

PRELIMINARY STORM DRAINAGE REPORT FOR SUNSET POINTE

Revised October 2020 February 2018

PREPARED FOR: Peter Chen & Beth Liu

P.O. Box 31989

PUYALLUP, WA

PREPARED BY: Daniel Smith, PE

C.E.S. NW, INC. 429 29th Street NE, Suite D Puyallup, WA 98372 (253) 848-4282

PRELIMINARY STORM DRAINAGE REPORT

FOR

Sunset Pointe Puyallup, Washington

Revised October 2020 February 2018

Prepared for: Peter Chen & Beth Liu P.O. Box 31989 Puyallup, WA

> Prepared by: Daniel Smith, PE

Reviewed By: Fred Brown, PE, Project Manager

> Approved By: Craig Deaver, Principal

REPORT #04148.7

This analysis is based on data and records either supplied to, or obtained by, C.E.S. NW, Inc. These documents are referenced within the text of the analysis. The analysis has been prepared utilizing procedures and practices within the standard accepted practices of the industry.

STORM DRA	INAGE	1
 Existin OFF-SIT PERMAN 	r Overview g Conditions Summary e Analysis Report ient Stormwater Control Plan sion of Minimum Requirements	
Appendix A	General Exhibits Vicinity Map Soils Map Soils Description	
Appendix B	Basin Exhibits Predeveloped Basin Map Post Developed Basin Map FIRM Panel 53053C0342E Downstream Map Wetland Basin Maps	
Appendix C	Computer Printouts WWHM Modeling Results-Southern Basin	C-1
Appendix D	Reports Geotechnical Engineer's Report Critical Area Assessment	
Appendix E	Maintenance Schedules	

PAGE

STORM DRAINAGE

1. Project Overview

This preliminary report accompanies the preliminary plat plans prepared for the Sunset Pointe project which are submitted to the City of Puyallup for review and approval. This document provides site information, and the analysis used to prepare the preliminary storm drainage design. The *Washington State Department of Ecology Stormwater Management Manual for Western Washington, 2012* (Manual), as Amended in December 2014 and the City of Puyallup's modifications to that document establishes the methodology and design criteria used for this project.

The Sunset Pointe project proposes an 18-lot plat on parcels 0420353027 and 0420357011, with an area totaling approximately 9.18 acres. An offsite parcel, 0420353009, is proposed as a natural vegetation area for full dispersion of surfaces from this project. The existing site address is 2301 23rd Street SE, Puyallup WA, and a Vicinity Map has been included in Appendix A of this report. A project summary is as follows:

Permit Applied for – Major Plat - Preliminary

Address – 2301 23rd Street SE Puyallup, WA 98372

Parcel Numbers – 0420353027 & 0420357011

Legal description – Parcel C: That portion of the southwest quarter of Section 35, Township 20 North, Range 4 Eat, W.M., more particularly described as follows:

Commencing at the southwest corner of the southwest quarter of said Section 35, Thence east along the south line thereof a distance of 1,974.60 feet; Thence North 01°06'54" East 615.92 feet to the northeast corner of Lot 10, Stonegate, as shown on the Plat thereof recorded under Auditor's No. 9507200366 and to the true Point of Beginning; Thence North 87°01'41" West 292.30 fee; Thence North 61°33'32" West 44.88 feet; Thence North 15°57'28" West 243.13 feet; Thence North 00°48'44" West 226.43 feet; Thence North 27°29'55" West 143.38 feet; Thence South 88°56'26" East 145.92 feet; Thence North 28°41'48" East 80.82 feet; Thence North 51°21'11" west 132.18 feet to a point on the north line of the south half of the southwest quarter of said Section 35; Thence South 89°22'06" East along said line a distance of 605.46 feet to the northwest corner of Lot 2, Short Plat No. 8105200168; Thence south along the west line of said Short Plat 750.69 feet, more or less, to the true Point of Beginning. (also known as revised Parcel D of Boundary Line Adjustment No. 9507170491).

Parcel D: That portion of Lot 2, as shown on Short Plat No. 8105200168, in Puyallup, Pierce County Washington, Described as follows: Beginning at the northwest corner of Lot 1 of said short plat; Thence along the north line of said Lot 1, North 89°49'07" East 4.70 fee; Thence North 00°22'05" West 78 feet; Thence 00°49'54" West 128.70 feet; Thence 00°32'11" West 325.48 feet to the north line of said Lot 2; Thence along the said North line thereof North 89°29'52" West 11.33 feet to the Point of Beginning.

Situate in the County of Pierce, State of Washington.

The site is accessed from two public roadways 23rd Street Place SE to the south and 19th Avenue SE to the east. According to Figure 2.2 of Volume I in the SMMWW, the project must evaluate all minimum requirements, see Section 5 of this report for a detailed discussion of each minimum requirement. As mapped by the City of Puyallup, the project exists within two drainage basins: Shaw Road basin to the east and State Highway to the north. These are further delineated into sub-basins for sizing the proposed detention pond, sizing full dispersion BMPs, and wetland recharge calculations.

2. Existing Conditions Summary

The existing parcels are located northeast of the Plat of Stonegate and west of Kodiak Estates Division III. The site is accessed from 19th Ave. SE from the east and 23rd St. Pl. SE from the south. The existing parcels are approximately 9.18 acres and are irregular in shape. Currently, the site is within the Single-Family Residential (RS-10) zoning district. There are three interconnected wetlands that bisect the site. These wetlands are hydraulically connected to Tract C and E of Stonegate and they are drained by an existing 6" culvert pipe that outfalls to the closed conveyance system within Kodiak Estates Division III. An existing 10 feet wide gravel road crosses the site from the northwest corner to the south of the property line, which will be improved to 12 feet wide along with this project. There was five existing structures onsite, which helped form the onsite wetlands, that were demolished in approximately 2017. The remaining area of the

site consists of pasture areas and a mix of native second-growth conifer and deciduous trees primarily around the perimeter of the three connected wetlands.

The site soils have been mapped as Everett gravelly sandy Loam (13B) and Kitsap silt loam (20B, 20C) as determined by the National Cooperative Soil Survey of Natural Resources Conservation Service (NRCS). These soils are classified as type A and C, respectively. Type A soils have a low runoff potential and type C soils have a moderate to high erosion potential. A description of these soils and a copy of the soil map for this site have been included in Appendix A of this report. A geotechnical engineer's report was prepared by Earth Solutions NW, LLC. (ESNW) on January 11, 2018 and was updated on June 24, 2019. They performed 18 onsite soil explorations where they encountered native soils generally consistent with Vashon Drift, classified as gravelly sands and loams. On January 22, 2020 ESNW performed two small scale-PIT tests (TP-201 and 202) where they measured an infiltration rate of 0-inches per hour; therefore, infiltration is not feasible for this project. A copy of the updated geotechnical engineer's reports can be found in Appendix D.

Federal Emergency Management Agency (FEMA) has prepared flood insurance maps identifying floodplains within the City of Puyallup. The parcel and all the proposed improvements are located within Zone X, which is considered out of the 100-year floodplain. A copy of the FIRM Panel 53053C0342E can be found in *Appendix "B"* of this report.

3. Off-site Analysis Report

A quarter mile downstream analysis is required by the City of Puyallup. The project site is located within two City delineated drainage basins Shaw Road which drains through Kodiak Estates Division III to the east and State Highway which flows to the north. Lots 1-8 and improvements to 19th Ave SE are fully dispersed to the north (State Highway Basin) onto parcel 0420353009. Lots 9-18 and improvements to 23rd St Pl SE are controlled with a detention pond located in Tract B. The pond outfalls to the onsite wetlands which are drained by a 6" culvert pipe that outfalls into Kodiak Estates Division III's closed conveyance system (Shaw Road basin). Offsite upland run-on is tributary to the onsite wetlands. The run-on flows through the wetlands and not the proposed improvements. No other significant run-on is tributary to the remainder of the project site. The following is a qualitative downstream drainage analysis for each basin.

State Highway Basin Downstream Analysis

The fully dispersed runoff flows through parcel 0420353009 through a native vegetation easement for the full ¹/₄ mile. This drainage path consists of a variety of native vegetation including conifers and deciduous trees. Please refer to the downstream map in the Appendix B.

Shaw Road Basin Downstream Analysis

The runoff that drains towards the onsite wetlands ultimately discharges into Kodiak Estates Division III's closed conveyance system. This system is comprised of 12-inch, 15-inch and 18-inch circular pipe. The runoff from the project proceeds between Lots 26 and 27 in a 12-inch pipe where it proceeds into 19th Ave SE and combines with runoff from Brookmonte Dr SE approximately 480-feet downstream. The runoff then proceeds within Brookmonte Dr SE for another 150-feet where it turns east within an 18-inch pipe in 20th Ave Ct SE. The runoff proceeds downstream for another 450-feet within 18-inch pipe where it outfalls into the public stormwater facility within Tract A of Kodiak Estates Division III. The runoff concludes it's ¹/₄ mile downstream path within this facility. Please refer to the downstream map in the Appendix B.

4. Permanent Stormwater Control Plan

Existing Site Hydrology

Section 2 of this report describes the existing site conditions in detail. The existing site is divided into three sub-basins: State Highway basin, Shaw Road basin and a pre-developed Wetland Recharge basin. The pre-developed State Highway basin is 1.681-acres (not including the native vegetation easement area), the Shaw Road basin is 5.444-acres, and the Wetland Recharge basin is 3.508-acres onsite and 8.542-acres offsite. All basins are modeled as a forested condition except the Wetland Recharge basin which is summarized as follows:

Sub-Basin	Description	WWHM Land-use	Area (ac)
Pre-Dev A	Buildings	Roof Flat	0.360
Pre-Dev B	Gravel Roadway	Roadway, Flat	0.104
Pre-Dev C	Concrete Walkways	Sidewalk, Flat	0.071
Pre-Dev D	Pastures	Pasture, Mod	2.973
Offsite A	Tracts B and E of Stonegate	Saturated, Forest, Flat	2.069
Offsite B	Offsite Yards (58% Pervious)	C, Lawn, Flat	3.754
Offsite C	Offsite Impervious (42% Imp.)	Rooftops, Flat	2.719
Total			12.047

Table 4.1– Pre-Developed Wetland Recharge Basin

The Pre-Developed Basin Maps can be found in Appendix B of this report.

Developed Site Hydrology

The project is divided into three post developed basins: State Highway basin, Shaw Road basin and the Wetland Recharge basin. The post developed State Highway basin is 2.579-acres (not including the native vegetation easement area), the Shaw Road basin is 4.464-acres, and the Wetland Recharge basin is 3.129-acres onsite and 8.542-acres offsite. The improvements to the State Highway basin are fully dispersed to a 10.740-acres native vegetation easement across parcel 0420353009. The Shaw Road basin is mitigated with a detention pond that discharges to the onsite wetland buffers. The Wetland Recharge basin is analyzed to meet Minimum Requirement #8. The recharge basin includes the Shaw Basin areas and offsite areas that are tributary to the onsite wetlands. The following is a summary of each post developed basin:

Sub-Basin	Description	WWHM Land-use	Area (ac)
Post Dev A	Yards	C, Pasture, Flat	1.087
Post Dev B	Roadway	Roadway, Flat	0.516
Post Dev C	Rooftops (40% Lot Coverage)	Roof, Flat	1.181
Post Dev D	Driveways	Driveway, Flat	0.184
Post Dev E	Pond	Pond	0.161
Bypass A	Bypass Gravel Road	Roadway, Flat	0.021
Bypass B	Rear Yards	C, Pasture, Steep	1.314
	Total		4.464

Table 4.2 – Post-developed Shaw Road Basin

Sub-Basin	Description	WWHM Land-use	Area (ac)
Post Dev F	Yards	C, Pasture, Flat	1.077
Post Dev B	Roadway	Roadway, Flat	0.474
Post Dev C	4,600 per Lot	Roof, Flat	0.844
Post Dev D	1,000 per Lot	Driveway, Flat	0.184
	Total		2.579

 Table 4.3 – Post Developed State Highway Basin

Sub-Basin	Description	WWHM Land-use	Area (ac)
Post Dev A	Yards	C, Pasture, Flat	1.087
Post Dev B	Roadway	Roadway, Flat	0.516
Post Dev C	Rooftops (40% Lot Coverage)	Roof, Flat	1.181
Post Dev D	Driveway	Driveway, Flat	0.184
Post Dev E	Pond	Pond	0.161
Bypass A	Bypass Gravel Road	Roadway, Flat	0.021
Bypass B	Rear Yards	C, Pasture, Steep	0.787
Offsite A	Tracts B and E of Stonegate	Saturated, Forest, Flat	2.069
Offsite B	Offsite Yards (58% Pervious)	C, Lawn, Flat	3.754
Offsite C	Offsite Impervious (42% Imp.)	Rooftops, Flat	2.719
Total			12.479

Table 4.4– Post Developed Wetland Recharge Basin

The Post Developed Basin Maps can be found in Appendix B of this report.

Facility Sizing

The State Highway basin is fully dispersed to a 10.74-acre native vegetation easement in accordance with BMP T5.30 for roadway dispersion BMPs. The runoff from Lots 1-8, access tracts and 19th Avenue SE are collected within the roadway and dispersed with flow dispersal trenches to the native vegetation easement. A single dispersal trench is allowed to disperse 0.50-cfs of runoff. The basin's 100-year event is 1.38-cfs; therefore, three 50-foot long flow dispersal trenches are provided to fully disperse the runoff from the roadway's collection system. Using flow modeling credits the fully dispersed basin results in an increase of 0.05-cfs increase during

the 100-year reoccurrence interval. Sizing and capacity calculations will be provided as part of the final engineering submittal. WWHM Modeling results is provided in Appendix C.

The Shaw Road basin is controlled with a detention pond. Since the project proposes feasible LID BMPs from List #2 of minimum requirement #5 (soil amendments and perforated stub-outs) the pond is designed to release stormwater matching the Department of Ecology's Performance Standard (50 percent of 2-year storm event up to the 50-year storm event of the predeveloped site's condition). A discussion of each minimum requirement is provided in Section 5 of this report. The pond provides 6,260 sq.ft. of bottom area with a volume of 4,0500 cubic feet at the top of riser. As modelled by WWHM the pond meets the performance standard. The following is a summary of the modeling results and the require pond riser schedule:

Storm	Pre-Developed	Mitigated Flow
Event	Flow Rate (cfs)	Rate (cfs)
2	0.124	0.095
5	0.192	0.148
10	0.232	0.194
25	0.275	0.268
50	0.302	0.337
100	0.326	0.420

 Table 4.5 – Flow Rate Summary

An 18-inch open top flat riser with three orifices is provided to control the mitigated discharge rates from the detention pond. The following is a summary of the riser schedule:

Elevation	Туре	Size.
374.50	Orifice	0.99-in
379.40	Weir	1.00-feet

Table 4.6 – Pond Riser Schedule

Computer modeling results are provided in Appendix C.

Water Quality System

A wetpond is proposed under the detention pond's live storage for runoff treatment. The pond is sized to provide the on-line facility volume, 0.197-acft, as computed by WWHM. The treatment basin includes the rooftops from the future lots. The wetpond provides 0.295-acft of storage between two cells; therefore, sufficient runoff treatment is provided.

Wetland Recharge

As mentioned in the Critical Areas Assessment prepared by Habitat Technologies, the onsite wetlands are created through previous development activities of Stream A that bisects the site. Since these wetlands are non-depressional. Minimum requirement #8 requires projects to comply with minimum requirements #6 and #7, and Guide Sheets #1 through #3 of Appendix I-D of the Manual. The wetlands are analyzed to determine the project's effects to the wetland hydrology. Guide #3 recommends that no single day exceed 20% of pre-developed volumes while no single month exceed 15% of the pre-developed volumes. It is difficult to meet flow control requirements and wetland protection requirements since a flow control facility are designed not to mitigate volumes to a wetland but to mitigate flows downstream to a pre-European land-use condition. The pre-developed and post developed wetland recharge basin is summarized in Tables 4.1 and 4.4 of this report. Basin maps delineating the areas onsite and off-site tributary to the wetland are provided in Appendix B. These basins were analyzed with WWHM to determine the volumes that will flow through the wetlands and downstream monthly. A summary of this analysis is provided in Table 4.7 below:

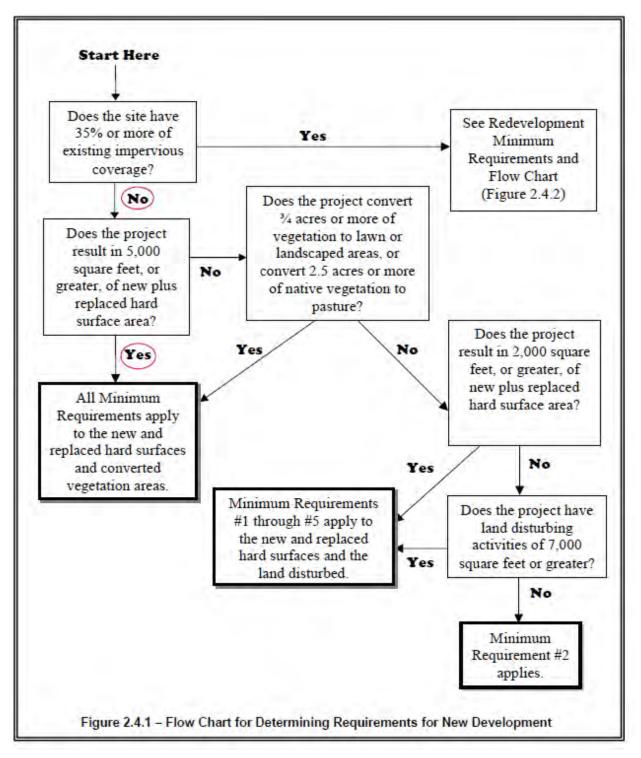

Month	Pre-developed Volume Summary (ac-ft)	Post Developed Volume Summary (ac-ft)	Percent
January	2.714	3.176	117.0
February	2.339	2.704	115.6
March	1.837	2.186	119.0
April	0.972	1.226	126.0
May	0.555	0.734	132.2
June	0.373	0.52	139.5
July	0.165	0.245	148.3
August	0.183	0.259	141.9
September	0.387	0.563	145.3
October	1.026	1.387	135.2
November	2.347	2.901	123.6
December	2.871	3.433	119.6

 Table 4.7 – Wetland Recharge Summary

No single month meets the monthly standard, but some days do meet the daily standard. The WWHM computer results is included in Appendix C of this report.

5. Discussion of Minimum Requirements

The following is a summary of the minimum requirements as described in Chapter 2 of Volume I of the SMMWW. Each minimum requirement must be considered per Figure 2.4.1 flowchart.

5.1 Minimum Requirement #1: Preparation of a Stormwater Site Plan

The Stormwater Site Plan is prepared per Chapter 3, Volume I of the SMMWW 2014. Each required Section and Appendix is provided in this document.

5.2 Minimum Requirement #2: Construction Stormwater Pollution Prevention (SWPP)

A SWPP Plan will be prepared for this project at the time of final engineer plan, and all thirteen (13) elements will be addressed in the document.

5.3 Minimum Requirement #3: Source Control of Pollution

Permanent source control BMPs are required for the development's daily operations, and the stormwater facilities must be maintained as described in the Operations and Maintenance Manual that will be prepared for this project during the final engineering submittal. Preliminary Maintenance Schedules can be found in Appendix E.

5.4 Minimum Requirement #4: Preservation of Natural Drainage System and Outfalls

Projects are to maintain the natural drainage patterns and locations to the maximum extent possible. The project is located within two drainage basins, Shaw Road and State Highway, as delineated by the City of Puyallup each within their own threshold discharge area. The runoff in the Shaw Road basin discharges to the onsite wetlands which flows offsite towards the east through Kodiak Estates Division III. The project proposes a detention pond to mitigate and discharge runoff to the wetlands. The runoff in the State Highway basin discharges as sheet flow north across parcel 0420353009. The project proposes to fully disperse the improvements within this basin with the use of roadway dispersion BMPs. A downstream analysis is provided for each basin in Section 3 of this report. Facility sizing calculations is provided in Section 5 of this report.

5.5 Minimum Requirement #5: Onsite Stormwater Management

City requires projects to implement onsite stormwater management BMPs when feasible. This project must meet minimum requirement #1-11; therefore, it evaluates List #2 of the Manual for onsite stormwater management compliance. The site is separated into two drainage basins, the Shaw Road basin which flows through the Kodiak Estates Division III and the State Highway drainage basin which flows through parcel 0420353009. Soil amendments and perforated stubouts are provided in the Shaw Road basins, and soil amendments and full dispersion is proposed in the State Highway basin. The BMPs in List #2 is discussed for each drainage basin as follows:

Shaw Road

Lawn and Landscape Areas

Soil Preservation and Amendment (Ecology BMP T5.13)
 All disturbed pervious areas that are not converted to impervious surfaces will apply soil amendment per Ecology BMP T5.13.

Roof Areas

- Full dispersion of BMP T5.30 is deemed infeasible in this basin since there is not enough area available to accommodate the natural preservation requirements of this BMP.
- Downspout full infiltration was deemed infeasible since a 0-inch per hour infiltration rate was measured onsite with a small scale-PIT.
- Bioretention facility was deemed infeasible since a 0-inch per hour infiltration rate was measured onsite with a small scale-PIT.
- Downspout dispersion system was deemed infeasible onsite due to the lack of available dispersion flow paths under 15 percent slopes.
- Perforated Stub-out connections are deemed feasible and proposed for all lots within this basin.

Other Hard Surface

- Full dispersion of BMP T5.30 is deemed infeasible in this basin since there is not enough area available to accommodate the natural preservation requirements of this BMP.
- Permeable Pavement BMP was deemed infeasible since a 0-inch per hour infiltration rate was measured onsite with a small scale-PIT.
- Bioretention BMP was deemed infeasible since a 0-inch per hour infiltration rate was measured onsite with a small scale-PIT.
- Sheet Flow Dispersion was deemed infeasible for driveways since the flow path of 10-20 feet is not available to meet this requirement.

State Highway

Lawn and Landscape Areas

• Soil Preservation and Amendment (Ecology BMP T5.13)

All disturbed pervious areas that are not converted to impervious surfaces will apply soil amendment per Ecology BMP T5.13.

Roof Areas

• Full dispersion of BMP T5.30 is deemed feasible for this basin. Runoff will be dispersed to parcel 0420353009 with the used of roadway dispersion BMPs. Facility sizing calculations are provided in Section 4 of this report. Since this BMP is deemed feasible no other BMPs are required.

Other Hard Surface

• Full dispersion of BMP T5.30 is deemed feasible for this basin. Runoff will be dispersed to parcel 0420353009 with the used of roadway dispersion BMPs. Facility sizing calculations are provided in Section 4 of this report. Since this BMP is deemed feasible no other BMPs are required.

5.6 Minimum Requirement #6: Runoff Treatment

Runoff treatment is provided in the Shaw Road basin with the use of a wet pool located underneath the live storage of the detention pond. The pool is sized to provide the required on-line treatment volume as calculated with the WWHM computer program. Runoff treatment is not required in the State Highway basin since surfaces that are fully dispersed are not considered effective; therefore, runoff treatment thresholds are not exceeded in this threshold discharge area.

5.7 Minimum Requirement #7: Flow Control

For the Shaw Road basin, a detention pond located in Tract B is proposed to meet flow control requirements. Facility sizing calculations are provided in Section 4 of this report. Runoff is fully dispersed within the State Highway basin; therefore, this basin does not exceed flow control thresholds.

5.8 Minimum Requirement #8: Wetlands Protection

Projects that discharge to a wetland shall meeting this requirement in conjunction with minimum requirements #6 and #7. The Shaw Road basin discharges to onsite wetlands through the proposed detention pond. A hydrologic analysis has been prepared as discussed in Section 4 of this report.

Modeling results is provided in Appendix C. A Critical Areas Assessment Report has been prepared and can be found in Appendix D.

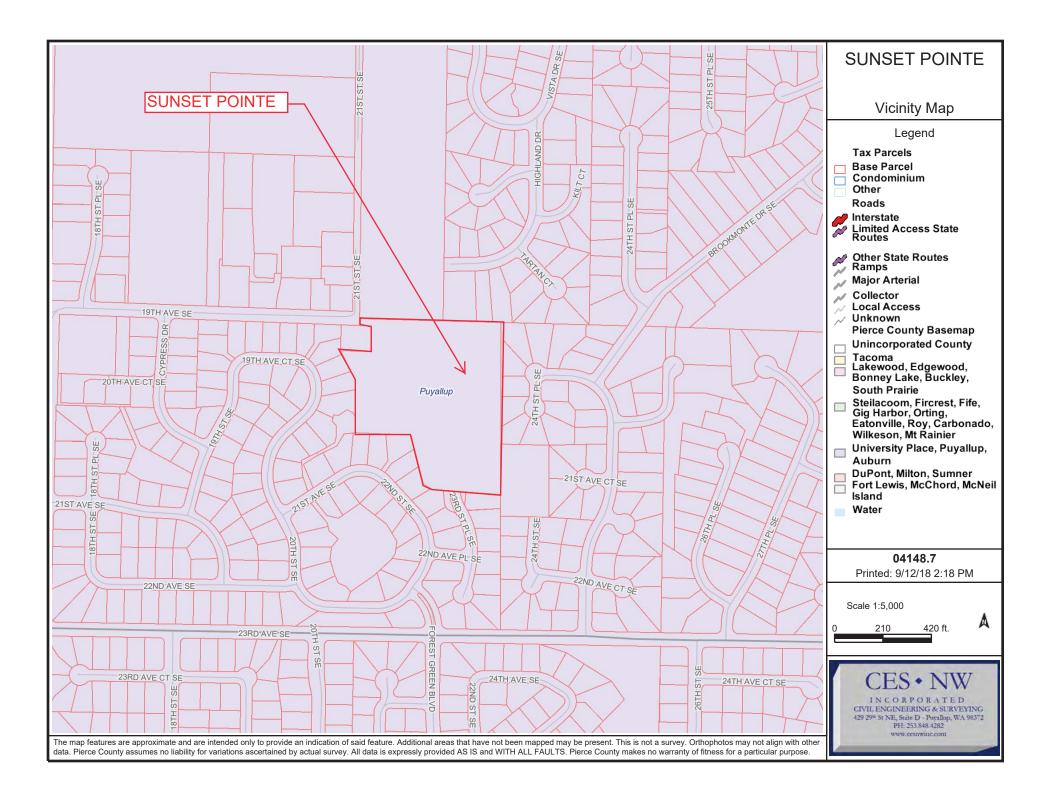
5.9 Minimum Requirement #9: Basin/Watershed Planning

The project is located within two drainage basins as delineated by the City of Puyallup: State Highway and Shaw Road basins. Due to the proposed flow control facilities and application of onsite BMPs the project will not adversely affect these two basins.

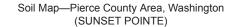
5.10 Minimum Requirement #10: Operation and Maintenance

An Operation and Maintenance Manual will be prepared as part of the final engineering submittal. Preliminary Maintenance Schedules can be found in *Appendix "E"*.

5.11 Minimum Requirement #11: Off-Site Analysis and Mitigation


An Offsite Analysis is prepared within this document and can be found in Section 3 of this report.

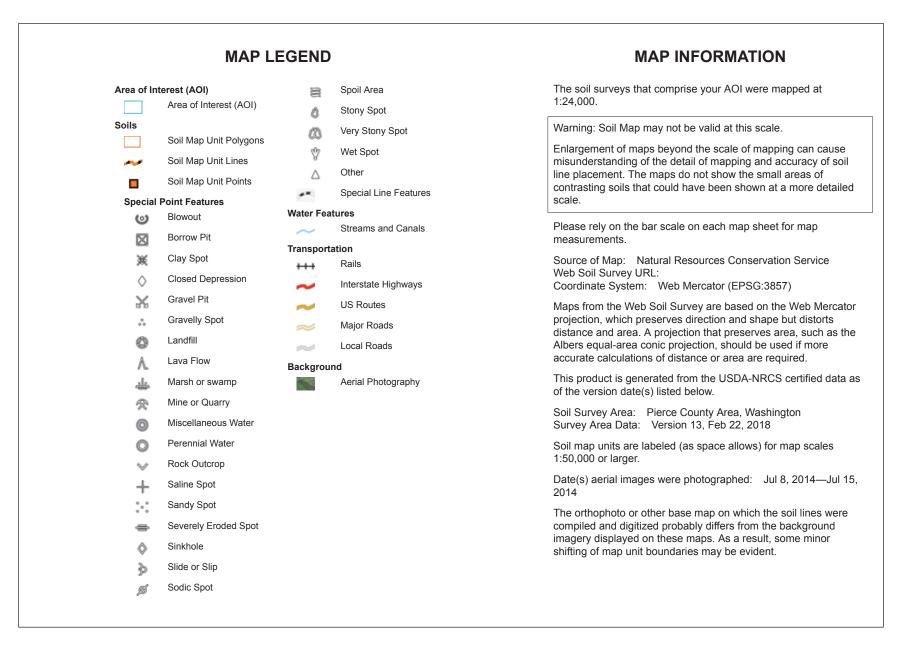
APPENDIX A


General Exhibits

Vicinity Map	A-1
Soils Map	A-2
Soil Description	A-3

VICINITY MAP

SOILS MAP



Conservation Service

Page 1 of 3

SOIL DESCRIPTION

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Map Onit Oynibol	map offic Name	Acres III Aor	Tercent of Aor
1D	Alderwood gravelly sandy loam, 15 to 30 percent slopes	0.0	0.3%
13B	Everett very gravelly sandy loam, 0 to 8 percent slopes	5.4	55.7%
20B	Kitsap silt loam, 2 to 8 percent slopes	3.3	33.5%
20C	Kitsap silt loam, 8 to 15 percent slopes	1.0	9.9%
PITS	Pits	0.1	0.6%
Totals for Area of Interest		9.8	100.0%

Pierce County Area, Washington

1D—Alderwood gravelly sandy loam, 15 to 30 percent slopes

Map Unit Setting

National map unit symbol: 2t627 Elevation: 0 to 1,000 feet Mean annual precipitation: 25 to 60 inches Mean annual air temperature: 46 to 52 degrees F Frost-free period: 160 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Alderwood and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Alderwood

Setting

Landform: Hills, ridges Landform position (two-dimensional): Backslope Landform position (three-dimensional): Nose slope, side slope, talf Down-slope shape: Convex, linear Across-slope shape: Convex Parent material: Glacial drift and/or glacial outwash over dense glaciomarine deposits

Typical profile

A - 0 to 7 inches: gravelly sandy loam Bw1 - 7 to 21 inches: very gravelly sandy loam Bw2 - 21 to 30 inches: very gravelly sandy loam Bg - 30 to 35 inches: very gravelly sandy loam 2Cd1 - 35 to 43 inches: very gravelly sandy loam 2Cd2 - 43 to 59 inches: very gravelly sandy loam

Properties and qualities

Slope: 15 to 30 percent
Depth to restrictive feature: 20 to 39 inches to densic material
Natural drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 18 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very low (about 2.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B

USDA

Forage suitability group: Limited Depth Soils (G002XN302WA), Limited Depth Soils (G002XF303WA), Limited Depth Soils (G002XS301WA) *Hydric soil rating:* No

Minor Components

Everett

Percent of map unit: 5 percent Landform: Kames, moraines, eskers Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Indianola

Percent of map unit: 5 percent Landform: Eskers, kames, terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Shalcar

Percent of map unit: 3 percent Landform: Depressions Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Norma

Percent of map unit: 2 percent Landform: Depressions, drainageways Landform position (three-dimensional): Dip Down-slope shape: Concave, linear Across-slope shape: Concave Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 13, Feb 22, 2018

Pierce County Area, Washington

13B—Everett very gravelly sandy loam, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2t629 Elevation: 30 to 900 feet Mean annual precipitation: 35 to 91 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 180 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Everett and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Everett

Setting

Landform: Kames, moraines, eskers Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Crest, interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Sandy and gravelly glacial outwash

Typical profile

- Oi 0 to 1 inches: slightly decomposed plant material
- A 1 to 3 inches: very gravelly sandy loam
- Bw 3 to 24 inches: very gravelly sandy loam
- C1 24 to 35 inches: very gravelly loamy sand

C2 - 35 to 60 inches: extremely cobbly coarse sand

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 3.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4s Hydrologic Soil Group: A

USDA

Forage suitability group: Droughty Soils (G002XN402WA), Droughty Soils (G002XF403WA), Droughty Soils (G002XS401WA) Hydric soil rating: No

Minor Components

Alderwood

Percent of map unit: 10 percent Landform: Hills, ridges Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest, talf Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Indianola

Percent of map unit: 10 percent Landform: Terraces, eskers, kames Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Data Source Information

Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 13, Feb 22, 2018

Pierce County Area, Washington

20B—Kitsap silt loam, 2 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2hpt Elevation: 0 to 590 feet Mean annual precipitation: 37 inches Mean annual air temperature: 50 degrees F Frost-free period: 160 to 200 days Farmland classification: All areas are prime farmland

Map Unit Composition

Kitsap and similar soils: 85 percent *Minor components:* 3 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kitsap

Setting

Landform: Terraces Parent material: Glaciolacustrine deposits

Typical profile

H1 - 0 to 10 inches: ashy silt loam
H2 - 10 to 32 inches: silty clay loam
H3 - 32 to 60 inches: stratified silt to silty clay loam

Properties and qualities

Slope: 2 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 16 to 23 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: High (about 11.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: C/D Forage suitability group: Soils with Few Limitations (G002XS501WA) Hydric soil rating: No

Hydric soil rating: No

Minor Components

Bellingham

Percent of map unit: 3 percent Landform: Depressions

USDA

Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 13, Feb 22, 2018

Pierce County Area, Washington

20C—Kitsap silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2hpv Elevation: 0 to 590 feet Mean annual precipitation: 37 inches Mean annual air temperature: 50 degrees F Frost-free period: 160 to 200 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Kitsap and similar soils: 85 percent *Minor components:* 2 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kitsap

Setting

Landform: Terraces Parent material: Glaciolacustrine deposits

Typical profile

H1 - 0 to 10 inches: ashy silt loam
H2 - 10 to 32 inches: silty clay loam
H3 - 32 to 60 inches: stratified silt to silty clay loam

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 16 to 23 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: High (about 11.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C/D Forage suitability group: Soils with Moderate Limitations (G002XS601WA)

Hydric soil rating: No

Minor Components

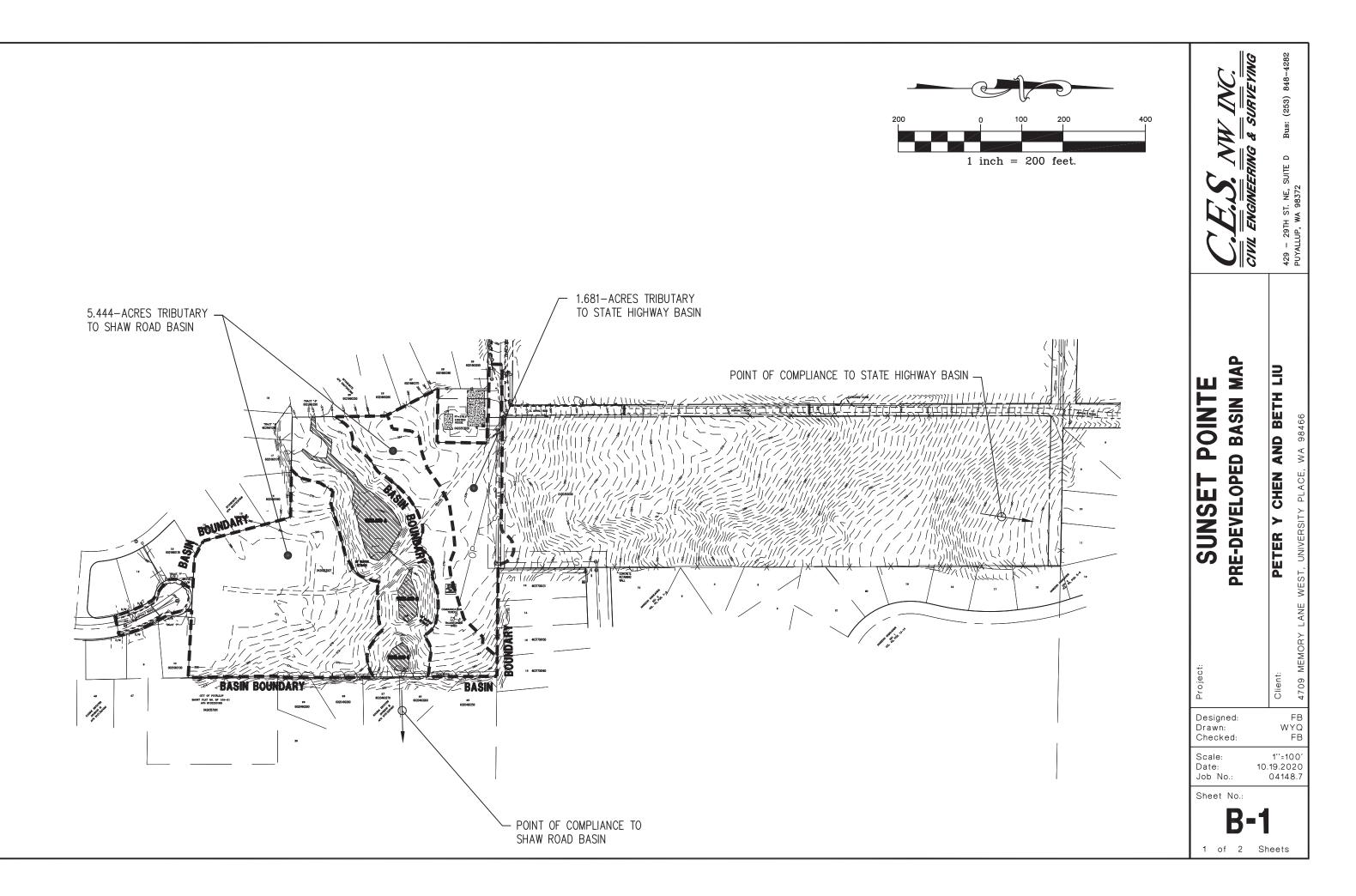
Bellingham

Percent of map unit: 2 percent Landform: Depressions

USDA

Hydric soil rating: Yes

Data Source Information


Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 13, Feb 22, 2018

APPENDIX B

Basin Exhibits

Pre-developed Basin Map	B-1
Post Developed Basin Map	B-2
FIRM Panel 53053C0342E	B-3
Downstream Map	B-4
Wetland Bain Maps	B-5

	-(()	₹
200 		0	
	1	i	n

Sub-Basin	Description	WWHM Land-use	A
Post Dev F	Yards	C, Pasture, Flat	
Post Dev B	Roadway	Roadway, Flat	1.56
Post Dev C	4,600 per Lot	Roof, Flat	
Post Dev D	1,000 per Lot	Driveway, Flat	
	Total		

Sub-Basin	Description	WWHM Land-use	Area (ac)
Post Dev A	Yards	C, Pasture, Flat	1.087
Post Dev B	Roadway	Roadway, Flat	0.516
Post Dev C	Rooftops (40% Lot Coverage)	Roof, Flat	1.181
Post Dev D	Driveways	Driveway, Flat	0.184
Post Dev E	Pond	Pond	0.161
Bypass A	Bypass Gravel Road	Roadway, Flat	0.021
Bypass B	Rear Yards	C, Pasture, Steep	1.314
No. Ale a	4.464		

BASIN BOUNDARY

10 STATE

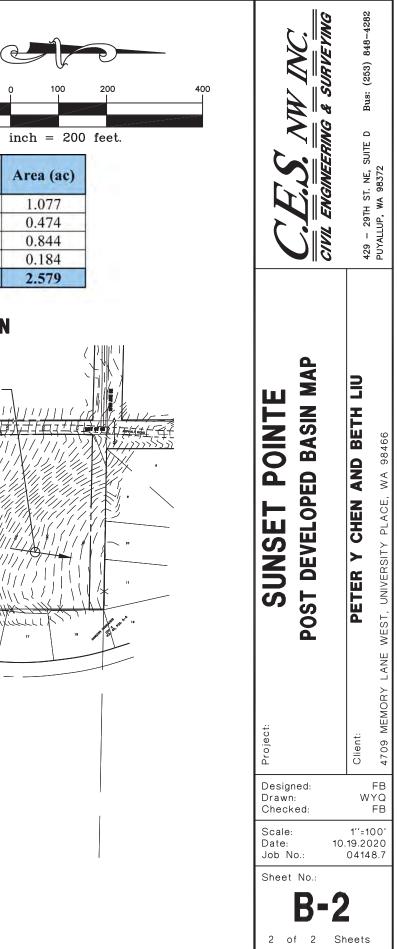
47

POST DEVELOPED SHAW ROAD BASIN POST DEVELOPED STATE HIGHWAY BASIN - Miss labeled? ASS BASIN TDA#1 POINT OF COMPLIANCE TO STATE HIGHWAY BASIN W-DISPERSION TRENCHES

and a side of the second

the north east. BYPASS BASIN TDA#1

ヽヽ (/ / /))((、)、


POINT OF COMPLIANCE TO

SHAW ROAD BASIN

RASIN

25 6020460250

602040270

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) Report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS Report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study Report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study Report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study Report for information on flood control structures for this jurisdiction.

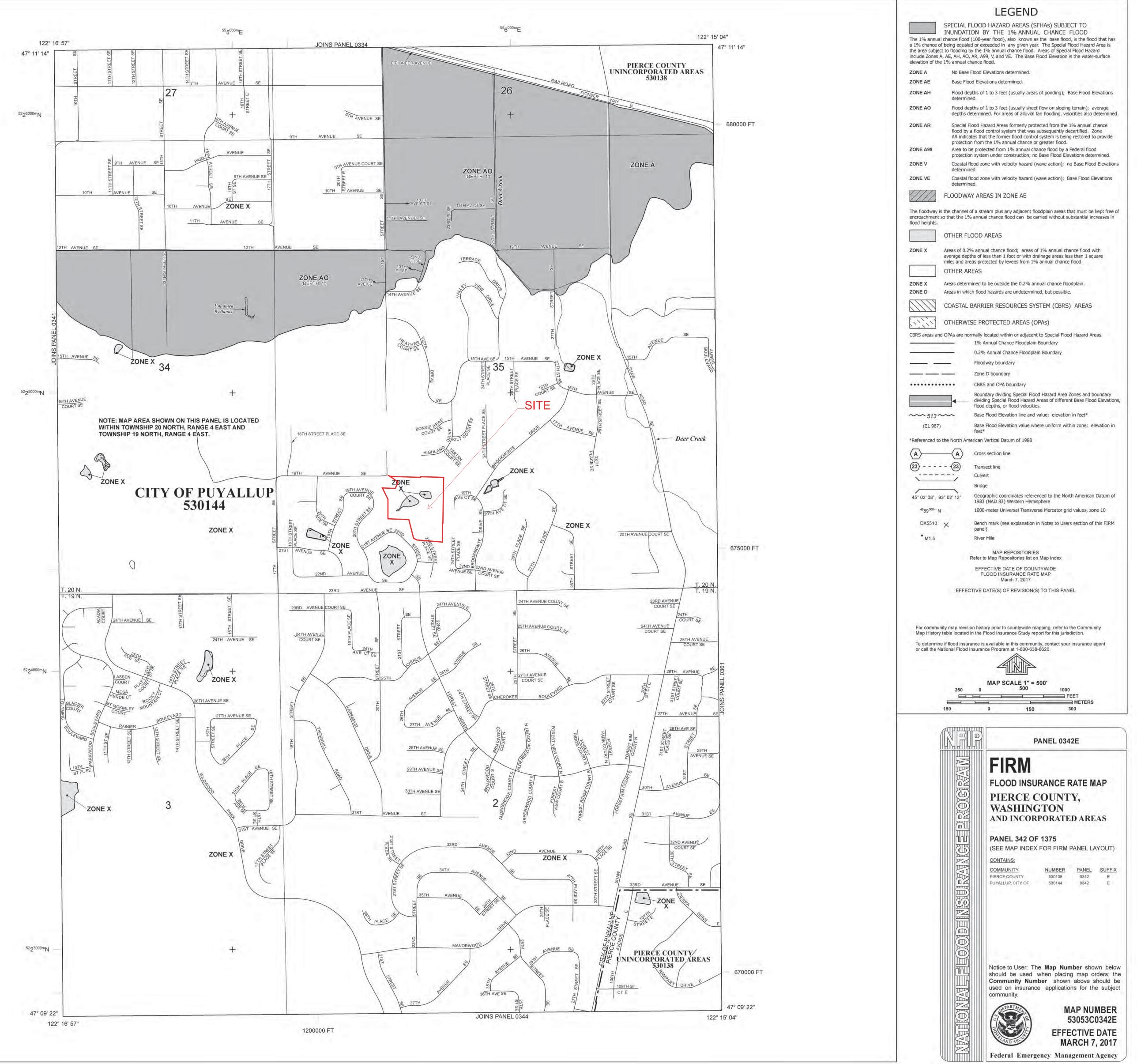
The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 10. The horizontal datum was NAD 83, GRS 1980 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov or contact the National Geodetic Survey at the following address:

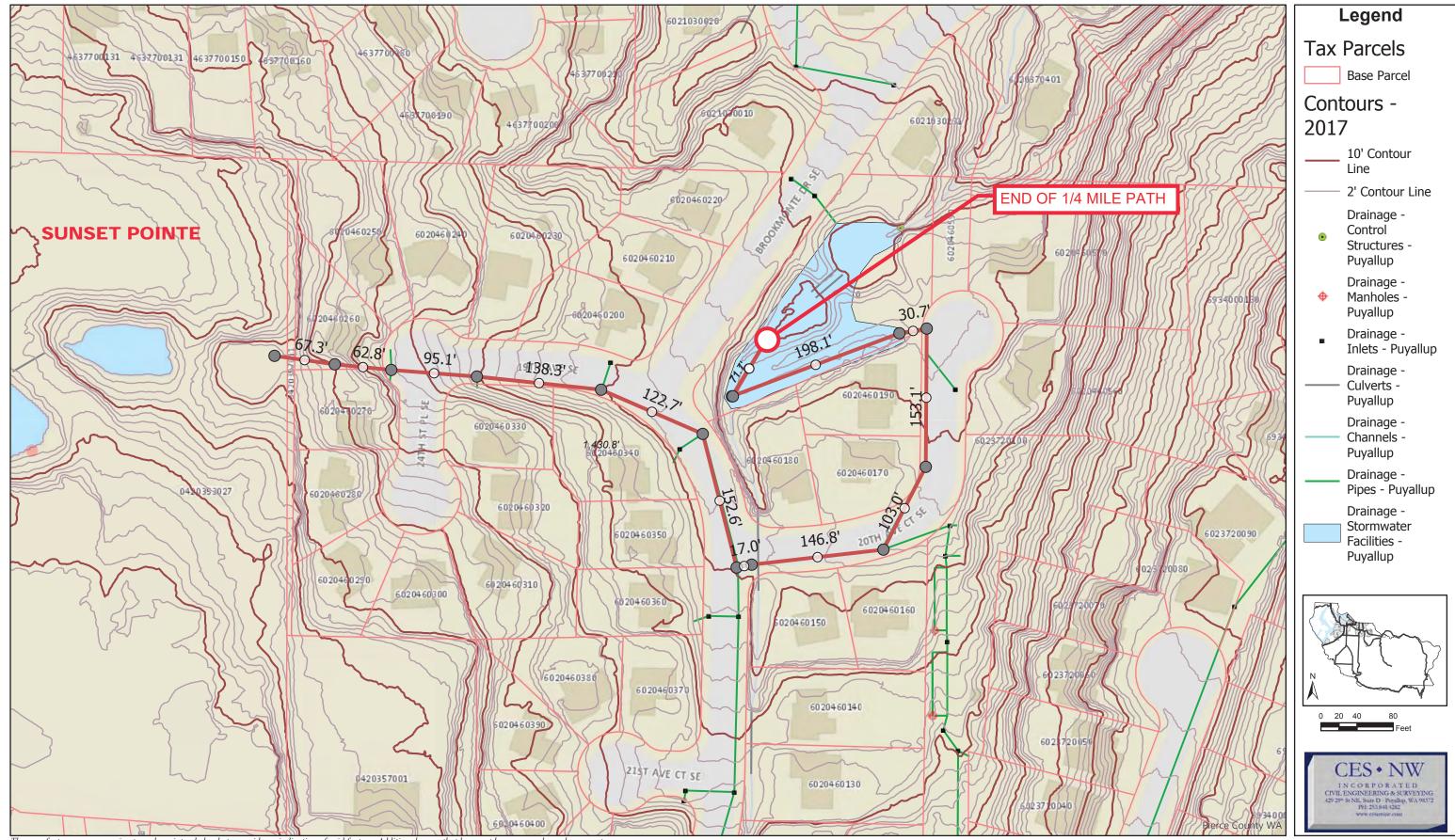
NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713- 3242, or visit its website at http://www.ngs.noaa.gov.

Base map information shown on this FIRM was derived from multiple sources. Base map files were provided in digital format by Pierce County GIS, WA DNR, WSDOT, USFWS, Washington State Department of Ecology, and Puget Sound Regional Council. This information was compiled at scales of 1:1,200 to 1:24,000 during the time period 1996-2012.

