow Frequency Return Periods for Mitigated. POC #2

Return Period	Flow(cfs)
2 year	0.036998
5 year	0.049667
10 year	0.058874
25 year	0.071477
50 year	0.081592
100 year	0.092349

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #2

Year	Predeveloped	Mitigate
1902	0.003	0.043
1903	0.002	0.048
1904	0.004	0.056
1905	0.002	0.024
1906	0.001	0.027
1907	0.006	0.038
1908	0.005	0.030
1909	0.005	0.037
1910	0.006	0.035
1911	0.004	0.040
1912	0.013	0.071

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1959 1960 1961 1961	0.006 0.002 0.003 0.004 0.001 0.004 0.003 0.004 0.005 0.005 0.004 0.002 0.002 0.004 0.003 0.006 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.005 0.003 0.005 0.003 0.005 0.002 0.004 0.002 0.006 0.003 0.005 0.005 0.005 0.005 0.005 0.001 0.001 0.004 0.003 0.001 0.004 0.003 0.001 0.004 0.003 0.001 0.004 0.003 0.001 0.005 0.001 0.005 0.001	0.028 0.120 0.025 0.046 0.017 0.037 0.023 0.027 0.029 0.053 0.027 0.055 0.027 0.029 0.029 0.029 0.029 0.034 0.034 0.035 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.031 0.035 0.031 0.035 0.031 0.035 0.031 0.035 0.035 0.031 0.035 0.031 0.035
1957	0.005	0.030
1958	0.011	0.038
1959	0.007	0.038
1960	0.002	0.029

0.008 0.005 0.007 0.004 0.009 0.005 0.002 0.008 0.002 0.004 0.004 0.002 0.007 0.003 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.008 0.002 0.009 0.003 0.002 0.009 0.003 0.004 0.000 0.003 0.004 0.000 0.003 0.004 0.000 0.003 0.004 0.000 0.003 0.004 0.000 0.003 0.002 0.003 0.004 0.003 0.002 0.003 0.004 0.003 0.004 0.003 0.002 0.003 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001	0.035 0.112 0.065 0.047 0.051 0.053 0.022 0.039 0.039 0.037 0.030 0.041 0.047 0.024 0.041 0.025 0.023 0.030 0.044 0.042 0.048 0.036 0.035 0.031 0.038 0.039 0.035 0.031 0.038 0.039 0.044 0.042 0.048 0.035 0.031 0.038 0.035 0.031 0.038 0.039 0.035 0.035 0.031 0.038 0.039 0.035 0.031 0.038 0.039 0.035 0.035 0.031 0.038 0.039 0.044 0.037 0.028 0.035 0.031 0.038 0.035 0.031 0.036 0.037 0.035 0.031 0.036 0.037 0.035 0.031 0.036 0.037 0.035
0.003 0.006	0.040 0.034
	0.005 0.007 0.004 0.009 0.005 0.002 0.008 0.002 0.004 0.002 0.007 0.003 0.004 0.005 0.004 0.005 0.004 0.005 0.008 0.005 0.008 0.002 0.009 0.003 0.004 0.000 0.003 0.002 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.002 0.003 0.004 0.003 0.002 0.003 0.001 0.003 0.002 0.003 0.001 0.003 0.002 0.003 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.002 0.003 0.001 0.001 0.001 0.001 0.001 0.001

2029	0.005	0.029
2030	0.009	0.056
2031	0.003	0.018
2032	0.002	0.030
2033	0.002	0.038
2034	0.002	0.030
2035	0.010	0.039
2036 2037	0.005 0.001	0.030 0.040
2037	0.001	0.040
2039	0.004	0.039
2040	0.002	0.030
2041	0.003	0.038
2042	0.009	0.043
2043	0.005	0.048
2044	0.006	0.033
2045	0.004	0.027
2046	0.005	0.030
2047	0.004	0.037
2048	0.005	0.030
2049	0.004	0.045
2050	0.003	0.034
2051	0.004	0.049
2052	0.002	0.036
2053	0.004	0.030
2054	0.006	0.062
2055	0.002	0.037 0.048
2056 2057	0.002 0.003	0.046
2057	0.003	0.023
2059	0.004	0.043
2000	0.007	0.000

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #2

Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigate
1	0.0134	0.1197
2 3	0.0113	0.1120
3	0.0113	0.0841
4	0.0109	0.0829
4 5 6	0.0105	0.0779
	0.0102	0.0770
7	0.0096	0.0757
8	0.0093	0.0713
9	0.0088	0.0688
10	0.0088	0.0649
11	0.0087	0.0617
12	0.0086	0.0581
13	0.0085	0.0575
14	0.0084	0.0565
15	0.0083	0.0565
16	0.0082	0.0563
17	0.0081	0.0560
18	0.0077	0.0557
19	0.0076	0.0551
20	0.0076	0.0548
21	0.0074	0.0546
22	0.0068	0.0541
23	0.0068	0.0535