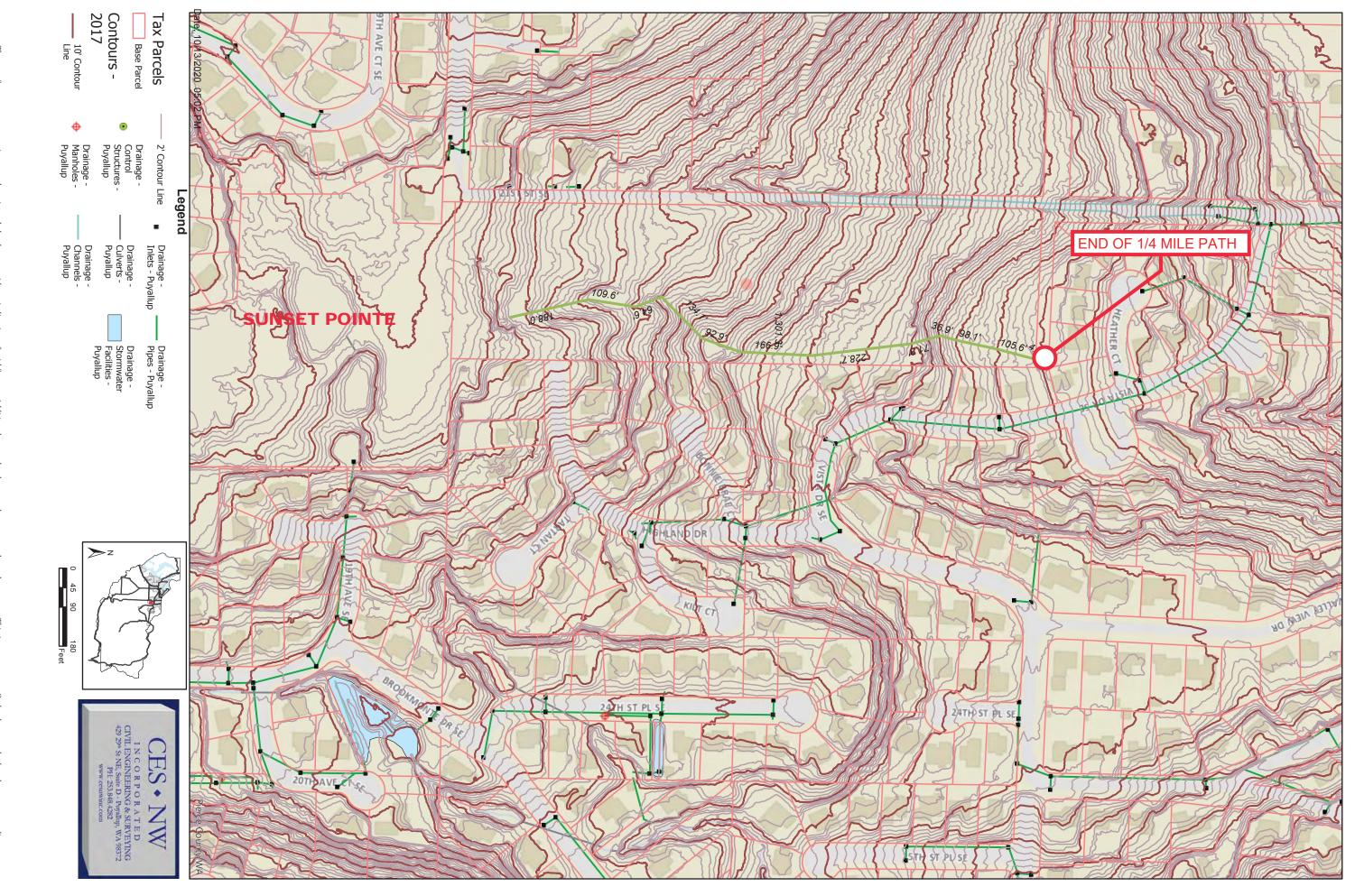

The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data, the profile baseline, in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

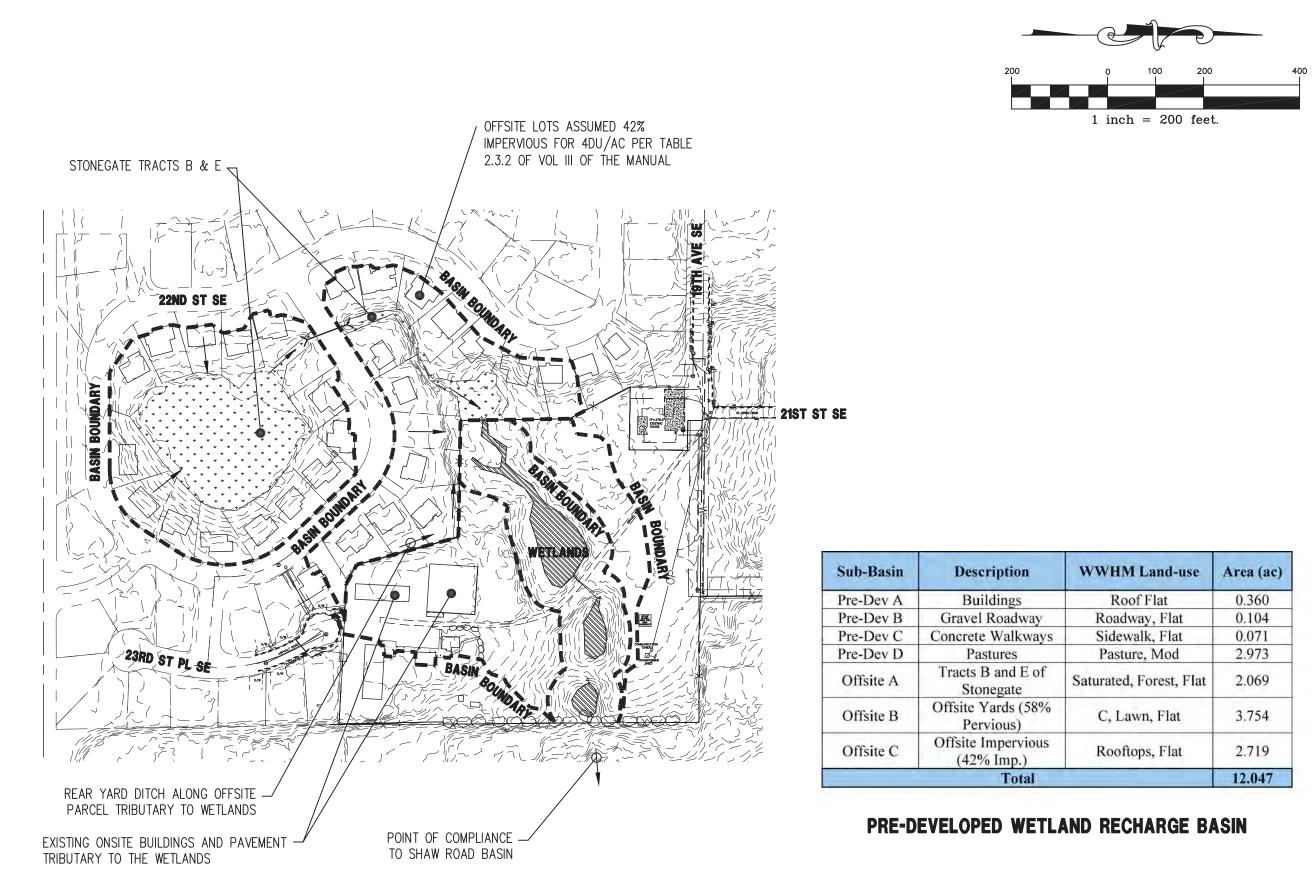

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

For information on available products associated with this FIRM visit the Map Service Center (MSC) website at http://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the MSC website.

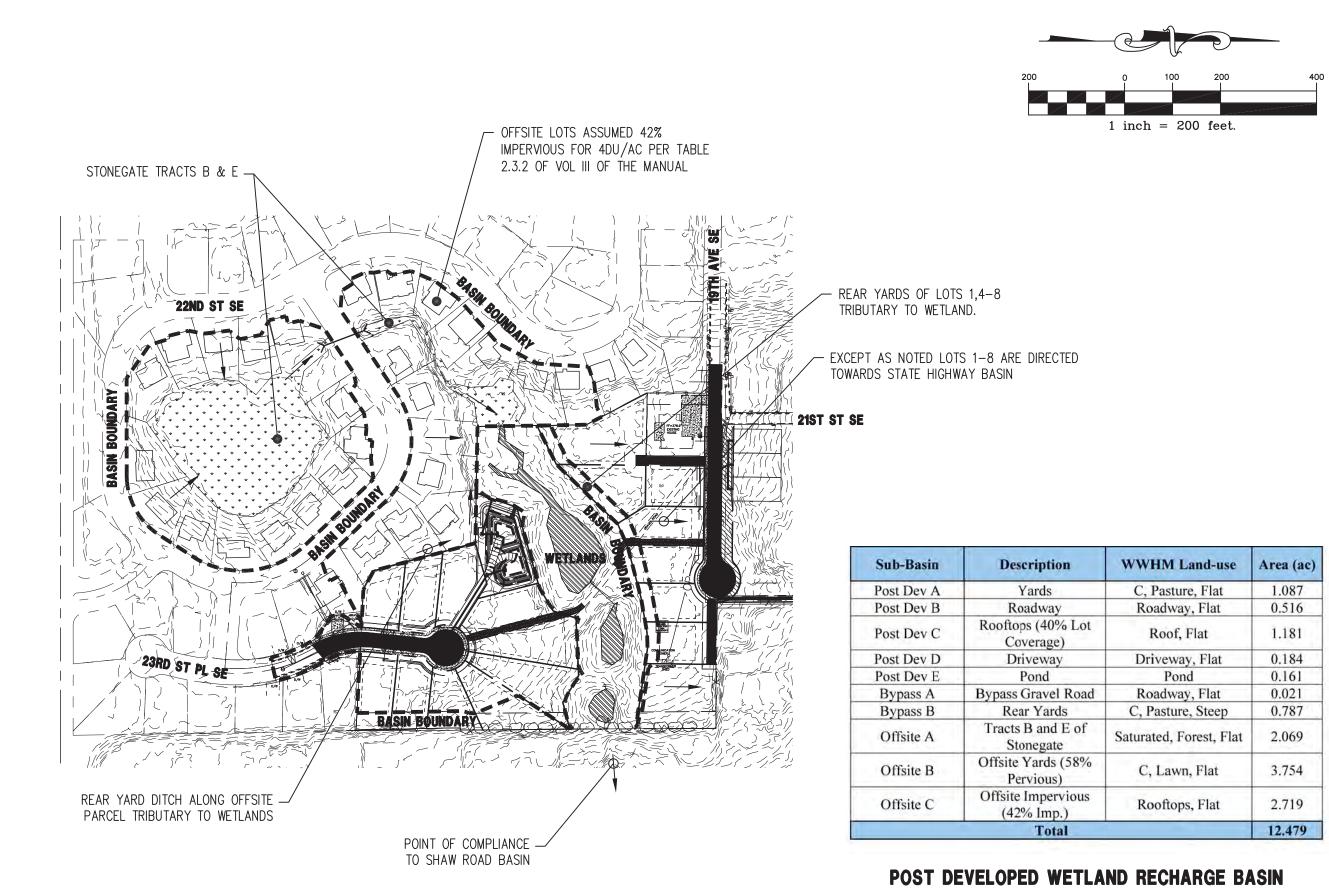
If you have questions about this map, how to order products, or the National Flood Insurance Program in general, please call the FEMA Map Information eXchange (FMIX) at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.



Shaw Road 1/4 Mile Path


The map features are approximate and are intended only to provide an indication of said feature. Additional areas that have not been mapped may be present. This is not a survey. Orthophotos and other data may not align. The County assumes no liability for variations ascertained by actual survey. ALL DATA IS EXPRESSLY PROVIDED 'AS IS' AND 'WITH ALL FAULTS'. The County makes no warranty of fitness for a particular purpose.

Date: 10/13/2020 08:08 PM


The map features are approximate and are The County assumes no liability for varia only to provide an indication of said feature. Additional areas that have not been mapped may be present. This is not a survey. Orthophotos and other data may not align rtained by actual survey. ALL DATA IS EXPRESSLY PROVIDED 'AS IS'AND 'WITH ALL FAULTS'. The County makes no warranty offtiness for a particular purpose.

IM Land-use	Area (ac)
Roof Flat	0.360
adway, Flat	0.104
ewalk, Flat	0.071
sture, Mod	2.973
ed, Forest, Flat	2.069
Lawn, Flat	3.754
oftops, Flat	2.719
	12.047

<u>CESS NW INC</u> <u>civil engineering & surveying</u>	429 – 29TH ST. NE, SUITE D Bus: (253) 848–4282 PUYALLUP, WA 98372
PRE-DEVELOPED BASIN MAP	Dient: PETER Y CHEN AND BETH LIU 709 MEMORY LANE WEST, UNIVERSITY PLACE, WA 98466
Designed: Drawn: Checked:	U FB WYQ FB
Scale:	1''=100' 20.2020 04148.7
Sheet No.: B-5	ล
	a heets

WHM Land-use	Area (ac)
C, Pasture, Flat	1.087
Roadway, Flat	0.516
Roof, Flat	1.181
Driveway, Flat	0.184
Pond	0.161
Roadway, Flat	0.021
C, Pasture, Steep	0.787
urated, Forest, Flat	2.069
C, Lawn, Flat	3.754
Rooftops, Flat	2.719
	12.479

C.E.S. NW INC.	429 – 29TH ST. NE, SUITE D Bus: (253) 848–4282 PUYALLUP, WA 98372
Post Developed Wetland Basin MAP	Client: PETER Y CHEN AND BETH LIU Dddn 4709 MEMORY LANE WEST, UNIVERSITY PLACE, WA 98466
Scale: Date: Job No.:	1′′=100′ 10.20.2020 04148.7
Sheet No.: B-C 2 of 2	5b Sheets

APPENDIX C

Computer Printouts

WWHM Modeling Results-Southern Basin

C-1

WWHM2012 PROJECT REPORT

```
Project Name: 04148.7
Site Name: Sunset Pointe Pond Modeling
Site Address: 2301 23rd Street SE
City : Puyallup, WA
Report Date: 10/13/2020
Gage : 40 IN EAST
Data Start : 10/01/1901
Data End : 09/30/2059
Precip Scale: 1.00
Version Date: 2019/09/13
Version : 4.2.17
```

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year PREDEVELOPED LAND USE Name : Pre-Dev Bypass: No GroundWater: No Pervious Land Use acre C, Forest, Mod 5.444 5.444 Pervious Total Impervious Land Use acre Impervious Total 0 Basin Total 5.444 Element Flows To: Surface Interflow Groundwater

MITIGATED LAND USE

Name : Basin 1 Bypass: No

GroundWater: No

Pervious Land Use C, Pasture, Flat	<u>acre</u> .994
Pervious Total	0.994
Impervious Land Use ROADS FLAT ROOF TOPS FLAT DRIVEWAYS FLAT POND	acre 0.609 1.181 0.184 0.161
Impervious Total	2.135
Basin Total	3.129

Element Flows To: Surface Interflow Groundwater Trapezoidal Pond 1 Trapezoidal Pond 1 Name : Bypass Bypass: Yes GroundWater: No Pervious Land Use acre C, Pasture, Steep 1.314 1.314 Pervious Total Impervious Land Use <u>acr</u>e ROADS FLAT 0.021 Impervious Total 0.021 Basin Total 1.335 Element Flows To: Surface Interflow Groundwater Name : Trapezoidal Pond Bottom Length: 79.10 ft. Bottom Width: 79.10 ft.

Depth: 6 ft.

Side slope 1: 2.6 To 1

Side slope 2: 2 To 1

Yolume at rigen head: 0.0310 acre-feet.

Storm Pond bottom does not match – drawing. Concern for tract B being to small. Side slope 3: 2 To 1
Side slope 4: 2 To 1
Discharge Structure
Riser Height: 5 ft.
Riser Diameter: 18 in.
Notch Type: Rectangular
Notch Width: 1.000 ft.
Notch Height: 0.100 ft.
Orifice 1 Diameter: 0.99 in. Elevation: 0 ft.
Element Flows To:
Outlet 1 Outlet 2

Pond Hydraulic Table

Pond Hydraulic Table				
Stage(feet)	Area(ac.)	Volume(ac-ft.)		
0.0000	0.143	0.000	0.000	0.000
0.0667	0.144	0.009	0.006	0.000
0.1333	0.145	0.019	0.009	0.000
0.2000	0.146	0.029	0.011	0.000
0.2667	0.147	0.038	0.013	0.000
0.3333	0.148	0.048	0.015	0.000
0.4000	0.150	0.058	0.016	0.000
0.4667	0.151	0.068	0.018	0.000
0.5333	0.152	0.078	0.019	0.000
0.6000	0.153	0.089	0.020	0.000
0.6667	0.154	0.099	0.021	0.000
0.7333	0.155	0.109	0.022	0.000
0.8000	0.156	0.120	0.023	0.000
0.8667	0.157	0.130	0.024	0.000
0.9333	0.158	0.141	0.025	0.000
1.0000	0.159	0.151	0.026	0.000
1.0667	0.160	0.162	0.027	0.000
1.1333	0.161	0.173	0.028	0.000
1.2000	0.163	0.183	0.029	0.000
1.2667	0.164	0.194	0.029	0.000
1.3333	0.165	0.205	0.030	0.000
1.4000	0.166	0.216	0.031	0.000
1.4667	0.167	0.227	0.032	0.000
1.5333	0.168	0.239	0.032	0.000
1.6000	0.169	0.250	0.033	0.000
1.6667	0.170	0.261	0.034	0.000
1.7333	0.172	0.273	0.035	0.000
1.8000	0.173	0.284	0.035	0.000
1.8667	0.174	0.296	0.036	0.000
1.9333	0.175	0.307	0.037	0.000
2.0000	0.176	0.319	0.037	0.000
2.0667	0.177	0.331	0.038	0.000
2.1333	0.178	0.343	0.038	0.000
2.2000	0.180	0.355	0.039	0.000
2.2667	0.181	0.367	0.040	0.000
2.3333	0.182	0.379	0.040	0.000
2.4000	0.183	0.391	0.041	0.000
2.4667	0.184	0.403	0.041	0.000

2.5333 0.187 0.418 0.042 0.000 2.6667 0.188 0.441 0.043 0.000 2.7333 0.189 0.453 0.044 0.000 2.8000 0.190 0.466 0.044 0.000 2.8667 0.191 0.479 0.045 0.000 2.9333 0.193 0.492 0.045 0.000 3.0667 0.195 0.518 0.046 0.000 3.2000 0.197 0.544 0.047 0.000 3.2667 0.199 0.557 0.048 0.000 3.4667 0.202 0.597 0.049 0.000 3.4667 0.202 0.597 0.049 0.000 3.6667 0.206 0.624 0.050 0.000 3.6667 0.206 0.638 0.050 0.000 3.800 0.209 0.666 0.051 0.000 3.8667 0.210 0.680 0.052 0.000 3.800 0.220 0.795 0.555 0.000 4.00667	2.5333	0.185	0.416	0.042	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
2.8667 0.191 0.479 0.045 0.000 2.9333 0.193 0.492 0.045 0.000 3.0000 0.194 0.505 0.046 0.000 3.0667 0.195 0.518 0.046 0.000 3.2000 0.197 0.544 0.047 0.000 3.2000 0.197 0.544 0.047 0.000 3.2667 0.199 0.557 0.048 0.000 3.4000 0.201 0.584 0.049 0.000 3.4667 0.202 0.597 0.049 0.000 3.5333 0.204 0.611 0.050 0.000 3.6667 0.206 0.638 0.050 0.000 3.7333 0.207 0.652 0.001 3.8000 2.099 0.666 0.051 0.000 3.8000 0.209 0.666 0.052 0.000 4.0067 2.14 0.722 0.053 0.000 4.00667 0.214 0.722					
2.9333 0.193 0.492 0.045 0.000 3.0667 0.195 0.518 0.046 0.000 3.1333 0.196 0.531 0.047 0.000 3.2000 0.197 0.544 0.047 0.000 3.2333 0.200 0.577 0.048 0.000 3.4000 0.201 0.584 0.049 0.000 3.4000 0.201 0.584 0.049 0.000 3.4667 0.202 0.597 0.048 0.000 3.6667 0.206 0.638 0.050 0.000 3.6667 0.206 0.638 0.050 0.000 3.800 0.209 0.666 0.051 0.000 3.8667 0.210 0.680 0.052 0.000 3.8067 0.214 0.722 0.053 0.000 4.0000 0.212 0.708 0.052 0.000 4.2667 0.218 0.755 0.000 4.333 0.219					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.3333		0.570	0.048	0.000
3.5333 0.204 0.611 0.050 0.000 3.6000 0.205 0.624 0.050 0.000 3.7333 0.207 0.652 0.051 0.000 3.7333 0.207 0.666 0.051 0.000 3.8000 0.209 0.666 0.052 0.000 3.8667 0.210 0.680 0.052 0.000 3.9333 0.211 0.694 0.052 0.000 4.0667 0.214 0.722 0.053 0.000 4.1333 0.215 0.737 0.054 0.000 4.2667 0.218 0.765 0.054 0.000 4.2667 0.218 0.765 0.055 0.000 4.3333 0.220 0.795 0.055 0.000 4.4667 0.221 0.809 0.056 0.000 4.4667 0.221 0.809 0.057 0.000 4.6000 0.224 0.839 0.057 0.000 4.6667 0.225 0.854 0.058 0.000 4.8000 0.228 0.884 0.058 0.000 4.9333 0.231 0.915 0.079 0.000 5.0000 0.232 0.931 0.164 0.000 5.2667 0.237 0.993 2.290 0.000 5.333 0.231 0.915 0.000 5.4667 0.241 1.041 4.493 0.000 5.4667 0.245 1.090 5.923	3.4000	0.201	0.584	0.049	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.4667	0.202	0.597	0.049	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.5333	0.204	0.611	0.050	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.205	0.624	0.050	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.6667		0.638	0.050	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
4.1333 0.215 0.737 0.054 0.000 4.2000 0.216 0.751 0.054 0.000 4.2667 0.218 0.765 0.054 0.000 4.3333 0.219 0.780 0.055 0.000 4.4000 0.220 0.795 0.055 0.000 4.4667 0.221 0.809 0.056 0.000 4.5333 0.223 0.824 0.056 0.000 4.6667 0.225 0.854 0.057 0.000 4.6667 0.225 0.854 0.057 0.000 4.7333 0.227 0.869 0.057 0.000 4.8667 0.229 0.900 0.058 0.000 4.8667 0.229 0.900 0.058 0.000 4.9333 0.231 0.915 0.079 0.000 5.0000 0.232 0.931 0.164 0.000 5.0667 0.237 0.993 2.290 0.000 5.2667 0.237 0.993 2.290 0.000 5.333 0.243 1.057 5.092 0.000 5.4667 0.241 1.041 4.493 0.000 5.6000 0.244 1.074 5.569 0.000 5.6667 0.245 1.090 5.923 0.000 5.7333 0.247 1.106 6.183 0.000 5.8667 0.249 1.139 6.767 0.000 5.9333 0.251 1.173					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
4.4000 0.220 0.795 0.055 0.000 4.4667 0.221 0.809 0.056 0.000 4.5333 0.223 0.824 0.056 0.000 4.6000 0.224 0.839 0.057 0.000 4.6667 0.225 0.854 0.057 0.000 4.7333 0.227 0.869 0.057 0.000 4.8000 0.228 0.884 0.058 0.000 4.8667 0.229 0.900 0.058 0.000 4.9333 0.231 0.915 0.079 0.000 5.0000 0.232 0.931 0.164 0.000 5.0667 0.233 0.946 0.438 0.000 5.1333 0.234 0.962 0.937 0.000 5.2000 0.236 0.977 1.570 0.000 5.2667 0.237 0.993 2.290 0.000 5.333 0.243 1.025 3.799 0.000 5.4667 0.241 1.041 4.493 0.000 5.5333 0.243 1.057 5.092 0.000 5.6667 0.245 1.090 5.923 0.000 5.7333 0.247 1.106 6.183 0.000 5.8000 0.248 1.123 6.507 0.000 5.9333 0.251 1.156 7.016 0.000 6.0000 0.252 1.173 7.257 0.000					
4.4667 0.221 0.809 0.056 0.000 4.5333 0.223 0.824 0.056 0.000 4.6000 0.224 0.839 0.057 0.000 4.6667 0.225 0.854 0.057 0.000 4.7333 0.227 0.869 0.057 0.000 4.8000 0.228 0.884 0.058 0.000 4.8667 0.229 0.900 0.058 0.000 4.8667 0.229 0.900 0.058 0.000 4.9333 0.231 0.915 0.079 0.000 5.0000 0.232 0.931 0.164 0.000 5.0667 0.233 0.946 0.438 0.000 5.1333 0.234 0.962 0.937 0.000 5.2000 0.236 0.977 1.570 0.000 5.2667 0.237 0.993 2.290 0.000 5.333 0.238 1.009 3.049 0.000 5.4667 0.241 1.041 4.493 0.000 5.5333 0.243 1.057 5.092 0.000 5.6667 0.245 1.090 5.923 0.000 5.7333 0.247 1.106 6.183 0.000 5.8000 0.248 1.123 6.507 0.000 5.9333 0.251 1.156 7.016 0.000 6.0000 0.252 1.173 7.257 0.000					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
4.7333 0.227 0.869 0.057 0.000 4.8000 0.228 0.884 0.058 0.000 4.8667 0.229 0.900 0.058 0.000 4.9333 0.231 0.915 0.079 0.000 5.0000 0.232 0.931 0.164 0.000 5.0667 0.233 0.946 0.438 0.000 5.1333 0.234 0.962 0.937 0.000 5.2000 0.236 0.977 1.570 0.000 5.2667 0.237 0.993 2.290 0.000 5.3333 0.238 1.009 3.049 0.000 5.4667 0.241 1.041 4.493 0.000 5.4667 0.241 1.074 5.569 0.000 5.6000 0.244 1.074 5.569 0.000 5.7333 0.247 1.106 6.183 0.000 5.8000 0.248 1.123 6.507 0.000 5.8667 0.249 1.139 6.767 0.000 5.9333 0.251 1.156 7.016 0.000					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.8000	0.228	0.884	0.058	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.8667		0.900	0.058	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.9333	0.231	0.915	0.079	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.164	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.0667				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
5.46670.2411.0414.4930.0005.53330.2431.0575.0920.0005.60000.2441.0745.5690.0005.66670.2451.0905.9230.0005.73330.2471.1066.1830.0005.80000.2481.1236.5070.0005.86670.2491.1396.7670.0005.93330.2511.1567.0160.0006.00000.2521.1737.2570.000					
5.53330.2431.0575.0920.0005.60000.2441.0745.5690.0005.66670.2451.0905.9230.0005.73330.2471.1066.1830.0005.80000.2481.1236.5070.0005.86670.2491.1396.7670.0005.93330.2511.1567.0160.0006.00000.2521.1737.2570.000					
5.60000.2441.0745.5690.0005.66670.2451.0905.9230.0005.73330.2471.1066.1830.0005.80000.2481.1236.5070.0005.86670.2491.1396.7670.0005.93330.2511.1567.0160.0006.00000.2521.1737.2570.000					
5.66670.2451.0905.9230.0005.73330.2471.1066.1830.0005.80000.2481.1236.5070.0005.86670.2491.1396.7670.0005.93330.2511.1567.0160.0006.00000.2521.1737.2570.000					
5.73330.2471.1066.1830.0005.80000.2481.1236.5070.0005.86670.2491.1396.7670.0005.93330.2511.1567.0160.0006.00000.2521.1737.2570.000					
5.80000.2481.1236.5070.0005.86670.2491.1396.7670.0005.93330.2511.1567.0160.0006.00000.2521.1737.2570.000					
5.86670.2491.1396.7670.0005.93330.2511.1567.0160.0006.00000.2521.1737.2570.000					
5.93330.2511.1567.0160.0006.00000.2521.1737.2570.000					
6.00000.2521.1737.2570.000					

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:5.444 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:2.308 Total Impervious Area:2.156

Flow Frequency	Return	Periods	for	Predevelope	d. POC #1
Return Period		Flow(cfs	;)		
2 year		0.1241	94		
5 year		0.1922	86		
10 year		0.2318	15		
25 year		0.2747	38		
50 year		0.3024	02		
100 year		0.3264	35		
Flow Frequency	Return	Periods	for	Mitigated.	POC #1
Return Period		Flow(cfs	;)		
2 year		0.0953	85		
5 year		0.1477	'4		
10 year		0.1938	97		
25 year		0.2681	.49		
50 year		0.3370	95		

0.419666

Stream Protection Duration

100 year

Stream Prote	ction Duration		
Annual Peaks	for Predevelop	ed and Mitigated.	POC #1
Year	Predeveloped	Mitigated	
1902	0.100	0.086	
1903	0.076	0.073	
1904	0.153	0.147	
1905	0.063	0.078	
1906	0.033	0.042	
1907	0.191	0.134	
1908	0.137	0.095	
1909	0.135	0.097	
1910	0.190	0.129	
1911	0.123	0.095	
1912	0.473	0.333	
1913	0.193	0.120	
1914	0.050	0.074	
1915	0.080	0.083	
1916	0.122	0.089	
1917	0.042	0.053	
1918	0.131	0.098	
1919	0.102	0.084	

1920	0.125	0.095
1921	0.136	0.101
1922	0.137	0.106
1923	0.109	0.098
1924	0.053	0.070
1925	0.067	0.073
1926	0.122	0.093
1927	0.087	0.072
1928	0.094	0.083
1929	0.195	0.132
1930	0.122	0.089
1931	0.116	0.092
1932	0.088	0.083
1933	0.098	0.094
1934	0.253	0.267
1935	0.115	0.092
1936	0.104	0.079
1937	0.175	0.131
1938	0.102	0.086
1939	0.009	0.039
1940	0.113	0.093
1941	0.068	0.063
1942	0.169	0.298
1943	0.086	0.077
1944	0.188	0.180
1945	0.136	0.102
1946	0.087	0.080
1947	0.057	0.060
1948	0.262	0.158
1949	0.227	0.156
1950	0.066	0.071
1951	0.086	0.070
1952	0.343	0.218
1953	0.308	0.193
1954	0.109	0.089
1955	0.095	0.077
1956	0.050	0.055
1957	0.163	0.106
1958	0.327 0.207	0.517 0.330
1959 1960	0.060	0.071
1961	0.205	0.140
1962	0.111	0.095
1963	0.054	0.067
1964	0.056	0.142
1965	0.230	0.143
1966	0.067	0.065
1967	0.106	0.089
1968	0.108	0.103
1969	0.102	0.087
1970	0.158	0.115
1971	0.242	0.147
1972	0.159	0.160
1973	0.206	0.139
1974	0.123	0.093
1975	0.257	0.183
1976	0.137	0.119

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995	0.061 0.226 0.066 0.132 0.120 0.058 0.205 0.093 0.147 0.123 0.241 0.146 0.134 0.154 0.123 0.160 0.165 0.243 0.055	0.058 0.148 0.093 0.093 0.085 0.061 0.128 0.098 0.119 0.094 0.164 0.100 0.097 0.106 0.096 0.103 0.113 0.152 0.067
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014	0.271 0.109 0.131 0.013 0.098 0.053 0.198 0.151 0.136 0.284 0.078 0.082 0.131 0.087 0.075 0.069 0.103 0.077 0.054	0.293 0.082 0.110 0.054 0.064 0.152 0.107 0.102 0.210 0.067 0.078 0.095 0.073 0.084 0.061 0.121 0.068 0.059
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033	0.105 0.043 0.186 0.338 0.345 0.104 0.170 0.070 0.142 0.359 0.127 0.203 0.077 0.067 0.138 0.252 0.083 0.049 0.076	0.111 0.053 0.122 0.674 0.240 0.087 0.115 0.066 0.102 0.272 0.097 0.135 0.097 0.135 0.081 0.068 0.095 0.155 0.069 0.058 0.070

	Protection Durat:	
		Predeveloped and Mitigated. POC #1
Rank	Predeveloped	Mitigated
1	0.4730	0.6744
2	0.3586	0.5234
3	0.3453	0.5171
4	0.3431	0.4229
5	0.3380	0.3326
б	0.3268	0.3300
7	0.3082	0.2984
8	0.2940	0.2928
9	0.2870	0.2724
10	0.2842	0.2666
11	0.2708	0.2403
12	0.2617	0.2184
13	0.2566	0.2097
14	0.2526	0.1927
15	0.2519	0.1829
16	0.2432	0.1799
17	0.2420	0.1750
18	0.2408	0.1644
19	0.2298	0.1596
20	0.2274	0.1584
21	0.2261	0.1556
22	0.2070	0.1546
23	0.2061	0.1519
24	0.2049	0.1517
25	0.2048	0.1475
26	0.2029	0.1472

27	0.2000	0.1467
28	0.1982	0.1434
29	0.1949	0.1424
30	0.1926	0.1397
31	0.1906	0.1385
32	0.1902	0.1372
33	0.1882	0.1350
34	0.1865	0.1340
35	0.1848	0.1316
36	0.1749	0.1313
37	0.1699	0.1286
38	0.1695	0.1280
39	0.1691	0.1268
40	0.1653	0.1219
41	0.1629	0.1210
42	0.1601	0.1204
43	0.1589	0.1190
44	0.1581	0.1186
45	0.1536	0.1171
46	0.1529	0.1166
47	0.1528	0.1163
48	0.1508	0.1154
49	0.1465	0.1148
50	0.1463	0.1135
51	0.1449	0.1115
52	0.1425	0.1107
53	0.1422	0.1099
54	0.1388	0.1082
55	0.1377	0.1075
56	0.1374	0.1068
57	0.1374	0.1060
58	0.1372	0.1060
59	0.1364	0.1057
60	0.1361	0.1039
60 61 62 63 64	0.1359 0.1357 0.1355 0.1346	0.1039 0.1030 0.1029 0.1023 0.1021
65 66 67 68	0.1343 0.1318 0.1311 0.1309	0.1021 0.1019 0.1007 0.0998 0.0990
69 70 71 72	0.1309 0.1296 0.1274 0.1268	0.0990 0.0981 0.0980 0.0979 0.0972
73	0.1251	0.0969
74	0.1246	0.0968
75	0.1234	0.0964
76	0.1233	0.0957
77	0.1232	0.0954
78	0.1226	0.0953
79	0.1223	0.0953
80	0.1222	0.0952
81	0.1218	0.0949
82	0.1203	0.0948
83	0.1158	0.0945

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	0.1155 0.1136 0.1126 0.1110 0.1092 0.1091 0.1085 0.1081 0.1074 0.1059 0.1048 0.1042 0.1048 0.1042 0.1040 0.1029 0.1025	0.0937 0.0932 0.0931 0.0930 0.0918 0.0916 0.0893 0.0891 0.0888 0.0888 0.0888 0.0882 0.0874 0.0872 0.0864
99	0.1022	0.0857
100	0.1020	0.0852
101	0.0997	0.0842
102 103	0.0981 0.0978	0.0841
104 105	0.0962 0.0955	0.0839
106	0.0953	0.0833 0.0832
107 108	0.0938 0.0929	0.0829
109	0.0907	0.0824
110	0.0884	0.0815
111	0.0873	0.0808
112	0.0868	0.0807
113	0.0868	0.0796
114	0.0857	0.0793
115	0.0856	0.0781
116	0.0832	0.0780
117 118	0.0819 0.0804	0.0778
119	0.0775	0.0766
120	0.0773	0.0762
121	0.0771	0.0741
122	0.0769	0.0734
123	0.0759	0.0727
124	0.0759	0.0726
125	0.0755	0.0722
126	0.0741	0.0719
127	0.0721	0.0705
128	0.0701	0.0705
129	0.0700	0.0703
130	0.0687	0.0696
131	0.0683	0.0696
132	0.0671	0.0688
133	0.0671	0.0685
134	0.0666	0.0685
135	0.0664	0.0681
136	0.0661	0.0673
137	0.0630	0.0673
138	0.0613 0.0609	0.0665
139 140	0.0601	0.0657 0.0648

141	0.0576	0.0641
142	0.0567	0.0630
143	0.0562	0.0629
144	0.0553	0.0613
145	0.0541	0.0611
146	0.0536	0.0606
147	0.0534	0.0599
148	0.0532	0.0587
149	0.0503	0.0579
150	0.0498	0.0577
151	0.0493	0.0554
152	0.0428	0.0544
153	0.0418	0.0534
154	0.0409	0.0529
155	0.0327	0.0528
156	0.0168	0.0424
157	0.0133	0.0390
158	0.0086	0.0383

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

	_			
Flow(cfs)				ge Pass/Fail
0.0621	55678	56010		Pass
0.0645	51235	47384	92	Pass
0.0670	47163		85	Pass
0.0694	43456	34177	78	Pass
0.0718	40105	29263	72	Pass
0.0742	37168	25135	67	Pass
0.0767	34420	21579	62	Pass
0.0791	31889	18642	58	Pass
0.0815	29523	16277	55	Pass
0.0839	27484	14210	51	Pass
0.0864	25628	12426	48	Pass
0.0888	23872	10892	45	Pass
0.0912	22288	9496	42	Pass
0.0937	20886	8310	39	Pass
0.0961	19551	7235	37	Pass
0.0985	18282	6393	34	Pass
0.1009	17102	5723	33	Pass
0.1034	15978	5131	32	Pass
0.1058	14930	4583	30	Pass
0.1082	13955	4138	29	Pass
0.1106	13080	3780	28	Pass
0.1131	12293	3444	28	Pass
0.1155	11545	3145	27	Pass
0.1179	10787	2844	26	Pass
0.1204	10094	2573	25	Pass
0.1228	9429	2369	25	Pass
0.1252	8792	2146	24	Pass
0.1276	8238	1970	23	Pass
0.1301	7739	1817	23	Pass
0.1325	7246	1657	22	Pass

0.1349 0.1373	6781 6404	1561 1482	23 23	Pass Pass
0.1398	6105	1399	22	Pass
0.1422	5828	1303	22	Pass
0.1446	5513	1195	21	Pass
0.1471	5232	1098	20	Pass
0.1495	4968	998	20	Pass
0.1519	4734	922	19	Pass
0.1543	4486	858	19	Pass
0.1568	4303	797	18	Pass
0.1592	4106	758	18	Pass
0.1616	3869	712	18	Pass
0.1640	3649	672	18	Pass
0.1665	3477	627	18	Pass
0.1689	3316	584	17	Pass
0.1713	3165	546	17	Pass
0.1738	3022	505	16	Pass
0.1762	2917	475	16	Pass
0.1786	2789	443	15	Pass
0.1810	2680	421	15	Pass
0.1835	2528	397	15	Pass
0.1859	2415	380	15	Pass
0.1883	2303	363	15	Pass
0.1907	2200	346	15	Pass
0.1932	2097	329	15	Pass
0.1956	1981	319	16	Pass
0.1980	1875	303	16	Pass
0.2005	1768	296	16	Pass
0.2029	1686	286	16	Pass
0.2053	1594	278	17	Pass
0.2077	1525	266	17	Pass
0.2102	1460	260	17	Pass
0.2126	1382	249	18	Pass
0.2150	1306	242	18	Pass
0.2174	1249	229	18	Pass
0.2199	1192	220	18	Pass
0.2223	1135	212	18	Pass
0.2247	1083	208	19	Pass
0.2272	1032	204	19	Pass
0.2296	984	200	20	Pass
0.2320	929	192	20	Pass
0.2344	870	190	21	Pass
0.2369	819	185	22	Pass
0.2393	771	182	23	Pass
0.2417	709	175	24	Pass
0.2441	663	173	26	Pass
0.2466	627	171	27	Pass
0.2490	583	166	28	Pass
0.2514	539	163	30	Pass
0.2539	501	162	32	Pass
0.2563	458	156	34	Pass
0.2587	416	149	35	Pass
0.2611	380	145	38	Pass
0.2636	353	135	38	Pass
0.2660	319	133	41	Pass
0.2684	297	124	41	Pass
0.2708	277	119	42	Pass

0.2733	264	116	43	Pass	
0.2757	246	113	45	Pass	
0.2781	231	110	47	Pass	
0.2806	217	110	50	Pass	
0.2830	203	107	52	Pass	
0.2854	180	107	59	Pass	
0.2878	154	101	65	Pass	
0.2903	142	99	69	Pass	
0.2927	127	99	77	Pass	
0.2951	112	98	87	Pass	
0.2975	104	95	91	Pass	
0.3000	99	92	92	Pass	
0.3024	89	92	103	Pass	

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2020; All Rights Reserved.

WWHM2012 PROJECT REPORT

Project Name: 04148.7-65 10 Dispersion Site Name: South Basin Site Address: 2301 23rd Street SE City : Puyallup, WA Report Date: 10/16/2020 Gage : 40 IN EAST Data Start : 10/01/1901 Data End : 09/30/2059 Precip Scale: 1.00 Version Date: 2019/09/13 Version : 4.2.17

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

Low Flow Threshold for POC 2 : 50 Percent of the 2 Year

1.681

High Flow Threshold for POC 2: 50 year

PREDEVELOPED LAND USE

Name : Pre-Dev 19th Bypass: No

GroundWater: No

Basin Total

Pervious Land Use C, Forest, Mod	<u>acre</u> 1.681
Pervious Total	1.681
Impervious Land Use	acre
Impervious Total	0

Element Flows To: Surface Interflow

Groundwater

Name : Pre-Dev 19th

Bypass: No GroundWater: No <u>Pervious Land Use</u> <u>acre</u> C, Forest, Mod 1.681 Pervious Total 1.681 <u>Impervious Land Use</u> <u>acre</u> Impervious Total 0 Basin Total 1.681

Element Flows To: Surface Interflow Groundwater

1.077

MITIGATED LAND USE

Name : Post Dev Without Modeling Credits Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Pasture, Flat	1.077

Pervious Total

Impervious Land Use	acre
ROADS FLAT	0.474
ROOF TOPS FLAT	0.844
DRIVEWAYS FLAT	0.184
Impervious Total	1.502
Basin Total	2.579

```
Element Flows To:
Surface
```

Groundwater

Name : Post Dev with Modelling Credits Bypass: No

Interflow

GroundWater: No

Pervious Land Use C, Forest, Mod	<u>acre</u> 2.579
Pervious Total	2.579
Impervious Land Use	acre
Impervious Total	0
Basin Total	2.579

Element Flows To: Surface

Interflow

Groundwater

ANALYSIS RESULTS

Stream Protection Duration Without Flow Modeling Credits

Predeveloped Landuse Totals for POC #1 Total Pervious Area:1.681 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:1.077 Total Impervious Area:1.502

Flow Frequency Re Return Period 2 year 5 year 10 year	eturn Periods for <u>Flow(cfs)</u> 0.038349 0.059374 0.07158	Predeveloped.	POC #1
25 year	0.084834		
50 year	0.093376		
100 year	0.100796		
Flow Frequency Re Return Period	eturn Periods for Flow(cfs)	Mitigated. PC	DC #1
2 year	0.552456		
5 year	0.741577		
10 year	0.879032		
25 year	1.067157		
50 year	1.218141		
100 year	1.378714		

Stream Protection Duration With Flow Modeling Credits

Predeveloped Landuse Totals for POC #2 Total Pervious Area:1.681 Total Impervious Area:0

Mitigated Landuse Totals for POC #2 Total Pervious Area:2.579 Total Impervious Area:0

Flow Frequency	Return	Periods for	Predeveloped.	POC #2
Return Period		<pre>Flow(cfs)</pre>		
2 year		0.038349		
5 year		0.059374		
10 year		0.07158		
25 year		0.084834		
50 year		0.093376		
100 year		0.100796		
Flow Frequency	Return	Periods for	Mitigated. P	OC #2
Flow Frequency <u>Return Period</u>	Return	Periods for Flow(cfs)	Mitigated. P	OC #2
	Return		Mitigated. P	OC #2
Return Period	Return	<pre>Flow(cfs)</pre>	Mitigated. P	OC #2
Return Period 2 year	Return	Flow(cfs) 0.058835	Mitigated. P	OC #2
<u>Return Period</u> 2 year 5 year	Return	Flow(cfs) 0.058835 0.091092	Mitigated. P	OC #2
Return Period 2 year 5 year 10 year	Return	Flow(cfs) 0.058835 0.091092 0.109818	Mitigated. P	OC #2
Return Period 2 year 5 year 10 year 25 year	Return	Flow(cfs)0.0588350.0910920.1098180.130153	Mitigated. P	OC #2

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2020; All Rights Reserved.

WWHM2012 PROJECT REPORT

```
Project Name: 04148.7-Treatment
Site Name: Sunset Pointe Pond Modeling
Site Address: 2301 23rd Street SE
City : Puyallup, WA
Report Date: 10/11/2020
Gage : 40 IN EAST
Data Start : 10/01/1901
Data End : 09/30/2059
Precip Scale: 1.00
Version Date: 2019/09/13
Version : 4.2.17
```

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year PREDEVELOPED LAND USE Name : Pre-Dev Bypass: No GroundWater: No Pervious Land Use acre C, Forest, Mod 5.444 5.444 Pervious Total Impervious Land Use acre Impervious Total 0 Basin Total 5.444 Element Flows To: Surface Interflow Groundwater

MITIGATED LAND USE

Name : Basin 1 Bypass: No

GroundWater: No

Pervious Land Use C, Pasture, Flat	<u>acre</u> .994
Pervious Total	0.994
Impervious Land Use ROADS FLAT ROOF TOPS FLAT DRIVEWAYS FLAT POND	<u>acre</u> 0.609 1.181 0.184 0.161
Impervious Total	2.135
Basin Total	3.129

Element Flows To: Surface

Interflow

Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:5.444 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0.994 Total Impervious Area:2.135

Flow Frequency Return Periods for Predeveloped. POC #1 Return Period Flow(cfs) 2 year 0.778253 5 year 1.044173 10 year 1.237373 25 year 1.501717 50 year 1.713815 100 year 1.939337 Flow Frequency Return Periods for Mitigated. POC #1 Return Period Flow(cfs) 0.778253 2 year 5 year 1.044173 10 year 1.237373 25 year 1.501717

50 year	1.713815
100 year	1.939337

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0.1968 acre-feet On-line facility target flow: 0.1093 cfs. Adjusted for 15 min: 0.1093 cfs. Off-line facility target flow: 0.06 cfs. Adjusted for 15 min: 0.06 cfs.

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2020; All Rights Reserved.

WWHM2012 PROJECT REPORT

Project Name: 04148.7 Wetland Recharge Site Name: Sunset Pointe Pond Modeling Site Address: 2301 23rd Street SE City : Puyallup, WA Report Date: 10/13/2020 Gage : 40 IN EAST Data Start : 10/01/1901 Data End : 09/30/2059 Precip Scale: 1.00 Version Date: 2019/09/13 Version : 4.2.17

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Pre-Dev Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Pasture, Mod	2.973
Pervious Total	2.973
Impervious Land Use	acre
ROADS FLAT	0.104
ROOF TOPS FLAT	0.36
SIDEWALKS FLAT	0.071
Impervious Total	0.535
Basin Total	3.508

Element	Flows	то:	
Surface			Interflow

Groundwater

Name : Offsite Basin Bypass: No

GroundWater: No

Pervious Land Use C, Lawn, Flat	<u>acre</u> 3.754	
SAT, Forest, Flat	2.069	
Pervious Total	5.823	
Impervious Land Use ROOF TOPS FLAT	<u>acre</u> 2.719	
Impervious Total	2.719	
Basin Total	8.542	

Element Flows To: Surface	Interflow	Groundwater

MITIGATED LAND USE

Name : Basin 1 Bypass: No	
GroundWater: No	
Pervious Land Use C, Pasture, Flat	acre .994
Pervious Total	0.994
Impervious Land Use ROADS FLAT ROOF TOPS FLAT DRIVEWAYS FLAT POND	acre 0.609 1.181 0.184 0.161
Impervious Total	2.135
Basin Total	3.129

Element Flows To:				
Surface		Interflow		Groundwater
Trapezoidal Pond	1	Trapezoidal Pond	1	

Name : Onsite Bypass Bypass: Yes

GroundWater: No

<u>Pervious Land Use</u> C, Pasture, Steep	<u>acre</u> .787
Pervious Total	0.787
Impervious Land Use ROADS FLAT	<u>acre</u> 0.021
Impervious Total	0.021
Basin Total	0.808

Element Flows To: Surface Interflow

Groundwater

Name : Trapezoidal Pond 1 Bottom Length: 79.10 ft. Bottom Width: 79.10 ft. Depth: 6 ft. Volume at riser head: 0.9310 acre-feet. Side slope 1: 2.6 To 1 Side slope 2: 2 To 1 Side slope 3: 2 To 1 Side slope 4: 2 To 1 Discharge Structure Riser Height: 5 ft. Riser Diameter: 18 in. Notch Type: Rectangular Notch Width: 1.000 ft. Notch Height: 0.100 ft. Orifice 1 Diameter: 0.99 in. Elevation: 0 ft.