24 25 26 27 28 29 31 33 33 33 33 33 33 33 33 33 33 33 33	0.0068 0.0068 0.0067 0.0064 0.0062 0.0062 0.0062 0.0062 0.0056 0.0056 0.0056 0.0056 0.0055 0.0054 0.0053 0.0052 0.0052 0.0052 0.0052 0.0052 0.0050 0.0049 0.0049 0.0049 0.0046 0.0046 0.0046 0.0046 0.0046 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041	0.0533 0.0531 0.0528 0.0527 0.0522 0.0514 0.0510 0.0505 0.0486 0.0483 0.0477 0.0476 0.0476 0.0476 0.0479 0.0459 0.0459 0.0459 0.0459 0.0441 0.0438 0.0438 0.0438 0.0431 0.0417 0.0417 0.0417 0.0417 0.0417 0.0414 0.0409 0.0459 0.0399 0.0399 0.0399 0.0399 0.0393 0.0393 0.0393 0.0393 0.0393 0.0393 0.0393 0.0393 0.0393 0.0393 0.0393 0.0393 0.0393 0.0393 0.0393 0.0393 0.0393 0.0393 0.0397 0.0375
73	0.0041	0.0379
74	0.0041	0.0378

82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98 99 100 103 104 105 107 108 109 110 111 113 114 115 116 117 118 119 120 121 123 124 125 127 128 129 130 131 131 131 131 131 131 131 131 131	0.0039 0.0038 0.0037 0.0037 0.0037 0.0037 0.0036 0.0036 0.0034 0.0034 0.0033 0.0033 0.0033 0.0033 0.0033 0.0031 0.0031 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0029 0.0029 0.0029 0.0029 0.0029 0.0028 0.0028 0.0025	0.0366 0.0365 0.0365 0.0368 0.0358 0.0357 0.0357 0.0356 0.0354 0.0353 0.0352 0.0352 0.0349 0.0348 0.0348 0.0344 0.0342 0.0340 0.0339 0.0337 0.0334 0.0332 0.0319 0.0318 0.0314 0.0310 0.0306 0.0305 0.0304 0.0306 0.0305 0.0304 0.0301
133	0.0021	0.0277

140 141 142	0.0017 0.0017 0.0017	0.0269 0.0267 0.0266
143 144	0.0017 0.0017	0.0265 0.0258
144	0.0017	0.0250
146	0.0016	0.0249
147	0.0016	0.0248
148	0.0015	0.0243
149	0.0015	0.0243
150	0.0015	0.0243
151	0.0015	0.0235
152	0.0013	0.0231
153	0.0013	0.0228
154	0.0012	0.0227
155	0.0009	0.0222
156	0.0004	0.0181
157	0.0003	0.0173
158	0.0002	0.0172

Duration Flows

Flow(cfs) 0.0020 0.0021 0.0022 0.0022 0.0023 0.0024 0.0025 0.0025 0.0026 0.0027 0.0028 0.0028 0.0029 0.0030 0.0031 0.0031	Predev 54309 50182 46603 43345 40293 37451 34913 32564 30326 28271 26432 24797 23296 21922 20631 19418	Mit 304981 297280 289745 282377 275397 268693 262211 255896 249968 244095 238444 233015 227752 222544 217669 212905	Percentage 561 592 621 651 683 717 751 785 824 863 902 939 977 1015 1055 1096	Pass/Fail Fail Fail Fail Fail Fail Fail Fail
0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0037 0.0038 0.0039 0.0040 0.0041 0.0042 0.0043 0.0043 0.0044 0.0045 0.0046 0.0046 0.0046 0.0047 0.0048 0.0049 0.0050 0.0051 0.0052 0.0052 0.0053 0.0055 0.0055 0.0055 0.0055 0.0056 0.0057 0.0058 0.0059 0.0060	18282 17219 16160 15147 14277 13451 12659 11933 11235 10559 9972 9374 8847 8332 7861 7457 7030 6609 6271 5978 5701 5438 5198 4940 4703 4511 4335 4157 3958 3766 3581 3414 3259 3134 3026 2926 2814 2682	208196 203653 199221 194844 190634 186589 182545 178778 175011 171410 167753 164207 160828 157449 154180 150911 147809 144651 141715 138834 135953 133239 130524 127754 125205 122602 120164 117726 115400 113073 110801 108585 106425 104264 102159 100164 98115 96176	1138 1182 1232 1286 1335 1387 1442 1498 1557 1623 1682 1751 1817 1889 1961 2023 2102 2188 2259 2322 2384 2450 2511 2586 2662 2717 2771 2831 2915 3002 3094 3180 3265 3326 3376 3423 3486 3585	Fail Fail Fail Fail Fail Fail Fail Fail

Duration does need to pass as the threshold for flow control has not been exceeded.

0.0061	2555	94236	3688	Fail
0.0061	2451	92353	3767	Fail
0.0062	2358	90525	3839	Fail
0.0063	2255	88807	3938	Fail
0.0064	2140	87090	4069	Fail
0.0064	2038	85317	4186	Fail
0.0065	1952	83600	4282	Fail
0.0066	1860	81938	4405	Fail
0.0067	1778	80331	4518	Fail
0.0067	1690	78669	4654	Fail
0.0068	1619	77118	4763	Fail
0.0069	1561	75566	4840	Fail
0.0070	1482	74126	5001	Fail
0.0070	1407	72686	5166	Fail
0.0071	1338	71245	5324	Fail
0.0072	1270	69916	5505	Fail
0.0073	1217	68531	5631	Fail
0.0073	1163	67256	5782	Fail
0.0074	1103	65927	5977	Fail
0.0075	1055	64653	6128	Fail
0.0076	1005	63323	6300	Fail
0.0076	963	62104	6449	Fail
0.0077	919	60996	6637	Fail
0.0078	872	59833	6861	Fail
0.0079	814	58725	7214	Fail
0.0079	774	57561	7436	Fail
0.0080	738	56509	7657	Fail
0.0081	694	55351	7975	Fail
0.0082	636	54315	8540	Fail
0.0082	601	53295	8867	Fail
0.0083	553	52248	9448	Fail
0.0084	517	51246	9912	Fail
0.0085	478	50276	10517	Fail
0.0085	434	49295	11358	Fail
0.0086	394	48315	12262	Fail
0.0087	363	47379	13052	Fail
0.0088	339	46465	13706	Fail
0.0088	310	45506	14679	Fail
0.0089	295	44620	15125	Fail
0.0090	273	43728	16017	Fail
0.0090	252	42897	17022	Fail
0.0091	237	42071	17751	Fail
0.0091	223	41296	18518	Fail
0.0092	206	40526	19672	Fail
0.0093	206 194	39733	20480	Fail
0.0094	179	38941	21754	Fail

Duration does need to pass as the threshold for flow control has not been exceeded.

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality
Water Quality BMP Flow and Volume for POC #2
On-line facility volume: 0 acre-feet
On-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.
Off-line facility target flow: 0 cfs.
Adjusted for 15 min: 0 cfs.

LID Report

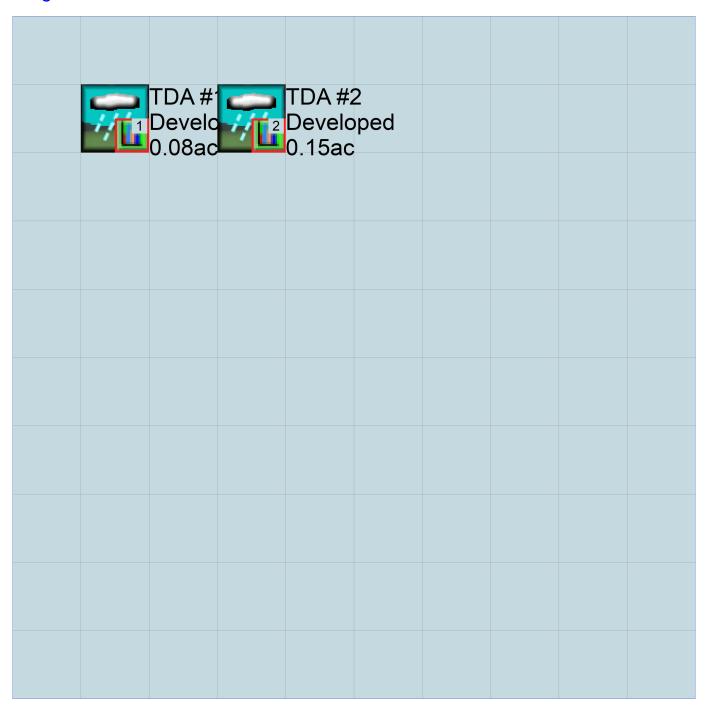
	Used for Treatment?	Total Volume Needs Treatment (ac-ft)		Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	(1%)	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.


IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

7	TDA# Pre-De	TDA #2 Pre-Develope	
	0.04ac	0.19ac	

Mitigated Schematic

Predeveloped UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
                           END 2059 09 30
                       END 3 0
 START 1901 10 01
 RUN INTERP OUTPUT LEVEL
 RESUME 0 RUN 1
                                      UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
              <---->***
<-ID->
WDM
         26
              2023-04-06 5th Street Site Calculations.wdm
MESSU
         25
            Pre2023-04-06 5th Street Site Calculations.MES
              Pre2023-04-06 5th Street Site Calculations.L61
         27
              Pre2023-04-06 5th Street Site Calculations.L62
              POC2023-04-06 5th Street Site Calculations1.dat
          30
            POC2023-04-06 5th Street Site Calculations2.dat
         31
END FILES
OPN SEQUENCE
                    INDELT 00:15
   INGRP
              10
    PERLND
     COPY
               501
     COPY
               502
               1
     DISPLY
    DISPLY
                 2
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
           TDA #1 Pre-Developed MAX
   1
                                                         1 2 30 9
   2
           TDA #2 Pre-Developed
                                    MAX
                                                         1
                                                                 31
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT NMN ***
       1 1
 501
502
           1
                1
           1
                1
 END TIMESERIES
END COPY
GENER
 OPCODE
  # # OPCD ***
 END OPCODE
  #
               K ***
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><-----Name----->NBLKS Unit-systems Printer ***
                              User t-series Engl Metr ***
   # - #
                                     in out
  10 C, Forest, Flat
                             1 1
                                      1 1 27
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
   <PLS > ********* Active Sections **********************
  \# - \# ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *** 10 0 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
```