Element Flows To: Outlet 1 Outlet 2

Pond Hydraulic Table					
Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	Infilt(cfs)	
0.0000	0.143	0.000	0.000	0.000	
0.0667	0.144	0.009	0.006	0.000	
0.1333	0.145	0.019	0.009	0.000	
0.2000	0.146	0.029	0.011	0.000	
0.2667	0.147	0.038	0.013	0.000	
0.3333	0.148	0.048	0.015	0.000	
0.4000	0.150	0.058	0.016	0.000	
0.4667	0.151	0.068	0.018	0.000	

0.5333 0.6000 0.6667 0.7333 0.8000 0.8667 0.9333 1.0000 1.0667 1.1333 1.2000 1.2667 1.3333 1.4000 1.4667 1.5333 1.6000 1.6667 1.7333 1.8000 1.6667 1.7333 2.0000 2.0667 2.1333 2.0000 2.2667 2.3333 2.2000 2.2667 2.3333 2.4000 2.4667 2.5333 2.6000 2.6667 2.7333 2.8000 2.6667 2.7333 3.0000 3.0667 3.1333 3.2000 3.2667 3.1333 3.2000 3.2667 3.1333 3.2000 3.2667 3.3333 3.4000 3.4667 3.5333 3.6000 3.6667 3.7333 3.8000 3.6677 3.7333 3.8000 3.6677 3.7333 3.8000 3.6677 3.7333 3.8000 3.6677 3.7333 3.8000 3.6677 3.7333 3.8000 3.6677 3.7333 3.8000 3.6677 3.7333 3.8000 3.6677 3.7333 3.8000 3.6677 3.7333 3.8000 3.6677 3.7333 3.8000 3.6677 3.6000 3.6677 3.7333 3.8000 3.6677 3.9000 3.6677 3.9000 3.6677 3.9000 3.6677 3.9000 3.6677 3.9000 3.6677 3.9000 3.6677 3.9000 3.6677 3.9000 3.9000 3.9000 3.9000 3.9000 3.9000 3.9000 3.9000 3.9000 3.9000 3.9000 3.9000 3.9000 3.9000 3.90	0.152 0.153 0.154 0.155 0.156 0.157 0.158 0.159 0.160 0.161 0.163 0.164 0.165 0.166 0.167 0.168 0.169 0.170 0.172 0.173 0.174 0.175 0.176 0.177 0.178 0.170 0.172 0.173 0.174 0.181 0.182 0.183 0.184 0.185 0.183 0.184 0.185 0.183 0.184 0.185 0.187 0.188 0.189 0.190 0.191 0.193 0.194 0.195 0.196 0.197 0.202 0.201 0.202 0.204 0.207 0.209 0.202	0.078 0.089 0.099 0.109 0.120 0.120 0.130 0.141 0.151 0.162 0.173 0.183 0.194 0.205 0.216 0.227 0.239 0.250 0.261 0.273 0.284 0.296 0.307 0.319 0.331 0.343 0.343 0.355 0.367 0.379 0.391 0.403 0.416 0.428 0.441 0.428 0.441 0.453 0.466 0.479 0.557 0.570 0.518 0.557 0.570 0.570 0.584 0.597 0.611 0.624 0.638 0.652 0.656	0.019 0.020 0.021 0.022 0.023 0.024 0.025 0.026 0.027 0.028 0.029 0.029 0.030 0.031 0.032 0.032 0.033 0.035 0.035 0.035 0.035 0.036 0.037 0.037 0.038 0.037 0.038 0.039 0.040 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.042 0.043 0.044 0.045 0.045 0.045 0.045 0.046 0.047 0.047 0.048 0.048 0.049 0.049 0.050 0.050 0.051 0.051	
3.6667 3.7333 3.8000 3.8667 3.9333 4.0000 4.0667 4.1333 4.2000	0.206 0.207 0.209 0.210 0.211 0.212 0.214 0.215 0.216	0.638 0.652 0.666 0.680 0.694 0.708 0.722 0.737 0.751	0.050 0.051 0.052 0.052 0.053 0.053 0.054 0.054	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4.2667	0.218	0.765	0.054	0.000

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} 219 & 0.780 \\ 220 & 0.795 \\ 221 & 0.809 \\ 223 & 0.824 \\ 224 & 0.839 \\ 225 & 0.854 \\ 227 & 0.869 \\ 228 & 0.884 \\ 229 & 0.900 \\ 231 & 0.915 \\ 232 & 0.931 \\ 233 & 0.946 \\ 234 & 0.962 \\ 236 & 0.977 \\ 237 & 0.993 \\ 238 & 1.009 \\ 240 & 1.025 \\ 241 & 1.041 \\ 243 & 1.057 \\ 244 & 1.074 \\ 245 & 1.090 \\ 247 & 1.106 \\ 248 & 1.123 \\ 249 & 1.39 \\ 251 & 1.156 \\ 252 & 1.173 \\ 253 & 1.90 \end{array}$	0.055 0.055 0.056 0.057 0.057 0.057 0.057 0.058 0.079 0.164 0.438 0.937 1.570 2.290 3.049 3.799 4.493 5.092 5.569 5.923 6.183 6.507 6.767 7.016 7.257 7.489	0.000 0
--	--	--	--

Name : Offsite Basin Bypass: Yes

GroundWater: No

Pervious Land Use	acre
C, Lawn, Flat	3.754
SAT, Forest, Flat	2.069
Pervious Total	5.823
Impervious Land Use	acre
ROOF TOPS FLAT	2.719
ROOF TOPS FLAT Impervious Total	2.719 2.719

Element	Flows	To:	
Surface			Interflow

Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:8.796 Total Impervious Area:3.254

Mitigated Landuse Totals for POC #1 Total Pervious Area:7.604 Total Impervious Area:4.875

50 year

100 year

Flow Frequency Retu	Irn Periods for	Predeveloped	. POC #1
Return Period	Flow(cfs)		
2 year	1.396334		
5 year	1.97942		
10 year	2.421414		
25 year	3.047182		
50 year	3.564638		
100 year	4.128155		
Flow Frequency Retu	Irn Periods for	Mitigated. H	POC #1
Return Period	<pre>Flow(cfs)</pre>		
2 year	1.216809		
5 year	1.727496		
10 year	2.115053		
25 year	2.664257		

Stream Protection Duration

3.118771

3.614063

POC #1

Annual	Peaks for Predevelop	ped and Mitigated.
Year	Predeveloped	Mitigated
1902	1.392	1.194
1903	1.560	1.340
1904	2.603	2.237
1905	0.869	0.770
1906	0.900	0.771
1907	1.629	1.419
1908	1.140	0.992
1909	1.187	1.033
1910	1.806	1.605
1911	1.583	1.378
1912	4.407	3.791
1913	0.927	0.820
1914	4.978	4.393
1915	0.927	0.816
1916	1.490	1.290
1917	0.595	0.528
1918	1.173	1.012
1919	0.886	0.778

1920	1.272	1.115
1921	1.093	0.957
1922	1.866	1.620
1923	1.215	1.067
1924	1.733	1.481
1925	0.843	0.740
1926	1.382	1.183
1927	1.206	1.035
1928	1.025	0.894
1929	2.035	1.807
1930	1.856	1.602
1931	1.007	0.885
1932	1.090	0.950
1933 1934	1.123 2.184	0.976 1.895
1935	0.821	0.718
1936	1.284	1.124
1937	1.757	1.538
1938	0.940	0.820
1939	1.007	0.883
1940	1.852	1.590
1941	1.953	1.663
1942	1.775	1.550
1943	1.508	1.320
1944	2.385	2.118
1945	1.529	1.333
1946	1.476	1.292
1947	0.903 1.397	0.798 1.203
1948 1949	1.844	1.203
1950	0.997	0.847
1951	1.540	1.306
1952	3.068	2.686
1953	2.631	2.304
1954	1.127	0.980
1955	0.898	0.779
1956	0.823	0.706
1957	1.060	0.923
1958	2.186	1.943
1959	1.912	1.702
1960	1.011	0.879
1961	3.224 1.264	2.838
1962 1963	0.847	1.101 0.731
1964	3.200	2.838
1965	1.587	1.408
1966	1.047	0.910
1967	1.785	1.555
1968	1.257	1.090
1969	1.182	1.027
1970	1.572	1.369
1971	1.696	1.507
1972	4.608	4.106
1973	2.084	1.788
1974	1.814	1.572
1975	2.611	2.298
1976	2.371	2.052

20071.6761.48020081.2771.10220090.9320.81120101.2581.11620111.1821.00620121.3061.13820131.3571.19120141.1200.97520152.5912.261	20081.2771.10220090.9320.81120101.2581.11620111.1821.00620121.3061.13820131.3571.19120141.1200.97520152.5912.26120161.1100.95420171.8521.62620182.0212.11920192.5192.15720201.6941.475	20081.2771.10220090.9320.81120101.2581.11620111.1821.00620121.3061.13820131.3571.19120141.1200.97520152.5912.26120161.1100.95420171.8521.62620182.0212.11920192.5192.157	1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006	0.761 2.056 1.584 1.736 1.297 1.066 1.678 1.638 2.102 0.950 1.718 0.962 0.904 1.209 1.731 1.400 1.523 1.579 0.930 1.651 1.139 1.576 1.349 1.311 0.932 2.618 1.134 1.532 3.058 1.289	0.677 1.830 1.411 1.522 1.134 0.937 1.470 1.434 1.838 0.827 1.484 0.843 0.786 1.045 1.536 1.236 1.303 1.396 0.821 1.441 0.990 1.370 1.154 1.144 0.813 2.273 0.988 1.331 2.639 1.107
	20171.8521.62620182.0212.11920192.5192.15720201.6941.475	20171.8521.62620182.0212.11920192.5192.15720201.6941.47520211.3401.17220221.8951.64320232.2251.90520243.9343.31020251.1470.97620261.3131.11520271.4421.242	2012 2013 2014 2015	1.306 1.357 1.120 2.591	1.138 1.191 0.975 2.261

Stream	Protection Durat	ion
Ranked	Annual Peaks for	Predeveloped and Mitigated. POC #1
Rank	Predeveloped	Mitigated
1	4.9784	4.3926
2	4.6077	4.1059
3	4.4073	3.7909
4	3.9340	3.3097
5	3.2244	2.8380
б	3.1996	2.8378
7	3.0676	2.7079
8	3.0578	2.6857
9	3.0514	2.6391
10	2.6308	2.3044
11	2.6176	2.2983
12	2.6106	2.2732
13	2.6028	2.2614
14	2.5907	2.2368
15	2.5191	2.1572
16	2.4281	2.1190
17	2.3852	2.1178
18	2.3712	2.0684
19	2.2254	2.0519
20	2.1857	1.9432
21	2.1835	1.9046
22	2.1467	1.8950
23	2.1255	1.8810
24	2.1024	1.8472
25	2.0842	1.8378
26	2.0559	1.8305

27	2.0350	1.8072
28	2.0307	1.7879
29	2.0211	1.7473
30	1.9528	1.7025
31	1.9121	1.6670
32	1.8953	1.6633
33	1.8884	1.6427
34 35	1.8663 1.8557	1.6259
36	1.8516	1.6052
37	1.8515	1.6024
38 39	1.8437 1.8135	1.5904
40 41	1.8057 1.7847	1.5716
42 43	1.7746 1.7569	1.5504 1.5380 1.5361
44 45 46	1.7486 1.7474 1.7359	1.5246
47 48	1.7326 1.7315	1.5213
49 50	1.7178 1.6955	1.4838
51	1.6940	1.4802
52	1.6779	1.4748
53	1.6763	1.4700
54	1.6515	1.4407
55	1.6383	1.4337
56	1.6289	1.4194
57	1.5866	1.4107
58	1.5843	1.4077
59	1.5832	1.3963
60	1.5793	1.3784
61 62	1.5758 1.5725	1.3704
63 64	1.5718 1.5654	1.3435
65	1.5601	1.3372
66	1.5404	1.3348
67	1.5325	1.3329
68	1.5291	1.3308
69	1.5233	1.3199
70 71	1.5084 1.4902	1.3064
72	1.4821	1.2924
73	1.4755	1.2898
74	1.4425	1.2415
75	1.4384	1.2361
76	1.4380	1.2340
77	1.3999	1.2223
78 79	1.3972 1.3922	1.2161
80 81 82	1.3825 1.3820	1.1939 1.1910
82	1.3571	1.1825
83	1.3487	1.1715

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	1.3400 1.3211 1.3134 1.3108 1.3060 1.2974 1.2893 1.2839 1.2767 1.2716 1.2703 1.2640 1.2577 1.2572 1.2385 1.2224	1.1539 1.1514 1.1442 1.1377 1.1338 1.1243 1.1157 1.1149 1.1146 1.1069 1.1020 1.1007 1.0900 1.0895 1.0772 1.0729
100 101	1.2147 1.2093	1.0667
102	1.2062	1.0347
103 104	1.2059 1.1868	1.0327 1.0309
105	1.1816	1.0269
106 107	1.1816 1.1727	1.0134 1.0119
108	1.1691	1.0111
109 110	1.1646 1.1542	1.0056 1.0056
111	1.1470	0.9920
112 113	1.1467 1.1398	0.9899 0.9882
114	1.1386	0.9875
115 116	1.1341 1.1275	0.9796 0.9764
117	1.1229	0.9758
118	1.1199	0.9748 0.9724
119 120	1.1141 1.1102	0.9724 0.9566
121	1.0934	0.9537
122 123	1.0896 1.0836	0.9522 0.9501
123	1.0661	0.9365
125	1.0596	0.9230
126 127	1.0470 1.0246	0.9098 0.8941
128	1.0110	0.8850
129	1.0069	0.8831
130 131	1.0068 0.9966	0.8790 0.8644
132	0.9902	0.8475
133 134	0.9652 0.9649	0.8437 0.8430
134	0.9615	0.8430
136	0.9498	0.8272
137 138	0.9404 0.9324	0.8205 0.8205
139	0.9322	0.8205
140	0.9298	0.8156

141	0.9274	0.8128
142	0.9268	0.8105
143	0.9226	0.7979
144	0.9040	0.7938
145	0.9033	0.7864
146	0.9001	0.7793
147	0.8981	0.7777
148	0.8859	0.7711
149	0.8695	0.7696
150	0.8485	0.7428
151	0.8474	0.7403
152	0.8425	0.7307
153	0.8229	0.7182
154	0.8207	0.7056
155	0.7611	0.6768
156	0.6485	0.5641
157	0.5947	0.5278
158	0.5501	0.4790

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

	_			
Flow(cfs)				ge Pass/Fail
0.6982	5134	3254	63	Pass
0.7271	4417	2808	63	Pass
0.7561	3822	2455	64	Pass
0.7850	3334	2147	64	Pass
0.8140	2940	1890	64	Pass
0.8429	2608	1659	63	Pass
0.8719	2331	1474	63	Pass
0.9008	2065	1313	63	Pass
0.9298	1865	1167	62	Pass
0.9588	1652	1038	62	Pass
0.9877	1488	924	62	Pass
1.0167	1333	819	61	Pass
1.0456	1206	726	60	Pass
1.0746	1095	653	59	Pass
1.1035	988	575	58	Pass
1.1325	886	510	57	Pass
1.1614	797	464	58	Pass
1.1904	705	414	58	Pass
1.2193	650	374	57	Pass
1.2483	588	331	56	Pass
1.2773	531	308	58	Pass
1.3062	477	281	58	Pass
1.3352	429	255	59	Pass
1.3641	401	240	59	Pass
1.3931	361	221	61	Pass
1.4220	326	210	64	Pass
1.4510	304	195	64	Pass
1.4799	284	181	63	Pass
1.5089	259	162	62	Pass
1.5378	246	149	60	Pass
	-	-		

1.5668	229	137	59	Pass
1.5957	208	129	62	Pass
1.6247	200	123	61	Pass
1.6537	189	110	58	Pass
1.6826	174	104	59	Pass
1.7116	164	96	58	Pass
1.7405	149	95	63	Pass
1.7695	136	87	63	Pass
1.7984	133	80	60	Pass
1.8274	123	74	60	Pass
1.8563	113	65	57	Pass
1.8853	105	61	58	Pass
1.9142	96	57	59	Pass
1.9432	92	53	57	Pass
1.9722	87	49	56	Pass
2.0011	83	46	55	Pass
2.0301	79	45	56	Pass
2.0590	69	42	60	Pass
2.0880	68	39	57	Pass
2.1169	63	38	60	Pass
2.1459	59	36	61	Pass
2.1748	56	34	60	Pass
2.2038	50	33	66	Pass
2.2327	47	33	70	Pass
2.2617	47	31	65	Pass
2.2907	45	29	64	Pass
2.3196	45	27	60	Pass
2.3486	42	26	61	Pass
2.3775	39	26	66	Pass
2.4065	37	26	70	Pass
2.4354	36	26	72	Pass
2.4644	36	26	72	Pass
2.4933	34	26	76	Pass
2.5223	33	25	75	Pass
2.5512	32	25	78	Pass
2.5802	32	23	71	Pass
2.6091	30	23	76	Pass
2.6381	26	22	84	Pass
2.6671	26	20	76	Pass
2.6960	26	19	73	Pass
2.7250	26	18	69	Pass
2.7539	26	18	69	Pass
2.7829	26	17	65	Pass
2.8118	26	17	65	Pass
2.8408	26	14	53	Pass
2.8697	26	14	53	Pass
2.8987	25	14	56	Pass
2.9276	25	13	52	Pass
2.9566	24	13	54	Pass
2.9856	23	13	56	Pass
3.0145	22	13	59	Pass
3.0435	21	12	57	Pass
3.0724	18	11	61	Pass
3.1014	17	11	64	Pass
3.1303	17	11	64	Pass
3.1593	17	10	58	Pass
3.1882	17	9	52	Pass

3.2172	15	9	60	Pass	
3.2461	14	9	б4	Pass	
3.2751	14	9	64	Pass	
3.3040	14	8	57	Pass	
3.3330	14	7	50	Pass	
3.3620	14	7	50	Pass	
3.3909	14	б	42	Pass	
3.4199	14	б	42	Pass	
3.4488	13	6	46	Pass	
3.4778	13	5	38	Pass	
3.5067	13	5	38	Pass	
3.5357	13	5	38	Pass	
3.5646	13	4	30	Pass	

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0.2178 acre-feet On-line facility target flow: 0.2341 cfs. Adjusted for 15 min: 0.2341 cfs. Off-line facility target flow: 0.134 cfs. Adjusted for 15 min: 0.134 cfs.

Wetla	Wetlands Input Volume				
	ge Annual V				
Series	Series 1: 501 POC 1 Predeveloped flow				
Series	s 2: 801 PC	OC 1 Mitig	ated flo	w	
Month	Series 1	Series 2	Percent	Pass/Fail	
Jan	2.7139	3.1756	117.0	Fail	
Feb	2.3393	2.7039	115.6	Fail	
Mar	1.8368	2.1861		Fail	
Apr	0.9724	1.2257	126.0	Fail	
May	0.5554	0.7341	132.2	Fail	
Jun	0.3728	0.5201	139.5	Fail	
Jul	0.1649	0.2446	148.3	Fail	
Aug	0.1827	0.2591	141.9	Fail	
Sep	0.3872	0.5626	145.3	Fail	
Oct	1.0255	1.3866	135.2	Fail	
Nov	2.3474	2.9013		Fail	
Dec	2.8709	3.4327	119.6	Fail	
Derr	Genier 1	denier 2	Deveent	Pass/Fail	
Day Jan1	0.0759	0.0928	122.2	Fail	
2	0.0959	0.1095			
3	0.0988	0.1122	113.5		
4	0.0781	0.0942	120.6	Fail	
5 6	0.0825	0.0973	117.9	Pass	
-	0.0876		115.8	Pass	
7	0.0859	0.1011	117.7	Pass	
8	0.0784	0.0953	121.6	Fail	
9	0.0878	0.1034	117.8	Pass	
10	0.0866	0.1020	117.7	Pass	
11	0.0873	0.1026	117.6		
12	0.0799	0.0957	119.7		
13	0.1032	0.1160	112.4	Pass	

14	0.1100	0.1227	111.5	Pass
15	0.0968	0.1114	115.0	Pass
16	0.0958	0.1110	115.9	Pass
17	0.0942	0.1085	115.1	Pass
18	0.1084	0.1203	111.0	Pass
19	0.1033	0.1158	112.1	Pass
20	0.0842	0.0985	116.9	Pass
21	0.0750	0.0910	121.3	Fail
22	0.0923	0.1068	115.7	Pass
23	0.0994	0.1136	114.3	Pass
24	0.0912	0.1068	117.1	Pass
25	0.0775	0.0943	121.7	Fail
26	0.0879	0.1031	117.3	Pass
20	0.0785	0.0941		Pass
			119.9	
28	0.0681	0.0846	124.3	Fail
29	0.0615	0.0782	127.1	Fail
30	0.0806	0.0941	116.8	Pass
31	0.0913	0.1039	113.9	Pass
Feb1	0.0910	0.1034	113.7	Pass
2	0.0774	0.0916	118.3	Pass
3	0.0727	0.0873	120.1	Fail
4	0.0660	0.0809	122.4	Fail
5	0.0977	0.1077	110.3	Pass
6	0.0760	0.0898	118.1	Pass
7	0.0874	0.0998	114.2	Pass
8	0.0770	0.0905	117.6	Pass
9	0.0691	0.0824	119.1	Pass
10	0.0697	0.0823	118.1	Pass
11	0.0796	0.0912	114.6	Pass
12	0.0811	0.0943	116.3	Pass
13	0.0852	0.0983	115.4	Pass
14	0.0733	0.0881	120.3	Fail
15	0.0842	0.0966	114.7	Pass
16	0.1131	0.1220	107.9	Pass
17	0.1121	0.1226	109.3	Pass
18	0.1113	0.1219	109.6	Pass
19	0.0916	0.1047	114.3	Pass
20	0.0749	0.0901	120.2	Fail
21	0.0756	0.0895	118.4	Pass
22	0.0714	0.0854	119.6	Pass
23	0.0653	0.0800	122.5	Fail
	0.0874			
24		0.0992	113.5	Pass
25	0.0750	0.0895	119.3	Pass
26	0.0868	0.0987	113.7	Pass
27	0.0788	0.0917	116.3	Pass
28	0.0720	0.0850	118.0	Pass
29	0.0596	0.0748	125.5	Fail
Mar1	0.0657	0.0801	121.9	Fail
2	0.0650	0.0785	120.7	Fail
3	0.0669	0.0803	119.9	Pass
4	0.0625	0.0303	122.2	Fail
5	0.0702	0.0820	116.9	Pass
6	0.0530	0.0672	126.8	Fail
7	0.0599	0.0727	121.4	Fail
8	0.0746	0.0852	114.2	Pass
9	0.0640	0.0756	118.2	Pass
10	0.0602	0.0722	119.8	Pass

11	0.0651	0.0766	117.7	Pass
12	0.0689	0.0802	116.4	Pass
13	0.0589	0.0704	119.6	Pass
14	0.0629	0.0731	116.3	Pass
15	0.0556	0.0672	120.9	Fail
16	0.0488	0.0608	124.6	Fail
17	0.0497	0.0607	122.2	Fail
18	0.0414	0.0526	127.0	Fail
19	0.0467	0.0559	119.7	Pass
20	0.0472	0.0558	118.4	Pass
21	0.0531	0.0619	116.6	Pass
22	0.0750	0.0821	109.5	Pass
23	0.0587	0.0697	118.8	
				Pass
24	0.0574	0.0682	118.7	Pass
25	0.0518	0.0627	121.0	Fail
26	0.0641	0.0734	114.5	Pass
27	0.0542	0.0650	120.0	Fail
28	0.0589	0.0686	116.6	Pass
29	0.0637	0.0732	115.0	Pass
30	0.0539	0.0636	117.9	Pass
31	0.0497	0.0597	120.1	Fail
Apr1	0.0373	0.0491	131.7	Fail
2	0.0321	0.0442	137.6	Fail
3	0.0371	0.0472	127.2	Fail
4	0.0445	0.0525	117.9	Pass
5	0.0397	0.0484	121.7	Fail
6	0.0347	0.0426	122.9	Fail
7	0.0397	0.0471	118.8	Pass
8	0.0480	0.0552	115.0	
				Pass
9	0.0444	0.0532	119.9	Pass
10	0.0377	0.0475	126.0	Fail
11	0.0429	0.0526	122.7	Fail
12	0.0357	0.0465	130.1	Fail
13	0.0263	0.0376	142.9	Fail
14	0.0259	0.0355	136.8	Fail
15	0.0196	0.0291	148.0	Fail
16	0.0287	0.0360	125.7	Fail
17	0.0221	0.0294	133.3	Fail
18	0.0245	0.0308	125.8	Fail
19	0.0388	0.0438	113.0	Pass
20	0.0289	0.0360	124.5	Fail
21	0.0262	0.0329	125.8	Fail
22	0.0313	0.0375	119.6	Pass
23	0.0411	0.0481	117.2	Pass
24	0.0289	0.0380	131.6	Fail
25	0.0174	0.0263	151.3	Fail
26	0.0278	0.0347	125.0	Fail
27	0.0214	0.0292	136.8	Fail
28	0.0208	0.0283	136.3	Fail
29	0.0198	0.0270	136.2	Fail
30	0.0262	0.0322	122.9	Fail
May1	0.0361	0.0412	114.1	Pass
2	0.0263	0.0335	127.5	Fail
3	0.0239	0.0313	130.8	Fail
4	0.0302	0.0313	121.6	Fail
5	0.0268	0.0343	128.2	Fail
6	0.0207	0.0283	137.1	Fail

7	0.0188	0.0262	139.0	Fail
8	0.0158	0.0228	144.2	Fail
9	0.0106	0.0169	159.2	Fail
10	0.0141	0.0198	140.7	Fail
11	0.0155	0.0208	134.6	Fail
12	0.0162	0.0213	131.1	Fail
13	0.0199	0.0251	126.0	Fail
14	0.0126	0.0189	149.9	Fail
15	0.0136	0.0189	138.5	Fail
16	0.0208	0.0256	123.0	Fail
17	0.0146	0.0198	135.5	Fail
18	0.0129	0.0181	140.1	Fail
19	0.0156	0.0205	131.7	Fail
20	0.0148	0.0205	138.1	Fail
21	0.0129	0.0184	142.1	Fail
22	0.0135	0.0184	136.5	Fail
23	0.0155	0.0205	127.7	Fail
24	0.0136	0.0188	138.3	Fail
25	0.0158	0.0212	133.8	Fail
25	0.0158	0.0212	132.3	Fail
20	0.0132			Fail
		0.0190	143.4	
28	0.0154	0.0204	132.6	Fail
29	0.0188	0.0236	125.6	Fail
30	0.0142	0.0203	142.5	Fail
31	0.0185	0.0248	133.8	Fail
Jun1	0.0194	0.0255	131.3	Fail
2	0.0134	0.0195	145.5	Fail
3	0.0126	0.0177	140.3	Fail
4	0.0171	0.0225	131.5	Fail
5	0.0158	0.0212	134.5	Fail
6	0.0161	0.0218	135.6	Fail
7	0.0157	0.0212	135.4	Fail
8	0.0166	0.0219	131.4	Fail
9	0.0185	0.0240	130.1	Fail
10	0.0121	0.0179	148.8	Fail
11	0.0137	0.0191	139.9	Fail
12	0.0103	0.0163	159.0	Fail
13	0.0095	0.0150	157.8	Fail
14	0.0142	0.0184	129.8	Fail
15	0.0110	0.0157	143.4	Fail
16	0.0136	0.0185	135.7	Fail
17	0.0086	0.0140	162.7	Fail
18	0.0087	0.0133	151.9	Fail
19	0.0073	0.0114	155.9	Fail
20	0.0126	0.0160	127.0	Fail
21	0.0089	0.0131	146.7	Fail
22	0.0054	0.0095	175.9	Fail
23	0.0182	0.0215	117.7	Pass
24	0.0090	0.0139	154.9	Fail
25	0.0094	0.0142	151.0	Fail
26	0.0083	0.0128	153.2	Fail
27	0.0077	0.0119	153.3	Fail
28	0.0073	0.0107	147.4	Fail
29	0.0133	0.0167	125.7	Fail
30	0.0096	0.0136	142.4	Fail
Jul1	0.0099	0.0140	142.2	Fail
2	0.0083	0.0126	151.3	Fail

3	0.0056	0.0095	171.3	Fail
4	0.0066	0.0100	151.8	Fail
5	0.0087	0.0120	137.5	Fail
6	0.0033	0.0066	196.7	Fail
7	0.0111	0.0136	122.6	Fail
8	0.0087	0.0125	143.3	Fail
9	0.0036	0.0079	222.3	Fail
10	0.0057	0.0087	151.4	Fail
11	0.0054	0.0079	146.3	Fail
12	0.0117	0.0135	115.4	Pass
13	0.0049	0.0074	151.4	Fail
14				
	0.0079	0.0102	128.8	Fail
15	0.0072	0.0099	138.0	Fail
16	0.0058	0.0093	159.2	Fail
17	0.0071	0.0101	142.1	Fail
18	0.0046	0.0079	171.1	Fail
19	0.0034	0.0061	180.5	Fail
20	0.0040	0.0063	158.4	Fail
21	0.0030	0.0049	166.0	Fail
22	0.0010	0.0026	248.9	Fail
23	0.0015	0.0027	174.7	Fail
24	0.0018	0.0028	153.9	Fail
25	0.0049	0.0058	118.9	Pass
26	0.0037	0.0050	135.9	Fail
27	0.0031	0.0047	151.7	Fail
28	0.0015	0.0032	213.3	Fail
29	0.0007	0.0019	265.1	Fail
30	0.0006	0.0013	236.4	Fail
31	0.0016	0.0021	132.1	Fail
Aug1	0.0019	0.0027	139.3	Fail
2	0.0046	0.0056	121.0	Fail
3	0.0050	0.0063	124.8	Fail
4	0.0021	0.0039	188.4	Fail
5	0.0033	0.0047	144.1	Fail
6	0.0035	0.0050	145.2	Fail
			141.2	Fail
7	0.0039	0.0056		
8	0.0034	0.0052	153.2	Fail
9	0.0016	0.0032	204.9	Fail
10	0.0045	0.0057	127.3	Fail
11	0.0018	0.0034	191.8	Fail
12	0.0051	0.0067	132.1	Fail
13	0.0034	0.0052	154.1	Fail
14	0.0075	0.0090	120.5	Fail
15	0.0061	0.0086	139.8	Fail
16	0.0078	0.0106	136.3	Fail
17	0.0077	0.0109	141.2	Fail
18	0.0028	0.0064	225.7	Fail
19	0.0060	0.0086	142.6	Fail
20	0.0045	0.0072	161.5	Fail
21	0.0059	0.0083	139.8	Fail
22	0.0051	0.0077	152.0	Fail
23	0.0120	0.0142	117.9	Pass
24	0.0091	0.0127	139.5	Fail
25	0.0087	0.0124	142.5	Fail
26	0.0123	0.0160	130.3	Fail
27	0.0115	0.0158	137.4	Fail
28	0.0145	0.0196	135.2	Fail

29	0.0064	0.0123	191.9	Fail
30	0.0092	0.0138	149.0	Fail
31	0.0185	0.0221	119.4	Pass
Sep1	0.0168	0.0219	130.5	Fail
2	0.0127	0.0185	145.5	Fail
3	0.0069	0.0132	192.0	Fail
4	0.0119	0.0176	147.4	Fail
5	0.0090	0.0147	163.3	Fail
6	0.0057	0.0114	199.4	Fail
7	0.0083	0.0130	157.3	Fail
8	0.0090	0.0136	151.0	Fail
9	0.0121	0.0162	133.5	Fail
10	0.0096	0.0149	155.6	Fail
11	0.0050	0.0099	199.9	Fail
12	0.0081	0.0117	144.3	Fail
13	0.0079	0.0115	145.3	Fail
14	0.0166	0.0204	123.2	Fail
15	0.0142	0.0196	137.8	Fail
16	0.0138	0.0195	141.3	Fail
17	0.0222	0.0281	126.5	Fail
18	0.0129	0.0206	159.7	Fail
19	0.0187	0.0257	137.3	Fail
20	0.0138	0.0213	154.8	Fail
21	0.0153	0.0225	147.1	Fail
22	0.0176	0.0242	138.0	Fail
23	0.0204	0.0265	129.6	Fail
23 24	0.0124	0.0203	159.5	Fail
25	0.0086	0.0159	185.4	Fail
26	0.0177	0.0237	133.3	Fail
27	0.0197	0.0269	136.9	Fail
28	0.0133	0.0215	162.0	Fail
29	0.0088	0.0164	185.5	Fail
30	0.0201	0.0260	129.5	Fail
Oct1	0.0188	0.0250	133.0	Fail
2	0.0169	0.0238	141.3	Fail
3	0.0142	0.0214	151.4	Fail
4	0.0210	0.0283	134.6	Fail
5	0.0197	0.0278	141.2	Fail
6	0.0386	0.0455	118.0	Pass
7	0.0296	0.0389	131.6	Fail
8	0.0308	0.0409	132.7	Fail
9	0.0300	0.0399	132.8	Fail
10	0.0282	0.0404	143.3	Fail
11	0.0242	0.0361	149.3	Fail
12	0.0232	0.0354	152.4	Fail
13	0.0240	0.0365	151.8	Fail
14	0.0245	0.0361	147.5	Fail
15	0.0211	0.0319	151.1	Fail
16	0.0259	0.0356	137.8	Fail
17	0.0336	0.0423	125.7	Fail
18	0.0358	0.0456	127.3	Fail
19	0.0374	0.0492	131.5	Fail
20	0.0484	0.0492	125.5	Fail
				Fail
21	0.0383	0.0537	140.3	
22	0.0323	0.0478	147.8	Fail
23	0.0418	0.0565	135.0	Fail
24	0.0429	0.0580	135.3	Fail

~-	0 0 4 5 0	0 0 6 1 5		
25	0.0458	0.0615	134.4	Fail
26	0.0591	0.0738	124.8	Fail
27	0.0536	0.0701	130.8	Fail
28	0.0496	0.0673	135.5	Fail
29	0.0437	0.0618	141.3	Fail
30	0.0529	0.0692	130.9	Fail
31	0.0525	0.0687	130.9	Fail
Nov1	0.0532	0.0690	129.6	Fail
2	0.0615	0.0771	125.4	Fail
3	0.0637	0.0808	126.8	Fail
4	0.0549	0.0750	136.7	Fail
5	0.0504	0.0708	140.3	Fail
6	0.0609	0.0790	129.9	Fail
7	0.0474	0.0672	141.8	Fail
8	0.0604	0.0775	128.2	Fail
9	0.0640	0.0811	126.7	Fail
10	0.0792	0.0954	120.5	Fail
11	0.0732	0.0918	125.3	Fail
12	0.0761	0.0941	123.7	Fail
13	0.0809	0.0992	122.6	Fail
14	0.0709	0.0992	127.3	Fail
14			127.3	Fail
15	0.0766	0.0955		
10	0.0878	0.1059	120.6 124.3	Fail
18	0.0822	0.1021		Fail
	0.0813	0.1016	124.9	Fail
19	0.0938	0.1121	119.5	Pass
20	0.0765	0.0959	125.4	Fail
21	0.0929	0.1098	118.2	Pass
22	0.0930	0.1113	119.6	Pass
23	0.1237	0.1386	112.1	Pass
24	0.1206	0.1382	114.6	Pass
25	0.1137	0.1325	116.6	Pass
26	0.0861	0.1083	125.8	Fail
27	0.0867	0.1085	125.2	Fail
28	0.0795	0.1016	127.8	Fail
29	0.1044	0.1229	117.7	Pass
30	0.0977	0.1180	120.8	Fail
Dec1	0.1026	0.1234	120.3	Fail
2	0.1123	0.1325	118.0	Pass
3	0.1047	0.1256	119.9	Pass
4	0.1077	0.1284	119.2	Pass
5	0.1033	0.1252	121.1	Fail
6	0.0932	0.1165	125.0	Fail
7	0.0920	0.1143	124.3	Fail
8	0.0782	0.1016	130.0	Fail
9	0.0876	0.1081	123.4	Fail
10	0.0957	0.1146	119.8	Pass
11	0.1003	0.1179	117.5	Pass
12	0.0819	0.1017	124.3	Fail
13	0.0933	0.1103	118.2	Pass
14	0.0920	0.1085	117.9	Pass
15	0.0898	0.1056	117.6	Pass
16	0.0976	0.1127	115.5	Pass
17	0.0832	0.1014	121.9	Fail
18	0.0756	0.0939	124.2	Fail
19	0.0973	0.1118	114.9	Pass
20	0.0982	0.1138	115.9	Pass

21	0.1011	0.1174	116.2	Pass
22	0.0887	0.1059	119.5	Pass
23	0.0830	0.1010	121.7	Fail
24	0.0811	0.0988	121.9	Fail
25	0.0925	0.1072	115.9	Pass
26	0.0975	0.1108	113.7	Pass
27	0.0843	0.0999	118.4	Pass
28	0.0887	0.1035	116.7	Pass
29	0.0993	0.1136	114.4	Pass
30	0.0712	0.0893	125.4	Fail
31	0.0822	0.0982	119.5	Pass

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2020; All Rights Reserved.

APPENDIX D

Reports

Geotechnical Engineer's Report	D-1
Critical Area Assessment	D-2

GEOTECHNICAL ENGINEER'S REPORT

October 23, 2020 ES-5559.03

Earth Solutions NW LLC

Geotechnical Engineering, Construction Observation/Testing and Environmental Services

Mr. Peter Chen 4709 Memory Lane West University Place, Washington 98488

Subject: Geotechnical Addendum – Response to Comments Proposed Sunset Pointe Residential Development 2301 – 23rd Street Southeast Puyallup, Washington

Reference: Earth Solutions NW, LLC Geotechnical Engineering Study ES-5559, updated June 24, 2019

> Earth Solutions NW, LLC Response to Development Review Team Letter ES-5559.01, dated October 31, 2018

CES NW, Inc. Slope Exhibit

City of Puyallup Development Review Team (DRT) Letter Dated November 21, 2019

Greetings, Mr. Chen:

At the request of CES NW, Inc., Earth Solutions NW, LLC (ESNW), has prepared this geotechnical addendum for the subject project. Our scope of services included project team discussions, subsurface exploration, infiltration testing, document review, and geotechnical engineering, of which were completed to address jurisdictional comments provided in the referenced DRT letter. This addendum letter has been structured to provide updated information with respect to project intentions and subsurface soil and groundwater conditions. Following this introductory narrative are ESNW response to the DRT letter comments.

Project Description

The site consists of one tax parcel (Pierce County Parcel No. 0420353027) totaling about 9.09 acres. The approximate site location is depicted on Plate 1 (Vicinity Map). Overall site topography consists of a central low area that trends roughly north to south, which likely represents a former, post-glacial drainage channel or similar geomorphological feature. We understand the project is pursing construction of a residential plat that will consist of 18 home building sites and infrastructure improvements. The lots will be located within the topographically higher areas, where gradients are gentler. Infiltration is considered infeasible from a geotechnical standpoint based on the conditions encountered during our various subsurface explorations and recent insitu infiltration testing, and therefore, will not be pursued. As such, detention and targeted dispersion will likely be pursued for stormwater management.

Surface

The subject site was previously developed to some degree; as evidenced by remnant foundation elements and rubble fill present within the southern site area. The fill encountered across the site also suggests historic grade modifications which altered the natural topography. Current topographic conditions vary across the site, with some areas being relatively level (Lots 1 - 7 and 15 - 18). The remaining lots either partially or fully contain some slope features. Three pond areas which have been designated as wetlands (A-C) are present within the central low area of the site, effectively separating Lots 1 through 8 from the rest of the development. In total, about 30 feet of elevation change occurs within the confines of the property. However, no proposed lot area contains more than 22 feet of elevation change. The site is heavily vegetated with grass, brush, brambles, and tree growth.

Subsurface

ESNW previously performed three separate subsurface investigations at the site. The site investigations were performed on October 24, 2017, May 15, 2019, and January 22, 2020. Each exploration was conducted using equipment and an operator retained by our firm and completed to both classify soil and groundwater conditions as well as perform in-situ infiltration testing. Please refer to the test pit logs provided in Appendix A for a more detailed description of subsurface conditions. Representative soil samples collected at the test pit locations were analyzed in general accordance with both Unified Soil Classification System (USCS) and USDA methods and procedures.

It should be noted that TP-14 through TP-18 were performed in an area that is no longer included in the proposed development. As such, subsurface soil and groundwater conditions encountered at these locations are not directly relevant to the proposed development area.

Topsoil and Fill

Topsoil was encountered in the upper approximately 1 to 18 inches of existing grades. The topsoil was characterized by a dark brown color, the presence of fine organic material, and small root intrusions. Fill was observed at nine test pit locations and generally consisted of silty sand (with or without gravel), silt, and silt with sand. Near surface fill consisting of crushed to clean rock was encountered at TP-1, -2, and -202. Encountered fill was characterized as loose to medium dense and moist to wet condition extending in exposure depths from about 0.5 to 13 feet below the existing ground surface (bgs). We did not fully penetrate the fill at test pit locations TP-3 and TP-103.

Native Soil

Underlying topsoil and fill, the encountered native soils were generally considered representative of glacial drift deposits. In our opinion, the predominate native soil type should be considered silty sand with or without gravel and silt with varying fines percentages (USCS: SM and ML, respectively). However, areas and depositional lenses of poorly graded sand (USCS: SP) should be anticipated across the site. The native soils were typically encountered in a medium dense to dense and moist to wet condition extending to a maximum exploration depth of about 16 feet bgs.

Groundwater

Perched groundwater seepage was encountered at TP-4 during our fieldwork completed on October 24, 2017, and was exposed at a depth of about four feet bgs. The seepage flow was characterized as heavy at that time. Groundwater seepage was not encountered during our May 2019 or January 2020 exploration. Groundwater seepage zones are common within glacial deposits and may develop within permeable lens or atop denser deposits. Seepage rates and elevations can be influenced by precipitation duration/amounts, the time of year, and soil conditions.

Geologically Hazardous Areas

In preparation of this report, we reviewed applicable city of Puyallup mapping and geologically hazardous area code section 21.06. Our evaluation is as follows.

Landslide Hazard

As defined in Puyallup Municipal Code (PMC) 21.06.1210, landslide and erosion hazard areas include those identified by the U.S. Department of Agriculture Natural Resources Conservation Service as having a moderate to severe, severe, or very severe erosion hazard because of natural characteristics, including vegetative cover, soil texture, slope, gradient, and rainfall patterns, or human-induced changes to natural characteristics. Landslide and erosion hazard areas include areas with the following characteristics:

- Areas that have shown mass movement during the Holocene epoch (from 10,000 years ago to the present) or that are underlain or covered by mass wastage debris of that epoch;
- Slopes that are parallel or subparallel to planes of weakness (such as bedding planes, joint systems, and fault planes) in subsurface materials;
- Slopes having gradients steeper than 80 percent subject to rock fall during seismic shaking;
- Areas potentially unstable because of stream incision or stream bank erosion;
- Areas located in a canyon, ravine, or on an active alluvial fan, presently or potentially subject to inundation by debris flows or flooding;
- Any area with a slope of 40 percent or steeper and a vertical relief of 10 or more feet, except areas composed of consolidated rock and properly engineered manmade slopes/retained fill. A slope is delineated by establishing its toe and top and measured by averaging the inclination over at least 10 feet of vertical relief;
- Areas with a severe limitation for building development because of slope conditions, according to the Natural Resource Conservations Service, and;
- Areas meeting all three of the following criteria: (A) slopes steeper than 15 percent, except that slopes of less than 15 percent may be considered erosion hazard areas if they have certain unstable soil and drainage characteristics; (B) hillsides intersecting geologic contacts with a relatively permeable sediment overlying a relatively impermeable sediment or bedrock; and (C) wet season springs or ground water seepage.

Based on the conditions encountered during our subsurface explorations, review of available topographic information, and review of the referenced slope schematic, it appears that the majority of the proposed home building sites do not contain a landslide hazard, as defined by the PMC. Although there are areas onsite which do contain slope gradients of 40 percent or more, these are generally less than 10 feet in height and therefore do not meet the definition of a landslide hazard per PMC code. Slopes which do extend above 10 feet in elevation change appear to primarily be within tract areas. However, it does appear that Lots 10 and 15 either partially contain, or are directly adjacent to, a slope which may be characterized as a landslide hazard.

PMC 21.06.1240.1a.iii, suggests that a buffer equal to the height of the slope (H) divided by 2 be applied for slopes with a vertical elevation of more than 10 feet but less than 25 feet, regardless of slope percent provided that no other factors are present that pose a slope stability risk. Based on our review of the referenced scope schematic, this code consideration would be applicable to Lots 10 and 15. However, this code section does acknowledge the buffer may be waived for isolated slopes that are limited in extent and predominately less than 10 feet in height. Given the limited and isolated occurrences of the sloping areas that meet the PMC definition of a landslide hazard area (40 percent gradient), it is our opinion these slopes not be considered a regulated hazard and meet the criteria for an exemption, as allowed within PMC 21.06.1240.1a.iii. Although lot grading plans have yet to be developed, it is our opinion that general mass grading will allow for the removal of unsuitable soil (native or fill) and restoration with suitable structural fill, where necessary. In our opinion, the proposed development provides an opportunity for general improvements to soil stability and the site hydrologic regime. Although the PMC suggests that minimizing alterations to existing slope features is preferred over mass grading, it may be considered advantageous for both structural support and soil stability characteristics to alter areas/slopes that contain unsuitable soils and install improved drainage measures. Slope fills (placed in accordance with this report) as well as the use of retaining walls to achieve design grades may also be considered feasible from a geotechnical standpoint.

The PMC also characterizes landslide hazards as areas that have a combination of slopes more than 15 percent, that have permeable soils overlying impermeable soils, and wet season springs and groundwater seepage. The majority of the proposed development area is relatively level to gently sloping. There are areas of the site that do exceed 15 percent, however, based on our exploration, the majority of these areas do not meet the additional soil and groundwater requisite conditions to be considered a landslide hazard.

One area of seepage was identified during our subsurface explorations (TP-4, October 24, 2017). In this respect, the seepage zone is considered isolated, rather than a pervasive or chronic site condition. It is possible for groundwater seepage zones to develop elsewhere on site but will likely be seasonal and a result of yearly rainfall totals. From a stability standpoint, the development of a seepage zone is not considered a direct indication of instability, but rather the natural lateral migration of subsurface water. We understand stormwater flows will be managed with a detention vault in conjunction with individual lot dispersion devices, where feasible. In this regard, surface water and erosion that may impact adjacent properties either during or post construction will be adequately mitigated. Where encountered during construction, seepage zones can adequately be mitigated via passive drainage elements and Best Management Practice (BMPs) measures.

In general, the development areas of the site do not contain a landslide hazard. Although some sites area may meet the PMC criteria for landslide hazard, they are isolated and limited occurrence, which meets the requirements for an exemption per PMC 21.06.1240.1a.iii. In our opinion, the site does not contain a hazard that would preclude successful development. However, remediation of unsuitable existing soils and groundwater drainage improvements will likely be necessary to assist in maintaining or improving post-construction soil stability. As such, ESNW should be present during construction activities to help identify areas of unsuitable soil and groundwater seepage and provide such mitigation recommendations. From a geotechnical standpoint, provided the recommendations of the referenced report and those contained within this letter are incorporated into the project designs, it is our opinion, based on our understanding of the current scope, the project can be developed as is currently proposed.

Erosion Hazard

As delineated in Puyallup Municipal Code (PMC) 21.06.1210, erosion hazard areas include those identified by the U.S. Department of Agriculture Natural Resources Conservation Service as having a moderate to severe, severe, or very severe erosion hazard because of natural characteristics, including vegetative cover, soil texture, slope, gradient, and rainfall patterns, or human-induced changes to natural characteristics.

Site soils are considered to have moderate to severe erosion potential when exposed to precipitation. In our opinion, provided appropriate temporary and permanent erosion and sediment control (ESC) measures are incorporated into final designs, the potential for erosion will remain low both during and after construction. Site BMPs and other means of sediment and surface flow control measures should be actively maintained during construction to ensure proper performance and functions.

Provided the above recommendations and considerations are include with the construction plan and sequence, it is our opinion that the proposed development will not adversely affect soil stability on adjacent properties.

Please note that our evaluation and corresponding lot recommendations are based on plans and site layouts made available to ESNW during report preparation. If site layout plans change, ESNW should be notified to provide updated recommendations.

Response to Comments

As requested, ESNW has prepared the following sections in response to the referenced DRT letter issued by the City of Puyallup.

Planning Review – Page 2 of 11

City Comment 5 – In a separate memo from your Geotech, please address the site development and the standards of PMC 21.06.1230.2(A-F).

PMC 21.06.1230.2.a. The proposed development shall not decrease the factor of safety for landslide occurrences below the limits of 1.5 for static conditions and 1.2 for dynamic conditions. Analysis of dynamic conditions shall be based on a minimum horizontal acceleration as established by the current version of the International Building Code.

ESNW Response – We understand that grading plans for the proposed roadway have been developed; however, mass/lot grading plans will not be completed until the time of construction. ESNW can provide stability analyses once plans have been developed. However, as stated above in our landslide hazard evaluation, the proposed development provides an opportunity for general improvements to soil stability and the site hydrologic regime through removal or unsuitable soils, engineered fills, and drainage improvements. In general, these are considered advantageous for soil stability.

PMC 21.06.1230.2.b. The alteration will not increase the threat of the geological hazard to the project site or adjacent properties beyond predevelopment conditions, nor shall it result in the need for increased buffers on neighboring properties.

ESNW Response – As with similar residential developments, the proposed construction will include drainage improvements, stormwater management systems, and earthwork activities, will likely include engineered slope and structural fill placement and compaction. As such, it is our opinion that site stability characteristics will not be adversely affected by the proposed project. Additionally, it is our opinion the proposed project will not result in the need for increased buffers on adjacent properties.

PMC 21.06.1230.2.c. The development will not increase or concentrate surface water discharge or sedimentation to adjacent sites beyond predevelopment conditions.