```
<PLS > ********** Print-flags ************** PIVL PYR
  END PRINT-INFO
 PWAT-PARM1
  <PLS > PWATER variable monthly parameter value flags ***
   # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
10 0 0 0 0 0 0 0 0 0 0
 END PWAT-PARM1
 PWAT-PARM2
  PWAT-PARM2

<PLS > PWATER input info: Part 2 ***

# - # ***FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC

10 0 4.5 0.08 400 0.05 0.5 0.996

END PWAT-PARM2
 END PWAT-PARM2
 PWAT-PARM3
  WAT-PARM3

<PLS > PWATER input info: Part 3 ***

# - # ***PETMAX PETMIN INFEXP INFILD

10 0 2 2
                                     INFILD DEEPFR BASETP AGWETP 2 0 0 0
 END PWAT-PARM3
 PWAT-PARM4
  END PWAT-PARM4
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
          ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
  # - # *** CEPS SURS UZS IFWS LZS AGWS 10 0 0 0 2.5 1
                                                                GWVS
                                                       1
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
  <PLS ><----- Name----> Unit-systems Printer ***
  # - #
              User t-series Engl Metr ***
                               in out
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
  # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
  <ILS > ****** Print-flags ****** PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
 IWAT-PARM1
   <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
 END IWAT-PARM1
 IWAT-PARM2
  <PLS > IWATER input info: Part 2 ***
# - # *** LSUR SLSUR NSUR RETSC
 END IWAT-PARM2
 # - # ***PETMAX PETMIN
 END IWAT-PARM3
```

```
<PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
 END IWAT-STATE1
END IMPLND
SCHEMATIC
                         <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
TDA #1 Pre-Developed***
                             0.039 COPY 501 12
0.039 COPY 501 13
PERLND 10
PERLND 10
TDA #2 Pre-Developed***
                             0.191 COPY 502 12
0.191 COPY 502 13
PERLND 10
PERLND 10
*****Routing*****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # # ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
   RCHRES Name Nexits Unit Systems Printer
                                                                     * * *
   # - #<----- User T-series Engl Metr LKFG
                                                                      * * *
                                                                     ***
                                       in out
  END GEN-INFO
  *** Section RCHRES***
 ACTIVITY
   <PLS > ******** Active Sections **********************
   # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
  END ACTIVITY
  PRINT-INFO
   <PLS > ******** Print-flags ******** PIVL PYR
   # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ********
  END PRINT-INFO
 HYDR-PARM1
   RCHRES Flags for each HYDR Section
                                                                      * * *
   # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit ***
  END HYDR-PARM1
 HYDR-PARM2
  # - # FTABNO LEN DELTH STCOR
                                              KS DB50
  <----><----><---->
 END HYDR-PARM2
 HYDR-INIT
   RCHRES Initial conditions for each HYDR section
 # - # *** VOL Initial value of COLIND Initial value of OUTDGT