ESNW Response – Temporary erosion control measures and best management practices (BMPs) will be used during construction. Provided they are adequately maintained, they should provide sufficient mitigation for control of surface water flows and potential sediment migration. Post construction, the stormwater management system will provide surface water flow control while permanent landscaping will help prevent sediment migration.

PMC 21.06.1230.2.d. Structures and improvements shall be located to minimize alterations to the natural contour of the slope and foundations shall be tiered where possible to conform to existing topography.

ESNW Response – Where feasible, foundations should be stepped to follow existing contours to minimize alteration to the existing topography. It is also our opinion that the use of engineered retaining walls and fill slopes (constructed in accordance with our referenced report) are also a feasible means of establishing design grades.

PMC 21.06.1230.2.e. The use of engineered retaining walls that allow the maintenance of existing natural slope area is preferred over graded artificial slopes. Engineered retaining walls shall not exceed 15 feet in height and preferably should be less than eight feet in height. Riprap retaining walls should not exceed eight feet in height. Wherever possible, retaining walls should be designed as structural elements of the building foundation.

ESNW Response – The use of mechanically stabilized earth (MSE) walls are considered feasible for the project. ESNW can provide MSE wall designs and supporting calculations, upon request.

PMC 21.06.1230.2.f. Development shall be designed to minimize impervious lot coverage. Use of common access drives and utility corridors is encouraged.

ESNW Response – Geotechnical response not applicable.

Engineering Review – Page 4 of 11

City Comment 2 – The city will require the applicant to depict the toe of the slope on the Kodiac estates. If site access cannot be grained, Lidar contours may be used to supplement survey information. The critical area report must individually address performance standards from PMC 21.06.1230. As part of this, the geotechnical engineer must specifically address impacts to adjacent properties.

ESNW Response – We have provided a response to the comment (PMC 21.06.1230.2) in the above section. The response was prepared using information and site design available to us.

City Comment 5 – Small-scale PIT tests and continuous seasonal high groundwater monitoring in accordance with the 2014 DOE manual will be required prior to approval of the preliminary plat.

ESNW Response – ESNW performed two small-scale PIT tests on January 22, 2020. The locations of the PITs are depicted on the attached Plate 2 and are denoted as TP-201 and TP-202. The testing was intended to provide a general determination of site infiltration feasibility given that our previous recommendation that the site not pursue infiltration. The PITs were performed at a depth of about four feet bgs within undisturbed native soils. At this depth silt (USCS: ML) was encountered at each testing location. At the time of our testing, a measured rate of zero (0) inches per hour (iph) was recorded during the soak.

In accordance with our previous evaluations, infiltration is not considered feasible for the proposed project. Although areas of sand were locally encountered, they are not prevalent enough to be considered a feasible targeted media that would facilitate infiltration. In addition, the measured rate of 0 iph from our January 2020 testing further suggests the infeasibly of site soils to be used for infiltration purposes. As such, infiltration is not considered feasible from a geotechnical standpoint.

Geotechnical/Critical Areas Assessment/Stormwater Report Review – Page 5 of 11

City Comment 1 – The 06/2019 geotechnical report appears to have a different lot numbering than the civil plans. Please update so that both the plans and report have the same lot numbering. Further, the body of the geotechnical report appears to be referencing a different lot numbering than the report exhibit. Specifically, the updated geotechnical report states that lots 9, 10, and 15 meet the landslide hazard criteria of having slopes greater than 40 percent with at least 10 feet of vertical elevation relief, yet these lots do not appear to meet that criteria. Please verify.

ESNW Response – The attached Plate 2 reflects the current site layout designs and lot numbering. The reference slope schematic provided to us had been generated to display slopes of 40 percent or greater located on site. In general, slopes of 40 percent or greater are confined within wetland or tract areas and will largely not be disturbed as part of site development activities. However, minor areas of 40 percent or greater slopes that extend 10 or more vertical feet have been shown to be partially within or extend onto Lots 10 and 15. However, given the limited extent and isolated occurrence, it is our opinion these areas may pursue an exemption in accordance with PMC 21.06.1240.1a.iii.

City Comment 2 – The geotechnical study does not include any infiltration testing to support its claim that infiltration is infeasible. In addition, other than the heavy perched groundwater seepage observed in TP-4, the report offers little discussion on the expected groundwater conditions. Evidence of iron oxide staining in many test pits along with Habitat Technologies observation of "numerous groundwater seeps" and fully "fully saturated conditions" in their site reconnaissance suggests that there is more to elaborate on with regards to groundwater. Prior to preliminary plat approval, we weather infiltration and groundwater testing in accordance with the 2012 SWMMWW will be require to support stormwater feasibility/infeasibility.

ESNW Response – ESNW performed two small PIT tests on January 22, 2020. The locations of the PITs are depicted on the attached Plate 2 and are denoted as TP-201 and TP-202. Because infiltration has not been proposed and no designs were produced, the testing was intended to provide a general determination of site infiltration feasibility. The PITs were performed at a depth of about four feet bgs within undisturbed native soil. Silt (USCS: ML) was encountered at the testing depth at each location. At the time of our testing, a measured rate of zero (0) inches per hour (iph) was recorded during the soak. At that time the testing was terminated, given the measured rate of 0 iph.

In accordance with our previous evaluations, infiltration is not considered feasible for the proposed project. Although areas of sand were locally encountered, they are not prevalent enough to be considered representative of the overall site conditions or a feasible targeted media that would facilitate infiltration. In addition, the measured rate of 0 iph from our January 2020 testing further indicates the infeasibly of site soils to be used for infiltration purposes. As such, infiltration is not considered feasible from a geotechnical standpoint.

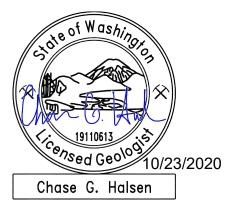
Groundwater seepage was only encountered at TP-4 during our October 2017 exploration. Perched groundwater seepage is common within glacially deposited sediments. The presence and flow rate of a perched seepage zone can depend precipitation duration and amounts, the time of year, and soil types present within the substratum. In this respect, it can be difficult to determine when and where a perched seepage may develop. Although iron oxide staining was encountered at various test pit locations, the presence is not a clear and accurate indication of current site groundwater conditions.

City Comment 3 – The geotechnical study does not address the presence of wetland and perennial streams on-site. Please include a brief description of these features and their impacts on the site soils, if applicable.

ESNW Response – Three wetland areas have been identified on site (by others) and largely occupy the entire central site area within a local depression. Because these areas are largely outside the proposed development envelope, we do not anticipate they will have an impact on site soils within the proposed development envelope.

City Comment 5 – The landslide hazard discussion for lots 12 and 13 appear to be commenting on the existing slope and not the proposed 2:1, 20 foot plus slope at the southern sides of lots 13 through 17, 7, and 8. Further, the discussion does not address the heavy perched groundwater found near TP-4 near proposed lot 14 or the presence of loose to medium dense soils atop dense silts and the impact of development on these soils. Applicant will not be permitted to increase the height and slopes of the landslide hazard area as currently depicted.

ESNW Response – The above comment appears to be in reference to a different site layout than what has been currently provided to ESNW. In any respect, 2H:1V engineered slopes are considered feasible if constructed in accordance with the recommendations provided in the referenced report and as recommended by ESNW at the time of construction. Where significant groundwater seepage is encountered during slopes construction, additional drainage measures may be recommended at that time. Areas of existing fill may require reworking (e.g. removal and replacement) to establish competent conditions for foundation or fill slope construction.


ESNW should have an opportunity to review final project plans with respect to the geotechnical recommendations provided in this letter. ESNW should also be retained to provide testing, observation, and other consultation services during construction.

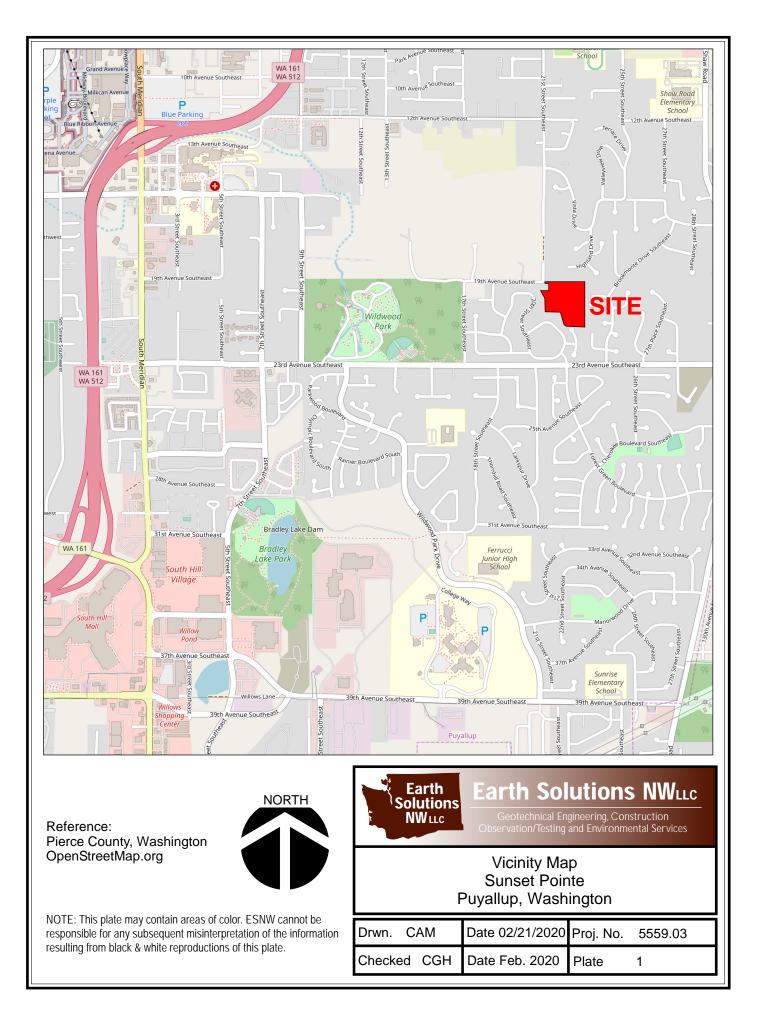
Mr. Peter Chen October 23, 2020 ES-5559.03 Page 11

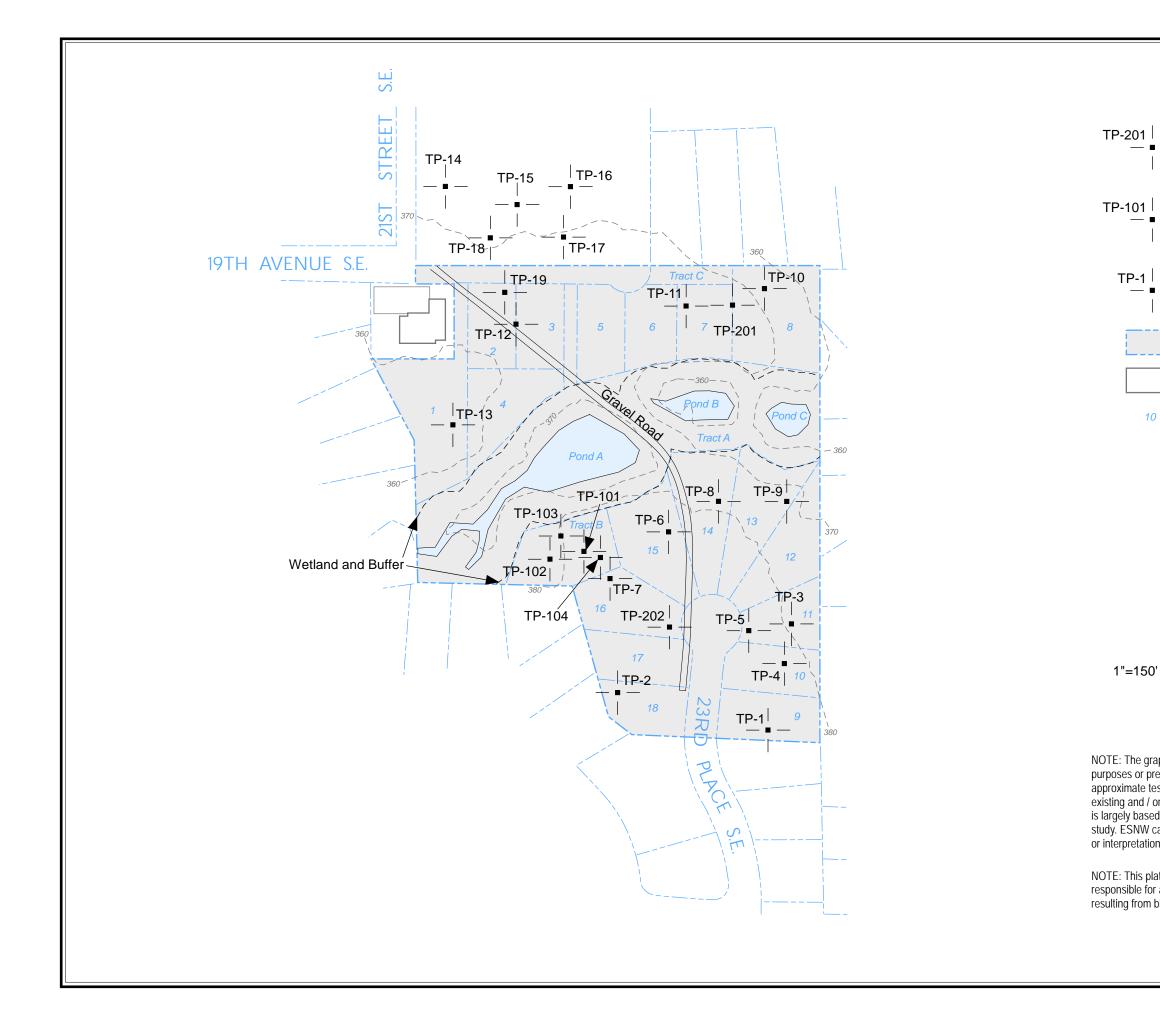
We trust this addendum meets your current needs. If you have any questions regarding the content of this letter, or require additional information, please call.

Sincerely,

EARTH SOLUTIONS NW, LLC

Chase G. Halsen, L.G. Project Geologist




Raymond A. Coglas, P.E. Principal Engineer

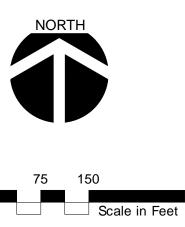
Attachments: Plate 1 – Vicinity Map Plate 2 – Test Pit Location Plan Test Pit Logs Grain Size Distribution

cc: CES NW, Inc. Attention: Mr. Fred Brown, P.E. (Email only)

Scott S. Riegel, L.G., L.E.G. Senior Project Manager

LEGEND

Approximate Location of ESNW Test Pit, Proj. No. ES-5559.03, Jan. 2020


Approximate Location of ESNW Test Pit, Proj. No. ES-5559, May 2019

Approximate Location of ESNW Test Pit, Proj No. ES-5559, Oct. 2017

Subject Site

Existing Building

Proposed Lot Number

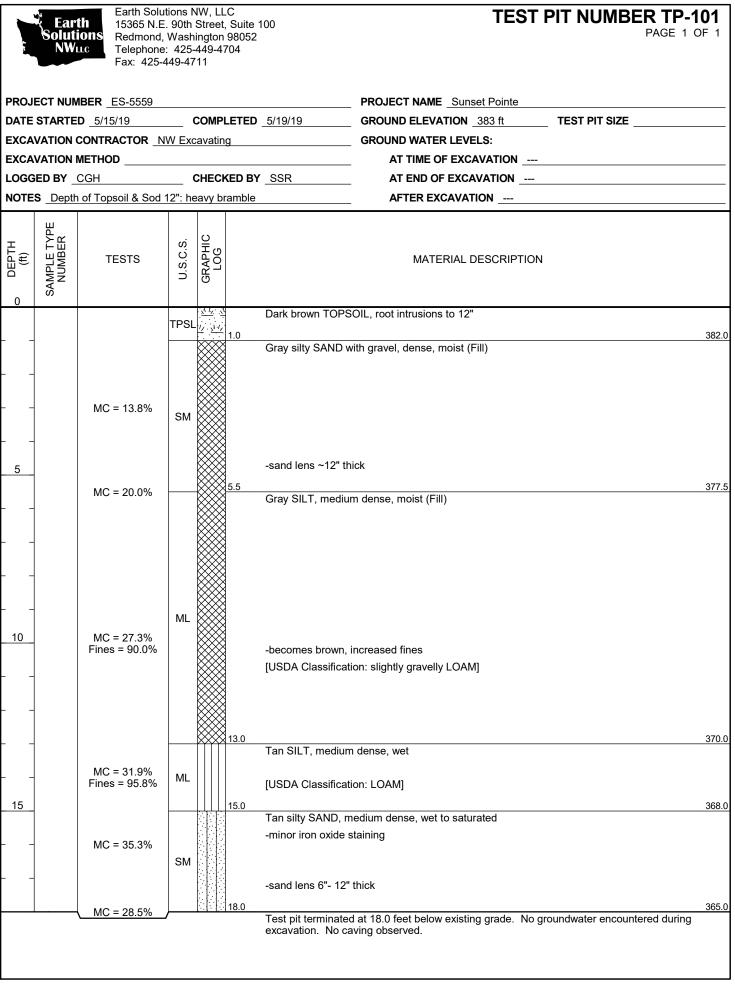
0

NOTE: The graphics shown on this plate are not intended for design purposes or precise scale measurements, but only to illustrate the approximate test locations relative to the approximate locations of existing and / or proposed site features. The information illustrated is largely based on data provided by the client at the time of our study. ESNW cannot be responsible for subsequent design changes or interpretation of the data by others.

NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

Earth Solutions NWLLC SOIL CLASSIFICATION CHART

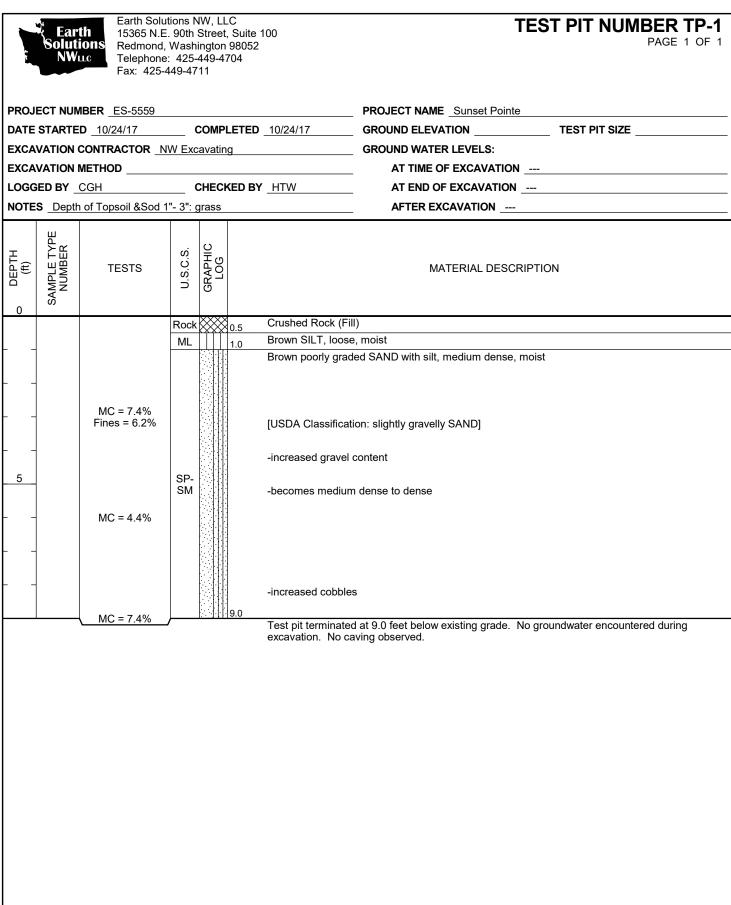
M		ONS		BOLS	TYPICAL
			GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
00120				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HI	GHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS


DUAL SYMBOLS are used to indicate borderline soil classifications.

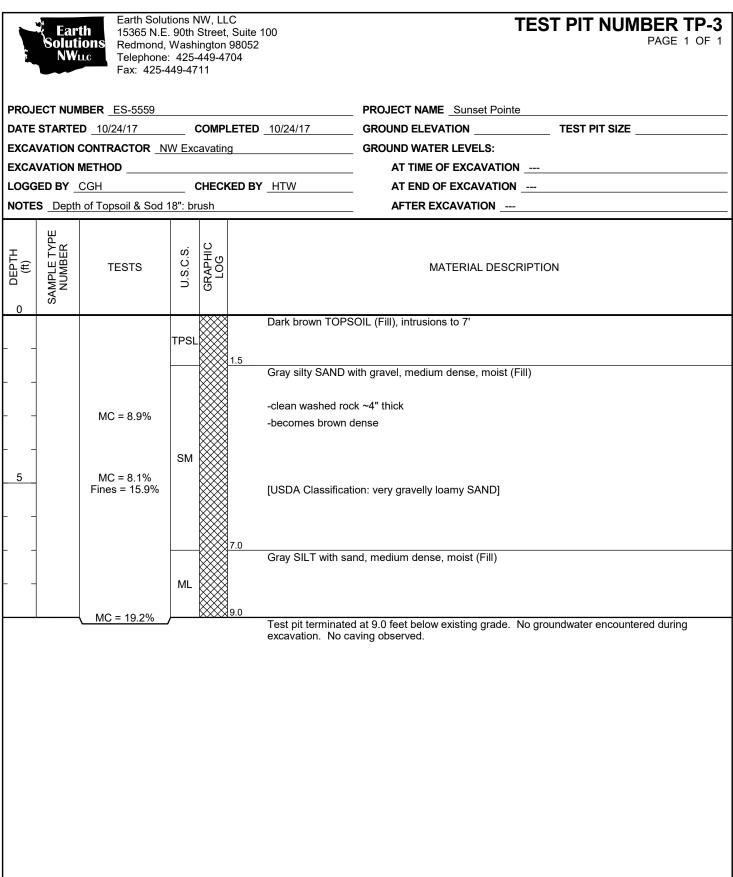
The discussion in the text of this report is necessary for a proper understanding of the nature of the material presented in the attached logs.

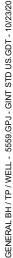
	Eart Soluti NW	Ons Redmond,	90th Wash 425-	Street ington 449-4	, Suite 1 98052	00 TEST PIT NUMBER TP-2 PAGE 1 (
PROJE		IBER ES-5559.03	1			PROJECT NAME _Sunset Pointe	
						1/22/20 GROUND ELEVATION 374 ft TEST PIT SIZE	
EXCA	ATION		W Exc	avatin	g	GROUND WATER LEVELS:	
EXCA	ATION I					AT TIME OF EXCAVATION	
LOGGI	ED BY	CGH	(CHEC	KED BY	SSR AT END OF EXCAVATION	
NOTES	Depth	of Topsoil & Sod 6	6": gra	SS		AFTER EXCAVATION	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
			TPSL	7 <u>1</u> 7	0.5	Dark brown TOPSOIL, root intrusions to 1'	373.5
		MC = 20.7%	ML			Tan SILT, medium dense, moist to wet -mottled texture	
		MC = 32.6% Fines = 88.9%			4.5	[USDA Classification: LOAM]	369.5
5		MC = 15.1%	SP			Gray poorly graded SAND, dense, moist to wet	
┠┤					6.0	-heavy iron oxide staining at contact, light groundwater seepage at 6' Gray SILT with sand, dense, moist to wet	368.0
		MC = 30.7% MC = 30.5%	ML		8.0	-minor iron oxide staining throughout [USDA Classification: slightly gravelly LOAM]	366.0
		Fines = 78.7%				Test pit terminated at 8.0 feet below existing grade. Groundwater seepage encountered at 6.0 feet during excavation. No caving observed.	

	Ear Soluti NW	ONS Redmond,	90th Stre Washingt 425-449	et, Suiton 980		TEST I	PIT NUMBER TP-2 PAGE 1 C	
DATE	STARTE	D _1/22/20		IPLETE	D <u>1/22/20</u>	PROJECT NAME <u>Sunset Pointe</u> GROUND ELEVATION <u>388 ft</u> GROUND WATER LEVELS:	TEST PIT SIZE	
EXCA	VATION I					AT TIME OF EXCAVATION		
LOGG	ED BY	CGH	CHE	CKED	BY SSR	AT END OF EXCAVATION		
NOTE	S Depth	of Topsoil & Sod 6	6": grass			AFTER EXCAVATION		
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC			MATERIAL DESCRIPTION		
			TPSL	0.5		IL, root intrusions to 6"		387.5
			FILL	\otimes	Crushed rock (Fill)			
				1.5	-light perched groun Tan silty SAND, me			386.5
		MC = 31.9%	SM	2.7	~<8" sand lens			385.3
		MC = 19.4% Fines = 58.7%	ML		Tan sandy SILT, der -becomes gray	nse, moist n: slightly gravelly LOAM]		
5		MC = 31.8%		4.5	Gray silty SAND, de			383.5
			SM		-light iron oxide stair	ning		
		MC = 13.3%		8.0	-	n: slightly gravelly fine sandy LOAM]		380.0
		Fines = 39.9%	1		Test pit terminated a 1.0 foot during exca	at 8.0 feet below existing grade. Ground vation. No caving observed.	water seepage encountered at	

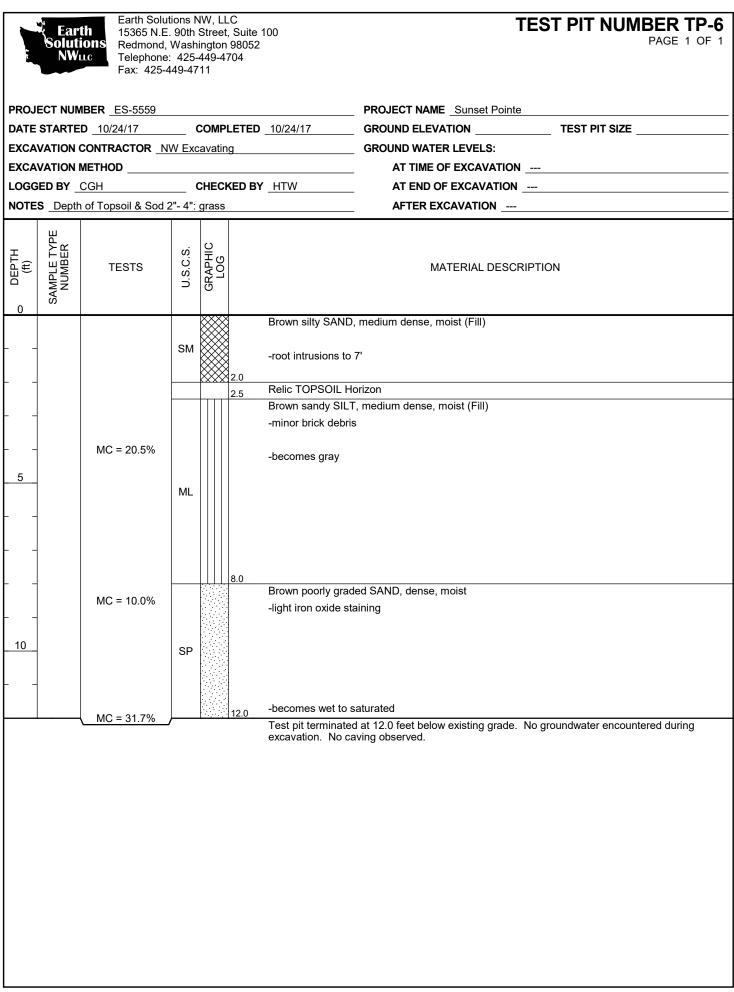


	Ear Soluti NW	011S Redmond.	. 90th Wash : 425	Street nington -449-4	t, Suite 100 n 98052	AT END OF EXCAVATION			
DATE EXCA EXCA LOGG	STARTE	Contractor <u>N</u> Method CGH	IW Exc	COMP cavatin CHECI	LETED 5/15/19				
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION			
			TPSI SM		1.0 Brown silty SAND	loose, moist	75.0		
		MC = 25.4% Fines = 98.3%			Gray SILT, dense [USDA Classificat -heavy iron oxide	ion: LOAM]			
		MC = 32.0% Fines = 92.5%	ML		-becomes brown, [USDA Classificat				
		MC = 35.2%			-becomes wet to s 9.5 Test pit terminated excavation. No ca	3 d at 9.5 feet below existing grade. No groundwater encountered during	<u>66.5</u>		


Ear Soluti	Ons Redmond	E. 90th , Wash e: 425-	Street, Su ington 980 449-4704	052 PAGE	P-103 1 OF 1
DATE STARTE EXCAVATION (EXCAVATION I LOGGED BY	D <u>5/15/19</u> CONTRACTOR <u>METHOD</u> CGH	<u></u> 0	COMPLET	PROJECT NAME Sunset Pointe ED 5/15/19 GROUND ELEVATION 384 ft TEST PIT SIZE GROUND WATER LEVELS: AT TIME OF EXCAVATION DBY SSR AT END OF EXCAVATION AFTER EXCAVATION AFTER EXCAVATION	
o DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
	MC = 11.3% MC = 10.4% MC = 11.7% MC = 20.2%	SM		Gray silty SAND with gravel, medium dense to dense, moist (Fill) -asphalt debris -increased sand content -erratic silt interbeds	383.4 373.0 ing


	Ear Solut NW	018 Redmond,	. 90th Wash : 425-	Street ington 449-4	Suite 100 8052	TEST PIT NUMBER TP-104 PAGE 1 OF 1		
DATE EXCA EXCA LOGG	STARTE	D <u>5/15/19</u> CONTRACTOR <u>N</u> METHOD CGH	0	COMP cavatin	ED BY <u>SSR</u> AT END OF EXCAVA	ft TEST PIT SIZE		
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DES	CRIPTION		
		MC = 19.9%	TPSL		Dark brown TOPSOIL, root intrusions to 12" Gray silty SAND with gravel, medium dense to d -becomes brown -becomes gray	ense, moist		
 		MC = 23.5%	ML		.0 -heavy iron oxide staining Gray SILT, loose, moist to wet -becomes brown, wet	378.0		
_ 10		MC = 29.8% Fines = 93.5%			1.0 [USDA Classification: LOAM] Test pit terminated at 11.0 feet below existing gr excavation. No caving observed.	ade. No groundwater encountered during		

	Ear Soluti NW	018 Redmond	90th Wash 425-	Street ington 449-4	, Suite 100 98052	TEST PIT NUMBER TP-2 PAGE 1 OF 1
PROJI	ECT NUN	IBER _ ES-5559				PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17	(COMP	LETED 10/24/17	GROUND ELEVATION TEST PIT SIZE
						GROUND WATER LEVELS:
					KED BY HTW	
NOTE	S Depth	of Topsoil & Sod 4	l": bru	sh	1	AFTER EXCAVATION
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
						OIL (Fill), root intrusions to 7'
			Fill		1.0 Clean washed RO	· · ·
		MC = 21.6%	ML		-light iron oxide sta	
		NO 0.5%	SP		Gray poorly graded	d SAND, medium dense to dense, moist
		MC = 9.5%	ML		Tan sandy SILT, d 8.0	
			SP			d SAND with gravel, dense, moist
		MC = 4.8%			0.0	excavation activities


during excavation. Caving observed from 6.0 to 6.5 feet and 8.0 feet to BOH.

	t Ear Solut NW	011S Redmond	E. 90th , Wash e: 425	Stree ingtoi -449-4	et, Suite ⁻ n 98052	100	TEST PIT NUMBER TP-4 PAGE 1 OF 1
PROJE		IBER _ ES-5559					PROJECT NAME Sunset Pointe
							GROUND ELEVATION TEST PIT SIZE
EXCA	VATION		W Exc	cavati	ng		GROUND WATER LEVELS:
	LOGGED BY _CGH CHECKED BY _HTW NOTES _Depth of Topsoil & Sod 2": brush						
NOTES	S Depth	of Topsoil & Sod	2": bru	ish			AFTER EXCAVATION
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION
					X	Brown silty SANE	D, loose to medium dense, moist (Fill)
			SM			-root intrusions to	o 9'
5		MC = 12.3%			7.0		groundwater seepage
 <u>10</u>		MC = 19.3%	ML			-trace organics -light iron oxide s	sand, loose to medium dense, wet (Fill) taining
					8		
					× · · · ·		
, -		MC = 22.1%	-	m	×12.0	Brown sandy SIL	T, dense, moist
			ML			-light iron oxide s	taining
15		MO 07 10/			15.0		
		MC = 27.4%					ed at 15.0 feet below existing grade. Groundwater encountered seepage .0 feet during excavation. Caving observed from 0.0 to 9.0 feet.

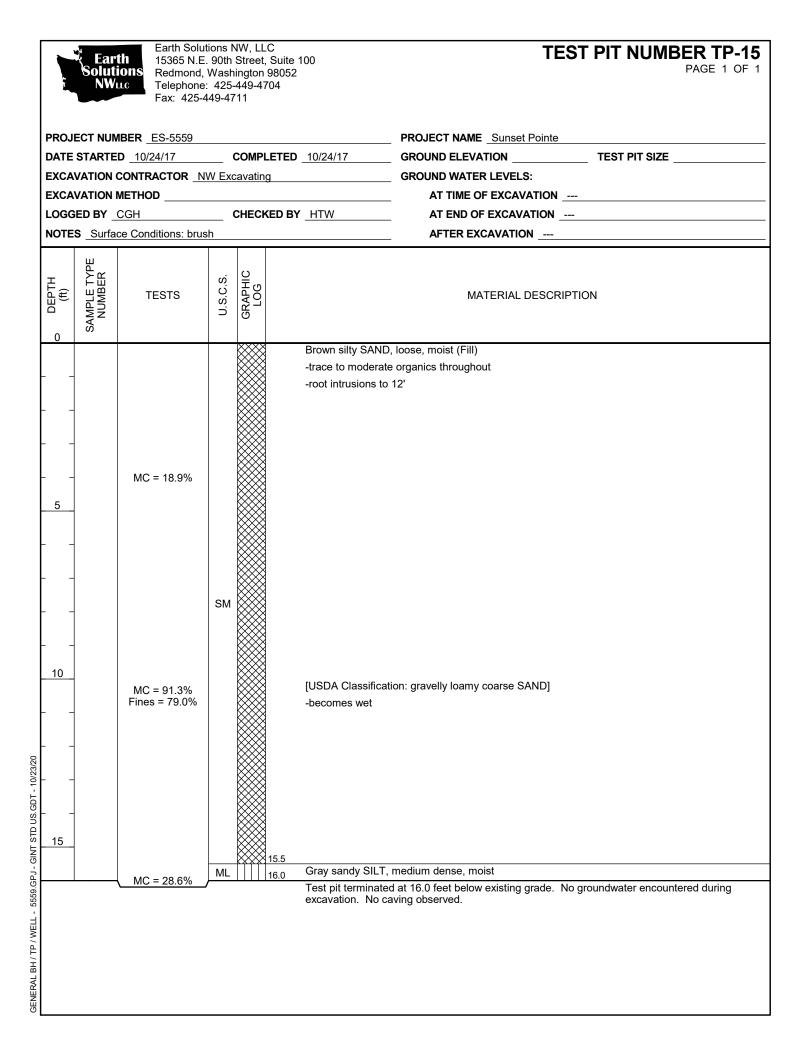
PROJECT NU DATE START	Th 15365 N.E Redmond, Telephone Fax: 425-4 425-4 MBER ES-5559 ED 10/24/17	COMPLETED	<u>0 10/24/17</u>	TEST PIT NUMBER TP-5 PAGE 1 OF 1 PROJECT NAME _Sunset Pointe GROUND ELEVATION TEST PIT SIZE	
				GROUND WATER LEVELS:	
			Y_HTW		
O DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC LOG		MATERIAL DESCRIF	PTION
		$TPSL_{I_{\ell}} \stackrel{\underline{x}^{1}I_{\ell}}{\xrightarrow{x^{1}I_{\ell}}} 1.0$	Dark brown TOPS	OIL, root intrusions to 3'	
	MC = 7.2%	SM	Brown silty SAND	, medium dense, moist mp to moist	
	MC = 20.9%		-becomes dense -light iron oxide st		
		9.5		ery dense tation, light iron oxide staining d at 9.5 feet below existing grade. No	aroundwater encountered during
			excavation. No ca	aving observed.	,

	Earth 15365 N.E Solutions Redmond	e: 425-449-4704	100 2	TEST PIT NUMBER TP-7 PAGE 1 OF 1
DATE ST EXCAVA EXCAVA LOGGEE	TARTED <u>10/24/17</u> TION CONTRACTOR <u>1</u> TION METHOD	COMPLETED WExcavating CHECKED B	0 10/24/17 Y HTW	AT END OF EXCAVATION
o DEPTH (ft)	SAMPLE TYPE NUMBER LESTS	U.S.C.S. GRAPHIC LOG		MATERIAL DESCRIPTION
	MC = 9.5%	TPSL 10.5 SM 9.0		-
GENERAL BH / TP / WELL - 5559.GPJ - GINT STD US.GDT - 10/23/20	MC = 18.0%			d at 9.0 feet below existing grade. No groundwater encountered during aving observed.

	t Soluti NW∟	011S Redmond.	90th S Washi : 425-4	Street, ington 449-47	, Suite 1 98052	00	TES	T PIT NUMBER TP-8 PAGE 1 OF 1
PRO.I		IBER _ES-5559					PROJECT NAME Sunset Pointe	
							GROUND ELEVATION	TEST PIT SIZE
							GROUND WATER LEVELS:	
						HTW		
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTIO	N
0		[TPSL	<u>×17, ×1</u>	0.5	Dark brown TOPS	OIL, root intrusions to 5'	
 		MC = 16.3% MC = 17.8%	SM		8.0	Brown silty SAND, -becomes gray, de	, medium dense, moist	
		MC = 3.2%	SP		9.0			
		<u> </u>				Test pit terminated excavation. No ca	d at 9.0 feet below existing grade. No grou aving observed.	undwater encountered during

GENERAL BH / TP / WELL - 5559.GPJ - GINT STD US.GDT - 10/23/20

	Soluti NW	ONS Redmond,	. 90th Wash : 425-	Street ington 449-4	t, Suite 100 1 98052	TEST PIT NUMBER TP-9 PAGE 1 OF 1
PROJ	ECT NUN	IBER <u>ES-5559</u>				PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17	(COMP	LETED 10/24/17	_ GROUND ELEVATION TEST PIT SIZE
						GROUND WATER LEVELS:
					KED BY _HTW	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
			TPSL	<u></u>	0.5 Dark brown TOPS	SOIL, root intrusions to 3'
 <u>5</u>		MC = 21.7% Fines = 81.2%	ML			
		MC = 3.9%	SP		6.5 Gray poorly grade	ed SAND, dense, moist
					l'est pit terminate excavation. No c	d at 6.5 feet below existing grade. No groundwater encountered during aving observed.


Ear Solut NW	th 15365 N.E ions Redmond	utions NW, LLC E. 90th Street, Suite 100 Washington 98052 9: 425-449-4704 449-4711	TEST PIT NUMBER TP-10 PAGE 1 OF 1	
DATE STARTE EXCAVATION EXCAVATION LOGGED BY	D 10/24/17 CONTRACTOR <u>N</u> METHOD CGH	COMPLETED 10/24/17	AT END OF EXCAVATION	
o DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC LOG	MATERIAL DESCRIPTION	
 <u>-</u> - 	MC = 12.4% MC = 18.7% MC = 8.9%	SM 2.0 TPSL 2.5 Relic TOP Brown silty -becomes SM 9.0	SAND, medium dense, moist (Fill) sions to 3.5' SOIL Horizon y SAND, medium dense, moist gray, dense	
			rminated at 9.0 feet below existing grade. No groundwater encountered during No caving observed.	

Solu	rth 15365 N.E tions Redmond	utions NW, LLC E. 90th Street, Suite I, Washington 9805 e: 425-449-4704 -449-4711		TEST PIT NUMBER TP-11 PAGE 1 OF 1
DATE START	ED <u>10/24/17</u> CONTRACTOR <u>1</u> METHOD CGH	COMPLETEI	D 10/24/17	PROJECT NAME Sunset Pointe GROUND ELEVATION TEST PIT SIZE GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION AFTER EXCAVATION
O DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC LOG		MATERIAL DESCRIPTION
 	MC = 21.1% MC = 20.1% MC = 16.0%	SM	Tan silty SAND, i -moderate iron of -intermittent light -becomes dense	iron oxide staining

	Eart Soluti NW	OIS Redmond.	90th Wash 425-	Street ington 449-4	, Suite 100 98052	TEST PIT NUMBER TP-12 PAGE 1 OF 1
PROJ		IBER _ ES-5559				PROJECT NAME Sunset Pointe
DATE	STARTE	D _10/24/17	(COMP	LETED _10/24/17	GROUND ELEVATION TEST PIT SIZE
						GROUND WATER LEVELS:
					KED BY <u>HTW</u>	
NOTE			<u>. g</u> ra	33		
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
0		MC = 15.2% Fines = 60.2% MC = 17.3%	ML		-root intrusions to 3 -becomes gray [USDA Classification	on: LOAM] I at 6.0 feet below existing grade. No groundwater encountered during

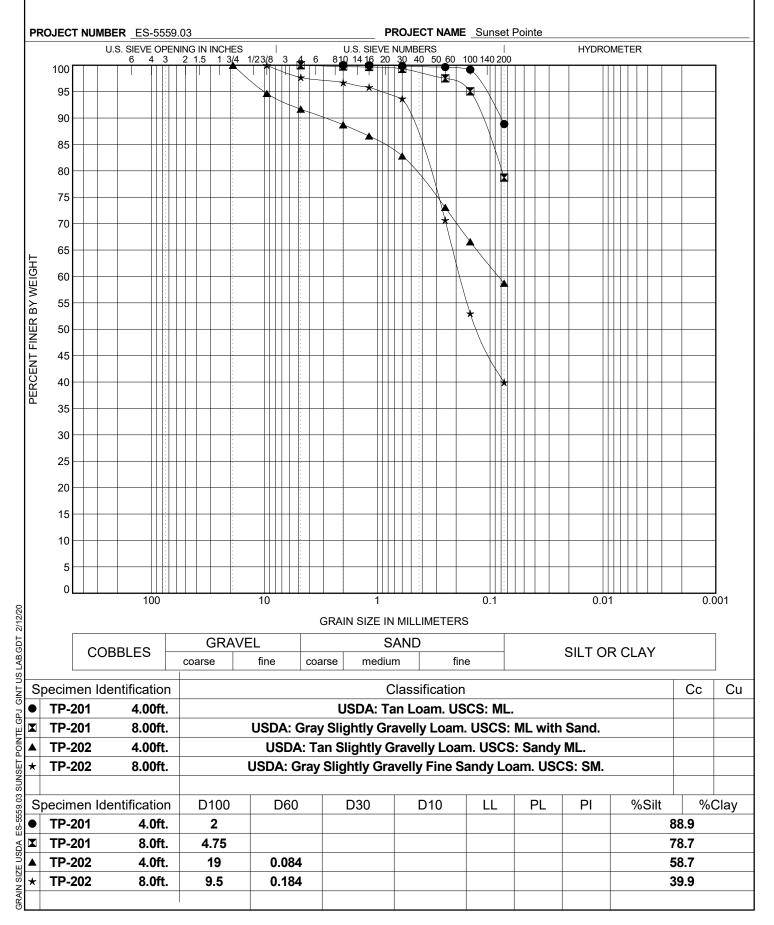
Ear Solut	001S Redmond,	. 90th Wash : 425-	Street ington 449-4	Suite 100 98052	TEST PIT NUMBER TP-13 PAGE 1 OF 1	
PROJECT NUM	IBER <u>ES-5559</u>				PROJECT NAME Sunset Pointe	
DATE STARTE	D 10/24/17	(COMP	LETED 10/24/17	GROUND ELEVATION	TEST PIT SIZE
EXCAVATION		W Exc	avatin	g	GROUND WATER LEVELS:	
EXCAVATION	METHOD				AT TIME OF EXCAVATION	
LOGGED BY	CGH	(CHEC	KED BY HTW	AT END OF EXCAVATION	
NOTES Depth	n of Topsoil & Sod 4	4": gra	SS		AFTER EXCAVATION	
o DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIF	PTION
	MC = 27.3% MC = 23.9%	ML		Brown sandy SIL	Γ, loose to medium dense, moist	
10		SP		9.5 10.0 Gray poorly grade	d SAND with gravel, dense, wet	
				10.0	d at 10.0 feet below existing grade. N	o groundwater encountered during

	Ear Soluti NW	018 Redmond.	. 90th Wash : 425-	Street ington 449-4	:, Suite 100 98052	TEST PIT NUMBER TP-14 PAGE 1 OF 1
PROJ		IBER <u>ES-5559</u>				PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17	(COMP	LETED 10/24/17	GROUND ELEVATION TEST PIT SIZE
						GROUND WATER LEVELS:
					KED BY <u>HTW</u>	
			<u>- 0 .</u>	grass		AFTER EXCAVATION
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
			TPSL	<u>× 1/</u> . ×		OIL, root intrusions to 3'
 		MC = 15.2%	SM		-becomes gray, m -light iron oxide sta	
	-	MC = 7.1%			7.0 Gray poorly grade	d SAND, dense, moist
 10	-	MC = 12.5%	SP		10.0	
		MC = 12.5%			Brown silty SAND,	dense, moist
	-		SM			
		MC = 9.0%)		12.0 Test pit terminated	at 12.0 feet below existing grade. No groundwater encountered during
					excavation. No ca	iving observed.

	Eart Solutio NWu	Earth Solut 15365 N.E. Redmond, Telephone: Fax: 425-4	. 90th Wash : 425-	Street ington 449-4	, Suite 1 98052	100	TEST PIT NUMBER TP-16 PAGE 1 OF 1
PROJEC		BER <u>ES-5559</u>					PROJECT NAME Sunset Pointe
							GROUND ELEVATION TEST PIT SIZE
							GROUND WATER LEVELS:
LOGGED BY CGH CHECKED BY HTW NOTES Surface Conditions: brush CHECKED BY HTW							
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION
		MC = 30.8% MC = 16.5% MC = 7.9%	SM		6.0	-becomes gray	3' medium dense, moist d at 6.0 feet below existing grade. No groundwater encountered during

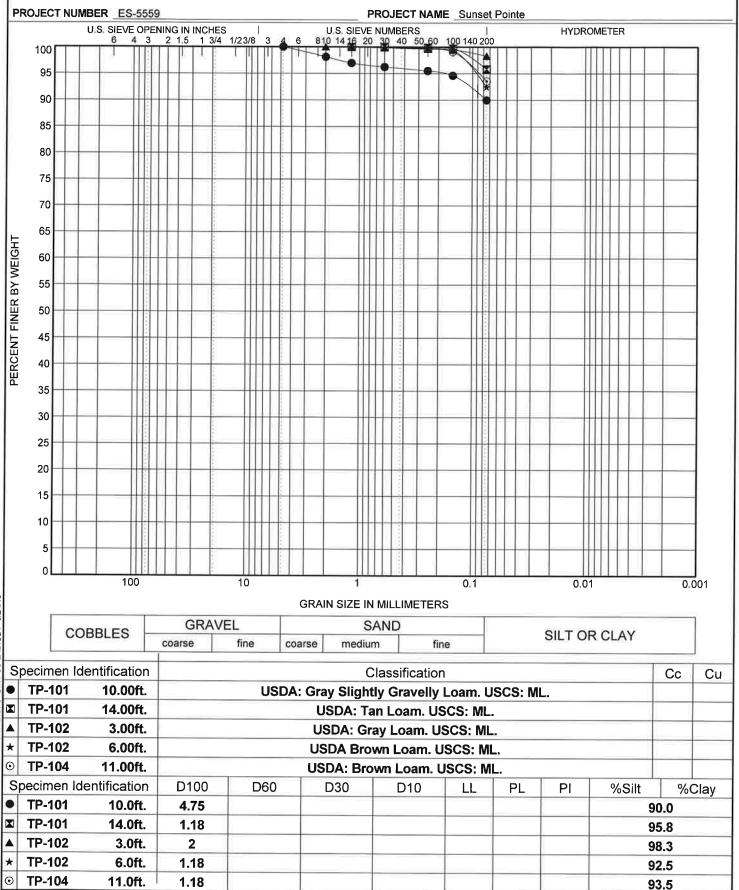
GENERAL BH / TP / WELL - 5559.GPJ - GINT STD US.GDT - 10/23/20

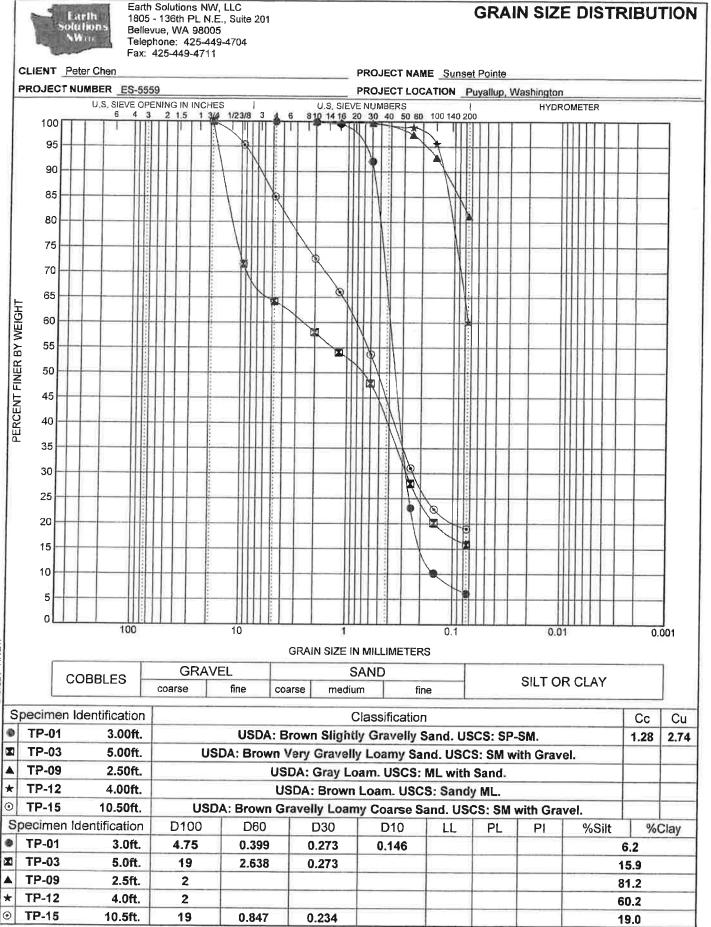
Ear Solut NW	ions Redmond.	E. 90th St , Washing e: 425-44	reet, Suite aton 98052 9-4704		TEST PIT NUMBER TP-17 PAGE 1 OF 1
PROJECT NUN	//BER ES-5559				PROJECT NAME Sunset Pointe
					GROUND ELEVATION TEST PIT SIZE
					GROUND WATER LEVELS:
				Y HTW	
NOTES Depth	n of Topsoil & Sod	4": brush			AFTER EXCAVATION
o DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	000		MATERIAL DESCRIPTION
 <u>-</u> - 	MC = 24.1%	SM	7.0	-root intrusions to	⊳ 7' medium dense, moist
	MC = 6.3%	SM	7.5		ed at 7.5 feet below existing grade. No groundwater encountered during
				excavation. No o	


Solut	Earth Solu 15365 N.E tions Redmond, Telephone Fax: 425-	E. 90th , Wash e: 425-	Street, ington 449-47	ite 100 52	TEST PIT NUMBER TP-18 PAGE 1 OF 1	
PROJECT NU	MBER ES-5559			PROJECT NAME _	Sunset Pointe	
					ION TEST PIT SIZE	
				GROUND WATER		
					EXCAVATION EXCAVATION	
					AVATION	
o DEPTH (ft) SAMPLE TYPE NUMBER	TESTS		GRAPHIC LOG		ERIAL DESCRIPTION	
	MC = 14.9%	SM		Brown silty SAND, loose, moist (Fill) -root intrusions to 3' -wire debris		
	- MC = 6.3%	SM		Tan silty SAND, medium dense, moist	isting grade. No groundwater encountered during	
				excavation. No caving observed.		

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711						TEST PIT NUMBER TP-19 PAGE 1 OF 1	
DATE EXCA EXCA LOGG	STARTE VATION (VATION I GED BY	D <u>10/24/17</u> CONTRACTOR <u>N</u> METHOD CGH	IW Exc	COMPL avating CHECK	ETED _10/24/17	AT END OF EXCAVATION	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		AFTER EXCAVATION	
		MC = 13.0%	TPSL		1.0	SOIL, root intrusions to 2' medium dense, moist	
		MC = 15.4%				d at 5.0 feet below existing grade. No groundwater encountered during aving observed.	

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711


GRAIN SIZE DISTRIBUTION



Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005 Telephone: 425-449-4704 Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

GRAIN SIZE USDA ES-5559 SUNSET POINTE GPJ GINT US LAB GDT 6/24/19

GINT US LAB. GDT 11/10/17

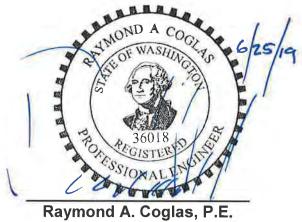
ES-5559 SUNSET POINTE.GPJ **GRAIN SIZE USDA**

Geotechnical Engineering Construction Observation/Testing Environmental Services

> GEOTECHNICAL ENGINEERING STUDY SUNSET POINTE 2301 – 23RD STREET SOUTHEAST PUYALLUP, WASHINGTON

> > ES-5559

1805 - 136th Place N.E., Suite 201 Bellevue, WA 98005 (425) 449-4704 Fax (425) 449-4711 www.earthsolutionsnw.com


PREPARED FOR

MR. PETER CHEN

January 11, 2018 Updated June 24, 2019

Chase G. Halsen Staff Geologist

Principal Engineer

GEOTECHNICAL ENGINEERING STUDY SUNSET POINTE 2301 – 23rd STREET SOUTHEAST PUYALLUP, WASHINGTON

ES-5559

Earth Solutions NW, LLC 1805 – 136th Place Northeast, Suite 201 Bellevue, Washington 98005 Phone: 425-449-4704 | Fax: 425-449-4711 www.earthsolutionsnw.com

Important Information About Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

The following information is provided to help you manage your risks.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one — not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report Is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineer-ing report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineer in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures*. If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else*.

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in-this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/The Best People on Earth exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with you ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

January 11, 2018 Updated June 24, 2019 ES-5559

Earth Solutions NW LLC

Geotechnical Engineering, Construction Observation/Testing and Environmental Services

Mr. Peter Chen 4709 Memory Lane West University Place, Washington 98488

Dear Mr. Chen:

Earth Solutions NW, LLC (ESNW) is pleased to present this report titled "Geotechnical Engineering Study, Sunset Pointe, 23rd Street Southeast, Puyallup, Washington". Based on the results of our investigation, the proposed residential plat is feasible from a geotechnical standpoint. Our study indicates the site is underlain primarily by fill atop native Vashon drift glacial deposits. Fill was encountered at various locations within the site and will be discussed later in this report. Heavy perched groundwater seepage was encountered at one test pit location at a depth of approximately four feet below the existing ground surface elevation during our October 2017 and May 2019 subsurface explorations. As such, it is our opinion the contractor should anticipate, and be prepared to manage zones of perched groundwater seepage during construction.

In our opinion, the proposed residential structures may be constructed on conventional continuous and spread footing foundations bearing upon competent native soil, recompacted native soil, recompacted existing fill, or suitable structural fill placed directly on competent native soils. In general, native soils suitable for foundation support are anticipated to be encountered at approximate depths of two to five feet below the existing ground surface elevation. Areas underlain by existing fill may require additional preparation efforts in order to establish suitable and uniform bearing conditions. Additional preparation activities will likely involve overexcavating unsuitable existing fill and restoring grades with suitable structural fill. Re-working and recompacting the in-place fill may be feasible in areas where the fill is devoid of organic and deleterious material but must be evaluated by ESNW during grading. Areas of deeper fill may require additional or complete over excavation and restoration or alternative foundation support implementations. In general, where loose or unsuitable soil conditions are exposed at foundation subgrade elevations, compaction of soils to the specifications of structural fill, or overexcavation and replacement with a suitable structural fill material, will be necessary.

We understand that a stormwater detention vault will be used for stormwater management. Based on the conditions encountered during our October 2017 and May 2019 explorations, it is our opinion that infiltration be considered infeasible on this site. A detailed description and justification on the infeasibility of site infiltration will be provided within the body of this report.

ES-5559 Page 2

Recommendations for foundation design, site preparation, drainage, and other pertinent development aspects are provided in this study. We appreciate the opportunity to be of service to you on this project. If you have questions regarding the content of this geotechnical engineering study, please call.

Sincerely,

EARTH SOLUTIONS NW, LLC

Chase G. Halsen Senior Staff Geologist

Table of Contents

ES-5559

PAGE

	. 1
General	. 1
Project Description	2
ITE CONDITIONS	. 2
Surface	. 2
Subsurface	. 2
Topsoil and Fill	
Native Soil	
Geologic Setting	
Groundwater	
Geologically Hazardous Areas	
Landslide and Erosion Hazards	
ISCUSSION AND RECOMMENDATIONS	. 7
General	. 7
Site Preparation and Earthwork	. 8
Temporary Erosion Control	
Stripping	ģ
In-situ and Imported Soils	
Subgrade Preparation	
Structural Fill	
Slope Fill	
Excavations and Slopes	26.00
Foundations	
Seismic Design	
Slab-on-Grade Floors	
Retaining Walls	
Drainage	
Infiltration Feasibility Evaluation	
Preliminary Detention Vault Design	
Preliminary Pavement Sections	
Utility Support and Trench Backfill	
ounty Support and Trench Backill	
MITATIONS	. 1
Additional Services	

Table of Contents

Cont'd

ES-5559

GRAPHICS

Plate 1	Vicinity Map
Plate 2	Test Pit Location Plan
Plate 3	Slope Fill Detail
Plate 4	Retaining Wall Drainage Detail
Plate 5	Footing Drain Detail

APPENDICES

Appendix A	Subsurface Exploration Test Pit Logs
Appendix B	Laboratory Test Results

GEOTECHNICAL ENGINEERING STUDY SUNSET POINTE 2301 – 23rd STREET SOUTHEAST PUYALLUP, WASHINGTON

ES-5559

INTRODUCTION

<u>General</u>

This geotechnical engineering study (study) was prepared for the proposed residential plat to be completed at 2301 – 23rd Street Southeast in Puyallup, Washington. The purpose of this study was to provide geotechnical recommendations for currently proposed development plans. Our scope of services for completing this study included the following:

- Completion of test pits for purposes of characterizing site soils;
- Completion of laboratory testing of soil samples collected at the test pit locations;
- Conduction of engineering analyses, and;
- Preparation of this report.

The following documents and maps were reviewed as part of our study preparation:

- Preliminary Plat Utility Plan, prepared by CES NW, Inc., dated April 17, 2019;
- Puyallup Municipal Code Chapter 21.06;
- Development Review Team Letter, prepared by the City of Puyallup, dated February 5, 2019;
- Online Web Soil Survey (WSS) resource, maintained by the Natural Resources Conservation Service under the United States Department of Agriculture;
- Liquefaction Susceptibility for Pierce County incorporating data from the Washington State Department of Natural Resources, dated September 2004, and;
- Geologic Map of the South Half of the Tacoma Quadrangle, Washington, by Timothy J. Walsh, 1987.

Project Description

Originally completed in January 2018, this report has been updated to reflect the current proposal. The current proposal includes removing the northern parcel form the proposed site and reducing the number of building sites. As such, Test Pits 14 – 18 are no longer within the subject site and are no longer included within this report evaluation.

We understand the site will be developed into a residential plat consisting of 15 residential lots and general site improvements. We presume that stormwater runoff will be managed by a detention vault (vault). At the time of report submission, building load plans were not available for review; however, based on our experience with similar developments, the proposed residential structures will likely be two to three stories in height and constructed using relatively lightly loaded wood framing supported on conventional foundations. Perimeter footing loads of about 1 to 2 kips per lineal foot (klf) are expected. Slab-on-grade loading is anticipated to be approximately 150 pounds per square foot (psf).

We presume that cuts and/or fills up to about 10 to 15 feet will be required to establish the building pads. Stepped foundations or split-level pads may also be incorporated into the design to reduce grading requirements. Deeper excavations will likely be required to construct the stormwater facility (vault). Rockeries or mechanically stabilized earth walls (MSEWs) may be used to facilitate grade changes between adjacent lots.

If the above design assumptions are incorrect or change, ESNW should be contacted to review the recommendations provided in this report. ESNW should review final designs to confirm that appropriate geotechnical recommendations have been incorporated into the plans.

SITE CONDITIONS

Surface

The subject site is located east of the intersection between 19th Avenue Southeast and 21st Street Southeast in Puyallup, Washington. The approximate location of the subject site is depicted on Plate 1 (Vicinity Map). The irregular-shaped property is comprised of two adjoining tax parcels (Pierce County Parcel Nos. 042035-3027) totaling approximately 9.09 acres.

The site is bordered on all sides primarily by existing residential development. A sewer and water easement is present on site, trending east to west along the entire northern edge of the development area. A relay station is present within the east-central site area as well. Multiple barn and storage structures appear to have been present within the southern site area, but had been demolished prior to our fieldwork. Based on our field observations, it appears that the land has been previously modified through the placement of fill material. It appears that the fill had been placed to establish an access pathway to the southern site area, to level out sloping areas, and fill an existing natural trough area. Based on site observations, it is our opinion the site modification was likely not associated with recent development. Current topography varies across the site, however, maintains an overall northerly/northeasterly declivity. Approximately 30 to 35 feet of total elevation change occurs within the proposed development area. Three existing ponds (A-C) are present within the central site area.

<u>Subsurface</u>

An ESNW representative observed, logged, and sampled 19 test pits, excavated within accessible areas of the proposed development area, on October 24, 2017 using a trackhoe and operator retained by our firm. Four additional test pits were completed on May 15, 2019 within the proposed stormwater tract area. Three shallow groundwater piezometers were installed within the stormwater tract area during our May 2019 exploration. The test pits were completed to assess and classify subsurface soil and groundwater conditions across the site. The approximate locations of the test pits are depicted on Plate 2 (Test Pit Location Plan). Please refer to the test pit logs provided in Appendix A for a more detailed description of subsurface conditions. Representative soil samples collected at the test pit locations were analyzed in accordance with the Unified Soil Classification System (USCS) and United States Department of Agriculture (USDA) methods and procedures.

Topsoil and Fill

Topsoil was encountered generally within the upper 2 to 18 inches of existing grades at the test pit locations. The topsoil was characterized by dark brown color, the presence of fine organic material, and small root intrusions.

Fill was observed at the majority of the test pit locations, ranging in approximate depths from 1 to 13 feet below the existing ground surface (bgs). The fill was observed to be variable in nature, typically a silty sand to sandy silt, encountered in a loose to medium dense and moist condition. In general, the majority of the fill was observed to be free of debris, with the exception of isolated areas of brick and wire debris. However, the debris is not considered to be deleterious. Due to the highly variability in texture of the fill soils, ESNW should be retained to evaluate the suitability of fill encountered during construction.

Native Soil

Underlying topsoil and fill, native soils were encountered consisting soils associated with and representative of glacial drift deposits. In general, the predominate native soil type should be considered silty sand with or without gravel (USCS: SM). However, localized areas and depositional lenses of poorly graded sand and silt (USCS: SP and ML, respectively) should be anticipated across the site. The native soils were typically encountered in a medium dense and moist condition.

Geologic Setting

The referenced geologic map resource identifies Vashon undifferentiated drift (Qdv) across the site and surrounding areas. Although not specifically characterized within the geologic map resource, Vashon drift typically consists of glacial till, glaciofluvial, and glaciolacustrine sediments. The reference WSS resource indicates soils of the Everett very gravelly sandy loam, Indianola loamy sand and Kitsap silt loam (Map Unit Symbols: 13B, 18C, 20B, and 20C, respectively). These soil groups are typically associated with moraines, eskers, kames and terrace landforms, derived from glacial outwash and glaciolacustrine material. The variability in makeup of the native soils are generally consistent with that of Vashon drift.

Groundwater

During our subsurface exploration completed on October 24, 2017, heavy, perched groundwater seepage was encountered at a depth of approximately four feet bgs at TP-4. Groundwater seepage was not encountered during our May 2019 subsurface exploration. In our opinion, the contractor should anticipate and be prepared to respond to zones of perched groundwater seepage during construction, especially within deeper excavations. Groundwater seepage is common within glacial sediments, particularly within relatively permeable lenses and/or atop dense to very dense, unweathered deposits. Seepage rates and elevations fluctuate depending on many factors, including precipitation duration and intensity, the time of year, and soil conditions. In general, groundwater flow rates are higher during the wetter, winter months.

Geologically Hazardous Areas

In preparation of this report, we reviewed applicable city of Puyallup mapping and geologically hazardous area code section 21.06. Our evaluation is as follows.

Landslide and Erosion Hazards

As delineated in Puyallup Municipal Code (PMC) 21.06.1210, landslide and erosion hazard areas include those identified by the U.S. Department of Agriculture Natural Resources Conservation Service as having a moderate to severe, severe, or very severe erosion hazard because of natural characteristics, including vegetative cover, soil texture, slope, gradient, and rainfall patterns, or human-induced changes to natural characteristics. Landslide and erosion hazard areas include areas with the following characteristics:

- Areas that have shown mass movement during the Holocene epoch (from 10,000 years ago to the present) or that are underlain or covered by mass wastage debris of that epoch;
- Slopes that are parallel or subparallel to planes of weakness (such as bedding planes, joint systems, and fault planes) in subsurface materials;
- Slopes having gradients steeper than 80 percent subject to rock fall during seismic shaking;
- Areas potentially unstable because of stream incision or stream bank erosion;
- Areas located in a canyon, ravine, or on an active alluvial fan, presently or potentially subject to inundation by debris flows or flooding;
- Any area with a slope of 40 percent or steeper and a vertical relief of 10 or more feet, except areas composed of consolidated rock and properly engineered manmade slopes/retained fill. A slope is delineated by establishing its toe and top and measured by averaging the inclination over at least 10 feet of vertical relief;
- Areas with a severe limitation for building development because of slope conditions, according to the Natural Resource Conservations Service, and;
- Areas meeting all three of the following criteria: (A) slopes steeper than 15 percent, except that slopes of less than 15 percent may be considered erosion hazard areas if they have certain unstable soil and drainage characteristics; (B) hillsides intersecting geologic contacts with a relatively permeable sediment overlying a relatively impermeable sediment or bedrock; and (C) wet season springs or ground water seepage.

Based on the results of subsurface exploration and review of available topographic information, the majority of the development is not located within a landslide hazard area. However, the eastern most edge of Lots 9 and 10 and northern edge of Lot 15 meet the code criteria for a landslide hazard based on the presence of gradients in excess of 40 percent and a vertical elevation change of at least 10 feet.

On Lots 9 and 10, this sloping feature appears to be relatively minor, decreasing in overall inclination either at, or just beyond, the property lines, having a total slope height of approximately 10 to 15 feet. On Lot 15, the slope appears to be associated with the existing pond area and is considered to be isolated in extent and height. PMC 21.06.1240.1a.iii, allows for a buffer to be equal to the height of the slope (H) divided by 2 for slopes with a vertical elevation of more than 10 feet but less than 25 feet, regardless of slope percent provided that no other factors that are present that pose a slope stability risk. This buffer should be applied to the top of the slope. Provided that the recommendations relating to building pad preparation and structural fill are incorporated into the construction sequence, in our opinion, a buffer equal to H/2 can be applied to Lots 9, 10, and 15. Per Puyallup code requirements, as referenced in the attached review letter, minimizing alterations to existing slope features is preferred over mass grading. As such, stepping of foundations should be considered to maintain existing topographic slopes, where From a geotechnical standpoint, constructing foundations in such a manor is applicable. considered feasible provided they can adequately offset from any slope face as to not impose additional surcharges. For these lots, slope fills (placed in accordance with this report) as well as the use of retaining walls to achieve design grades may also be considered feasible from a geotechnical standpoint.

Landslide hazards may also be designated as areas that have a combination of slopes more than 15 percent, that have permeable soils overlying impermeable soils, and wet season springs and groundwater seepage. The majority of the proposed development areas is relatively flat. However, lots aligned along the eastern site edge (Lots 8 - 14) do contain slopes greater than 15 percent, either within the confines of the lot boundaries or directly adjacent. However, based on our exploration in the area, these lots (with the exception of Lot 9 and 10, as discussed above) do not meet all three code defining requirements to be a landslide hazard.

One area of seepage was identified during our subsurface explorations (TP-4, October 24, 2017). In this respect, the seepage zone is considered isolated, rather than a pervasive chronic site condition. It is possible for groundwater seepage zones to develop elsewhere on site but will likely be seasonal and a result of yearly rainfall totals. From a stability standpoint, the development of a seepage zone is not considered a direct indication of instability, but rather the natural lateral migration of subsurface water. We understand stormwater flows will be managed with a detention vault in conjunction with individual lot dispersions, where feasible. In this regard, we do not anticipate increased surface water runoff flows or amounts that may impact adjacent properties either during or post construction. Where encountered during construction, subsurface seepage zones can adequately be mitigated via passive drainage elements and Best Management Practice (BMPs) measures.

As delineated in Puyallup Municipal Code (PMC) 21.06.1210, erosion hazard areas include those identified by the U.S. Department of Agriculture Natural Resources Conservation Service as having a moderate to severe, severe, or very severe erosion hazard because of natural characteristics, including vegetative cover, soil texture, slope, gradient, and rainfall patterns, or human-induced changes to natural characteristics.

Site soils are considered to have moderate to severe erosion potential. In our opinion, provided appropriate temporary and permanent erosion and sediment control (ESC) measures are incorporated into final designs, the potential for erosion will remain low both during and after construction. Site BMPs and other means of sediment and surface flow control measures should be actively maintained during construction to upkeep proper performance.

Provided the above recommendations and considerations are include with the construction plan and sequence, it is our opinion that the proposed development will not adversely affect soil stability on adjacent properties.

Please note that our evaluation and corresponding lot recommendations are based on plans and site layouts made available to ESNW during report preparation. If site layout plans change, ESNW should be notified to provide updated recommendations.

DISCUSSION AND RECOMMENDATIONS

<u>General</u>

Based on the results of our investigation, construction of the proposed residential development is feasible from a geotechnical standpoint. The primary geotechnical considerations associated with the proposed development include foundation support, slab-on-grade subgrade support, the suitability of using on-site soils as structural fill, and construction of the stormwater facility(s).

In our opinion, the proposed residential structures may be constructed on conventional continuous and spread footing foundations bearing upon competent native soil, recompacted native soil, recompacted existing fill, or suitable structural fill placed directly on competent native soils. In general, native soils suitable for foundation support are anticipated to be encountered at approximate depths of two to five feet below the existing ground surface elevation. Areas underlain by existing fill may require additional preparation efforts in order to establish suitable bearing conditions, such as overexcavating unsuitable fill and restoring grades with suitable structural fill. Re-working and re-compacting the in-place fill may be feasible in areas where the fill is devoid of organic and deleterious material but must be evaluated by ESNW during grading. Areas of deeper fill may require additional or complete over excavation and restoration or alternative foundation support implementations. In general, where loose or unsuitable soil conditions are exposed at foundation subgrade elevations, compaction of soils to the specifications of structural fill, or overexcavation and replacement with a suitable structural fill material, will be necessary.

We understand that a stormwater detention vault will be used for stormwater management. Based on the conditions encountered during our October 2017 and May 2019 explorations, it is our opinion that infiltration be considered infeasible from a geotechnical standpoint. A detailed description and justification on the infeasibility of site infiltration will be provided within the body of this

This study has been prepared for the exclusive use of Mr. Peter Chen and his representatives. No warranty, expressed or implied, is made. This study has been prepared in a manner consistent with the level of care and skill ordinarily exercised by other members of the profession currently practicing under similar conditions in this area.

Site Preparation and Earthwork

Initial site preparation activities will consist of installing temporary erosion control measures, establishing grading limits, and performing clearing and site stripping. Subsequent earthwork activities will involve mass site grading and related infrastructure improvements.

Erosion Control

The following temporary erosion control measures are offered:

- Temporary construction entrances and drive lanes, consisting of at least six inches of quarry spalls, should be considered to both minimize off-site soil tracking and provide a stable access entrance surface. Placement of a geotextile fabric beneath the quarry spalls will provide greater stability, if needed. Existing asphalt/gravel drive lanes can be considered for use as a temporary construction entrance and should be observed by ESNW prior to construction.
- Silt fencing should be placed around the site perimeter.
- When not in use, soil stockpiles should be covered or otherwise protected.
- Temporary measures for controlling surface water runoff, such as interceptor trenches, sumps, or interceptor swales, should be installed prior to beginning earthwork activities.
- Dry soils disturbed during construction should be wetted to minimize dust.
- When appropriate, permanent planting or hydroseeding will help to stabilize site soils.

Additional BMPs, as specified by the project civil engineer and indicated on the plans, should be incorporated into construction activities. Temporary erosion control measures should be continually maintained and improved to provide proper function over the course of construction.

Final erosion cultural measures should conform to the approved civil and/or landscape architecture plans. The following permanent erosion control measures are offered:

- Stabilize exposed soils with suitable vegetation immediately after final earthwork activities have taken place.
- Install permanent interceptor trenches/swales or other surface water flow controls, where necessary. ESNW can assist in identifying areas that may require such installments during mass grading activities.

Stripping

Topsoil was encountered generally within the upper 2 to 18 inches of existing grades at the test pit locations. ESNW should be retained to observe site stripping activities at the time of construction so that the degree of required stripping may be assessed. Over-stripping should be avoided, as it is unnecessary and may result in increased project development costs. Topsoil and organic-rich soil is neither suitable for foundation support nor for use as structural fill. Topsoil and organic-rich soil may be used in non-structural areas, if desired.

In-situ and Imported Soils

On-site soils are moisture sensitive, therefore, successful use as structural fill largely being dictated by the moisture content at the time of placement and compaction. Remedial measures, such as soil aeration and/or cement treatment (where allowed by the local jurisdiction or utility district), may be necessary as part of site grading and earthwork activities. Existing fill soils to be used within structural applications must be free of deleterious debris, especially with respect to construction-like debris and organic material. If the on-site soils cannot be successfully compacted, the use of an imported soil may be necessary. In our opinion, a contingency should be provided in the project budget for export of soil that cannot be successfully compacted as structural fill if grading activities take place during periods of extended rainfall activity. Soils with fines contents greater than 5 percent typically degrade rapidly when exposed to periods of rainfall.

Imported soil intended for use as structural fill should consist of a well-graded, granular soil with a moisture content that is at (or slightly above) the optimum level. During wet weather conditions, imported soil intended for use as structural fill should consist of a well-graded, granular soil with a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction).

Subgrade Preparation

Following site stripping, cuts and fills will be completed to establish proposed subgrade elevations across the site. To establish a suitable subgrade for structural elements, re-working of existing fill soils will likely be necessary in some areas. Due to the variable thickness and extent of the existing fill, it is our opinion that structural elements within the deeper fill areas be underlain by at least four feet of (reworked) structural fill. It may be possible to rework and reuse existing fill provided that it is free of deleterious material and contain a workable moisture content and approved by ESNW at the time of construction.

Subgrades founded in competent native soils can likely be compacted in-situ with mechanical equipment until a firm and unyielding state is achieved. The uniform, mechanical compaction of the foundation and slab subgrade areas will establish a relatively consistent subgrade condition below the foundation and slab elements. ESNW should observe the subgrade(s) during initial site preparation activities to confirm soil conditions are as anticipated and to provide supplementary recommendations for subgrade preparation, as necessary.

Please note, the above considerations are based on current site layout plans available to ESNW, as depicted on the Test Pit Location Plan attached to this report. Should site layout designs change, ESNW should be informed and allowed to reevaluate necessary preparation efforts in relation to corresponding Lot numbers.

Structural Fill

Structural fill is defined as compacted soil placed in foundation, slab-on-grade, roadway, permanent slope, retaining wall, and utility trench backfill areas. Soils placed in structural areas should be placed in loose lifts of 12 inches or less and compacted to a relative compaction of 95 percent, based on the laboratory maximum dry density as determined by the Modified Proctor Method (ASTM D1557). Soils intended for use as structural fill should be generally free of organic and deleterious material. For soil placed in utility trenches underlying structural areas, compaction requirements are dictated by the local city, county, or utility district, and are typically specified to a relative compaction of at least 95 percent.

Slope Fill

Structural fill placed within sloping areas should be include a bench configuration, as depicted on Plate 3 (Slope Fill Detail). The base bench must be "keyed" into the slope using excavating equipment, and subsequently filled and compacted with suitable structural fill before continuing to the next bench. Finish grades that are to be sloped should be "overbuilt" using a bench style fill and cut to the appropriate gradient to ensure that a compacted slope face is maintained. ESNW should be present on-site during structural fill placement to observed subgrade conditions as well as provide additional drainage recommendations, as necessary.

Excavations and Slopes

Excavation activities will likely expose loose to medium dense fill and native weathered soils as well as medium dense to dense native soils at depth. Based on the soil conditions observed at the test pit locations, the following allowable temporary slope inclinations, as a function of horizontal to vertical (H:V) inclination, may be used. The applicable Federal Occupation Safety and Health Administration (OSHA) and Washington Industrial Safety and Health Act (WISHA) soil classifications are also provided:

Loose to medium dense native and fill soil	1.5H:1V (Type C)
 Areas containing groundwater seepage 	1.5H:1V (Type C)
 Dense to very dense native soil 	0.75H:1V (Type A)

Steeper temporary slope inclinations within undisturbed, very dense native deposits may be feasible based on the soil and groundwater conditions exposed within the excavations. Steeper inclinations may be considered, and must be subsequently approved, by ESNW at the time of construction.

Permanent slopes should be planted with vegetation to enhance stability and to minimize erosion, and should maintain a gradient of 2H:1V or flatter. The presence of perched groundwater may cause localized sloughing of temporary slopes due to excess seepage forces. An ESNW representative should observe temporary and permanent slopes to confirm the slope inclinations are suitable for the exposed soil conditions and to provide additional excavation and slope recommendations, as necessary. If the recommended temporary slope inclinations cannot be achieved, temporary shoring may be necessary to support excavations.

Foundations

In our opinion, the proposed residential structures may be constructed on conventional continuous and spread footing foundations bearing upon competent native soil, recompacted existing fill, or suitable structural fill placed directly on competent native soils. In general, native soils competent for foundation support are anticipated to be encountered at approximate depths of two to five feet below the existing ground surface elevation. Areas underlain by existing fill may require additional preparation efforts in order to establish suitable and uniform bearing conditions, such as overexcavating unsuitable existing fill may be feasible in areas where the fill is devoid of organic and deleterious material but must be evaluated by ESNW during grading. Areas of deeper fill may require additional or complete over excavation and restoration or alternative foundation support implementations (see Subgrade Preparation subgrade elevations, compaction of soils to the specifications of structural fill, or overexcavation and replacement with a suitable structural fill material, will be necessary.

Provided the foundations will be supported as described above, the following parameters may be used for design:

•	Allowable soil bearing capacity	2,500 psf
•	Passive earth pressure	300 pcf (equivalent fluid)
•	Coefficient of friction	0.40

A one-third increase in the allowable soil bearing capacity may be assumed for short-term wind and seismic loading conditions. The above passive pressure and friction values include a factorof-safety of 1.5. With structural loading as expected, total settlement in the range of one inch and differential settlement of about one-half inch is anticipated. The majority of the settlements should occur during construction, as dead loads are applied.

Seismic Design

The 2015 International Building Code recognizes the American Society of Civil Engineers (ASCE) for seismic site class definitions. In accordance with Table 20.3-1 of the ASCE Minimum Design Loads for Buildings and Other Structures manual, Site Class D should be used for design.

The referenced liquefaction susceptibility map indicates the subject site maintains very low to moderate liquefaction susceptibility. In our opinion, site susceptibility to liquefaction may be considered negligible. The relatively consistent densities of the native soils and the absence of a uniformly established, shallow groundwater table were the primary bases for this consideration.

As part of this report preparation, we preliminarily evaluated the potential for a landslide induced from seismic activity. In our opinion, site susceptibility to a seismically induced landslide may be considered low. This consideration is primarily based on the fact that site grading, compaction, and preparation pad preparation efforts for structural areas will result in a general increase in site stability.

Slab-on-Grade Floors

Slab-on-grade floors for the proposed residential structures should be supported on a wellcompacted, firm and unyielding subgrade. Where feasible, competent native soil exposed at the slab-on-grade subgrade level can likely be compacted in situ to the specifications of structural fill. Unstable or yielding areas of the subgrade should be recompacted, or overexcavated and replaced with suitable structural fill, prior to construction of the slab.

A capillary break consisting of a minimum of four inches of free-draining crushed rock or gravel should be placed below the slab. The free-draining material should have a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction). In areas where slab moisture is undesirable, installation of a vapor barrier below the slab should be considered. If a vapor barrier is to be utilized, it should be a material specifically designed for use as a vapor barrier and should be installed in accordance with the specifications of the manufacturer.

Retaining Walls

Retaining walls must be designed to resist earth pressures and applicable surcharge loads. The following parameters may be used for design:

•	Active earth pressure (yielding condition)	35 pcf (equivalent fluid)
•	At-rest earth pressure (restrained condition)	55 pcf
•	Traffic surcharge (passenger vehicles)	70 psf (rectangular distribution)*
•	Passive earth pressure	300 pcf (equivalent fluid)
•	Coefficient of friction	0.40
•	Seismic surcharge	6H psf**

* Where applicable

** Where H equals the retained height (in feet)

The above design parameters are based on a level backfill condition and level grade at the wall toe. Revised design values will be necessary if sloping grades are to be used above or below retaining walls. Additional surcharge loading from adjacent foundations, sloped backfill, or other relevant loads should be included in the retaining wall design.

Retaining walls should be backfilled with free-draining material that extends along the height of the wall and a distance of at least 18 inches behind the wall. The upper 12 inches of the wall backfill may consist of a less permeable soil, if desired. A perforated drainpipe should be placed along the base of the wall and connected to an approved discharge location. A typical retaining wall drainage detail is provided on Plate 4. If drainage is not provided, hydrostatic pressures should be included in the wall design.

We understand that mechanically stabilized earth (MSE) walls may be used to facilitate grade changes created as part of the proposed development. Upon request, ESNW can provide recommendations and design notes for the proposed MSE walls, as necessary.

Drainage

Based on our field observations, isolated zones of perched groundwater seepage should be anticipated within site excavations. Temporary measures to control surface water runoff and groundwater seepage during construction would likely involve interceptor trenches and sumps. ESNW should be consulted during preliminary grading to identify areas of seepage and provide recommendations to reduce the potential for instability related to seepage effects.

Finish grades must be designed to direct surface drain water away from structures and slopes. Water must not be allowed to pond adjacent to structures or slopes. In our opinion, foundation drains should be installed along building perimeter footings. A typical foundation drain detail is provided on Plate 5.

Infiltration Feasibility Evaluation

Site subsurface conditions were initially explored in October 2017 and indicated variability with respect to soil types present and grain size distribution across the site. Per USDA testing methods and procedures, native soils are also classified as slightly gravelly sand, gravelly loamy coarse sand, very gravelly loamy sand, and loam. Fines contents were about 6 percent within the sands, 26 to 27 percent within the sandy loam, and 60 to 81 percent within the loam, as indicated by sieve results of representative samples. ESNW returned to the site in May 2019 to further evaluate soils within the proposed stormwater facility area (Tract A) to complete a targeted infiltration evaluation in the area. Native soils were characterized as silt in a moist to wet condition within the explored area of Tract A. Per USDA testing methods and procedure, the native silts are also classified as loam with fines contents ranging between about 92 and 96 percent.

In our opinion, the site is not a feasible candidate for successful use of infiltration. Native soils are representative of glacial drift deposits, which by their nature, depositional environment, and geomorphological history, can vary greatly with respect to soil types and grain size distribution over relatively short distances. This variation can become even more pronounced within areas of changing topography. Such conditions appear to be present across the subject site, as evident through the various soil types encountered during our explorations. Although sands were encountered at some test pit locations, they did not appear to be present in a uniform and continuous manner across the site. Conversely, other native soil types (silty sand, sandy silt, and silt) encountered during our explorations are considered as having an extremely poor infiltration potential and will not adequately support the implementation of any infiltration system, full or limited. The restraining factor of these soils potential for infiltration is the appreciable fines contents that constitutes the majority of the soil.

Preliminary Detention Vault Design

We presume a vault will be constructed on-site for means of stormwater management. We anticipate cuts of about 10 feet will be necessary to reach design subgrade elevation of the vault foundation. Based on our field observations, grade cuts for the vault are likely to expose very dense, undisturbed Vashon drift deposits.

The vault foundation should be supported directly on dense undisturbed native soil subgrade. Should overexcavation be necessary at the vault foundation subgrade, quarry spalls should be used to restore grades. Perimeter drains should be installed around the vault and conveyed to an approved discharge point. Discrete zones of perched groundwater seepage may be encountered within the vault excavation; however, buoyancy is not expected to influence the vault structure.

The following preliminary design parameters may be used for the vault:

•	Allowable soil bearing capacity	5,000 psf (dense native soil)
	Active earth pressure (unrestrained)	35 pcf
	Active earth pressure (unrestrained, hydrostatic)	80 pcf
٠	At-rest earth pressure (restrained)	50 pcf
	At-rest earth pressure (restrained, hydrostatic)	95 pcf
•	Coefficient of friction	0.40
•	Passive earth pressure	350 pcf
•	Seismic surcharge	6H psf*

Where H equals the retained height (in feet)

Vault retaining walls should be backfilled with free-draining material or suitable sheet drainage that extends along the height of the walls. The upper one foot of the wall backfill may consist of a less permeable soil, if desired. A perforated drainpipe should be placed along the base of the wall and connected to an approved discharge location. If the elevation of the vault bottom is such that gravity flow to an outlet is not possible, the portions of the vault below the drain should be designed to include hydrostatic pressure.

The final vault design must incorporate adequate buffer space from property boundaries such that temporary excavations to construct the vault structure may be successfully completed. Temporary shoring or a grading easement will likely be required where adequate slope setbacks cannot be achieved. Once available, ESNW should review the proposed vault grading plans to preliminarily assess possible excavation restraints and provide additional recommendations.

ESNW should observe grading operations for the vault and subgrade conditions prior to concrete forming and pouring. If the soil conditions encountered during construction differ from those anticipated, supplementary recommendations may be provided. ESNW should be contacted to review the final vault design to confirm that appropriate geotechnical parameters have been incorporated.

Preliminary Pavement Sections

The performance of site pavements is largely related to the condition of the underlying subgrade. To ensure adequate pavement performance, the subgrade should be in a firm and unyielding condition when subjected to proofrolling with a loaded dump truck. Structural fill in pavement areas should be compacted to the specifications previously detailed in this report. Soft, wet, or otherwise unsuitable subgrade areas may still exist after base grading activities. Areas containing unsuitable or yielding subgrade conditions will require remedial measures, such as over-excavation and/or placement of thicker crushed rock or structural fill sections, prior to pavement.

We anticipate new pavement sections will be subjected primarily to passenger vehicle traffic. For lightly loaded pavement areas subjected primarily to passenger vehicles, the following preliminary pavement sections may be considered:

- A minimum of two inches of hot mix asphalt (HMA) placed over four inches of crushed rock base (CRB), or;
- A minimum of two inches of HMA placed over three inches of asphalt treated base (ATB).

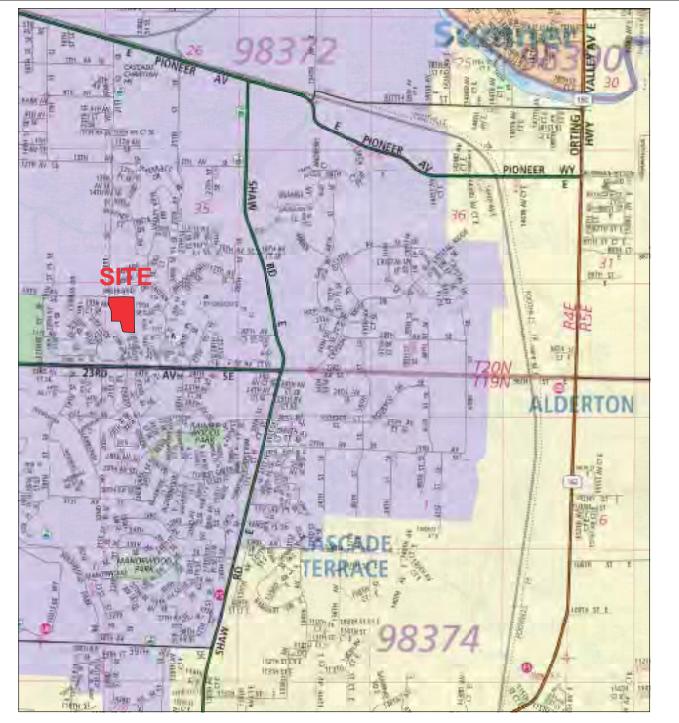
For heavy loaded pavement areas such as main access roads and areas subject to large commercial vehicles, the following preliminary pavement sections may be considered:

- Three inches of HMA placed over six inches of CRB, or;
- Three inches of HMA placed over three inches of ATB.

The HMA, ATB and CRB materials should conform to WSDOT specifications. All soil base material should be compacted to a relative compaction of 95 percent, based on the laboratory maximum dry density as determined by a modified proctor test (ASTM D1557). Final pavement design recommendations, including recommendations for heavy traffic areas, access roads, and frontage improvement areas, can be provided once final traffic loading has been determined. Road standards utilized by the governing jurisdiction may supersede the recommendations provided in this report.

Utility Support and Trench Backfill

In our opinion, on-site soils will generally be suitable for support of utilities. Remedial measures may be necessary in some areas to provide support for utilities, such as overexcavation and replacement with structural fill and/or placement of geotextile fabric. Groundwater seepage may be encountered within utility excavations, and caving of trench walls may occur where groundwater is encountered. Depending on the time of year and conditions encountered, dewatering, as well as temporary trench shoring, may be necessary during utility excavation and installation.

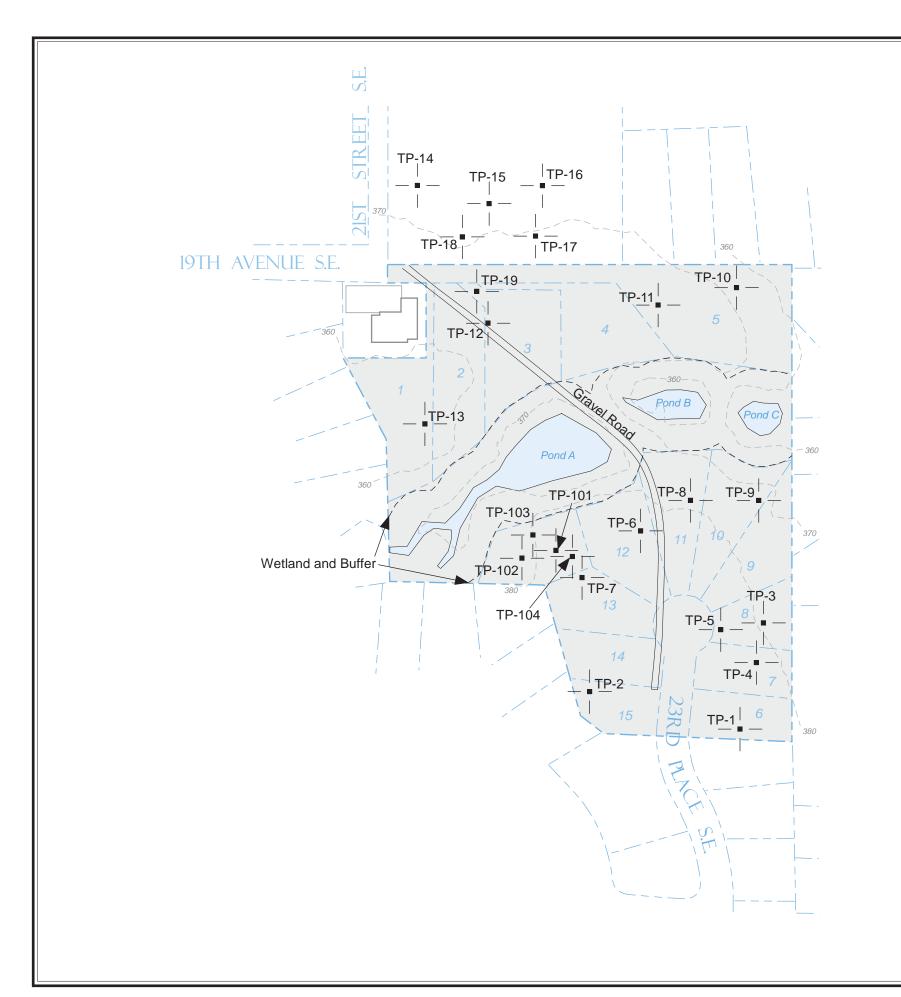

Successful use will depend on the soil's moisture content at the time of placement and compaction. Moisture conditioning of the soils may be necessary at some locations prior to use as structural fill. Each section of the utility lines must be adequately supported in the bedding material. Utility trench backfill should consist of and be placed and compacted to the specifications of structural fill as previously detailed in this report, or to the applicable specifications of the governing jurisdiction or agency.

LIMITATIONS

The recommendations and conclusions provided in this study are professional opinions consistent with the level of care and skill that is typical of other members in the profession currently practicing under similar conditions in this area. A warranty is neither expressed nor implied. Variations in the soil and groundwater conditions observed at the test pit locations may exist and may not become evident until construction. ESNW should reevaluate the conclusions provided in this study if variations are encountered.

Additional Services

ESNW should have an opportunity to review final project plans with respect to the geotechnical recommendations provided in this report. ESNW should also be retained to provide testing and consultation services during construction.



Reference: Pierce County, Washington Map 835 By The Thomas Guide Rand McNally 32nd Edition

NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

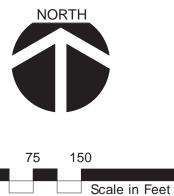
Earth Solutions NWLC	Geotechnical En	utions NWLLC gineering, Construction and Environmental Services						
Vicinity Map Sunset Pointe Puyallup, Washington								
Drwn. MRS	Date 05/31/2019	Proj. No. 5559						
Checked CGH	Date May 2019	Plate 1						

0 1"=150'

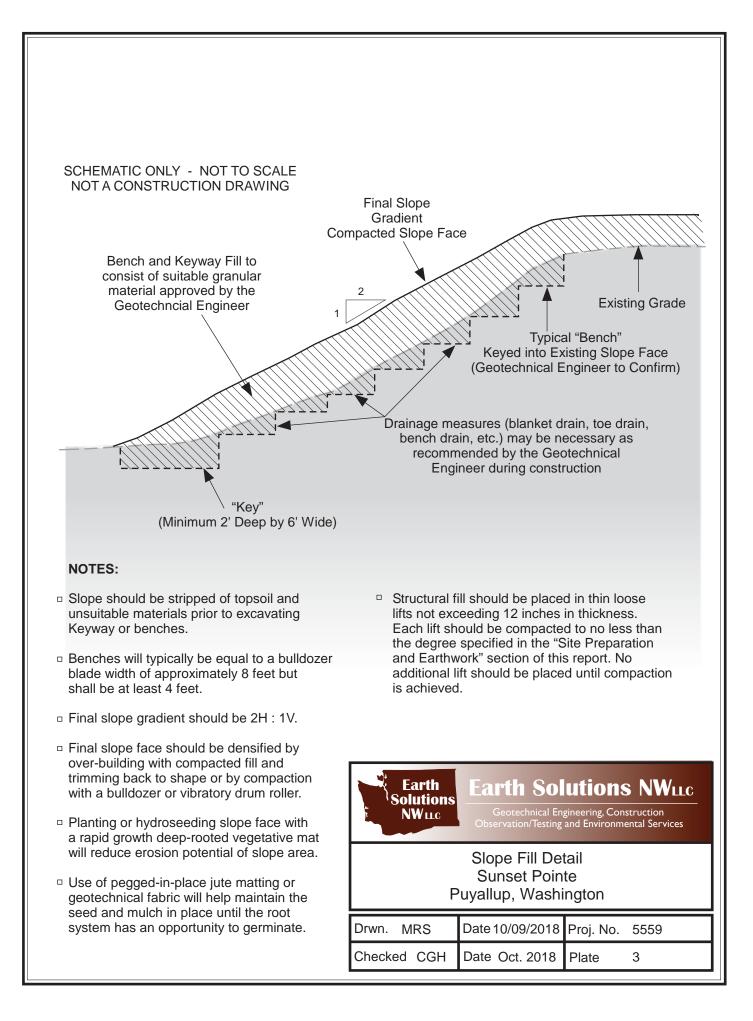
NOTE: The graphics shown on this plate are not intended for design purposes or precise scale measurements, but only to illustrate the approximate test locations relative to the approximate locations of existing and / or proposed site features. The information illustrated is largely based on data provided by the client at the time of our study. ESNW cannot be responsible for subsequent design changes or interpretation of the data by others.