*** ac-ft for each possible exit for each possible exit

<----> <---> <---> *** <---> *** <---> ***
 END HYDR-INIT
END RCHRES
```

SPEC-ACTIONS

IWAT-STATE1

END SPEC-ACTIONS FTABLES END FTABLES

EXT SOURCES

<-Volume->		<member></member>	> SsysSgap <mult>Tran</mult>		<-Target	vols>	<-Grp>	<-Member->	* * *
<name></name>	#	<name> #</name>	tem str	g<-factor->strg	<name></name>	# #		<name> # #</name>	* * *
WDM	2	PREC	ENGL	1	PERLND	1 999	EXTNL	PREC	
WDM	2	PREC	ENGL	1	IMPLND	1 999	EXTNL	PREC	
WDM	1	EVAP	ENGL	1	PERLND	1 999	EXTNL	PETINP	
WDM	1	EVAP	ENGL	1	IMPLND	1 999	EXTNL	PETINP	

END EXT SOURCES

EXT TARGETS

<-Volume-> <-Grp>		<-Member-> <mult>Tran</mult>				<-Volume->		<member></member>	Tsys	Tgap	Amd *	* *	
<name></name>	#		<name></name>	#	#<-fac	ctor->strg	<name></name>	#	<name></name>	tem	strg	strg*	* * *
COPY	501 C	TUPTUC	MEAN	1	1	48.4	WDM	501	FLOW	ENGL		REPL	
COPY	502 C	TUPTUC	MEAN	1	1	48.4	WDM	502	FLOW	ENGL		REPL	
END EXT TARGETS													

MASS-LINK

<volume> <-Grp> <name></name></volume>	<-Member->< <name> # #<</name>		<target> <name></name></target>	<-Grp>	<-Member->*** <name> # #***</name>
MASS-LINK	12				
PERLND PWATER	SURO	0.083333	COPY	INPUT	MEAN
END MASS-LINK	12				
MASS-LINK	13				
PERLND PWATER	IFWO	0.083333	COPY	INPUT	MEAN
END MASS-LINK	13				

END MASS-LINK

END RUN

Mitigated UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
                           END
 START 1901 10 01
                                2059 09 30
 RUN INTERP OUTPUT LEVEL
                          3 0
 RESUME
           0 RUN 1
                                      UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
              <---->***
<-ID->
WDM
          26
              2023-04-06 5th Street Site Calculations.wdm
MESSU
          25
              Mit2023-04-06 5th Street Site Calculations.MES
              Mit2023-04-06 5th Street Site Calculations.L61
          27
              Mit2023-04-06 5th Street Site Calculations.L62
              POC2023-04-06 5th Street Site Calculations1.dat
          30
              POC2023-04-06 5th Street Site Calculations2.dat
          31
END FILES
OPN SEQUENCE
                    INDELT 00:15
   INGRP
                13
     PERLND
     IMPLND
                8
     IMPLND
                11
               1
4
     IMPLND
     IMPLND
               501
     COPY
     COPY
               502
     DISPLY
    DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
           TDA #1 Developed
                                                                  30
   1
                                    MAX
                                                         1
                                                                       9
   2
           TDA #2 Developed
                                                          1
                                                                  31
                                                                       9
                                    MAX
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
   # - # NPT NMN ***
       1
               1
 501
            1
                 1
 502
            1
                 1
 END TIMESERIES
END COPY
GENER
 OPCODE
  # # OPCD ***
 END OPCODE
 PARM
                K ***
  #
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                               User t-series Engl Metr ***
                                      in out
  13 C, Pasture, Flat
                              1 1
                                     1 1
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
   <PLS > ******** Active Sections ********************
   # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
```

```
13 0 0 1 0 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
  END PRINT-INFO
 PWAT-PARM1
  <PLS > PWATER variable monthly parameter value flags ***
  # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
 END PWAT-PARM1
 PWAT-PARM2
  WAT-PARM2

<PLS > PWATER input info: Part 2 ***

# - # ***FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC

13 0 4.5 0.06 400 0.05 0.5 0.996
  # - # ***FOREST LZSN INFILT
13 0 4.5 0.06
 END PWAT-PARM2
 PWAT-PARM3
  <PLS > PWATER input info: Part 3
  # - # ***PETMAX PETMIN INFEXP
13 0 0 2
                                  INFILD DEEPFR
                                                  BASETP
                  0
 END PWAT-PARM3
 PWAT-PARM4
  INTFW IRC 6 0.5
                                                  LZETP ***
  13
                                                   0.4
 END PWAT-PARM4
 PWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
         ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
      # *** CEPS SURS UZS IFWS LZS AGWS
0 0 0 0 2.5 1
                                                            GWVS
  13
                            0
                   0
                                    0
                                             2.5
 END PWAT-STATE1
END PERLND
IMPLND
  <PLS ><-----Name----> Unit-systems Printer ***
  # - #
                      User t-series Engl Metr ***
                             in out
                            1 1
1 1
1 1
1 1
        SIDEWALKS/FLAT
  8
                          1
                                        0
  11
        PARKING/FLAT
                                      27
                                      27
  1
        ROADS/FLAT
                          1
                                        0
        ROOF TOPS/FLAT
                          1
  4
                                      27
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
  # - # ATMP SNOW IWAT SLD IWG IQAL
       0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
  8
  11
  1
 END ACTIVITY
 PRINT-INFO
   <ILS > ******* Print-flags ******* PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL *******
   8
             0 4
                     0 0 0
          0 0 4 0 0 0 1
0 0 4 0 0 0 1
0 0 4 0 0 0 1
  11
                                       9
                                     9
   1
   4
 END PRINT-INFO
```

```
IWAT-PARM1
   <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI
          0 0 0 0 0
  11
          0
              0 0
                      0
                           0
                      0
           0
              0 0
                         0
   1
              0
   4
          0
                  0
                      0
                           0
 END IWAT-PARM1
 IWAT-PARM2
   <PLS > IWATER input info: Part 2 * # - # *** LSUR SLSUR NSUR RETSC
  <PLS >
                                   0.1
                   0.01
                            0.1
            400
  11
             400
                   0.01
                            0.1
                                     0.1
             400
                   0.01
                            0.1
                                    0.1
   1
                             0.1
   4
             400
                   0.01
                                     0.1
 END IWAT-PARM2
 IWAT-PARM3
           IWATER input info: Part 3
  <PLS >
   # - # ***PETMAX PETMIN
              0
   8
                      0
  11
               0
                       0
                       0
   1
               0
   4
                       0
               0
 END IWAT-PARM3
 IWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
   8
              0
                     0
  11
               0
                       0
  1
               0
                       0
                       0
   4
               Ω
 END IWAT-STATE1
END IMPLND
SCHEMATIC
                      <--Area--> <-Target-> MBLK <-factor-> <Name> # Tbl#
                                                 * * *
<-Source->
<Name> #
                                  <Name> # Tbl#
                                                  * * *
TDA #1 Developed***
                                  COPY 501 12
COPY 501 13
COPY 501 15
COPY 501 15
PERLND 13
                          0.026
                          0.026
PERLND 13
                          0.004
IMPLND
      8
                          0.047
IMPLND 11
TDA #2 Developed***
                          0.049
                                        502
PERLND 13
                                  COPY
                                              12
                                             13
15
15
                          0.049
                                        502
PERLND 13
                                  COPY
IMPLND 1
                          0.031
                                  COPY
                                        502
IMPLND 4
                          0.073
                                   COPY 502
*****Routing****
END SCHEMATIC
NETWORK
<Name> # #
                                          INPUT 2
COPY
     501 OUTPUT MEAN 1 1 48.4 DISPLY
                                                    TIMSER 1
COPY 502 OUTPUT MEAN 1 1 48.4
                                  DISPLY
                                              INPUT TIMSER 1
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member->
END NETWORK
RCHRES
```

GEN-INFO

```
RCHRES Name Nexits Unit Systems Printer
    # - #<----> User T-series Engl Metr LKFG
                                                                                 * * *
                                             in out
  END GEN-INFO
  *** Section RCHRES***
  ACTIVITY
    <PLS > ******** Active Sections ********************
    # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
  END ACTIVITY
  PRINT-INFO
    <PLS > ******* Print-flags ******** PIVL PYR
    # - # HYDR ADCA CONS HEAT SED GOL OXRX NUTR PLNK PHCB PIVL PYR ********
  END PRINT-INFO
  HYDR-PARM1
    RCHRES Flags for each HYDR Section
            END HYDR-PARM1
  HYDR-PARM2
   # - # FTABNO LEN DELTH STCOR KS DB50
  <----><----><---->
  END HYDR-PARM2
  HYDR-INIT
    RCHRES Initial conditions for each HYDR section
  # - # *** VOL Initial value of COLIND Initial value of OUTDGT

*** ac-ft for each possible exit for each possible exit

<----> <---> <---> <---> *** <---> *** <---> ***
  END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***

      2 PREC
      ENGL
      1
      PERLND
      1 999 EXTNL
      PREC

      2 PREC
      ENGL
      1
      IMPLND
      1 999 EXTNL
      PREC

      1 EVAP
      ENGL
      1
      PERLND
      1 999 EXTNL
      PETIN

      1 EVAP
      ENGL
      1
      IMPLND
      1 999 EXTNL
      PETIN

      1 EVAP
      ENGL
      1
      IMPLND
      1 999 EXTNL
      PETIN

WDM
WDM
                                            PERLND 1 999 EXTNL PETINP IMPLND 1 999 EXTNL PETINP
WDM
MOM
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
1 OUTPUT MEAN 1 1 48.4 WDM 701 FLOW ENGL REPL 501 OUTPUT MEAN 1 1 48.4 WDM 801 FLOW ENGL REPL 2 OUTPUT MEAN 1 1 48.4 WDM 702 FLOW ENGL REPL 502 OUTPUT MEAN 1 1 48.4 WDM 802 FLOW ENGL REPL
COPY
COPY 501 OUTPUT MEAN 1 1
COPY 2 OUTPUT MEAN 1 1
COPY 502 OUTPUT MEAN 1 1
END EXT TARGETS
MASS-LINK
<-Grp> <-Member->***
                                                                     <Name> # #***
PERLND PWATER SURO 0.083333 COPY
                                                             INPUT MEAN
  END MASS-LINK 12
  MASS-LINK
                   13
PERLND PWATER IFWO 0.083333 COPY
                                                            INPUT MEAN
  END MASS-LINK 13
```

MASS-LINK 15
IMPLND IWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 15

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

APPENDIX C

NRCS Soil Map and Soil Unit Data

Pierce County Area, Washington

31A—Puyallup fine sandy loam

Map Unit Setting

National map unit symbol: 2hq9

Elevation: 0 to 390 feet

Mean annual precipitation: 35 to 60 inches Mean annual air temperature: 50 degrees F

Frost-free period: 170 to 200 days

Farmland classification: Prime farmland if irrigated

Map Unit Composition

Puyallup and similar soils: 85 percent

Minor components: 2 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Puyallup

Setting

Landform: Terraces, flood plains Parent material: Alluvium

Typical profile

H1 - 0 to 13 inches: ashy fine sandy loam
H2 - 13 to 29 inches: loamy fine sand
H3 - 29 to 60 inches: fine sand

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): High

(1.98 to 5.95 in/hr)

Depth to water table: About 48 to 79 inches Frequency of flooding: OccasionalNone

Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 6.6)

inches)

Interpretive groups

Land capability classification (irrigated): 3w Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: A