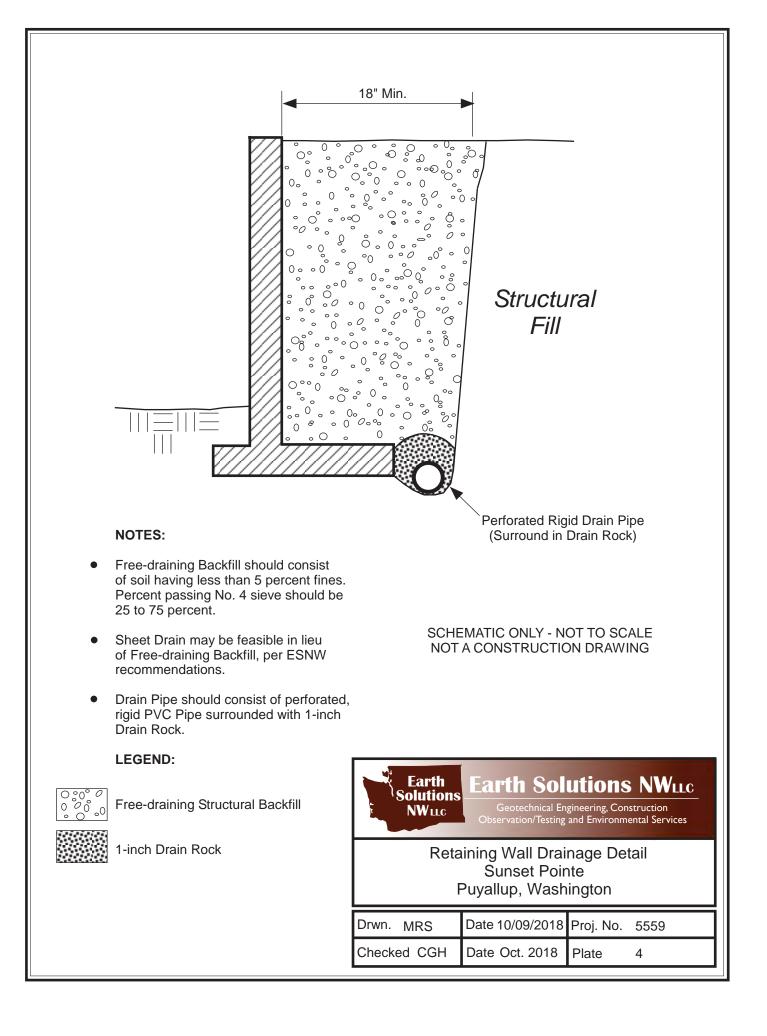
NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

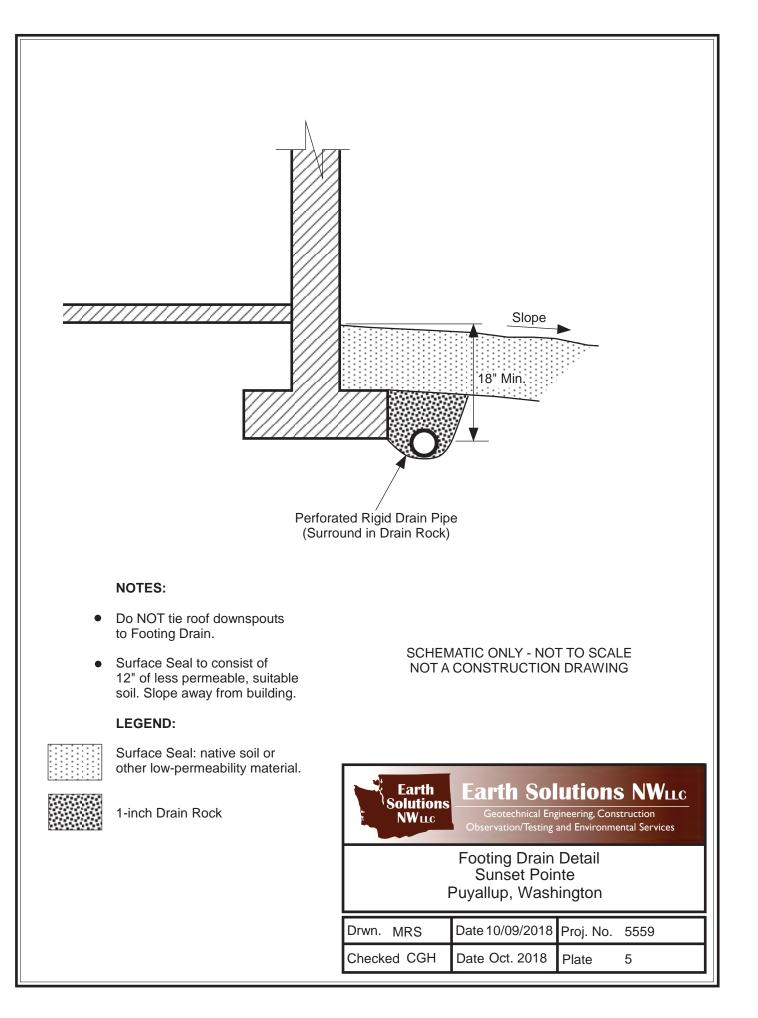
LEGEND


Approximate Location of ESNW Test Pit, Proj. No. ES-5559, Oct. 2017

Approximate Location of ESNW Test Pit, Proj No. ES-5559, May 2019


Subject Site


Existing Building


Proposed Lot Number

Appendix A

Subsurface Exploration Test Pit Logs

ES-5559

Subsurface conditions at the subject site were explored by an ESNW representative on October 24, 2017 and May 15, 2019. A total of 23 test pits were excavated at accessible areas of the site using an operator and trackhoe retained by our firm. The approximate locations of the test pits are illustrated on Plate 2 of this study. The test pits logs are provided in this Appendix. The test pits were excavated to a maximum depth of approximately 18 feet bgs.

The final logs represent the interpretations of the field logs and the results of laboratory analyses. The stratification lines on the logs represent the approximate boundaries between soil types. In actuality, the transitions may be more gradual.

Earth Solutions NWLLC SOIL CLASSIFICATION CHART

		ONE	SYM	BOLS	TYPICAL	
IVI	AJOR DIVISI	UNS	GRAPH	LETTER	DESCRIPTIONS	
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES	
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES	
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND CLAY MIXTURES	
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)	\times	SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES	
	MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
	FRACTION PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	
		-		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
UCIED				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS	
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS	
н	GHLY ORGANIC	SOILS	70 70 70 70 90 6 70 70 70 70 70 70 70	РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	

DUAL SYMBOLS are used to indicate borderline soil classifications.

The discussion in the text of this report is necessary for a proper understanding of the nature of the material presented in the attached logs.

7	Earth Solutio NWae	Earth Solution 1805 - 136th Bellevue, W Telephone: Fax: 425-44	n Place ashing 425-44	N.E., ton 98 19-47(005	TEST PIT NUMBER TP- PAGE 1	
PROJI		BER ES-5559				PROJECT NAME Sunset Pointe	
DATE	STARTED	5/15/19	со	MPLE	TED 5/19/19	GROUND ELEVATION 383 ft TEST PIT SIZE	
EXCA	VATION CO	ONTRACTOR NW	Excav	ating		GROUND WATER LEVELS:	
EXCA	VATION MI	ETHOD			_	AT TIME OF EXCAVATION	_
					DBY SSR	AT END OF EXCAVATION	
NOTES	S Depth o	of Topsoil & Sod 12	": heav	y brar	nble	AFTER EXCAVATION	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
0			TDO	24 3	Dark brown TO	PSOIL, root intrusions to 12"	
			IPSL	5 114	1.0	D with gravel, dense, moist (Fill)	382.
5		MC = 13.80% MC = 20.00%	SM		-sand lens ~12' 5.5 Gray SILT, mec	' thick lium dense, moist (Fill)	377
10		MC = 27.30% Fines = 90.00%	ML		8	n, increased fines ation: slightly gravelly LOAM]	370.1
-				\$7.52	Tan SILT, medi	um dense, wet	570.1
-		MC = 31.90% Fines = 95.80%	ML		[USDA Classific	ation: LOAM]	
15			-		15.0 Tan silty SAND	medium dense, wet to saturated	368 (
		MC = 35.30%	SM		-minor iron oxid	e staining	
					-sand lens 6"- 1	Z THICK	
		MC = 28.50%	-		18.0 Test pit termina during excavatio	ted at 18.0 feet below existing grade. No groundwater encountered on. No caving observed. Bottom of test pit at 18.0 feet.	365.0

	Earth Solutio NWaa	1805 - 136th Bellevue, Wa	ashing 425-44	N.E., Suite ton 98005 19-4704	201	TEST PIT NUMBER TP-10 PAGE 1 OF		
PROJE	CT NUMI	BER ES-5559				PROJECT NAME Sunset Pointe	_	
DATE S	STARTED	5/15/19	со	MPLETED	5/15/19	GROUND ELEVATION 376 ft TEST PIT SIZE		
EXCAV	ATION C	ONTRACTOR NW	Excav	ating		GROUND WATER LEVELS:		
EXCAV		ETHOD				AT TIME OF EXCAVATION		
LOGGE	DBYC	GH	CH	ECKED BY	SSR	AT END OF EXCAVATION	_	
NOTES	Depth	of Topsoil & Sod 12'	': heav	y bramble		AFTER EXCAVATION	_	
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
0			-	<u>012</u> 0	Dark brown T	OPSOIL, root intrusions to 2.25'	-	
			TPSL	1.0			37	
					Brown silty SA	AND, loose, moist		
-			SM					
		MO - 05 40%	-	2.5	Grav SII T. de		37	
-		MC = 25.40% Fines = 98.30%		Gray SILT, dense, moist [USDA Classification: LOAM]				
					-heavy iron o	kide staining		
1	1.1							
5								
-		MC = 32.00% Fines = 92.50%	ML		-becomes bro	wn wet		
		11103 - 52,5070				fication: LOAM]		
-					(002) (0.000)			
					-becomes we	t to saturated		
1								
		MC = 35.20%		9.5	······································		36	
			17.8	0.00	excavation.	nated at 9.5 feet below existing grade. No groundwater encountered during to caving observed.		
						Bottom of test pit at 9.5 feet.		
	- 1							

Y.	Eart 'Soluti NW	h 1805 - 136t Bellevue, W Telephone: Fax: 425-4	h Place /ashing 425-4	e N.E., Su ton 9800 49-4704	uite 201 5	TEST PIT NUMBER TP-103 PROJECT NAME Sunset Pointe GROUND ELEVATION 384 ft TEST PIT SIZE GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION AFTER EXCAVATION		
DATE EXCA EXCA LOGG	STARTE VATION (VATION M ED BY		/ Excav	vating IECKED E				
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	USCS	GRAPHIC LOG		MATERIAL DESCRIPTION		
5		MC = 11.30% MC = 10.40% MC = 11.70%	SM	0	6			
		MC = 20,20%		11	Test pit termina	373 ted at 11.0 feet below existing grade. No groundwater encountered on. No caving observed. Bottom of test pit at 11.0 feet.		

GENERAL BH / TP / WELL 5559 GPJ GINT US GDT 5/31/19

5.1.	Eart Solutio NWu	DINS Bellevue, W	h Place /ashingl 425-44	N.E., ton 98 19-47(8005	TEST PIT NUMBER TP-1 PAGE 1 O	
PROJE	ECT NUM	BER ES-5559				PROJECT NAME Sunset Pointe	
DATE	STARTE	D 5/15/19	со	MPLE	TED 5/15/19	GROUND ELEVATION 383 ft TEST PIT SIZE	
		CONTRACTOR NW	Excav	ating		GROUND WATER LEVELS:	
EXCA		IETHOD				AT TIME OF EXCAVATION	_
LOGG	ED BY	CGH	СН	ECKE	DBY SSR	AT END OF EXCAVATION	
NOTES	S Depth	of Topsoil & Sod 8"	: grass			AFTER EXCAVATION	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC		MATERIAL DESCRIPTION	
	-		TPSL	NII.	Dark brown TO	PSOIL, root intrusions to 12"	000
				TT	0.6) with gravel, medium dense to dense, moist	382
1		MC = 19.90%	SM		-becomes brown -becomes gray	n	
5		MC = 23.50%			5.0 -heavy iron oxid Gray SILT, loos		378
10			ML		-becomes brown	n, wet	
10							
		MC = 29.80% Fines = 93.50%			11.0 [USDA Classific Test pit terminal during excavatio	ation: LOAM] ted at 11.0 feet below existing grade. No groundwater encountered on. No caving observed. Bottom of test pit at 11.0 feet.	372.

GENERAL BH / TP / WELL 5559 GPJ GINT US GDT 5/31/19

P. 1.	Eart Solutio NW10	Bellevue W	n Place ashing 425-44	N.E., ton 98 49-470	005	TEST PIT NUMBER TP-1 PAGE 1 OF 1
PROJ	ECT NUM	BER ES-5559				PROJECT NAME Sunset Pointe
DATE	STARTE	0 10/24/17	со	MPLE	TED 10/24/17	GROUND ELEVATION TEST PIT SIZE
EXCA		ONTRACTOR NW	Excav	ating		GROUND WATER LEVELS:
EXCA		ETHOD				AT TIME OF EXCAVATION
	ED BY		-		BY HTW	AT END OF EXCAVATION
NOTE	5 Depth	of Topsoil &Sod 1"-	3": gra	SS		AFTER EXCAVATION
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
0	-		Rock	****	0.5 Crushed Rock	(Fill)
	1.5		ML	<u>IÎÎ</u>	1.0 Brown SILT, loo	
5		MC = 7.40% Fines = 6.20% MC = 4.40%	SP- SM		[USDA Classific	raded SAND with silt, medium dense, moist cation: slightly gravelly SAND] rel content ium dense to dense
1 1		MC = 7.40%	_		-increased cobb	ted at 9.0 feet below existing grade. No groundwater encountered during
						caving observed. Bottom of test pit at 9.0 feet.

71.	Eart 'Soluti NW	OIIS Bellevue W	h Place N.E (ashington 425-449-4	98005	TEST PIT NUMBER TP- PAGE 1 OF	
PROJI		BER ES-5559			PROJECT NAME Sunset Pointe	
				LETED 10/24/17	GROUND ELEVATION TEST PIT SIZE	
		CONTRACTOR NV	/ Excavatin	9		
			011501			
	ED BY	of Topsoil & Sod 4"		KED BY HTW	AT END OF EXCAVATION	
NUTE		or ropson a 300 4		1	AFTER EXCAVATION	
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC	POG	MATERIAL DESCRIPTION	
-			TPSL		OPSOIL (Fill), root intrusions to 7'	
	. **		Fill	Clean washed		
				Brown/tan san	idy SILT, medium dense, moist	
		MC = 21.60%	ML	-light iron oxid	e staining 2'- 4'	
5				5.0 Gray poorly gr	aded SAND, medium dense to dense, moist	
			SP			
		MC = 9.50%	6.5		an sandy SILT, dense, moist	
-			ML	Tan sandy SIL	I, dense, moist	
-					aded SAND with gravel, dense, moist	
_		MC = 4.80%	SP X	10.0	d by excavation activities	
					ated at 9.0 feet below existing grade. No groundwater seepage encountered tion. Caving observed from 6.0 to 6.5 feet and 8.0 feet to BOH. Bottorn of test pit at 9.0 feet.	

1	Ear Soluti NW	OIIS Bellevue, W	n Place ashing 425-4	N.E., Si ton 9800 49-4704	uite 201)5	TEST PIT NUMBER TP- PAGE 1 OF	
DATE EXCA EXCA LOGG	STARTE VATION VATION ED BY	MBER ES-5559 D 10/24/17 CONTRACTOR NW METHOD CGH 1 of Topsoil & Sod 18	Excav	eting ECKED I	ed 10/24/17 By <u>h</u> tw	PROJECT NAME Sunset Pointe GROUND ELEVATION TEST PIT SIZE GROUND WATER LEVELS: AT TIME OF EXCAVATION	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
			TPSI		Dark brown TC	Dark brown TOPSOIL (Fill), intrusions to 7' Gray silty SAND with gravel, medium dense, moist (Fill) clean washed rock ~4" thick becomes brown dense USDA Classification: very gravelly loamy SAND]	
5	Fi	MC = 8.90% MC = 8.10% Fines = 15.90%	SM		-clean washed -becomes brow [USDA Classifi		
-						sand, medium dense, moist (Fill)	
		MC = 19.20%		<u>anni)</u>	Test pit termina	ited at 9.0 feet below existing grade. No groundwater encountered during o caving observed. Bottorn of test pit at 9.0 feet.	

PROJ		IBER ES-5559				PROJECT NAME Sunset Pointe		
DATE	STARTE	D 10/24/17	co	MPLE	TED 10/24/17	GROUND ELEVATION TEST PIT SIZE		
			V Excav	ating		GROUND WATER LEVELS:		
		METHOD	СН	FCKEI	BY HTW			
		of Topsoil & Sod 2'				AFTER EXCAVATION		
o DEPTH (ft)				GRAPHIC LOG		MATERIAL DESCRIPTION		
				***	Brown silty S/	AND, loose to medium dense, moist (Fill)		
5 MC = 12 30% MC = 19.30% ML 10 MC = 22 10% 12.0	7.0 Gray SILT wi -trace organic	usions to 9' erched groundwater seepage .T with sand, loose to medium dense, wet (Fill) ganics noxide staining						
-		MC = 22.10%		XXX I		SILT, dense, moist		
			ML		-light iron oxid			
15		MC = 27.40%			15.0 Test pit termin encountered a	ated at 15.0 feet below existing grade. Groundwater encountered seepage t 4.0 feet during excavation. Caving observed from 0.0 to 9.0 feet. Bottom of test pit at 15.0 feet.		

1.	Eart Soluti NWi	OIIS Bellevue, V	h Place ashing 425-4	N.E., 3 ton 980 19-470	005	TEST PIT NUMBER TP- PAGE 1 OF	
DATE EXCAN EXCAN LOGGI	STARTE	CONTRACTOR NV METHOD CGH	/ Excav CH	ating ECKED	DBY HTW		
O DEPTH						MATERIAL DESCRIPTION	
-		MC = 7.20%	TPSL	10 AU	1.0 Brown silty SAI	Dark brown TOPSOIL, root intrusions to 3' Brown silty SAND, medium dense, moist -becomes tan, damp to moist	
5		MC = 20.90%	SM		-becomes dens -light iron oxide		
-		MC = 12.40%		5	9.5 Test pit termina	, very dense entation, light iron oxide staining ited at 9.5 feet below existing grade. No groundwater encountered during caving observed. Bottom of test pit at 9.5 feet.	

Ear Solut NW	OIIS Bellevue V	h Place ashing 425-44	N.E., 5 ton 980 19-4704	005	TEST PIT NUMBER TP PAGE 1 OF		
DATE STARTE	CONTRACTOR NV	/ Excav	ating ECKED	TED 10/24/17			
o (ff) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
-		SM		Brown silty SAND, medium dense, moist (Fill) -root intrusions to 7' 2.0			
- - -	MC = 20.50%	ML		Brown sandy S -minor brick del -becomes gray	ILT, medium dense, moist (Fill) bris		
-	MC = 10.00%	SP	V	8.0 Brown poorly gr -light iron oxide	raded SAND, dense, moist staining		
	MC = 31.70%	J.	\wedge	12.0 -becomes wet to Test pit termina excavation. No	o saturated ted at 12.0 feet below existing grade. No groundwater encountered during caving observed. Bottom of test pit at 12.0 feet.		

Д.	Eart Solutio NWo	DIIS Bellevue V	h Place Vashing 425-44	N.E., 8 ton 980 19-4704	05	TEST PIT NUMBER TP- PAGE 1 OF	
DATE EXCA EXCA LOGG	STARTEI VATION C VATION M ED BY	BER ES-5559 D 10/24/17 CONTRACTOR NV METHOD CGH of Topsoil & Sod 6'	V Excav CH	ating ECKED	TED 10/24/17	PROJECT NAME Sunset Pointe GROUND ELEVATION TEST PIT SIZE GROUND WATER LEVELS: TIME OF EXCAVATION AT TIME OF EXCAVATION AT END OF EXCAVATION AFTER EXCAVATION	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS S. J.				MATERIAL DESCRIPTION	
5		MC = 9.50%	SM		Brown silty SA	DPSOIL, root intrusions to 7' ND, loose to medium dense, moist ate iron staining , very dense	
		MC = 18.00%			9.0 -becomes wet Test pit termina excavation. No	ited at 9.0 feet below existing grade. No groundwater encountered during caving observed. Bottorn of test pit at 9.0 feet.	

F. 1.	Earth Solutic NWa	IIIS Bellevue W	h Place /ashing 425-44	N.E., S ton 980	05	TEST PIT NUMBER TP-4 PAGE 1 OF		
PROJE		BER ES-5559				PROJECT NAME Sunset Pointe		
					ED 10/24/17			
	ED BY C	ETHOD			BY HTW	AT TIME OF EXCAVATION AT END OF EXCAVATION		
		of Topsoil & Sod 4"				AFTER EXCAVATION		
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
0			TPSL	34 3	Dark brown TO	PSOIL, root intrusions to 5'		
5		MC = 16.30% MC = 17.80%	SM		-becomes gray	, dense		
-			SP	E	.0 Gray poorly gra	ded SAND, dense, moist		
-		MC = 3.20%	or		.0 Test pit termina excavation. No	ted at 9.0 feet below existing grade. No groundwater encountered during caving observed. Bottom of test pit at 9.0 feet.		

MC = 21.70% Fines = 81.20%	Excava CHI	ECKED				
ONTRACTOR NW ETHOD GH of Topsoil & Sod 4": TESTS MC = 21.70%	r Excava CHI grass grass O O O O O O O O TPSL	ECKED	BY HTW	GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION DPSOIL, root intrusions to 3'		
ETHOD GH of Topsoil & Sod 4": TESTS MC = 21.70%	CHI grass O O O TPSL	CKAPHIC LOG	BY HTW	AT TIME OF EXCAVATION AT END OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION		
GH of Topsoil & Sod 4": TESTS MC = 21.70%	grass or or or or or TPSL	GRAPHIC LOG	.5 Dark brown T(AT END OF EXCAVATION		
f Topsoil & Sod 4": TESTS MC = 21.70%	grass or or or or or TPSL	GRAPHIC LOG	.5 Dark brown T(AFTER EXCAVATION MATERIAL DESCRIPTION DPSOIL, root intrusions to 3'		
TESTS MC = 21.70%	S. J. S. J. S. J. TPSL			MATERIAL DESCRIPTION DPSOIL, root intrusions to 3'		
MC = 21.70%	TPSL			DPSOIL, root intrusions to 3'		
		<u>N.</u> N. N				
	ML		Brown SILT w	ith sand, medium dense to dense, moist		
	ML					
		[USDA Classification: LOAM] -becomes gray -light iron oxide staining				
	SP	~ 1	.0 - Grav popriv gr	aded SAND, dense, moist		
MC = 3.90%	OF	-	Test pit termin	ated at 6.5 feet below existing grade. No groundwater encountered during		
			excavation. N	o caving observed. Bottom of test pit at 6.5 feet.		

7.	Eart Solutio NWG	DITS Bellevue V	h Place Vashing 425-44	N.E., S ton 980 19-4704	005	TEST PIT NUMBER TP-10 PAGE 1 OF		
DATE EXCA EXCA LOGG	STARTER VATION (VATION IN SED BY	CONTRACTOR NV	V Excav CH	ating ECKED	ED 10/24/17	GROUND WATER LEVELS: AT TIME OF EXCAVATION		
o DEPTH (f)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
-			SM		-root intrusions			
5		MC = 12.40%	TPSL		2.0 Relic TOPSOI Brown silty SA -becomes gray	ND, medium dense, moist		
		MC = 18.70%	SM					
-		MC = 8.90%				ated at 9.0 feet below existing grade. No groundwater encountered during o caving observed. Bottom of test pit at 9.0 feet.		

PROJ		BER ES-5559				PROJECT NAME Sunset Pointe	
		D 10/24/17	co	MPLE	TED 10/24/17		
XCA	VATION		/ Excav	ating		GROUND WATER LEVELS:	
	VATION					AT TIME OF EXCAVATION	
	ED BY				D BY HTW	AT END OF EXCAVATION	
OTE		of Topsoil & Sod 6"	: grass	-	1	AFTER EXCAVATION	
(f)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
			TPSL	1/1/2 1	0.5 Dark brown TC	DPSOIL, root intrusions to 4'	
5		MC = 21.10% MC = 20.10%	SM		-moderate iron	o, medium dense, moist oxide staining to 4' ht iron oxide staining se	
10		MC = 16.00%		11.	10.0 Test pit termina excavation. No	ated at 10.0 feet below existing grade. No groundwater encountered during caving observed. Bottom of test pit at 10.0 feet.	

ľ	Eart Soluti NW	Fax: 425-44	n Place ashing 425-4	N.E., S ton 980 49-4704	05	TEST PIT NUMBER TP-12 PAGE 1 OF		
DATE EXCA EXCA LOGG	STARTE VATION (VATION ED BY	CONTRACTOR NW METHOD CGH	Excav	ecked		PROJECT NAME Sunset Pointe GROUND ELEVATION TEST PIT SIZE GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION		
HLd30	S Depth SAMPLE TYPE NUMBER	t of Topsoil & Sod 2": TESTS	C.S.C.S.	GRAPHIC LOG		AFTER EXCAVATION		
5	ML MC = 15.20% Fines = 60.20%	-root intrusions to 3' -becomes gray [USDA Classification: LOAM]						
-		MC = 17.30%			Test pit terminal excavation. No	ted at 6.0 feet below existing grade. No groundwater encountered during caving observed. Bottom of test pit at 6.0 feet.		

PROJI	ECT NUM	Fax: 425-44	49-471 ⁻			PROJECT NAME Sunset Pointe
		0 10/24/17			0 10/24/17	
			/ Excav	ating		GROUND WATER LEVELS: AT TIME OF EXCAVATION —
	ED BY		СН	ECKED 8	Y HTW	AT END OF EXCAVATION
NOTES	S Depth	of Topsoil & Sod 4"	: grass	r - r		AFTER EXCAVATION
o DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
0					Brown sandy S	SILT, loose to medium dense, moist
5		MC = 27.30% MC = 23.90%	ML		-becomes gray	
10		MC = 16.00%	SP	9.5	Test pit termina	aded SAND with gravel, dense, wet ated at 10.0 feet below existing grade. No groundwater encountered during o caving observed. Bottom of test pit at 10.0 feet.

PROJ		BER ES-5559				PROJECT NAME Sunset Pointe		
EXCA EXCA			/ Excav	ating	ED 10/24/17	AT TIME OF EXCAVATION		
NOTE	-	of Topsoil & Sod 6"	- 8": gra	195		AFTER EXCAVATION		
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
			TPSL	35 3	4.9	DPSOIL, root intrusions to 3' ND, loose to medium dense, moist		
5		MC = 15.20%	SM		-becomes gra -light iron oxid	y, medium dense e staining		
1 1		MC = 7.10%		$\langle \rangle$	7.0 Gray poorly gr	aded SAND, dense, moist		
10		MC = 12.50%	SP	Å	0.0			
1			SM			ND, dense, moist		
-		MC = 9.00%			2.0 Test pit termin excavation. N	ated at 12.0 feet below existing grade. No groundwater encountered during o caving observed. Bottom of test pit at 12.0 feet.		

Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005 Telephone: 425-449-4704 Fax: 425-449-4711						TEST PIT NUMBER TP- PAGE 1 C	
		ABER ES-5559					
DATE STARTED 10/24/17 COMPLETED 10/24/17 EXCAVATION CONTRACTOR NW Excavating EXCAVATION METHOD							
LOGGED BY CGH CHECKED BY HTW NOTES Surface Conditions: brush						AT END OF EXCAVATION AFTER EXCAVATION	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
5		MC = 18.90%				ND, loose, moist (Fill) rate organics throughout s to 12'	
		MC = 91.30% Fines = 79.00%	SM		[USDA Classifi -becomes wet	cation: gravelly loamy coarse SAND]	
15		MC = 28.60%	ML	15. 11. 16.	Gray sandy SIL Test pit termina	T, medium dense, moist ted at 16.0 feet below existing grade. No groundwater encountered during caving observed. Bottom of test pit at 16.0 feet.	

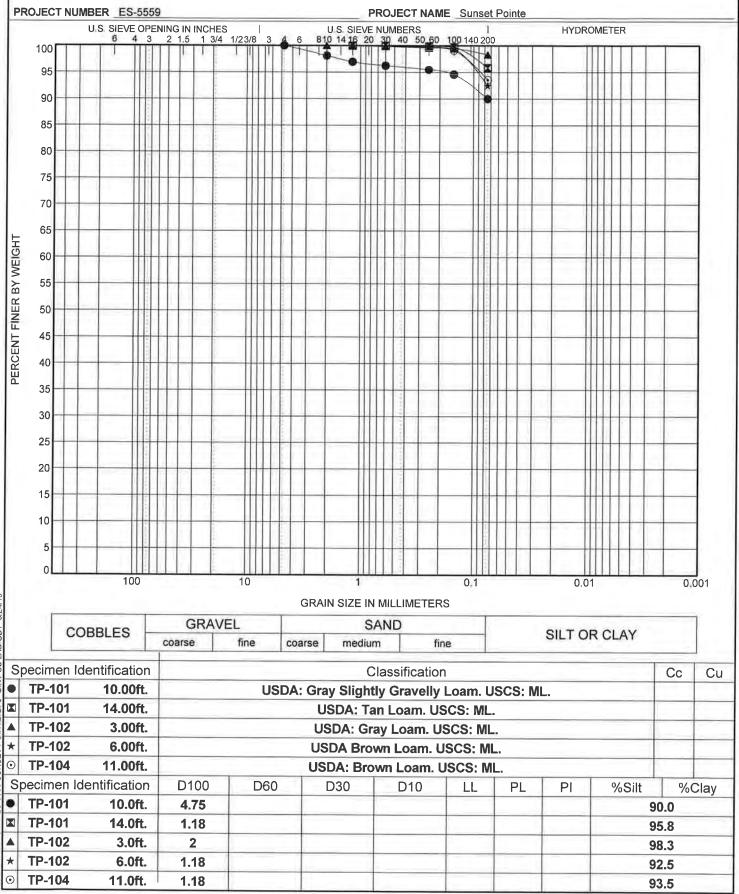
1	Eart Soluti NWi	Earth Soluti 1805 - 136th Bellevue, W Telephone: Fax: 425-44	h Place /ashing 425-44	N.E., ton 98 49-470	005	TEST PIT NUMBER TP-1 PAGE 1 OF	
PROJE		BER ES-5559				PROJECT NAME Sunset Pointe	
DATE	STARTE	D 10/24/17	co	MPLE	TED 10/24/17	GROUND ELEVATION TEST PIT SIZE	
						GROUND WATER LEVELS:	
		METHOD				AT TIME OF EXCAVATION	
				ECKE	BY HTW		
NOTES		e Conditions: brush	1.5	1		AFTER EXCAVATION	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
0			-	TT	Dark brown silf	ty SAND, loose, wet	
-					-root intrusions	s to 3'	
-							
		MC = 30.80%	SM				
-							
5		MC = 16.50%			-becomes brown, medium dense, moist		
					bocomes crow		
-		MC = 7.90%	-		6.0 -becomes gray Test pit termina	ated at 6.0 feet below existing grade. No groundwater encountered during	
				excavation. No	lo caving observed. Bottom of test pit at 6.0 feet.		
				- II			

1.	Eart Soluti NW	OIIS Bellevue V	th Place Vashing : 425-44	N.E., S ton 9800 49-4704	05	TEST PIT NUMBER TP-1 PAGE 1 OF
DATE EXCAN EXCAN LOGGI	STARTE VATION (VATION ED BY	CONTRACTOR NV	V Excav CH	ating ECKED	ED 10/24/17 BY HTW	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
5		MC = 24.10%	SM		Brown silty SAt	ID, loose, wet (Fill) to 7'
		MC = 6.30%	SM	1111		, medium dense, moist ted at 7.5 feet below existing grade. No groundwater encountered during caving observed. Bottom of test pit at 7.5 feet.

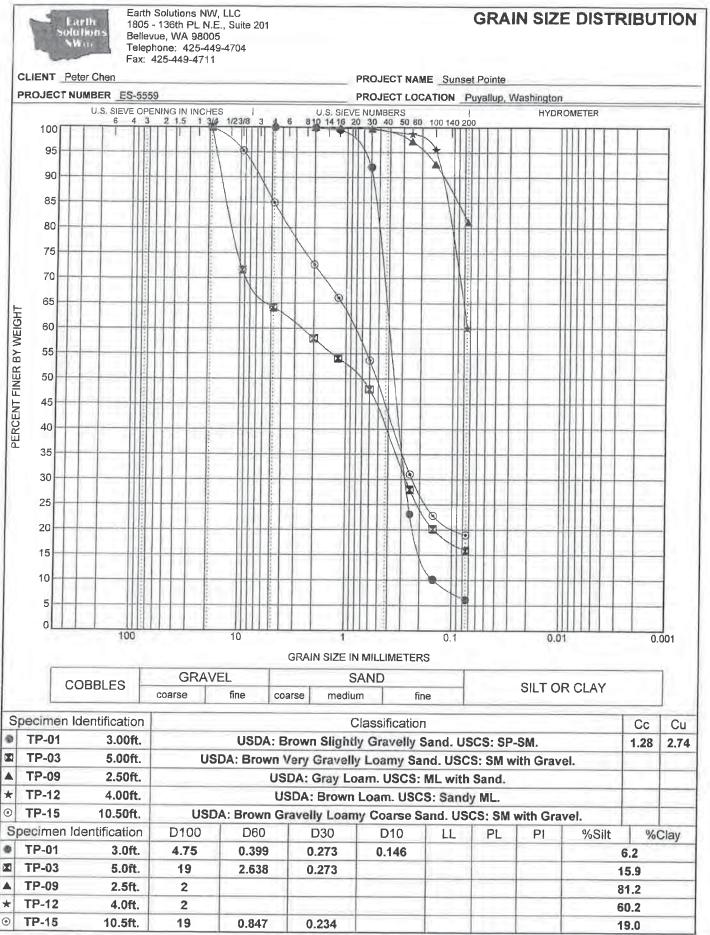
Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005 Telephone: 425-449-4704 Fax: 425-449-4711						TEST PIT NUMBER TP-1 PAGE 1 OF	
DATE EXCA EXCA LOGG	STARTER VATION (VATION N ED BY	CONTRACTOR NV	/ Excav	ecked	ED 10/24/17 BY HTW	GROUND WATER LEVELS: AT TIME OF EXCAVATION	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
5		MC = 14.90%	SM	5	-root intrusions -wire debris	AND, loose, moist (Fill) ns to 3' ID, medium dense, moist	
		MC = 6.30%			.0 Test pit termina excavation. No	ated at 6.0 feet below existing grade. No groundwater encountered during b caving observed. Bottorn of test pit at 6.0 feet.	

N.	Eart Solutio NWo	DITS Bellevue V	h Place ashing 425-44	N.E., 8 ton 980 19-4704)05	TEST PIT NUMBER TP-19 PAGE 1 OF 1
-		BER ES-5559				PROJECT NAME Sunset Pointe
					ED 10/24/17	
		ETHOD	/ Excav	ating		GROUND WATER LEVELS: AT TIME OF EXCAVATION
	ED BY		СН	ECKED	BY HTW	AT END OF EXCAVATION
		of Topsoil & Sod 10				AFTER EXCAVATION
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
			TPSL	24 24	Dark brown TO	PSOIL, root intrusions to 2'
-			-	2 22	1.0 Grav silty SAN	D, medium dense, moist
5		MC = 13.00% MC = 15.40%	SM		-becomes dens	se
					excavation. No	ated at 5.0 feet below existing grade. No groundwater encountered during caving observed. Bottom of test pit at 5.0 feet.

Appendix B


Laboratory Test Results

ES-5559



Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005 Telephone: 425-449-4704 Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

GRAIN SIZE USDA ES-5559 SUNSET POINTE GPJ GINT US LAB GDT 6/24/19

GDT 11/10/17 GINT US LAB. ES-5559 SUNSET POINTE GPJ

GRAIN SIZE USDA

Report Distribution

ES-5559

EMAIL ONLYMr. Peter Chen4709 Memory Lane WestUniversity Place, Washington 98488

EMAIL ONLYCES NW, Inc.429 – 29th Street Northeast, Suite D
Puyallup, Washington 98372

Attention: Ms. Dawn Markakis

CRITICAL AREA ASSESSMENT

CRITICAL AREAS ASSESSMENT

SUNSET POINTE RESIDENTIAL COMMUNITY PARCELS 0420353026 and 0420353027 2100 - 19th Avenue SE, City of Puyallup, Washington

This report has been revised to incorporate review comments provided by the City of Puyallup Environmental Review Team

prepared for

Ms. Jennifer Caldwell, Senior Planner @ CES NW Inc. 310 - 29th Street NE, Suite 101 Puyallup, Washington 98372

prepared by

HABITAT TECHNOLOGIES P.O. Box 1088 Puyallup, Washington 98371-1088 253-845-5119

January 19, 2018

REVISED SEPTEMBER 21, 2018

wetlands, streams, fisheries, wildlife – mitigation and permitting solutions P.O. Box 1088, Puyallup, Washington 98371 253-845-5119 contact@habitattechnologies.net

Table of Contents

INTRODUCTION	, 1
PROJECT SITE DESCRIPTION	. 1
BACKGROUND INFORMATION	. 2
NATIONAL WETLAND INVENTORY STATE OF WASHINGTON PRIORITY HABITATS AND SPECIES STATE OF WASHINGTON DEPARTMENT OF FISH AND WILDLIFE STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES CITY OF PUYALLUP MAPPING SOILS MAPPING	. 2 . 3 . 3 . 3
ONSITE ANALYSIS	. 3
CRITERIA FOR CRITICAL AREAS IDENTIFICATION	4 5 5 6 6 7
CRITICAL AREAS DETERMINATION	9
WETLANDS	10 10 11
INTENTIONALLY CREATED MAN-MADE FEATURES	12
EXCAVATED PONDS	12
SELECTED DEVELOPMENT ACTION	12
STANDARD OF CARE	13
FIGURES	14
REFERENCE AND BACKGROUND LIST	15
APPENDIX A – FIELD DATA FORMS	17
APPENDIX B – WETLAND RATING WORKSHEETS	18

INTRODUCTION

This document details the culmination of activities and onsite evaluations undertaken to complete a critical areas (i.e. wetlands, streams, fish and wildlife habitats) assessment for the proposed **Sunset Pointe Residential Community** - **Parcels 0420353026 and 0420353027 (project site).** Initial planning for this residential community also included two independent parcel to the north of 19th Avenue SE (Parcels 0420353009 and 0420157011). However, these two northern parcels have been removed for this residential community following a series of discussions with the City of Puyallup Environmental Review Team.

The project site was located at 2100 - 19th Avenue SE within the eastern portion of the City of Puyallup, Pierce County, Washington (part of Section 35, Township 20 North, Range 04 East, W.M.) (Figure 1). The evaluation and characterization of onsite and adjacent critical areas is a vital element in land use planning. The goal of this approach is to ensure that present and future proposed planned site development, to include the establishment of protective buffers, does not result in adverse environmental impacts to identified critical areas, their associated buffer, or adversely impact local water quality.

The assessment and delineation of specific critical areas within and immediately adjacent to the project site followed the methods and procedures defined in the *Corps of Engineers Wetland Delineation Manual* (United States Army Corps of Engineers, 1987) with the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region* (United States Army Corps of Engineers, 2010); the Washington State *Wetland Rating System for Western Washington* (Hruby, 2014), the State of Washington Department of Natural Resources (WDNR) Forest Practice Rules (WAC 222-16-030), and the City of Puyallup Chapter 21. This document was designed to accommodate site planning and potential regulatory actions and is suitable for submittal to federal, state, and local authorities for potential critical areas verification and permitting actions.

PROJECT SITE DESCRIPTION

The project site was irregular in shape and approximately 9.45-acres in size. The project site was accessed along the northwestern boundary via 19th Avenue SE. The project site was surrounded by existing development to the west, east, and south. A vacant parcel was located to the north. The project site had undergone a number of land use manipulations over the past several decades. These manipulations have included forest harvest; clearing and grading; excavation, creation, and maintenance of a series of ornamental ponds; the development and management of pastures; perimeter and internal fencing; the development of internal roadways; the development and demolition of prior homesites and associated outbuildings, the development of a new single-family home; the manipulation of seasonal surface water runoff within the watershed; and the development of adjacent parcels and public roadways.

Legal Description - Parcel 0420353026: Section 35 Township 20 Range 04 Quarter 33 : PARCEL `C` 0F DBLR 95-07-17-0491 DESC AS FOLL COM AT SW COR OF SW TH N ALG W LI SD SW 1387.82 FT TO NW COR OF SW OF SW TH E ALG N LI SD SUBD 1260.60 FT TO POB TH CONT E 81.25 FT TH S 51 DEG 21 MIN 11 SEC E

Legal Description - Parcel 0420353027: Section 35 Township 20 Range 04 Quarter 34 : PARCEL `D` OF DBLR 95-05-17-0491 DESC AS FOLL COM AT SW COR OF SW TH E ALG S LI SD SW 1974.60 FT TH N 01 DEG 06 MIN 54 SEC W 615.92 FT TO POB TH N 87 DEG 01 MIN 41 SEC W 292.30 FT TH N 61 DEG 33 MIN 32 SEC W 4

Directions to Project Site: From Meridian Avenue South through the center of the City of Puyallup turn east onto 23rd Avenue SE. Continue easterly on 23rd Avenue SE to 19th Street SE. Turn north onto 19rd Street SE and continue to 21st Avenue SE. Turn east onto 21st Avenue SE and continue to 2100 - 21st Avenue SE (project site).

BACKGROUND INFORMATION

NATIONAL WETLAND INVENTORY

The *National Wetland Inventory (NWI) Mapping* completed by the U.S. Fish and Wildlife Service was reviewed as a part of this assessment. This mapping resource identified an excavated pond within the central portion of the project site. This excavated pond was identified as palustrine, unconsolidated bottom, permanently flooded, excavated (PUBHx) (Figure 2). This mapping resource also identified an excavated pond directly to the south of the southwestern corner of the project site. The adjacent excavated pond to the south was identified as palustrine, unconsolidated bottom, permanently flooded, excavated (PUBHx).

STATE OF WASHINGTON PRIORITY HABITATS AND SPECIES

The State of Washington *Priority Habitats and Species (PHS) Mapping* was reviewed as a part of this assessment (Figure 3). This mapping resource did not identify any priority habitats or species within or immediately adjacent to the project site. This mapping resource did identify an offsite wetland to the southwest of the project site separated by existing residential development.

STATE OF WASHINGTON DEPARTMENT OF FISH AND WILDLIFE

The State of Washington Department of Fish and Wildlife (WDFW) *SalmonScape Mapping* was reviewed as a part of this assessment (Figure 4). This mapping resource did not identify any drainage corridors within or immediately adjacent to the project site.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

The State of Washington Department of Natural Resources (WDNR) *Water Type Mapping* was reviewed as a part of this assessment (Figure 5). This mapping resource did not identify any wetlands or drainage corridors within or immediately adjacent to the project site.

CITY OF PUYALLUP MAPPING

The City of Puyallup *Inventory Mapping* was reviewed as a part of this assessment (Figure 6). This mapping resource identified a stream entering the southwestern portion of the project site. This stream then crossed through the project site to the east/northeast existing along the eastern boundary of the project site. This mapping resource also noted an offsite wetland to the west of 21st Avenue SE to the west of the project site.

SOILS MAPPING

The soil mapping prepared by the *Natural Resource Conservation Service* was reviewed as a part of this assessment (Figure 5). This mapping resource identified the northern portion of the project site was dominated by Kitsap silt loam (#20B and #20C). The Kitsap soil series consists of moderately well drained soil that formed in glacial lake sediments on remnant terraces along Puget Sound. This mapping resource also identified the southern portion of the project site to contain Everett gravelly sandy loam (#13C). The Everett soil series is noted as somewhat excessively drained and formed in gravelly glacial outwash. The Everett soil series is not listed as a "hydric" soil.

ONSITE ANALYSIS

CRITERIA FOR CRITICAL AREAS IDENTIFICATION

The City of Puyallup defines "critical areas" to include wetlands, fish and wildlife habitat areas, critical aquifer recharge areas, geologically hazardous areas, and frequently flooded areas. The critical areas assessment reported in this document has been limited to address wetlands and fish and wildlife habitat areas.

Wetlands: The City of Puyallup has defined "wetlands" as areas that are inundated or saturated by surface water or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas. Wetlands do not include those artificial wetlands intentionally created from nonwetland sites, including, but not limited to, irrigation and drainage ditches, grass-lined swales, canals, detention facilities, retention facilities, wastewater treatment facilities, farm ponds, and landscape amenities, or those wetlands created after July 1, 1990, that were unintentionally created as a result of the construction of a road, street, or highway.

Wetlands exhibit three essential characteristics, all of which must be present for an area to meet the established criteria (United States Army Corps of Engineers, 1987 and United States Army Corps of Engineers, 2010). These essential characteristics are:

- 1. Hydrophytic Vegetation: The assemblage of macrophytes that occurs in areas where inundation or soil saturation is either permanent or of sufficient frequency and duration to influence plan occurrence. Hydrophytic vegetation is present when the plant community is dominated by species that require or can tolerate prolonged inundation or soil saturation during the growing season.
- 2. Hydric Soil: A soil that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper parts. Most hydric soils exhibit characteristic morphologies that result from repented periods of saturation or inundation. These processes result in distinctive characteristics that persist in the soil during both wet and dry periods.
- **3. Wetland Hydrology:** Permanent or periodic inundation, or surface soil saturation, at least seasonally. Wetland hydrology indicators are used in combination with indicators of hydric soil and hydrophytic vegetation to define the area. Wetland hydrology indications provide evidence that the site has a continuing wetland hydrology regime. Where hydrology has not been altered vegetation and soils provide strong evidence that wetland hydrology is present.

Fish and Wildlife Habitat Areas: The City of Puyallup has defined "fish and wildlife habitat areas" to include those areas necessary for maintaining species in suitable habitats within their natural geographic distribution so that isolated subpopulations are not created as designated by WAC 365-190-080. These areas include:

- (a) Areas with which state or federally designated endangered, threatened, and sensitive species have a primary association;
- (b) Habitats of local importance, including but not limited to areas designated as priority habitat by the Department of Fish and Wildlife;
- (c) Streams and surface waters within the jurisdiction of the state of Washington; and

(d) Land essential for preserving connections between habitats and open spaces.

STUDY METHODS

Habitat Technologies completed a series of onsite assessments from September through early December 2017. In addition, Habitat Technologies has completed similar assessments for parcels located within the general area of the project site over the past several decades. The objective of this evaluation was to define and delineate potential critical areas (wetlands; drainage corridors; and fish and wildlife habitats) that may be present within or immediately adjacent to the project area. Onsite activities were completed in accordance with criteria and procedures established in the *Corps of Engineers Wetland Delineation Manual* (United States Army Corps of Engineers, 1987) with the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region* (United States Army Corps of Engineers, 2010); the Washington State *Wetland Rating System for Western Washington* (Hruby, 2014), the State of Washington Department of Natural Resources (WDNR) Forest Practice Rules (WAC 222-16-030), and the City of Puyallup Chapter 21.

FIELD OBSERVATION

The project site was accessed via 19th Street SE along the northwestern boundary of the project site. The project site had historically been managed as a single-family home associated with the production of livestock and for the production of hay crops. These activities appeared to have stopped around 2008. The phased demolition of the historic single-family home and associated outbuildings appeared to have begun in 2011. A new single-family home appeared to have been constructed in 2014 and was located at 2100 - 19th Avenue SE (along the western boundary of the project site).

The project site had undergone a number of land use manipulations over the past several decades. These manipulations have included forest harvest; clearing and grading; excavation, creation, and maintenance of a series of ornamental ponds; the development and management of pastures; perimeter and internal fencing; the development of internal roadways; the development and demolition of prior homesites and associated outbuildings, the development of a new single-family home; the manipulation of seasonal surface water runoff within the watershed; and the development of adjacent parcels and public roadways.

The project site was generally slightly sloped to the north/northeast. A ravine crossed through the site from the western boundary to the eastern boundary. This ravine was identified to contain a seasonal stream that originated offsite to the south. Onsite this ravine had undergone prior development actions to include the excavation and creation of three (3) ornamental ponds. These ponds appeared to have been created through the excavation of material within the ravine and through the placement of material to establish two (2) internal roadways corridors crossing the ravine generally north to south. Hydrology

control structures and culverts had been installed to intentionally control surface water ponding within these ornamental features.

• Onsite Plant Communities

The plant communities throughout the entire project site had been altered by prior and ongoing land use actions. The plant community within the very southwestern portion of the project site adjacent with the drainage corridor was dominated by a mixed forest that included a number of mature trees. Observed tree species included Douglas fir (Pseudotsuga menziesii), Western red cedar (Thuja plicata), big leaf maple (Acer macrophyllum), red alder (Alnus rubra), Western hemlock (Tsuga heterophylla), Hawthorne (Crataegus monogyna), and black cottonwood (Populus trichocarpa). The understory within this forested area included hazelnut (Corylus cornuta), vine maple (Acer circinatum), Scot's broom (Cytisus scoparius), Himalayan blackberry (Rubus procera), evergreen blackberry (Rubus laciniatus), trailing blackberry (Rubus ursinus), Oregon grape (Berberis nervosa and Berberis aquifolium), snowberry (Symphoricarpus albus), salmonberry (Rubus spectabilis), wild rose (Rosa gymnocarpa), Indian plum (Oemleria cerasiformis), sword fern (Polystichum munitum), bracken fern (Pteridium aquilium), salal (Gaultheria shallon), holly (llex spp.), Pacific red elderberry (Sambucus racemosa), geranium (Geranium spp.), smooth cats ear (Hypochaeris glabra), nettle (Urtica dioica), and buttercup (Ranunculus repens). This plant community was identified as nonhydrophytic in character (i.e. typical of non-wetlands).

The plant community associated with the drainage corridor and intentionally excavated ornamental ponds within the southern portion of the project site included a mixture of mature trees, dense shrubs, grasses, herbs, and aquatic plants. Observed species included red alder, Western red cedar, black cottonwood, salmonberry, Douglas spiraea (*Spiraea douglasii*), red osier dogwood (*Cornus stolonifera*), twinberry (*Lonicera involucrata*), nettle, buttercup, skunk cabbage (*Lysichitum americanum*), softrush (*Juncus effusus*), slough sedge (*Carex obnupta*), reed canarygrass (*Phalaris arundinacea*), reed managrass (*Glyceria grandis*), common cattail (*Typha latifolia*), water parsley (*Oenanthe sarmentosa*), speedwell (*Veronica* spp.), lady fern (*Athyrium filix-femina*), small fruited bulrush (*Scirpus microcarpus*), and horsetail (Equisetum spp.). This plant community appeared to have formed following the creation of the three (3) excavated ponds within the drainage corridor. This plant community was identified as hydrophytic in character (i.e. typical of wetlands).

• Hydrology Patterns

Onsite hydrology appeared to be the result of seasonal stormwater runoff from onsite and offsite areas, concentration of surface flows within identified drainage corridor, and the series of onsite hillside seeps. The majority of the project site appeared to drain moderately well and did not exhibit field indicators associated with the movement of seasonal surface water runoff.

A surface water drainage corridor was identified entering near the southwestern corner of the project site. This drainage corridor extended through the project site generally to the east/northeast within a well-defined ravine. This ravine had undergone prior development actions to include the intentional creation of three (3) excavated ornamental ponds. These ornamental ponds appeared to have been created through the excavation of material within the ravine and through the placement of material to establish two (2) internal roadways corridors crossing the ravine generally north to south. Hydrology control structures and culverts had been installed to intentionally control surface water ponding within these ornamental features. At the property boundary the surface water within this drainage corridor was captured within a buried drainage system installed as a part of the development of the adjacent residential community. This drainage appeared to be an eventual tributary to the Deer Creek System located well offsite to the northeast. The lower reaches of Deer Creek well offsite have been identified to meet the criteria for designation as a City of Puyallup Category II Stream with salmonids.

Soils

As documented at several sample plots the project site was dominated by soil that exhibited a silty loam texture and coloration typical of the Kitsap soil series. The majority of the onsite soil appeared to drain moderately well and did not exhibit prominent redoximorphic features. In addition, prior land use actions appeared to have dramatically altered the surface soil profile. Within many areas the surface soil appeared to have been removed by prior grading. Throughout the project site the surface soil had been compacted by the historic livestock usage.

A drainage corridor was identified entering the project site near the southwestern boundary and continued through the project site through a series of intentionally excavated ornamental ponds to the eastern boundary. The surface soil within these intentionally excavated ponds was black to very dark gray (10YR 2/1 to 10YR 3/1) to a depth of 8 to 20 inches. The subsoil to a depth of 20 to 24 inches was very dark gray to gray (10YR 3/1 to 10YR 4/2) and exhibited prominent redoximorphic features and oxidized root channels. The soil within these intentionally excavated ponds exhibited a surface layer of generally soft captured alluvial sandy silty loam to silty loam with a high organic content as a result of intentionally ponded seasonal surface water.

• Wildlife

Wildlife species observed onsite, observed within the general area during prior assessments, and that would be reasonably expected to utilize the habitats provided within or adjacent to the project site would include red tailed hawk (*Buteo jamaicensis*), great blue heron (*Ardea herodias*), American crow (*Corvus brachynchos*), American robin (*Turdus migratorius*), black capped chickadee (*Parus atricapillus*), dark eyed junco (*Junco hyemalis*), rufous hummingbird (*Selasphorus rufus*), merlin (*Falco columbarius*), pileated

woodpecker (Dryocopus pileatus), rock dove (Columbia livia), evening grosbeak (Hesperiphona vespertina), black-headed grosbeak (Pheucticus melanocephalus), mourning dove (Zenaida macroura), red winged blackbird (Agelaius phoenisues), brewers blackbird (Euphagus cyanocephalus), golden crowned sparrow (Zonotrichia atricapilla), song sparrow (Melospiza melodia), white crowned sparrow (Zonotrichia leucophrys), house sparrow, house finch (Carpodacus mexicanus), starling (Sturnus vulgaris), American goldfinch (Carduelis tristis), purple finch (Carpodacus purpureus), violet green swallow (Tachycineta thallassina), tree swallow (Tachycineta bicolor), barn swallow (Hirundo rustica), song sparrow (Melospiza melodia), Steller's jay (Cyanocitta stelleri), starling (Sturnus vulgaris), black capped chickadee (Parus atricapillus), Northern flicker (Colaptes auratus), house sparrow (Passer domesticus), rufous-sided towhee (Pipilo erythrophthalmus), American goldfinch (Carduelis tristis), marsh wren (Cistothorus palustirs), killdeer (Charadrius vociferus), common mallard (Anas platyrhynchos), Canadian goose (Branta canadensis), black tailed deer (Odocoileus hemionus), coyote (Canis latrans), raccoon (Procyon lotor), striped skunk (Mephitis mephitis), opossum (Didelphis virginianus), eastern gray squirrel (Sciurus carolinensis), deer mouse (Peromyscus maniculatus), shrew (Sorex spp.), Townsend mole (Scapanus townsendii), voles (*Microtus* spp.), Norway rat (*Rattus norvegicus*), bats (*Myotis spp.*), common garter snake (Thamnophis sirtalis).

The project site provided suitable spawning and rearing habitats for Pacific treefrog (*Hyla regilla*), red-legged frog (*Rana aurora*), and salamander (*Ambystoma* spp). Common garter snake (*Thamnophis sirtalis*) was also present across the project site.

The project site did **not** provide direct habitats for fish species.

Wildlife Movement Corridors: The project site was within a well urbanized area. As identified by onsite wildlife trials, small and medium sized mammals appeared to be moving throughout the project site. The project site is also within the general area of the migratory movement of passerine birds.

State Priority Species: Several species identified by the State of Washington as "Priority Species" were observed onsite or potentially may utilize the project site. Priority species require protective measures for their survival due to their population status, sensitivity to habitat alteration, and/or recreational, commercial, or tribal importance.

Game Species: "Game species" are regulated by the State of Washington through recreational hunting bag limits, harvest seasons, and harvest area restrictions. Observed or documented "game species" within and adjacent to the project site included black tailed deer, common mallard, Canada goose, and mourning dove.

State Monitored: State Monitored species are native to Washington but require habitat that has limited availability, are indicators of environmental quality, require further assessment, have unresolved taxonomy, may be competing with other species of concern, or have significant popular appeal. One State Monitored

species – great blue heron - was observed within the excavated pond in the southern portion of the project site.

State Candidate: State Candidate species are presently under review by the State of Washington Department of Fish and Wildlife (WDFW) for possible listing as endangered, threatened, or sensitive. One State Candidate species - pileated woodpecker – was not observed to use the habitats associated with the project site but has been identified during prior assessments to use the habitats associated with Wildwood Park located offsite to the west.

State Sensitive: State Sensitive species are native to Washington and is vulnerable to declining and is likely to become endangered or threatened throughout a significant portion of its range without cooperative management or removal of threats. No State Sensitive species were observed or have been documented to use the habitats associated with the project site.

State Threatened: State Threatened species means any wildlife species native to the state of Washington that is likely to become an endangered species within the foreseeable future throughout a significant portion of its range within the state without cooperative management or removal of threats. The project site did not appear and has not been documented to provide direct critical habitats for State Listed Threatened species.

State Endangered: State endangered species means any species native to the state of Washington that is seriously threatened with extinction throughout all or a significant portion of its range within the state. The project site did not appear and has not been documented to provide direct critical habitats for State Listed Endangered species.

Federally Listed Species: The project site has not been documented to provide critical habitats for federally listed Endangered, Threatened, or Sensitive species. A single, federally listed species of concern – bald eagle – has been documented to use the offsite habitats associated with the Puyallup River Corridor and the Clarks Creek Corridor.

CRITICAL AREAS DETERMINATION

WETLANDS

Wetland determination was based on observations of hydrophytic vegetation, hydric soils, and wetland hydrology in accordance with the *Corps of Engineers Wetland Delineation Manual* (United States Army Corps of Engineers, 1987) with the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region* (United States Army Corps of Engineers, 2010). Based on these methods

no area within the project site was identified within the project site to exhibit all three of the established wetland criteria. Two (2) areas within the vicinity of the project site were identified to exhibit all three of the established wetland criteria.

	WETLAND	CLASSIFICATION (USFWS)	CITY OF PUYALLUP CATEGORY	WDOE RATING SCORE	WDOE HABITAT SCORE	BUFFER WIDTH (High Intensity)
┢	D	PFOEx/PSSEx		17	6	150 feet
	Е	PSSE/PEME		16	5	150 feet

Wetland D: Wetland D was identified offsite to the north of the eastern portion of the of the project site. This wetland was within a ravine associated with hillside seeps and a seasonal surface water drainage corridor. Hydrology for this wetland appeared to be provided primarily by the hillside seeps and seasonal surface water runoff from the local area. Wetland D had undergone prior land use manipulations to include clearing, grading, the intentional excavation of small livestock ponds, the installation of culverts, and the creation of internal roadways. Wetland D was dominated by a mixed forest plant community. The understory was limited as a result of the prior livestock grazing. The movement of surface water through this wetland was intermittent and controlled in part by prior ditch excavation. However, this movement did not form a continuous defined channel or swale. Surface flow within Wetland D was captured along the eastern parcel boundary and conveyed offsite via a buried storm drainage system.

Wetland D met the U.S. Fish and Wildlife Service (USFWS) criteria for classification as palustrine, forested, seasonally flooded/saturated, excavated (PFOEx); and palustrine, scrub-shrub, seasonally flooded/saturated, excavated (PEMEx). Following a series of discussions with City of Puyallup Environmental Review Team Wetland D was best defined to meet the criteria for designation as a City of Puyallup Category III Wetland. Wetland D achieved a total functions score of 17 points utilizing the Washington State Department of Ecology (WDOE) *Wetland Rating Form for Western Washington* (Hruby 2014) (Appendix B).

Wetland E: Wetland E was identified offsite to the north of the western portion of the project site within a swale adjacent to 21st Street SE. Hydrology appeared provided primarily from hillside seeps and seasonal sheetflow from adjacent upland areas. Wetland E was dominated by blackberries and included areas of buttercup, slough sedge, soft rush, and reed canary grass. Wetland E had undergone prior land use manipulations associated with livestock usage. The development of 21st Street SE also appeared to have been completed without the placement of a culvert to allow for the movement of seasonal surface water runoff to the northwest as existing topography would suggest.

This wetland met the USFWS criteria for classification as palustrine, emergent, seasonally flooded/saturated (PEME). Following a series of discussions with City of Puyallup Environmental Review Team Wetland E appeared best defined to meet the criteria for designation as a City of Puyallup Category III Wetland. Wetland E achieved a total functions score of 16 points utilizing the WDOE *Wetland Rating Form for Western Washington* (Hruby 2014) (Appendix B).

FISH AND WILDLIFE HABITAT AREAS

This onsite assessment and discussions with the City of Puyallup Environmental Review Team identified two (2) City of Puyallup designated "fish and wildlife habitat areas." These areas were identified within and immediately adjacent to the project site and were defined as "streams" within the jurisdiction of the State of Washington. No state or federally designated endangered, threatened, and sensitive species have been documented to have a primary association within the habitats onsite; no portion of the project site has been defined as a "habitat of local importance;" and no lands essential for preserving connections between habitats and open spaces have been identified or documented within the project site.

Stream A: Stream A was identified entering near the southwestern corner of the project site. This drainage corridor extended through the project site generally to the east/northeast within a well-defined ravine. This ravine had undergone prior development actions to include the intentional creation of three (3) excavated ornamental ponds. These ornamental ponds appeared to have been created through the excavation of material within the ravine and through the placement of material to establish two (2) internal roadways corridors crossing the ravine generally north to south. Hydrology control structures and culverts had been installed to intentionally control surface water ponding within these ornamental features. At the property boundary the surface water within this drainage corridor was captured within a buried drainage system installed as a part of the development of the adjacent residential community. This drainage appeared to be an eventual tributary to the Deer Creek System located well offsite to the northeast.

As discussed with the City of Puyallup Environmental Review Team Stream A meet the criteria for designation as a City of Puyallup Type III Stream within the project site. A Type III Stream is defined to exhibit perennial or intermittent flow and as not used by anadromous fish. The standard buffer for a Type III Stream is 50 feet in width as measured perpendicular from the ordinary high water mark (OHWM).

Stream B: Stream B was identified offsite to the north of the eastern portion of project site and as associated with offsite Wetland D. This stream commenced from a series of hillside seeps then flowed generally to the north/northeast. Hydrology was collected in a drainage system along the western boundary of the adjacent housing development. Further to the north, hydrology appeared to infiltrate within the historic pasture area. Stream B had undergone prior development activities to include to creation of excavated livestock ponds, ditching, internal road crossing, and culvert installation within the project site.

Stream B appeared to meet the criteria for designation as a City of Puyallup Type III Stream. A Type III Stream is defined to exhibit perennial or intermittent flow and as not used by anadromous fish. The standard buffer for a Type III Stream is 50 feet in width as measured perpendicular from the OHWM.

INTENTIONALLY CREATED MAN-MADE FEATURES

EXCAVATED PONDS

Three intentionally excavated ponds were identified associated with Stream A in the southern portion of the project site. These excavated ponds had been created in a topographic ravine that contained Stream A which entered the site near the southwestern boundary and continued through the site generally to the east/northeast. These ponds appeared best defined as intentionally created through the excavation of material within the Stream A ravine and through the placement of material to establish two (2) internal roadways corridors crossing the ravine generally north to south. Hydrology control structures and culverts had also been installed and maintained to provide hydrology within the ponds and to control seasonal high storage levels. These excavated ponds had been historically created as a part of the site development activities associated with the use by livestock and irrigation of the project site.

These intentionally excavated ponds appeared to meet the criteria within the City of Puyallup Title 21.06.210 Definitions section:

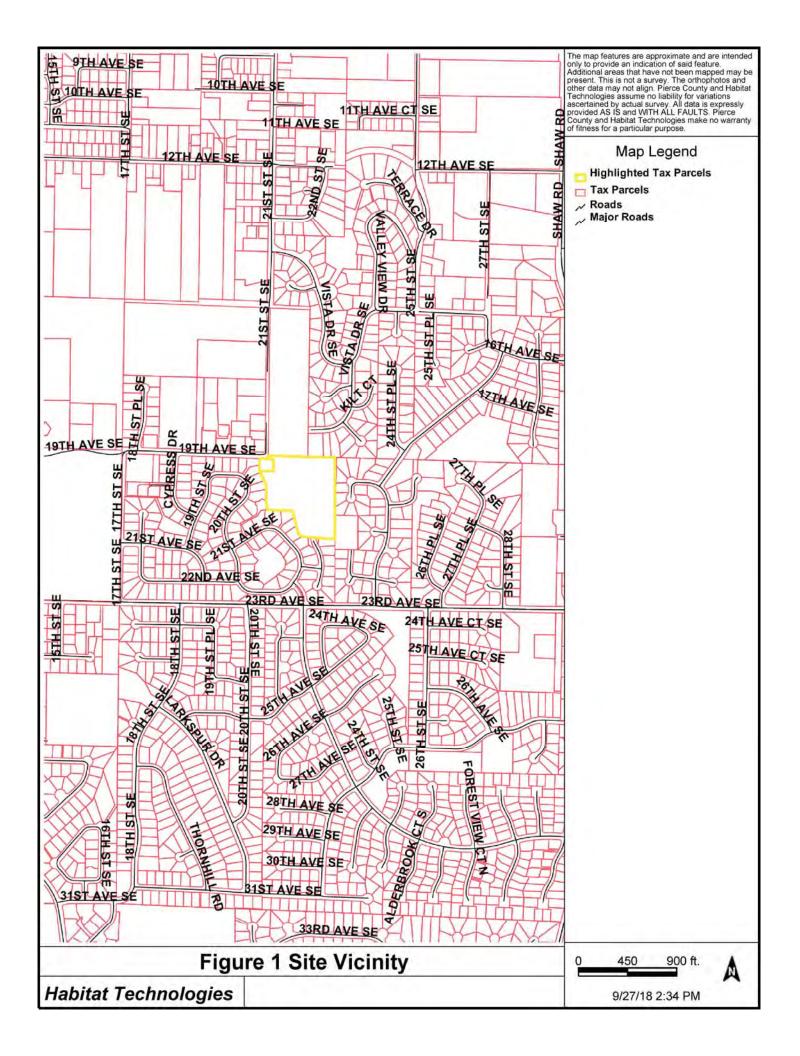
(21.06.210.75) "Intentionally created wetland or surface water systems" means wetlands or surface water systems created through purposeful human action, such as irrigation and drainage ditches, grass-lined swales, canals, farm ponds, detention/retention facilities, and landscape/ornamental amenities. Purposeful creation must be demonstrated through documentation, photographs, statements and/or other evidence. Intentionally created wetlands or surface water systems do not include areas or systems created as mitigation.

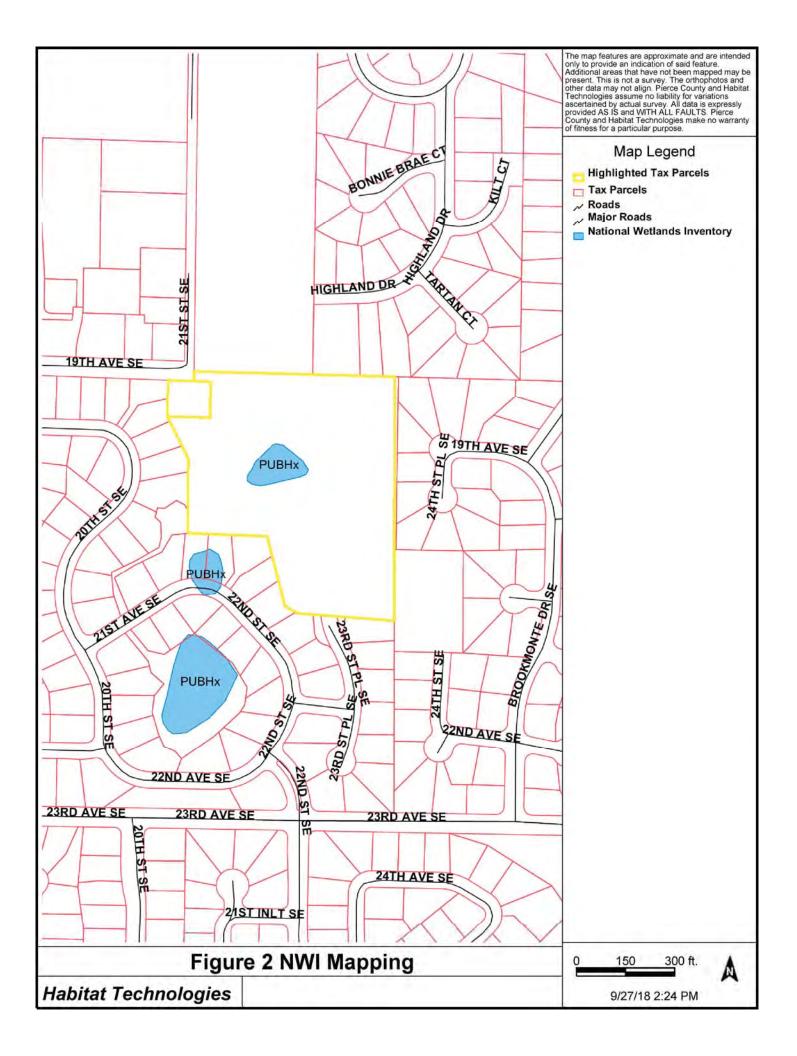
SELECTED DEVELOPMENT ACTION

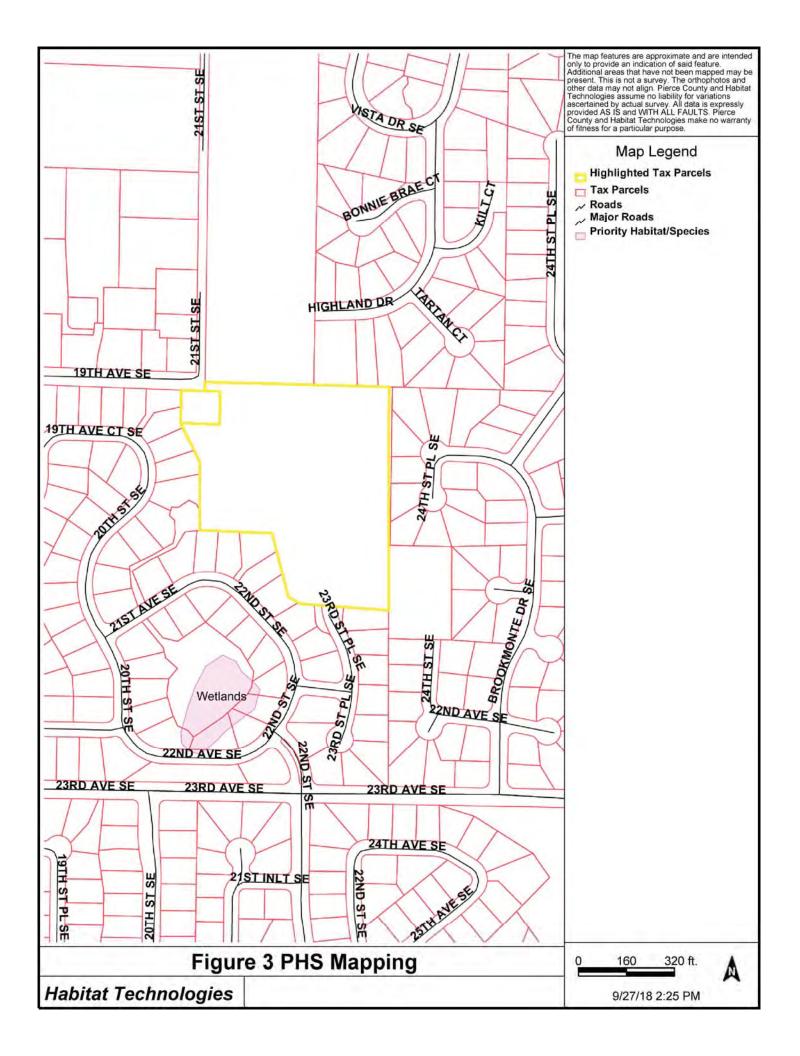
The Selected Development Action for the project site for the project site focuses on the creation of a number of new parcels suitable for single-family homesite development. The final creation of new homesite parcels would be consistent with the City of Puyallup Comprehensive Plan, local zoning, and the City's Critical Areas Ordinance. As presently identified within the initial site plan and as discussed with the City of Puyallup Environmental Review Team, the final site plan would establish a protective stream buffer as measured from the top edge of the excavated ponds associated with Stream A within the project site. Protective buffers associated with Wetlands D and E located offsite to the north would not be expected to encroach into the project site. The proposed development of this residential community would avoid potential adverse impacts to identified streams and wetlands within the project site and adjacent area.

STANDARD OF CARE

This document has been completed by Habitat Technologies for use by **CES NW Inc**. Prior to extensive site planning the findings documented in this document should be reviewed and verified by the City of Puyallup. Habitat Technologies has provided professional services that are in accordance with the degree of care and skill generally accepted in the nature of the work accomplished. No other warranties are expressed or implied. Habitat Technologies is not responsible for design costs incurred before this document is approved by the appropriate resource and permitting agencies.


Bryan W. Peck


Bryan W. Peck Wetland Biologist


Thomas D. Deming

Thomas D. Deming, PWS Habitat Technologies

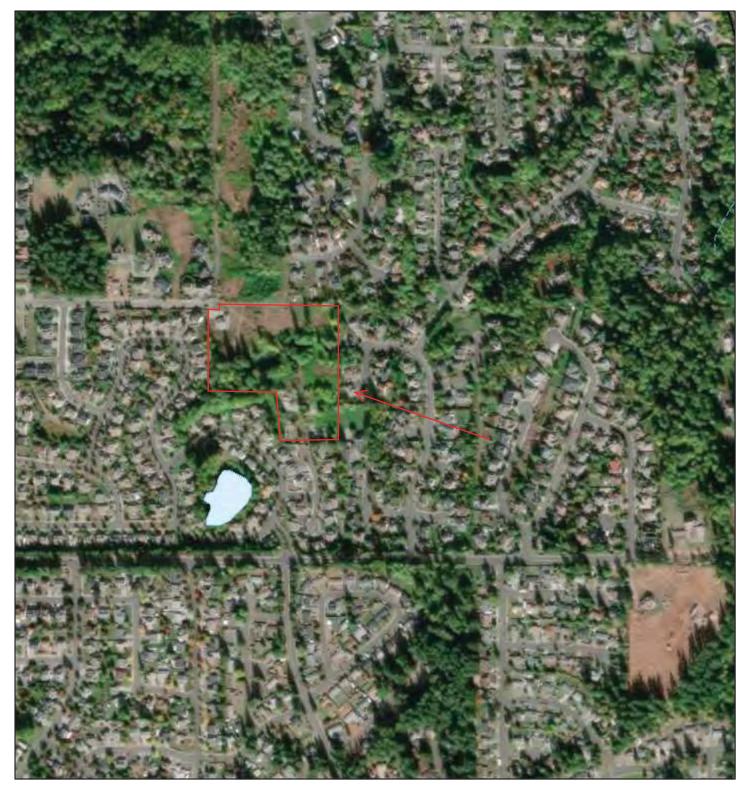
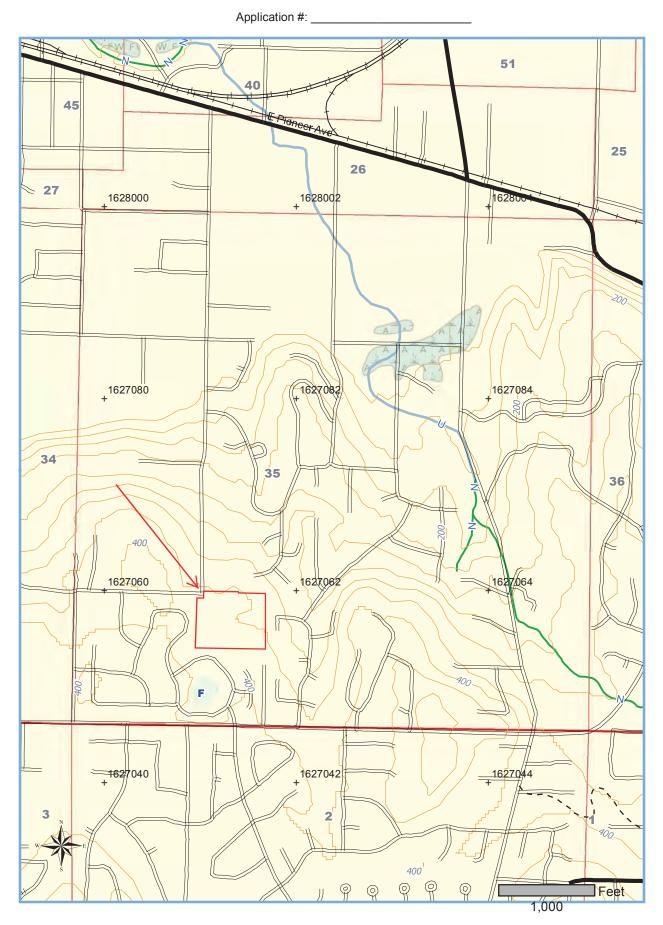

FIGURES

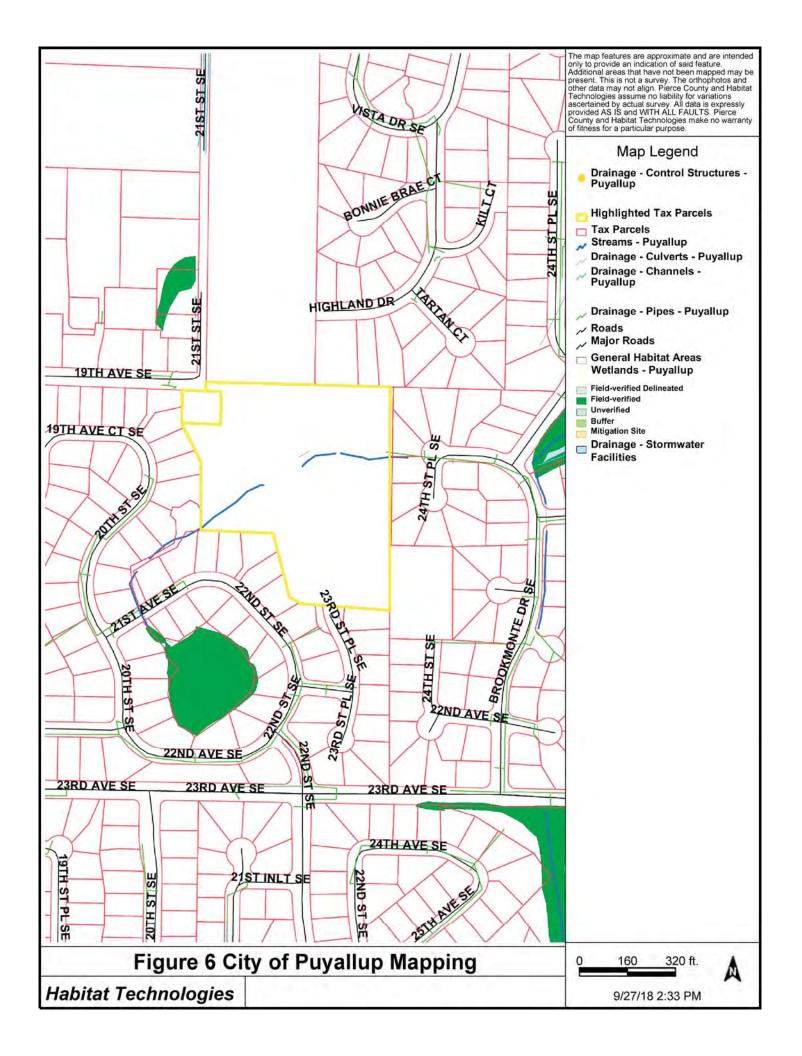
Figure 4 WDFW Mapping

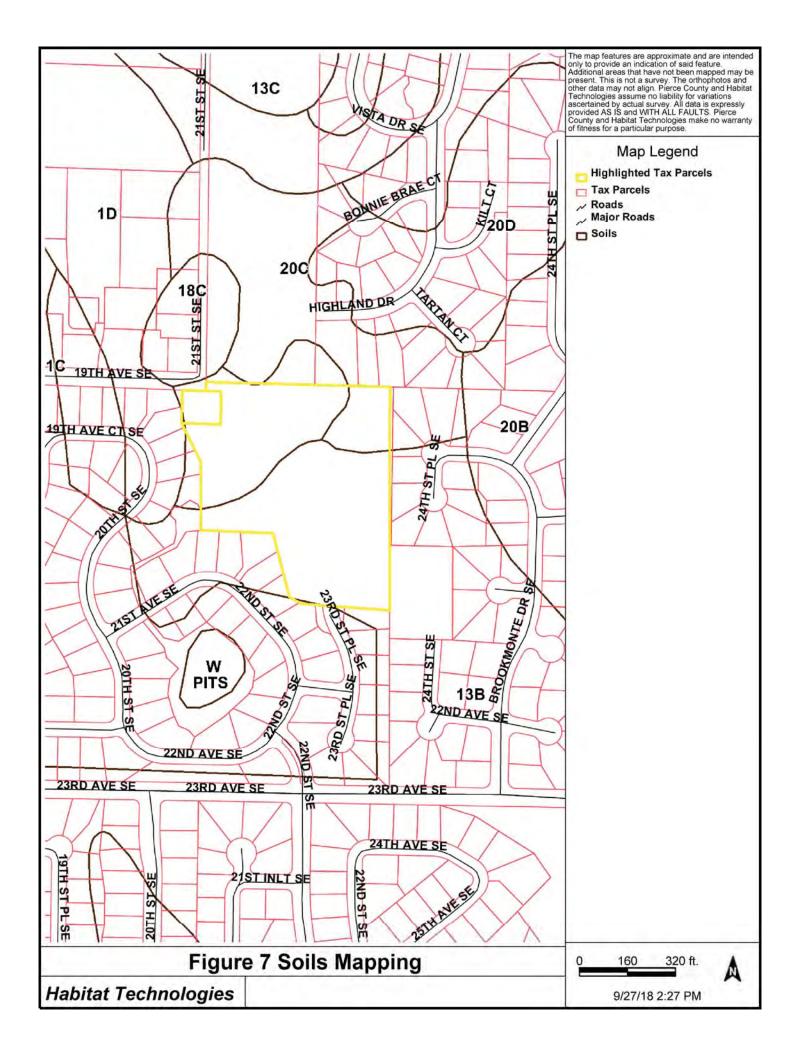
September 27, 2018

All SalmonScape Species



USGS/NHD Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS user community


community Source: Esri, Digita/Globe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community


Figure 5 FOREST PRACTICE WATER TYPE MAP

TOWNSHIP 20 NORTH HALF 0, RANGE 04 EAST (W.M.) HALF 0, SECTION 35

Date: 10/31/2017 Time: 10:43:11 AM NAD 83 Contour Interval: 40 Feet

REFERENCE AND BACKGROUND LIST

Adamus, P.R., E.J. Clairain Jr., R.D. Smith, and R.E. Young. 1987. Wetland Evaluation Technique (WET); Volume II: Methodology, Operational Draft Technical Report Y-87, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

Cowardin, Lewis M. et al, 1979. Classification of Wetlands and Deepwater Habitats of the United States. Office of Biological Services, U.S. Fish and Wildlife Service, U.S. Department of the Interior, FWS/OBS-79/31.

Hitchcock, C.L., A. Cronquist. 1977. Flora of the Pacific Northwest. University of Washington Press. Seattle, Washington.

Hruby, T. 2008. Washington State Wetland Rating System for Western Washington: 2008 Update. Publication #08-06-029. Olympia, WA: Washington Department of Ecology.

Hruby, T. 2014. Washington State Wetland Rating System for Western Washington: 2014 Update. Publication #14-06-029. Olympia, WA: Washington Department of Ecology.

Lichvar,R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The National Wetlands Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X. http://wetland-plands. Usace.army.mil/

Reppert, R.T., W. Sigleo, E. Stakhiv, L. Messman, and C. Meyers. 1979. Wetland Values - Concepts and Methods for Wetland Evaluation. Research Report 79-R1, U.S. Army Corps of Engineers, Institute for Water Resources, Fort Belvoir, Virginia.

United States Army Corps of Engineers, 1987. Wetlands Delineation Manual. Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. March 1987.

United States Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), Environmental Laboratory ERDC/EL TR-08-13.

US Climate Data, 2015 <u>http://www.usclimatedata.com/climate/tacoma/washington</u>/united-states/uswa0441/0441/2014/1

USDA Natural Resource Conservation Service Plants Database, 2015 (for hydrophytic plan classification): http://plants.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. Web Soil Survey. 2016 http://vewsoilsurvey.nrcs.usda.gov/app/newfeatures.2.3.htm.

US Fish and Wildlife Service National Wetland Inventory Mapper, 2016 (for NWI wetland mapping): http://www.fws.gov/wetlands/Data/Mapper.html.

Washington State Department of Ecology. 1997. Washington State Wetlands Identification and Delineation Manual. Publication Number 96-94.

Washington State Department of Fish and Wildlife Priority Habitats and Species Maps 2016 <u>http://wdfw.wa.gov/mapping/phs/</u>

Washington State Department of Fish and Wildlife SalmonScape Mapping System, 2016 (for fish presence): http://apps.wdfw.wa.gov/salmonscape/map.html

Washington State Department of Natural Resources FPARS Mapping System, 2016 (for stream typing): http://fortess.wa.gov/dnr/app1/fpars/viewer.htm

APPENDIX A – Field Data Forms

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: Sunset Pointe	City/County: Puyallup / Pi	erce S	Sampling Date:03 OCT 2017
Applicant/Owner:		State: <u>Washington</u> S	Sampling Point: <u>SPB-1</u>
Investigator(s): Habitat Technologies	Section, Town	nship, Range: <u>S35, T20, R</u>	<u>{4E</u>
Landform (hillslope, terrace, etc.):	Local relief (concave, cc	nvex, none):	Slope (%):
Subregion (LRR): A	_ Lat: I	Long:	Datum:
Soil Map Unit Name: <u>Kitsap silt loam</u>		NWI classificatio	on:
Are climatic / hydrologic conditions on the site typical for this	s time of year? Yes 🛛 No 🗌 (If no	o, explain in Remarks.)	
Are Vegetation, Soil, or Hydrology sign	ificantly disturbed? Are "Norm	nal Circumstances" preser	nt? Yes 🛛 No 🗌
Are Vegetation, Soil, or Hydrology natu	rally problematic? (If needed,	explain any answers in R	(emarks.)
SUMMARY OF FINDINGS – Attach site map	showing sampling point loc	ations, transects, ir	nportant features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ⊠ No □ Yes ⊠ No □ Yes ⊠ No □	Is the Sampled Area within a Wetland?	Yes 🛛 No 🗌
Remarks: Wetland D.			

VEGETATION – Use scientific names of plants.

	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: 15ft radius)	% Cover	Species?	Status	Number of Dominant Species
1. <u>Alnus rubra</u>	50	yes	FAC	That Are OBL, FACW, or FAC: 5 (A)
2				Total Number of Dominant
3				Species Across All Strata: 5 (B)
4				· · · · · · · · · · · · · · · · · · ·
		= Total C		Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)
Sapling/Shrub Stratum (Plot size: <u>15ft radius</u>)	00	. Total C		That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1. <u>Cornus stolonifera</u>	20	ves	FACW	Prevalence Index worksheet:
2				Total % Cover of:Multiply by:
				OBL species x 1 =
3				FACW species x 2 =
4				
5				FAC species x 3 =
Horb Stratum (Plat size: 15ft radius)	<u>20</u>	= Total C	over	FACU species x 4 =
Herb Stratum (Plot size: <u>15ft radius</u>)	00		0.01	UPL species x 5 =
1. Lysichitum americanum		yes		Column Totals: (A) (B)
2. Equisetum arvense				Developer Index D/A
3		·		Prevalence Index = B/A =
4				Hydrophytic Vegetation Indicators:
5				Rapid Test for Hydrophytic Vegetation
6				Dominance Test is >50%
7				□ Prevalence Index is ≤3.0 ¹
8				Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
				Wetland Non-Vascular Plants ¹
10				Problematic Hydrophytic Vegetation ¹ (Explain)
11				¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 15ft radius)	50	= Total C	over	be present, unless disturbed or problematic.
	40			
1. <u>Rubus procera</u>	40	yes	<u>FAC</u>	Hydrophytic
2				Vegetation
% Para Craund in Llark Stratum 40	40	= Total C	over	Present? Yes 🛛 No 🗌
% Bare Ground in Herb Stratum <u>40</u> Remarks:				
Itemanto.				

SOIL

Sampling Point: SPB-1

Depth								i uic ab	301100	of indicators.)
	Matri				x Features					
(inches)	Color (moist)	%	Colo	r (moist)	%	Type ¹	Loc ²	Textur	re	Remarks
0-4	10YR 2/1	100						L		
4-20	10YR 4/2	80	10YF	R 4/6	20	С	М	Gcl		
	Concentration, D=[ed Sand G			ation: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators: (App	olicable to a	all LRR	s, unless othe	rwise note	ed.)		In	idicato	rs for Problematic Hydric Soils ³ :
Histoso	· · ·			Sandy Redox (S						Muck (A10)
	pipedon (A2)			Stripped Matrix						Parent Material (TF2)
Black H				oamy Mucky N	•		MLRA 1)		-	Shallow Dark Surface (TF12)
	en Sulfide (A4)	5 (8 4 4)		oamy Gleyed I				L	_ Othe	r (Explain in Remarks)
	d Below Dark Sur			Depleted Matrix				31		
	ark Surface (A12)			Redox Dark Sur Depleted Dark S	()	7)		°I		rs of hydrophytic vegetation and
	Mucky Mineral (S1 Gleyed Matrix (S4)			Redox Depress	· ·	()				nd hydrology must be present, s disturbed or problematic.
	Layer (if present			Cedox Depless					unies	s disturbed of problematic.
Type:	Layer (in present									
	nches):							Liveda		
								пyur	10 2011	Present? Yes 🛛 No 🗌
Remarks:										
YDROLO	GY									
	ydrology Indicato	ors:								
-	icators (minimum		red: che	ock all that ann	V)				Secon	ndary Indicators (2 or more required)
	1	or one requi			.,					
	Water (A1)				ned Leave	- (DO) (-				ater-Stained Leaves (B9) (MLRA 1, 2,
-	ater Table (A2)			1, 2, 4/			xcept MLF	RA		(A and (D)
Saturati	, ,				A, and 4B)		xcept MLF	RA		4A, and 4B)
				Salt Crust	(B11)		xcept MLF	RA	Dr	ainage Patterns (B10)
				Aquatic Inv	(B11) /ertebrates	s (B13)	xcept MLF	RA	Dr	ainage Patterns (B10) y-Season Water Table (C2)
	nt Deposits (B2)			 Aquatic Inv Hydrogen 	(B11) /ertebrates Sulfide Od	s (B13) or (C1)			Dr	ainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9)
SedimeDrift De	nt Deposits (B2) posits (B3)			 Aquatic Inv Hydrogen Oxidized F 	(B11) vertebrates Sulfide Od thizospher	s (B13) or (C1) es along	Living Roo		□ Dr □ Dr □ Sa □ Ge	rainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2)
SedimeDrift DeAlgal Material	nt Deposits (B2) posits (B3) at or Crust (B4)			 Aquatic Inv Hydrogen Oxidized R Presence of 	(B11) vertebrates Sulfide Od thizospher	s (B13) or (C1) es along d Iron (C4	Living Roo	ts (C3)	Dr Dr Sa Ge St	rainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) nallow Aquitard (D3)
 Sedime Drift De Algal Main Iron Dep 	nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)			 Aquatic Inv Hydrogen Oxidized R Presence of Recent Iro 	(B11) vertebrates Sulfide Od thizospher of Reduced n Reductio	s (B13) or (C1) es along d Iron (C4 on in Tilleo	Living Roo) d Soils (C6	ts (C3))	Dr Dr Sa Ge St FA	ainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) nallow Aquitard (D3) AC-Neutral Test (D5)
 Sedime Drift De Algal Main Iron De Surface 	nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6)			 Aquatic Inv Hydrogen Oxidized R Presence of Recent Iro Stunted or 	(B11) vertebrates Sulfide Od thizospher of Reduced n Reductio Stressed	s (B13) or (C1) es along d Iron (C4 n in Tilleo Plants (D	Living Roo) d Soils (C6	ts (C3))	Dr Dr Dr Sa Ge Sr FF Ra	ainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) nallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)
 Sedime Drift De Algal Main Iron De Surface Inundation 	nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeri			 Aquatic Inv Hydrogen Oxidized R Presence of Recent Iro 	(B11) vertebrates Sulfide Od thizospher of Reduced n Reductio Stressed	s (B13) or (C1) es along d Iron (C4 n in Tilleo Plants (D	Living Roo) d Soils (C6	ts (C3))	Dr Dr Dr Sa Ge Sr FF Ra	ainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) nallow Aquitard (D3) AC-Neutral Test (D5)
 Sedime Drift De Algal Ma Iron De Surface Inundati Sparsel 	nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeri y Vegetated Conc			 Aquatic Inv Hydrogen Oxidized R Presence of Recent Iro Stunted or 	(B11) vertebrates Sulfide Od thizospher of Reduced n Reductio Stressed	s (B13) or (C1) es along d Iron (C4 n in Tilleo Plants (D	Living Roo) d Soils (C6	ts (C3))	Dr Dr Dr Sa Ge Sr FF Ra	ainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) nallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)
 Sedime Drift De Algal Ma Iron De Surface Inundati Sparsel 	nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeri y Vegetated Conc			 Aquatic Inv Hydrogen Oxidized R Presence of Recent Iro Stunted or 	(B11) vertebrates Sulfide Od thizospher of Reduced n Reductio Stressed	s (B13) or (C1) es along d Iron (C4 n in Tilleo Plants (D	Living Roo) d Soils (C6	ts (C3))	Dr Dr Dr Sa Ge Sr FF Ra	ainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) nallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)
 Sedime Drift De Algal M: Iron De Surface Surface Inundati Sparsel Field Obse	nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeri y Vegetated Conc	ave Surface		 Aquatic Inv Hydrogen Oxidized R Presence of Recent Iro Stunted or 	(B11) vertebrates Sulfide Od thizospher of Reduced n Reductic Stressed lain in Rer	s (B13) or (C1) es along d Iron (C4 on in Tilleo Plants (D marks)	Living Roo) d Soils (C6	ts (C3))	Dr Dr Dr Sa Ge Sr FF Ra	ainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) nallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)
Sedime Drift De Algal Ma Iron De Surface Inundati Sparsel Field Obse Surface Wa	nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeri y Vegetated Conc rvations: tter Present?	ave Surface	(B8)	Aquatic Inv Hydrogen Oxidized F Presence o Recent Iro Stunted or Other (Exp	(B11) vertebrates Sulfide Od thizospher of Reduced n Reductio Stressed Idain in Rer	s (B13) or (C1) es along d Iron (C4 on in Tilleo Plants (D marks)	Living Roo) d Soils (C6	ts (C3))	Dr Dr Dr Sa Ge Sr FF Ra	ainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) nallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)
Sedime Drift De Algal Ma Iron De Surface Surface Field Obse Surface Wa Water Table	nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) soil Cracks (B6) ion Visible on Aeri y Vegetated Conc rvations: ater Present?	Yes □ Yes □	(B8) No ⊠ No □	Aquatic Inv Hydrogen Oxidized R Presence o Recent Iro Stunted or Other (Exp Depth (inchest	(B11) vertebrates Sulfide Od thizospher of Reduced n Reductio Stressed I ilain in Rer s): s):	s (B13) or (C1) es along d Iron (C4 on in Tilleo Plants (D marks)	Living Roo) d Soils (C6 1) (LRR A)	ts (C3))	Dr Dr Sa Ge SF F F R F Fr	rainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) nallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A) ost-Heave Hummocks (D7)
Sedime Drift De Algal Ma Iron De Surface Inundati Sparsel Field Obse Surface Wa Water Table Saturation F (includes ca	nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeri y Vegetated Conc rvations: ater Present? Present? Present? apillary fringe)	Yes ☐ Yes ⊠ Yes ⊠ Yes ⊠	(B8) No 🖾 No 🗆 No 🗆	Aquatic Inv Hydrogen Oxidized R Presence d Recent Iro Stunted or Other (Exp Depth (inchest Depth (inchest	(B11) vertebrates Sulfide Od thizospher of Reducer n Reductio Stressed lain in Rer s): s): s): s):	s (B13) or (C1) es along d Iron (C4 on in Tilled Plants (D marks)	Living Roo) d Soils (C6 1) (LRR A)	ts (C3))) and Hyd	Dr Dr Sa Ge St FA Ra Fr	ainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) nallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A)
Sedime Drift De Algal Ma Iron De Surface Inundati Sparsel Field Obse Surface Wa Water Table Saturation F (includes ca	nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) soil Cracks (B6) ion Visible on Aeri y Vegetated Conc rvations: atter Present? e Present? Present?	Yes ☐ Yes ⊠ Yes ⊠ Yes ⊠	(B8) No 🖾 No 🗆 No 🗆	Aquatic Inv Hydrogen Oxidized R Presence d Recent Iro Stunted or Other (Exp Depth (inchest Depth (inchest	(B11) vertebrates Sulfide Od thizospher of Reducer n Reductio Stressed lain in Rer s): s): s): s):	s (B13) or (C1) es along d Iron (C4 on in Tilled Plants (D marks)	Living Roo) d Soils (C6 1) (LRR A)	ts (C3))) and Hyd	Dr Dr Sa Ge St FA Ra Fr	rainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) nallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A) ost-Heave Hummocks (D7)
Sedime Drift De Algal Ma Iron De Surface Inundati Sparsel Field Obse Surface Wa Water Table Saturation F (includes ca	nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeri y Vegetated Conc rvations: ater Present? Present? Present? apillary fringe)	Yes ☐ Yes ⊠ Yes ⊠ Yes ⊠	(B8) No 🖾 No 🗆 No 🗆	Aquatic Inv Hydrogen Oxidized R Presence d Recent Iro Stunted or Other (Exp Depth (inchest Depth (inchest	(B11) vertebrates Sulfide Od thizospher of Reducer n Reductio Stressed lain in Rer s): s): s): s):	s (B13) or (C1) es along d Iron (C4 on in Tilled Plants (D marks)	Living Roo) d Soils (C6 1) (LRR A)	ts (C3))) and Hyd	Dr Dr Sa Ge St FA Ra Fr	rainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) nallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A) ost-Heave Hummocks (D7)
Sedime Drift De Algal Ma Iron De Surface Inundati Sparsel Field Obse Surface Wa Water Table Saturation F (includes ca	nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeri y Vegetated Conc rvations: ater Present? Present? Present? apillary fringe)	Yes ☐ Yes ⊠ Yes ⊠ Yes ⊠	(B8) No 🖾 No 🗆 No 🗆	Aquatic Inv Hydrogen Oxidized R Presence d Recent Iro Stunted or Other (Exp Depth (inchest Depth (inchest	(B11) vertebrates Sulfide Od thizospher of Reducer n Reductio Stressed lain in Rer s): s): s): s):	s (B13) or (C1) es along d Iron (C4 on in Tilled Plants (D marks)	Living Roo) d Soils (C6 1) (LRR A)	ts (C3))) and Hyd	Dr Dr Sa Ge St FA Ra Fr	rainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) nallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A) ost-Heave Hummocks (D7)
Sedime Control Sedime Control	nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeri y Vegetated Conc rvations: ater Present? Present? Present? apillary fringe)	Yes ☐ Yes ⊠ Yes ⊠ Yes ⊠	(B8) No 🖾 No 🗆 No 🗆	Aquatic Inv Hydrogen Oxidized R Presence d Recent Iro Stunted or Other (Exp Depth (inchest Depth (inchest	(B11) vertebrates Sulfide Od thizospher of Reducer n Reductio Stressed lain in Rer s): s): s): s):	s (B13) or (C1) es along d Iron (C4 on in Tilled Plants (D marks)	Living Roo) d Soils (C6 1) (LRR A)	ts (C3))) and Hyd	Dr Dr Sa Ge St FA Ra Fr	rainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) nallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A) ost-Heave Hummocks (D7)
Sedime Chief De Algal M. Iron De Surface Surface Surface Wa Water Table Saturation F (includes ca Describe Re	nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeri y Vegetated Conc rvations: ater Present? Present? Present? apillary fringe)	Yes ☐ Yes ⊠ Yes ⊠ Yes ⊠	(B8) No 🖾 No 🗆 No 🗆	Aquatic Inv Hydrogen Oxidized R Presence d Recent Iro Stunted or Other (Exp Depth (inchest Depth (inchest	(B11) vertebrates Sulfide Od thizospher of Reducer n Reductio Stressed lain in Rer s): s): s): s):	s (B13) or (C1) es along d Iron (C4 on in Tilled Plants (D marks)	Living Roo) d Soils (C6 1) (LRR A)	ts (C3))) and Hyd	Dr Dr Sa Ge St FA Ra Fr	rainage Patterns (B10) y-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2) nallow Aquitard (D3) AC-Neutral Test (D5) aised Ant Mounds (D6) (LRR A) ost-Heave Hummocks (D7)

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

Project/Site: Sunset Pointe	City/County: Puyallup / Pierce	Sampling Date:03 OCT 2017
Applicant/Owner:	State: Washington	Sampling Point: <u>SPB-2</u>
Investigator(s): Habitat Technologies	Section, Township, Range: <u>S35, T</u>	20, R4E
Landform (hillslope, terrace, etc.):	Local relief (concave, convex, none):	Slope (%):
Subregion (LRR): A Lat:	Long:	Datum:
Soil Map Unit Name: Kitsap silt loam	NWI classi	fication:
Are climatic / hydrologic conditions on the site typical for this time of	f year? Yes 🛛 🛛 No 🗌 (If no, explain in Remark	(S.)
Are Vegetation, Soil, or Hydrology significant	y disturbed? Are "Normal Circumstances" p	present? Yes 🛛 No 🗌
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed, explain any answer	s in Remarks.)
SUMMARY OF FINDINGS – Attach site map show	ing sampling point locations, transec	ts, important features, etc.