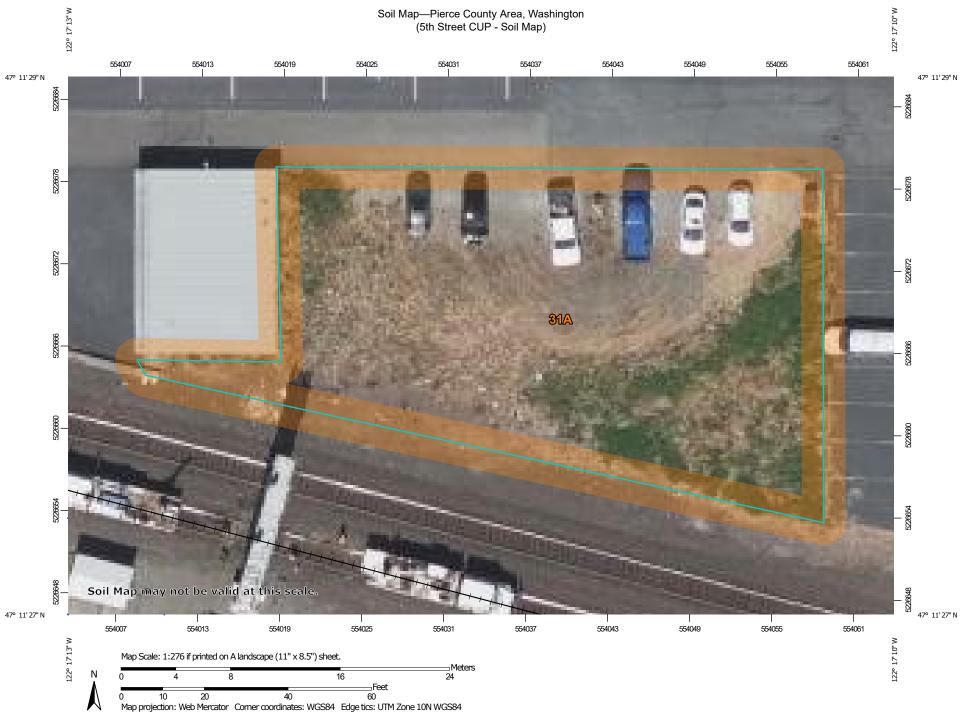
Ecological site: F002XA008WA - Puget Lowlands Riparian Forest

Forage suitability group: Droughty Soils (G002XN402WA)

Other vegetative classification: Droughty Soils (G002XN402WA)

Hydric soil rating: No

Minor Components


Briscot, undrained

Percent of map unit: 2 percent
Landform: Depressions
Other vegetative classification: Seasonally Wet Soils
(G002XN202WA)
Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Pierce County Area, Washington

Survey Area Data: Version 18, Sep 8, 2022

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

(o) Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

8

Spoil Area

Stony Spot

Very Stony Spot

Wet Spot Other

Special Line Features

...

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

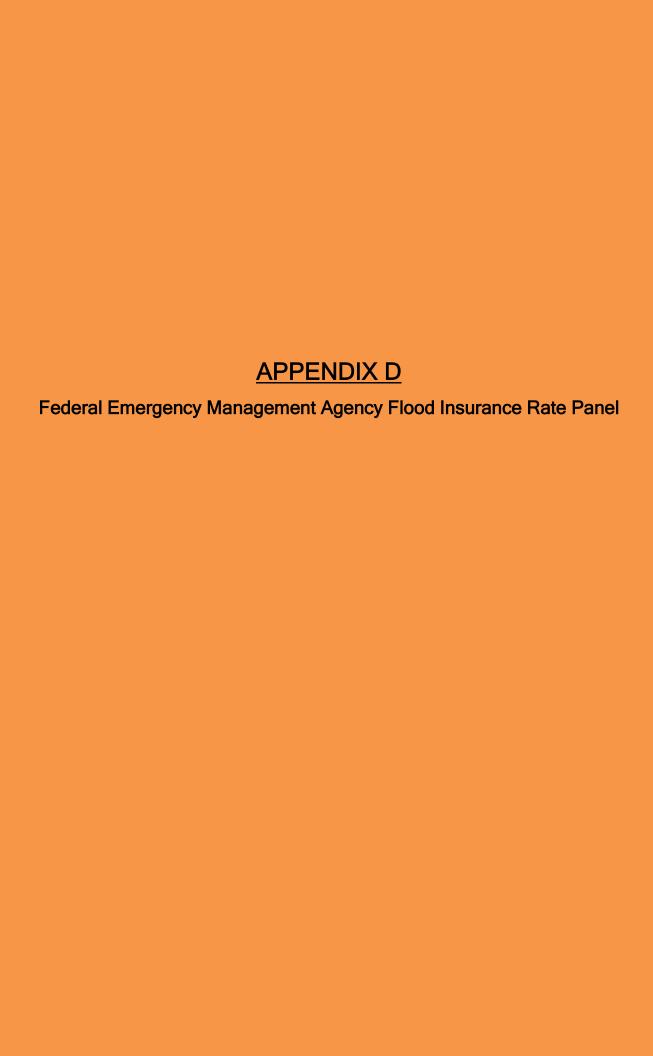
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 18, Sep 8, 2022


Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Jul 18, 2020—Aug 2, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
31A	Puyallup fine sandy loam	0.2	100.0%
Totals for Area of Interest		0.2	100.0%

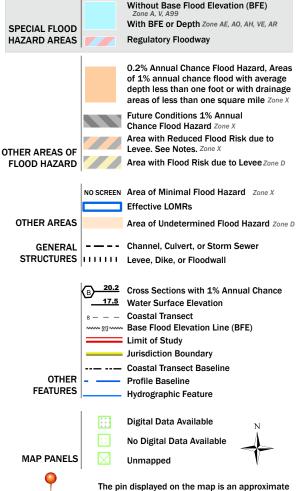
National Flood Hazard Layer FIRMette


250

500

1,000

1.500



2.000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap

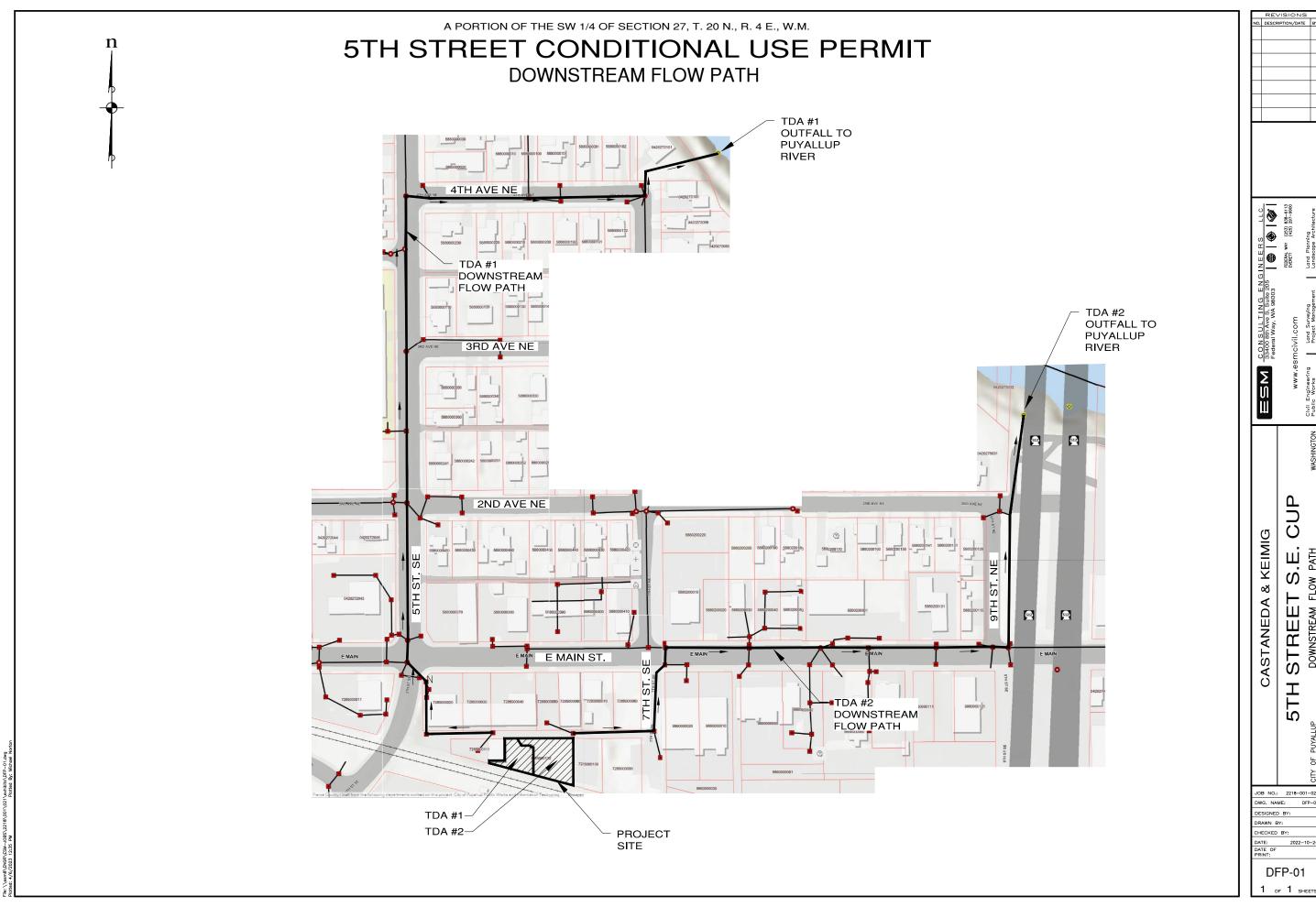
accuracy standards

point selected by the user and does not represent

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 10/19/2022 at 6:24 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.


APPENDIX E

Bond Quantities, Declaration of Covenant for Privately Maintained Facilities

(To be provided further in the design / approval / permitting process)

APPENDIX F

Downstream Drainage Path

CUP S.E. STREET

JOB NO.: 2218-001-DWG. NAME: DFP-

DFP-01