Hydrophytic Vegetation Presen Hydric Soil Present? Wetland Hydrology Present?	nt? Yes □ No ⊠ Yes □ No ⊠ Yes □ No ⊠	Is the Sampled Area within a Wetland?	Yes 🔲 No 🖾
Remarks: Upland			

VEGETATION – Use scientific names of plants.

	Absolute	Dominant		Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>15ft radius</u>)	<u>% Cover</u>	Species?		Number of Dominant Species
1. <u>Pseudotsuga menziesii</u>	45	yes	FACU	That Are OBL, FACW, or FAC: <u>1</u> (A)
2. Crataegus monogyna	20	yes	FACU	Total Number of Dominant
3				Species Across All Strata: <u>7</u> (B)
4				Demonstrat Demois and Oracian
	65			Percent of Dominant Species That Are OBL, FACW, or FAC: <u>14</u> (A/B)
Sapling/Shrub Stratum (Plot size: 15ft radius)				
1. Oemleria cerasiformis	10	yes	FACU	Prevalence Index worksheet:
2. <u>Sambucus racemosa</u>	10	yes	FACU	Total % Cover of:Multiply by:
3				OBL species x 1 =
4				FACW species x 2 =
5				FAC species x 3 =
	20			FACU species x 4 =
Herb Stratum (Plot size: 15ft radius)		-		UPL species x 5 =
1. Polystichum munitum	30	yes	FACU	Column Totals: (A) (B)
2				
3				Prevalence Index = B/A =
4				Hydrophytic Vegetation Indicators:
5				Rapid Test for Hydrophytic Vegetation
6				□ Dominance Test is >50%
7				□ Prevalence Index is ≤3.0 ¹
8				Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
				Wetland Non-Vascular Plants ¹
10				Problematic Hydrophytic Vegetation ¹ (Explain)
11	30			¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 15ft radius)	30	Total C	over	be present, unless disturbed or problematic.
1. <u>Rubus procera</u>	40	yes	FAC	
2. Rubus ursinus		yes	FACU	Hydrophytic Vegetation
	<u>90</u>			Present? Yes No 🛛
% Bare Ground in Herb Stratum <u>40</u>	<u></u>	101010	0.00	
Remarks:				

SOIL

Sampling Point: SPB-2

Profile Description: (Descri		Della	. .							
Depth <u>Matri</u> (inches) Color (moist)		blor (moist)	<u>x Features</u> %	S Type ¹	Loc ²	Textur	e		Remarks	
0-4 10YR 3/2	100					1				
						<u> </u>	·			
4-20 <u>10YR 3/3</u>	100		·			Sgl	·			
							·			
¹ Type: C=Concentration, D=I	Depletion, RM=R	educed Matrix, CS	=Covered	l or Coate	ed Sand G				Pore Lining, M=Mat	
Hydric Soil Indicators: (App	blicable to all LF	Rs, unless other	wise note	ed.)		In	dicator	s for Prob	plematic Hydric Soi	ls³:
Histosol (A1)		Sandy Redox (S						Muck (A10	,	
Histic Epipedon (A2)		Stripped Matrix	. ,						terial (TF2)	
Black Histic (A3)		Loamy Mucky M			: MLRA 1)		-		ark Surface (TF12)	
Hydrogen Sulfide (A4)		Loamy Gleyed N	. ,			L] Other	(Explain i	n Remarks)	
Depleted Below Dark Sur	. ,	Depleted Matrix	. ,			31.		n nfilmer		-1
 Thick Dark Surface (A12) Sandy Mucky Mineral (S1 		Redox Dark Sur	()	7)		°Ir		-	phytic vegetation an gy must be present,	2
Sandy Mucky Mineral (S1		Redox Depressi		()					or problematic.	
Restrictive Layer (if present			0113 (1 0)				unicoo	uistuibeu		
Type:	,.									
•••						Hydri	ic Soil E	Procont?		
Depth (inches): Remarks:						Hydri	ic Soil F	Present?	Yes 🗌 No 🛛	
Depth (inches):						Hydri	ic Soil F	Present?	Yes 🗌 No 🖂	
Depth (inches): Remarks: /DROLOGY						Hydri	ic Soil F	Present?	Yes 🗌 No 🖂	
Depth (inches): Remarks: /DROLOGY Wetland Hydrology Indicato	ors:		0			Hydri				ired)
Depth (inches): Remarks: /DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum	ors:	check all that apply					Second	dary Indica	ators (2 or more requ	
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1)	ors:	check all that apply	ned Leave	()(xcept MLF		Second	dary Indica	ators (2 or more requ d Leaves (B9) (MLR	
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2)	ors:	check all that apply	ned Leave A, and 4B)	()(xcept MLF		Second Wa	dary Indica ter-Staine 4A, and 4	ators (2 or more requ d Leaves (B9) (MLR 4B)	
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3)	ors:	check all that apply ☐ Water-Stain 1, 2, 4A ☐ Salt Crust (ned Leave A, and 4B) (B11)		xcept MLF		Second Wa	dary Indica Iter-Staine 4A, and 4 ainage Pat	ators (2 or more requ d Leaves (B9) (MLR 4B) tterns (B10)	
Depth (inches): Remarks: /DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	ors:	theck all that apply U Water-Stair 1, 2, 4A Salt Crust (Aquatic Inv	ned Leave A, and 4B) (B11) ertebrates	s (B13)	xcept MLF		Second Wa Dra Dry	dary Indica Iter-Staine 4A, and 4 Ainage Pat V-Season \	ators (2 or more requ d Leaves (B9) (MLR 4B) tterns (B10) Water Table (C2)	A 1, 2,
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	ors:	check all that apply Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S	ned Leave A, and 4B) (B11) ertebrates Sulfide Od	s (B13) or (C1)	·	RA	Second Wa Dra Dry Sat	dary Indica Iter-Staine 4A, and 4 ainage Pat /-Season \ turation Vis	ators (2 or more requ d Leaves (B9) (MLR 1B) terns (B10) Water Table (C2) sible on Aerial Image	A 1, 2,
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	ors:	Check all that apply Water-Stain 1, 2, 4 Salt Crust (Aquatic Inv Hydrogen S Oxidized R	ned Leave A, and 4B) (B11) ertebrates Sulfide Od hizosphere	s (B13) or (C1) es along	Living Roo	RA	Second Wa Dra Dry Sat Geo	dary Indica iter-Staine 4A, and 4 ainage Pat -Season Vis curation Vis omorphic	ators (2 or more requ d Leaves (B9) (MLR 4B) tterns (B10) Water Table (C2) sible on Aerial Image Position (D2)	A 1, 2,
Depth (inches): Remarks: 'DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)	ors:	check all that apply Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c	ned Leave A, and 4B) (B11) ertebrates Sulfide Od hizospher of Reduced	s (B13) or (C1) es along d Iron (C4	· Living Roo I)	RA ts (C3)	Second Wa Dra Dry Sat Gee Sha	dary Indica tter-Staine 4A, and 4 ainage Pat -Season Vis curation Vis omorphic allow Aqui	ators (2 or more requ d Leaves (B9) (MLR 1B) terns (B10) Water Table (C2) sible on Aerial Image Position (D2) tard (D3)	A 1, 2,
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	ors:	check all that apply Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror	ned Leave A, and 4B) (B11) ertebrates Sulfide Od hizosphere f Reduced n Reductio	s (B13) or (C1) es along d Iron (C4 on in Tilled	Living Roo I) d Soils (C6	RA ts (C3)	Seconc Wa Dra Dry Sat Geo Sha C	dary Indica ter-Staine 4A, and 4 inage Pat <i>r</i> -Season \ turation Vis omorphic allow Aqui C-Neutral	ators (2 or more requ d Leaves (B9) (MLR 4B) Vater Table (C2) sible on Aerial Image Position (D2) tard (D3) Test (D5)	A 1, 2,
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6)	ors: of one required; c	check all that apply Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or	ned Leave A, and 4B) (B11) ertebrates Sulfide Od hizospher f Reduced n Reductio Stressed I	s (B13) or (C1) es along d Iron (C4 n in Tilleo Plants (D	Living Roo I) d Soils (C6	RA ts (C3)	Second Wa Dra Dry Sat Gee Sha FAQ Rai	dary Indica iter-Staine 4A, and 4 ainage Pat -Season V curation Vis omorphic allow Aqui C-Neutral ised Ant M	ators (2 or more requ d Leaves (B9) (MLR 4B) Water Table (C2) sible on Aerial Image Position (D2) tard (D3) Test (D5) founds (D6) (LRR A	A 1, 2 ,
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri	ors: of one required; of al Imagery (B7)	Sheck all that apply Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Explanation)	ned Leave A, and 4B) (B11) ertebrates Sulfide Od hizospher f Reduced n Reductio Stressed I	s (B13) or (C1) es along d Iron (C4 n in Tilleo Plants (D	Living Roo I) d Soils (C6	RA ts (C3)	Second Wa Dra Dry Sat Gee Sha FAQ Rai	dary Indica iter-Staine 4A, and 4 ainage Pat -Season V curation Vis omorphic allow Aqui C-Neutral ised Ant M	ators (2 or more requ d Leaves (B9) (MLR 4B) Vater Table (C2) sible on Aerial Image Position (D2) tard (D3) Test (D5)	A 1, 2,
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc	ors: of one required; of al Imagery (B7)	Sheck all that apply Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Explanation)	ned Leave A, and 4B) (B11) ertebrates Sulfide Od hizospher f Reduced n Reductio Stressed I	s (B13) or (C1) es along d Iron (C4 n in Tilleo Plants (D	Living Roo I) d Soils (C6	RA ts (C3)	Second Wa Dra Dry Sat Gee Sha FAQ Rai	dary Indica iter-Staine 4A, and 4 ainage Pat -Season V turation Vis omorphic allow Aqui C-Neutral ised Ant M	ators (2 or more requ d Leaves (B9) (MLR 4B) Water Table (C2) sible on Aerial Image Position (D2) tard (D3) Test (D5) founds (D6) (LRR A	A 1, 2 ,
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc Field Observations:	o rs: of one required; of al Imagery (B7) ave Surface (B8)	check all that apply Water-Stain 1, 2, 44 Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Exp	ned Leave A, and 4B) (B11) ertebrates Sulfide Od hizospher of Reduced n Reductio Stressed I lain in Rer	s (B13) or (C1) es along d Iron (C4 on in Tilleo Plants (D marks)	Living Roo I) d Soils (C6	RA ts (C3)	Second Wa Dra Dry Sat Gee Sha FAQ Rai	dary Indica iter-Staine 4A, and 4 ainage Pat -Season V turation Vis omorphic allow Aqui C-Neutral ised Ant M	ators (2 or more requ d Leaves (B9) (MLR 4B) Water Table (C2) sible on Aerial Image Position (D2) tard (D3) Test (D5) founds (D6) (LRR A	A 1, 2,
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc Field Observations: Surface Water Present?	of one required; one requir	check all that apply Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Exp Depth (inches)	hed Leave A, and 4B) (B11) ertebrates Sulfide Od hizosphere f Reduced hizosphere f Reduced hizosphere n Reductio Stressed I lain in Rer	s (B13) or (C1) es along d Iron (C4 on in Tilled Plants (D marks)	Living Roo I) d Soils (C6	RA ts (C3)	Second Wa Dra Dry Sat Gee Sha FAQ Rai	dary Indica iter-Staine 4A, and 4 ainage Pat -Season V turation Vis omorphic allow Aqui C-Neutral ised Ant M	ators (2 or more requ d Leaves (B9) (MLR 4B) Water Table (C2) sible on Aerial Image Position (D2) tard (D3) Test (D5) founds (D6) (LRR A	A 1, 2,
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc Field Observations: Surface Water Present? Water Table Present?	al Imagery (B7) ave Surface (B8) Yes □ No ⊠ Yes □ No ⊠	Sheck all that apply Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Exp Depth (inches Depth (inches	hed Leave A, and 4B) (B11) ertebrates Sulfide Od hizosphere of Reduced n Reductio Stressed I lain in Rer):):	s (B13) or (C1) es along d Iron (C4 on in Tilleo Plants (D marks)	Living Roo I) d Soils (C6 1) (LRR A)	RA ts (C3)	Second Wa Dra Dry Sat Geu Sha FA(Rai Fro	dary Indica Iter-Staine 4A, and 4 Ainage Pat Ainage Pat C-Season V Ituration Vis omorphic allow Aqui C-Neutral ised Ant W ost-Heave	ators (2 or more requ d Leaves (B9) (MLR 4B) tterns (B10) Water Table (C2) sible on Aerial Image Position (D2) tard (D3) Test (D5) founds (D6) (LRR A Hummocks (D7)	A 1, 2 ,
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc Field Observations: Surface Water Present? Water Table Present? Saturation Present?	of one required; one requir	Sheck all that apply Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Exp Depth (inches Depth (inches	hed Leave A, and 4B) (B11) ertebrates Sulfide Od hizosphere of Reduced n Reductio Stressed I lain in Rer):):	s (B13) or (C1) es along d Iron (C4 on in Tilleo Plants (D marks)	Living Roo I) d Soils (C6 1) (LRR A)	RA ts (C3)	Second Wa Dra Dry Sat Geu Sha FA(Rai Fro	dary Indica Iter-Staine 4A, and 4 Ainage Pat Ainage Pat C-Season V Ituration Vis omorphic allow Aqui C-Neutral ised Ant W ost-Heave	ators (2 or more requ d Leaves (B9) (MLR 4B) Water Table (C2) sible on Aerial Image Position (D2) tard (D3) Test (D5) founds (D6) (LRR A	A 1, 2,
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc Field Observations: Surface Water Present? Water Table Present?	al Imagery (B7) ave Surface (B8) Yes □ No ⊠ Yes □ No ⊠ Yes □ No ⊠	check all that apply Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Exp) Depth (inches) Depth (inches) Depth (inches)	hed Leave A, and 4B) B11) ertebrates Sulfide Od hizosphere f Reduced h Reductio Stressed I lain in Rer):):):	s (B13) or (C1) es along d Iron (C4 on in Tilled Plants (D marks)	Living Roo l) d Soils (C6 1) (LRR A)	ts (C3)	Second Wa Dra Dry Sat Sha Sha FA(Rai Fro	dary Indica Iter-Staine 4A, and 4 Ainage Pat Ainage Pat C-Season V Ituration Vis omorphic allow Aqui C-Neutral ised Ant W ost-Heave	ators (2 or more requ d Leaves (B9) (MLR 4B) tterns (B10) Water Table (C2) sible on Aerial Image Position (D2) tard (D3) Test (D5) founds (D6) (LRR A Hummocks (D7)	A 1, 2,
Depth (inches): Remarks: TDROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc Field Observations: Surface Water Present? Water Table Present? Water Table Present? Saturation Pres	al Imagery (B7) ave Surface (B8) Yes No ⊠ Yes No ⊠ Yes No ⊠	check all that apply Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Exp) Depth (inches) Depth (inches) Depth (inches)	hed Leave A, and 4B) B11) ertebrates Sulfide Od hizosphere f Reduced h Reductio Stressed I lain in Rer):):):	s (B13) or (C1) es along d Iron (C4 on in Tilled Plants (D marks)	Living Roo l) d Soils (C6 1) (LRR A)	ts (C3)	Second Wa Dra Dry Sat Sha Sha FA(Rai Fro	dary Indica Iter-Staine 4A, and 4 Ainage Pat Ainage Pat C-Season V Ituration Vis omorphic allow Aqui C-Neutral ised Ant W ost-Heave	ators (2 or more requ d Leaves (B9) (MLR 4B) tterns (B10) Water Table (C2) sible on Aerial Image Position (D2) tard (D3) Test (D5) founds (D6) (LRR A Hummocks (D7)	A 1, 2,
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc Field Observations: Surface Water Present? Water Table Present? Water Table Present? Saturation Present? Saturation Present?	al Imagery (B7) ave Surface (B8) Yes No ⊠ Yes No ⊠ Yes No ⊠	check all that apply Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Exp) Depth (inches) Depth (inches) Depth (inches)	hed Leave A, and 4B) B11) ertebrates Sulfide Od hizosphere f Reduced h Reductio Stressed I lain in Rer):):):	s (B13) or (C1) es along d Iron (C4 on in Tilled Plants (D marks)	Living Roo l) d Soils (C6 1) (LRR A)	ts (C3)	Second Wa Dra Dry Sat Sha Sha FA(Rai Fro	dary Indica Iter-Staine 4A, and 4 Ainage Pat Ainage Pat C-Season V Ituration Vis omorphic allow Aqui C-Neutral ised Ant W ost-Heave	ators (2 or more requ d Leaves (B9) (MLR 4B) tterns (B10) Water Table (C2) sible on Aerial Image Position (D2) tard (D3) Test (D5) founds (D6) (LRR A Hummocks (D7)	A 1, 2

Project/Site: Sunset Pointe	City/County: Puy	allup / Pierce	Sampling Date:03 OCT 2017
Applicant/Owner:		State: Washington	Sampling Point: SPB-3
Investigator(s): Habitat Technologies	Section	on, Township, Range: <u>S35, T20,</u>	R4E
Landform (hillslope, terrace, etc.):	Local relief (con	ncave, convex, none):	Slope (%):
Subregion (LRR): A	Lat:	Long:	Datum:
Soil Map Unit Name: <u>Kitsap silt loam</u>		NWI classificat	ion:
Are climatic / hydrologic conditions on the site typical for this	s time of year? Yes 🛛 No	(If no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrology sig	nificantly disturbed? A	re "Normal Circumstances" prese	ent? Yes 🛛 No 🗌
Are Vegetation, Soil, or Hydrology natu	urally problematic? (If	needed, explain any answers in	Remarks.)
SUMMARY OF FINDINGS – Attach site map	showing sampling po	int locations, transects,	important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes □ No ⊠ Yes □ No ⊠ Yes □ No ⊠	Is the Sampled Area within a Wetland?	Yes 🗌 No 🖾
Remarks: Upland			

	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: <u>15ft radius</u>)	<u>% Cover</u>	Species?	Status	Number of Dominant Species
1. <u>Pseudotsuga menziesii</u>	50	yes	FACU	That Are OBL, FACW, or FAC: <u>1</u> (A)
2				Total Number of Dominant
3				Species Across All Strata: <u>5</u> (B)
4				
	50			Percent of Dominant Species That Are OBL, FACW, or FAC: 20 (A/B)
Sapling/Shrub Stratum (Plot size: <u>15ft radius</u>)				
1. <u>Sambucus racemosa</u>	30	yes	FACU	Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
3				OBL species x 1 =
4				FACW species x 2 =
5				FAC species x 3 =
		= Total C		FACU species x 4 =
Herb Stratum (Plot size: 15ft radius)				UPL species x 5 =
1. Polystichum munitum	20	yes	FACU	Column Totals: (A) (B)
2				
3				Prevalence Index = B/A =
4				Hydrophytic Vegetation Indicators:
5				Rapid Test for Hydrophytic Vegetation
6				□ Dominance Test is >50%
7				□ Prevalence Index is ≤3.0 ¹
8				Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
				☐ Wetland Non-Vascular Plants ¹
10				Problematic Hydrophytic Vegetation ¹ (Explain)
· · · · ·	20	= Total C		¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 15ft radius)	20	- 10tai C	OVEI	be present, unless disturbed or problematic.
1. <u>Rubus procera</u>	100	ves	FAC	
2. Rubus ursinus	30	-	FACU	Hydrophytic Vegetation
	100			Present? Yes No 🛛
% Bare Ground in Herb Stratum <u>0</u>		. 5101 0		
Remarks:				•

Sampling Point: SPB-3

Profile Description: (Descri										
Depth <u>Matri</u> (inches) Color (moist)		lor (moist)	<u>x Features</u> %	3 Type ¹	Loc ²	Textur	e		Remarks	
· · · · ·	<u> </u>			<u></u>		1	<u> </u>		rtomanto	
						<u> </u>				
<u>4-18 10YR 3/3</u>	100					Sgl				
			·							
Type: C=Concentration, D=I					ed Sand G				Pore Lining, N	
Hydric Soil Indicators: (App —				ed.)					blematic Hydr	c Soils':
Histosol (A1)		Sandy Redox (S						Muck (A1	,	
Histic Epipedon (A2)		Stripped Matrix	. ,) (avaant					terial (TF2)	-10)
 Black Histic (A3) Hydrogen Sulfide (A4) 		Loamy Mucky M Loamy Gleyed N			WILKA 1)		-		ark Surface (Tl in Remarks)	-12)
Depleted Below Dark Sur		Depleted Matrix	. ,					(Explain i	in Remarks)	
 Depicted Below Bark Gar Thick Dark Surface (A12) 	. ,	Redox Dark Sur	. ,			³ Ir	ndicator	s of hydro	phytic vegetati	on and
Sandy Mucky Mineral (S1)		Depleted Dark S	()	7)				-	gy must be pre	
Sandy Gleyed Matrix (S4)		Redox Depressi		/				-	l or problematio	
Restrictive Layer (if present		· · ·	()						•	
Type:										
· · · · · · · · · · · · · · · · · · ·									_	
Depth (inches):						Hydri	c Soil F	Present?	Yes 🗌 No	\sim
						Hydri	c Soil I	Present?	Yes 🗌 No	
Depth (inches):						Hydri	c Soil I	Present?	Yes 🗌 No	
Depth (inches): Remarks: DROLOGY						Hydri	c Soil I	Present?	Yes 🗌 No	
Depth (inches): Remarks: /DROLOGY Wetland Hydrology Indicato	ors:					Hydri				
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum	ors:	heck all that appl					Second	dary Indica	ators (2 or more	e required)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1)	ors:	heck all that appl	ned Leave	()(xcept MLF		Second	dary Indica	ators (2 or more	e required)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2)	ors:	heck all that appl ☐ Water-Stair 1, 2, 44	ned Leave A, and 4B)	()(xcept MLF		Second Wa	dary Indica ter-Staine 4A, and 4	ators (2 or more ed Leaves (B9) 4B)	e required)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3)	ors:	heck all that appl ☐ Water-Stair 1, 2, 4 A ☐ Salt Crust (ned Leave A, and 4B) (B11)		xcept MLF		Second Wa	dary Indica iter-Staine 4A, and 4	ators (2 or more ed Leaves (B9) 4B) tterns (B10)	<u>e required)</u> (MLRA 1, 2,
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	ors:	heck all that appl Water-Stair 1, 2, 44 Salt Crust (Aquatic Inv	ned Leave A, and 4B) (B11) rertebrates	; (B13)	xcept MLF		Second Wa Dra	dary Indica Iter-Staine 4A, and Ainage Pat	ators (2 or more ed Leaves (B9) 4B) tterns (B10) Water Table (C	<u>e required)</u> (MLRA 1, 2, 2)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	ors:	heck all that appl ☐ Water-Stain 1, 2, 4 A ☐ Salt Crust (☐ Aquatic Inv ☐ Hydrogen \$	ned Leave A, and 4B) (B11) rertebrates Sulfide Od	6 (B13) or (C1)	·		Second Wa Dra Dry Sat	dary Indica Iter-Staine 4A, and Ainage Pat Ainage Pat Ainage Vituration Vit	ators (2 or more ed Leaves (B9) 4B) tterns (B10) Water Table (C isible on Aerial	<u>e required)</u> (MLRA 1, 2, 2)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	ors:	heck all that appl Water-Stair 1, 2, 44 Salt Crust (Aquatic Inv Hydrogen S	ned Leave A, and 4B) (B11) rertebrates Sulfide Od hizosphere	s (B13) or (C1) es along l	Living Roo		Second Wa Dra Dra Sat Ge	dary Indica iter-Staine 4A, and ainage Pat -Season Vi curation Vi omorphic	ators (2 or more ed Leaves (B9) 4B) tterns (B10) Water Table (C isible on Aerial Position (D2)	<u>e required)</u> (MLRA 1, 2, 2)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)	ors:	heck all that appl Water-Stain 1, 2, 44 Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c	ned Leave A, and 4B) (B11) rertebrates Sulfide Od hizospher of Reduced	s (B13) or (C1) es along l d Iron (C4	Living Roo	RA ts (C3)	Second Wa Dra Dry Sat Ge Sh	dary Indica tter-Staine 4A, and 4 ainage Pat -Season Vi curation Vi omorphic allow Aqui	ators (2 or more ed Leaves (B9) 4B) tterns (B10) Water Table (C isible on Aerial Position (D2) itard (D3)	<u>e required)</u> (MLRA 1, 2, 2)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	ors:	heck all that appl Water-Stain 1, 2, 44 Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror	A, and 4B) (B11) (B11) Sulfide Od hizosphere of Reduced n Reductio	s (B13) or (C1) es along l d Iron (C4 n in Tilleo	Living Roo) d Soils (C6	RA (C3)	Second Wa Dra Dry Sat Ge Sha C	dary Indica ter-Staine 4A, and 4 Ainage Pat -Season V turation Vi omorphic allow Aqui C-Neutral	ators (2 or more ed Leaves (B9) 4B) tterns (B10) Water Table (C isible on Aerial Position (D2) itard (D3) Test (D5)	<u>e required)</u> (MLRA 1, 2, 2) Imagery (C9
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6)	ors: of one required; c	heck all that appl Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or	ned Leave A, and 4B) (B11) rertebrates Sulfide Od hizospher of Reduced n Reductio Stressed I	s (B13) or (C1) es along l d Iron (C4 n in Tilleo Plants (D	Living Roo) d Soils (C6	RA (C3)	Second Wa Dra Dry Sat Ge Sha FA Ra	dary Indica iter-Staine 4A, and Ainage Pat -Season C-Season turation Vi omorphic allow Aqui C-Neutral ised Ant M	ators (2 or more ed Leaves (B9) 4B) Water Table (C isible on Aerial Position (D2) itard (D3) Test (D5) <i>I</i> ounds (D6) (L	<u>e required)</u> (MLRA 1, 2, 2) Imagery (C9 RR A)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri	ors: of one required; c	heck all that appl Water-Stain 1, 2, 44 Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror	ned Leave A, and 4B) (B11) rertebrates Sulfide Od hizospher of Reduced n Reductio Stressed I	s (B13) or (C1) es along l d Iron (C4 n in Tilleo Plants (D	Living Roo) d Soils (C6	RA (C3)	Second Wa Dra Dry Sat Ge Sha FA Ra	dary Indica iter-Staine 4A, and Ainage Pat -Season C-Season turation Vi omorphic allow Aqui C-Neutral ised Ant M	ators (2 or more ed Leaves (B9) 4B) tterns (B10) Water Table (C isible on Aerial Position (D2) itard (D3) Test (D5)	<u>e required)</u> (MLRA 1, 2, 2) Imagery (C9 RR A)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc	ors: of one required; c	heck all that appl Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or	ned Leave A, and 4B) (B11) rertebrates Sulfide Od hizospher of Reduced n Reductio Stressed I	s (B13) or (C1) es along l d Iron (C4 n in Tilleo Plants (D	Living Roo) d Soils (C6	RA (C3)	Second Wa Dra Dry Sat Ge Sha FA Ra	dary Indica iter-Staine 4A, and Ainage Pat -Season C-Season turation Vi omorphic allow Aqui C-Neutral ised Ant M	ators (2 or more ed Leaves (B9) 4B) Water Table (C isible on Aerial Position (D2) itard (D3) Test (D5) <i>I</i> ounds (D6) (L	<u>e required)</u> (MLRA 1, 2, 2) Imagery (C9 RR A)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri	ors: of one required; c	heck all that appl Water-Stain 1, 2, 44 Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Exp	A, and 4B) (B11) rertebrates Sulfide Od hizospher of Reduced n Reductio Stressed I lain in Rer	s (B13) or (C1) es along d Iron (C4 n in Tilleo Plants (D ⁻ narks)	Living Roo) d Soils (C6	RA (C3)	Second Wa Dra Dry Sat Ge Sha FA Ra	dary Indica iter-Staine 4A, and Ainage Pat -Season C-Season turation Vi omorphic allow Aqui C-Neutral ised Ant M	ators (2 or more ed Leaves (B9) 4B) Water Table (C isible on Aerial Position (D2) itard (D3) Test (D5) <i>I</i> ounds (D6) (L	<u>e required)</u> (MLRA 1, 2, 2) Imagery (C9)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc	ors: of one required; c	heck all that appl Water-Stain 1, 2, 44 Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Exp	A, and 4B) (B11) rertebrates Sulfide Od hizospher of Reduced n Reductio Stressed I lain in Rer	s (B13) or (C1) es along d Iron (C4 n in Tilleo Plants (D ⁻ narks)	Living Roo) d Soils (C6	RA (C3)	Second Wa Dra Dry Sat Ge Sha FA Ra	dary Indica iter-Staine 4A, and Ainage Pat -Season C-Season turation Vi omorphic allow Aqui C-Neutral ised Ant M	ators (2 or more ed Leaves (B9) 4B) Water Table (C isible on Aerial Position (D2) itard (D3) Test (D5) <i>I</i> ounds (D6) (L	<u>e required)</u> (MLRA 1, 2, 2) Imagery (C9)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc Field Observations:	o rs: of one required; c al Imagery (B7) ave Surface (B8)	heck all that appl Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Exp	ned Leave A, and 4B) (B11) rertebrates Sulfide Od hizosphere of Reduced n Reductio Stressed I lain in Rer	s (B13) or (C1) es along l d Iron (C4 n in Tilled Plants (D ⁻ narks)	Living Roo) d Soils (C6	RA (C3)	Second Wa Dra Dry Sat Ge Sha FA Ra	dary Indica iter-Staine 4A, and Ainage Pat -Season C-Season turation Vi omorphic allow Aqui C-Neutral ised Ant M	ators (2 or more ed Leaves (B9) 4B) Water Table (C isible on Aerial Position (D2) itard (D3) Test (D5) <i>I</i> ounds (D6) (L	<u>e required)</u> (MLRA 1, 2, 2) Imagery (C9 RR A)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc Field Observations: Surface Water Present? Water Table Present? Water Table Present? Saturation Present? Saturation Present?	al Imagery (B7) ave Surface (B8) Yes No X Yes No X Yes No X	heck all that appl Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Exp Depth (inchess Depth (inchess	A, and 4B) (B11) rertebrates Sulfide Od hizosphere of Reduced n Reductio Stressed I lain in Rer	s (B13) or (C1) es along l d Iron (C4 n in Tilled Plants (D ⁻ narks)	Living Roo) d Soils (C6 1) (LRR A)	RA ts (C3))) and Hyd	Second Wa Dra Dry Sat Ge Sha FA Ge Ra FA	dary Indica iter-Staine 4A, and 4 ainage Pat -Season V curation Vi omorphic allow Aqui C-Neutral ised Ant M ost-Heave	ators (2 or more ed Leaves (B9) 4B) Water Table (C isible on Aerial Position (D2) itard (D3) Test (D5) Mounds (D6) (L Hummocks (D	<u>e required)</u> (MLRA 1, 2, 2) Imagery (C9 RR A)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicator Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc Field Observations: Surface Water Present? Water Table Present? Saturation Present?	al Imagery (B7) ave Surface (B8) Yes No X Yes No X Yes No X	heck all that appl Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Exp Depth (inchess Depth (inchess	A, and 4B) (B11) rertebrates Sulfide Od hizosphere of Reduced n Reductio Stressed I lain in Rer	s (B13) or (C1) es along l d Iron (C4 n in Tilled Plants (D ⁻ narks)	Living Roo) d Soils (C6 1) (LRR A)	RA ts (C3))) and Hyd	Second Wa Dra Dry Sat Ge Sha FA Ge Ra FA	dary Indica iter-Staine 4A, and 4 ainage Pat -Season V curation Vi omorphic allow Aqui C-Neutral ised Ant M ost-Heave	ators (2 or more ed Leaves (B9) 4B) Water Table (C sible on Aerial Position (D2) itard (D3) Test (D5) <i>M</i> ounds (D6) (L Hummocks (D	<u>⇒ required)</u> (MLRA 1, 2, 2) Imagery (C9 RR A) 7)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc Field Observations: Surface Water Present? Water Table Present? Saturation Pre	al Imagery (B7) ave Surface (B8) Yes No X Yes No X Yes No X	heck all that appl Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Exp Depth (inchess Depth (inchess	A, and 4B) (B11) rertebrates Sulfide Od hizosphere of Reduced n Reductio Stressed I lain in Rer	s (B13) or (C1) es along l d Iron (C4 n in Tilled Plants (D ⁻ narks)	Living Roo) d Soils (C6 1) (LRR A)	RA ts (C3))) and Hyd	Second Wa Dra Dry Sat Ge Sha FA Ge Ra FA	dary Indica iter-Staine 4A, and 4 ainage Pat -Season V curation Vi omorphic allow Aqui C-Neutral ised Ant M ost-Heave	ators (2 or more ed Leaves (B9) 4B) Water Table (C sible on Aerial Position (D2) itard (D3) Test (D5) <i>M</i> ounds (D6) (L Hummocks (D	<u>⇒ required)</u> (MLRA 1, 2, 2) Imagery (C9 RR A) 7)
Depth (inches): Remarks: DROLOGY Wetland Hydrology Indicato Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc Field Observations: Surface Water Present? Water Table Present? Water Table Present? Saturation Present? Saturation Present?	al Imagery (B7) ave Surface (B8) Yes No X Yes No X Yes No X	heck all that appl Water-Stain 1, 2, 4A Salt Crust (Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Stunted or Other (Exp Depth (inchess Depth (inchess	A, and 4B) (B11) rertebrates Sulfide Od hizosphere of Reduced n Reductio Stressed I lain in Rer	s (B13) or (C1) es along l d Iron (C4 n in Tilled Plants (D ⁻ narks)	Living Roo) d Soils (C6 1) (LRR A)	RA ts (C3))) and Hyd	Second Wa Dra Dry Sat Ge Sha FA Ge Ra FA	dary Indica iter-Staine 4A, and 4 ainage Pat -Season V curation Vi omorphic allow Aqui C-Neutral ised Ant M ost-Heave	ators (2 or more ed Leaves (B9) 4B) Water Table (C sible on Aerial Position (D2) itard (D3) Test (D5) <i>M</i> ounds (D6) (L Hummocks (D	<u>⇒ required)</u> (MLRA 1, 2 , 2) Imagery (C9 RR A) 7)

Project/Site: Sunset Pointe	City/County: Puyallup /	Pierce	Sampling Date:03 OCT 2017
Applicant/Owner:		State: Washington	Sampling Point: SPB-10
Investigator(s): Habitat Technologies	Section, To	wnship, Range: <u>S35, T20,</u>	R4E
Landform (hillslope, terrace, etc.):	Local relief (concave,	convex, none):	Slope (%):
Subregion (LRR): A	_ Lat:	Long:	Datum:
Soil Map Unit Name: <u>Kitsap silt loam</u>		NWI classificat	ion:
Are climatic / hydrologic conditions on the site typical for this	time of year? Yes 🛛 No 🗌 (I	f no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrology sign	ificantly disturbed? Are "No	ormal Circumstances" pres	ent? Yes 🛛 No 🗌
Are Vegetation, Soil, or Hydrology natu	rally problematic? (If neede	ed, explain any answers in	Remarks.)
SUMMARY OF FINDINGS – Attach site map	showing sampling point lo	ocations, transects,	important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ⊠ No □ Yes ⊠ No □ Yes ⊠ No □	Is the Sampled Area within a Wetland?	Yes 🖾 No 🗌
Remarks: Wetland			

	Absolute		Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>15ft radius</u>) 1		Species?		Number of Dominant Species That Are OBL, FACW, or FAC: <u>3</u> (A)
2				Total Number of Dominant
3				Species Across All Strata: <u>3</u> (B)
4				
Sapling/Shrub Stratum (Plot size: <u>15ft radius</u>)		= Total C		Percent of Dominant Species That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of:Multiply by:
3				OBL species x 1 =
4				FACW species x 2 =
5				FAC species x 3 =
		= Total C		FACU species x 4 =
Herb Stratum (Plot size: 15ft radius)	<u> </u>			UPL species x 5 =
1. Ranunculus repens	100	yes	FAC	Column Totals: (A) (B)
2. Juncus effusus	20	yes	FAC	
3				Prevalence Index = B/A =
4				Hydrophytic Vegetation Indicators:
5				Rapid Test for Hydrophytic Vegetation
6				☑ Dominance Test is >50%
7				□ Prevalence Index is ≤3.0 ¹
8				 Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
9				Wetland Non-Vascular Plants ¹
10				Problematic Hydrophytic Vegetation ¹ (Explain)
11				¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 15ft radius)	<u>100</u>	= Total C	over	be present, unless disturbed or problematic.
1. <u>Rubus procera</u>	60	yes	FAC	Hydrophytic
2				Vegetation
% Bare Ground in Herb Stratum <u>0</u>	<u>60</u>	= Total C	Cover	Present? Yes 🛛 No 🗌
Remarks:				

(inches) Co	Matrix lor (moist)	%	Color (moist)	dox Feature %		_Loc ²	Textu	re	Remarks
·	YR 4/2	100							
<u>3-18 10`</u>	YR 4/1	<u>80 </u>	10YR 4/6	20	_ <u>C</u>	<u>M</u>	51		
			Reduced Matrix, RRs, unless oth			ed Sand G			on: PL=Pore Lining, M=Matrix.
] Histosol (A1)			 □ Sandy Redox		,] 2 cm Mu	-
 Histic Epiped			Stripped Matr						ent Material (TF2)
Black Histic ((A3)	[Loamy Mucky	/ Mineral (F	1) (excep	t MLRA 1)] Very Sh	allow Dark Surface (TF12)
] Hydrogen Su			Loamy Gleye		2)			Other (E	Explain in Remarks)
	low Dark Surfac		Depleted Mat						
Thick Dark S	()	[Redox Dark S				3		of hydrophytic vegetation and
Sandy Mucky		[Depleted Dar		-7)				hydrology must be present,
Sandy Gleye	• • •	l	Redox Depre	ssions (F8)				unless di	sturbed or problematic.
Restrictive Laye	er (it present):								
•	· · /								
Туре:									
Type: Depth (inches	· · /						Hydr	ic Soil Pre	esent? Yes 🛛 No 🖂
Type: Depth (inches							Hydr	ic Soil Pre	esent? Yes 🛛 No 🖂
Type: Depth (inches							Hydr	ic Soil Pre	esent? Yes 🛛 No 🖂
Type: Depth (inches							Hydr	ic Soil Pre	esent? Yes 🛛 No 🖂
Type: Depth (inches							Hydr	ic Soil Pre	esent? Yes 🛛 No 🖂
Type: Depth (inches Remarks:							Hydr	ic Soil Pre	esent? Yes 🛛 No 🖂
Type: Depth (inches Remarks: DROLOGY	s):						Hydr	ic Soil Pre	esent? Yes 🛛 No 🖂
Type: Depth (inches Remarks: DROLOGY Wetland Hydrol	s):			рру)			Hydr		esent? Yes 🛛 No 🖂
Type: Depth (inches Remarks: DROLOGY Vetland Hydrol Primary Indicator	s): logy Indicators: rs (minimum of c			• • •	res (B9) (e	xcept MLI		Secondar	
Type: Depth (inches Remarks: DROLOGY Vetland Hydrol Primary Indicator] Surface Wate	s): logy Indicators: rs (minimum of c er (A1)		 check all that ap U Water-S	• • •		xcept MLI		Secondar	ry Indicators (2 or more required)
Type: Depth (inches Remarks: DROLOGY Vetland Hydrol Primary Indicator Surface Wate High Water T	bogy Indicators: rs (minimum of c er (A1) Table (A2)		 check all that ap U Water-S	tained Leav 4A, and 4E		except MLI		Secondar	ry Indicators (2 or more required r-Stained Leaves (B9) (MLRA 1,
Type: Depth (inches Remarks: DROLOGY Vetland Hydrol Primary Indicator Surface Wate High Water T Saturation (A	s): logy Indicators: rs (minimum of c er (A1) Table (A2) A3)		 	tained Leav 4A, and 4E st (B11)	3)	xcept MLI		Secondar Wate 4/	ry Indicators (2 or more required r-Stained Leaves (B9) (MLRA 1, A, and 4B)
Type: Depth (inches Remarks: DROLOGY Vetland Hydrol Primary Indicator Surface Wate High Water T Saturation (A Water Marks	logy Indicators: rs (minimum of c er (A1) Table (A2) A3) s (B1)		<u>check all that ar</u> □ Water-S 1, 2, □ Salt Cru: □ Aquatic	tained Leav 4A, and 4E st (B11)	3) es (B13)	xcept MLI		Secondar Wate 4/ Drain Drain	ry Indicators (2 or more required r-Stained Leaves (B9) (MLRA 1, A, and 4B) age Patterns (B10)
Type: Depth (inches Remarks: DROLOGY Vetland Hydrol Primary Indicator Surface Water High Water Takes Saturation (A Water Marks Sediment De	bogy Indicators: rs (minimum of c er (A1) Table (A2) A3) s (B1) eposits (B2)		<u>check all that ap</u> Water-S 1, 2, Salt Cruz Aquatic Hydroge	tained Leav 4A, and 4E st (B11) Invertebrate n Sulfide O	3) es (B13) dor (C1)		RA	Secondar Water J Drain Dry-S Satur	r <u>y Indicators (2 or more required</u> r-Stained Leaves (B9) (MLRA 1, A, and 4B) age Patterns (B10) ieason Water Table (C2) ation Visible on Aerial Imagery (f
Type: Depth (inches Remarks: DROLOGY Vetland Hydrol Primary Indicator Surface Water High Water Tarks Saturation (A Water Marks Sediment De Drift Deposite	logy Indicators: rs (minimum of c er (A1) Table (A2) A3) s (B1) eposits (B2) s (B3)		check all that ag Water-S 1, 2, Salt Cru: Aquatic Hydroge Oxidized	tained Leav 4 A, and 4E st (B11) Invertebrate	3) es (B13) dor (C1) eres along	Living Roc	RA	Secondar Water J Drain Dry-S Satur Geom	ry Indicators (2 or more required r-Stained Leaves (B9) (MLRA 1, A, and 4B) age Patterns (B10) ieason Water Table (C2)
Type: Depth (inches Remarks: DROLOGY Vetland Hydrol Primary Indicator Surface Wate High Water T Saturation (A Water Marks Sediment De Drift Deposits Algal Mat or	bogy Indicators: rs (minimum of c er (A1) Table (A2) A3) s (B1) eposits (B2) s (B3) Crust (B4)		 Water-S Water-S Salt Cru: Aquatic Hydroge Oxidized Presenc	tained Leav 4A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe	3) dor (C1) eres along ed Iron (C4	Living Roc 4)	RA ots (C3)	Secondar Water 4/ Drain Dry-S Satur Geom Satur	ry Indicators (2 or more required) r-Stained Leaves (B9) (MLRA 1, A, and 4B) age Patterns (B10) season Water Table (C2) ation Visible on Aerial Imagery (norphic Position (D2) pw Aquitard (D3)
Type: Depth (inches Remarks: DROLOGY Vetland Hydrol Primary Indicator Surface Wate High Water T Saturation (A Water Marks Sediment De Drift Deposits Algal Mat or Iron Deposits	bogy Indicators: rs (minimum of c er (A1) Table (A2) A3) 5 (B1) eposits (B2) 5 (B3) Crust (B4) 5 (B5)		Water-S Water-S 1, 2, Salt Cru: Aquatic Hydroge Oxidized Presenc Recent I	tained Leav 4 A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe e of Reduce ron Reduct	3) dor (C1) eres along ed Iron (C4 ion in Tille	Living Roc 4) d Soils (C6	RA 0ts (C3)	Secondar Wate 4/ Drain Dry-S Satur Geom Shalld FAC-	ry Indicators (2 or more required r-Stained Leaves (B9) (MLRA 1 , A , and 4B) age Patterns (B10) season Water Table (C2) ation Visible on Aerial Imagery (norphic Position (D2) ow Aquitard (D3) Neutral Test (D5)
Type: Depth (inches Remarks: 'DROLOGY Wetland Hydrol Primary Indicator Surface Wate High Water T Saturation (A Water Marks Sediment De Drift Deposits Algal Mat or Iron Deposits Surface Soil	logy Indicators: rs (minimum of c er (A1) Table (A2) A3) 6 (B1) eposits (B2) s (B3) Crust (B4) s (B5) Cracks (B6)	: one required;	 <u>check all that ag</u> Water-S 1, 2, Salt Cru: Aquatic Hydroge Oxidized Presenc Recent I Stunted 	tained Leav 4A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe e of Reduct ron Reduct or Stressec	3) dor (C1) eres along ed Iron (C4 ion in Tille I Plants (D	Living Roc 4) d Soils (C6	RA 0ts (C3)	Secondar Wate 4/ Drain Dry-S Satur Satur Shalld FAC- Raise	ry Indicators (2 or more required) r-Stained Leaves (B9) (MLRA 1, A, and 4B) age Patterns (B10) season Water Table (C2) ation Visible on Aerial Imagery (norphic Position (D2) ow Aquitard (D3) Neutral Test (D5) ed Ant Mounds (D6) (LRR A)
Type: Depth (inches Remarks: DROLOGY Vetland Hydrol Primary Indicator Surface Wate High Water T Saturation (A Water Marks Sediment De Drift Deposits Algal Mat or Iron Deposits Surface Soil Inundation V	bogy Indicators: rs (minimum of c er (A1) Table (A2) A3) 5 (B1) eposits (B2) 5 (B3) Crust (B4) 5 (B5)	: one required;		tained Leav 4 A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe e of Reduce ron Reduct	3) dor (C1) eres along ed Iron (C4 ion in Tille I Plants (D	Living Roc 4) d Soils (C6	RA 0ts (C3)	Secondar Wate 4/ Drain Dry-S Satur Satur Shalld FAC- Raise	ry Indicators (2 or more required r-Stained Leaves (B9) (MLRA 1 , A , and 4B) age Patterns (B10) season Water Table (C2) ation Visible on Aerial Imagery (norphic Position (D2) ow Aquitard (D3) Neutral Test (D5)

Inundation Visible on Aeri	ial Imagery	(B7)	Frost-Heave Hummocks (D7)	
Sparsely Vegetated Conc	ave Surfac	e (B8)		
Field Observations:				
Surface Water Present?	Yes 🗌	No 🖂	Depth (inches):	
Water Table Present?	Yes 🛛	No 🗌	Depth (inches): <u>3</u>	
Saturation Present? (includes capillary fringe)	Yes 🛛	No 🗌	Depth (inches): 0	Wetland Hydrology Present? Yes 🛛 No 🗌
Describe Recorded Data (stre	eam gauge	, monitor	ing well, aerial photos, previous inspec	tions), if available:
Remarks:				

Project/Site: Sunset Pointe	City/County: <u>Ρι</u>	uyallup / Pierce	Sampling Date:03 OCT 2017
Applicant/Owner:		State: Washington	Sampling Point: SPB-11
Investigator(s): Habitat Technologies	Sec	tion, Township, Range: <u>S35, T20,</u>	R4E
Landform (hillslope, terrace, etc.):	Local relief (co	oncave, convex, none):	Slope (%):
Subregion (LRR): A	Lat:	Long:	Datum:
Soil Map Unit Name: <u>Kitsap silt loam</u>		NWI classificat	ion:
Are climatic / hydrologic conditions on the site typical for the	nis time of year? Yes 🛛 🛛 N	lo 🔲 (If no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrology sig	gnificantly disturbed?	Are "Normal Circumstances" pres	ent? Yes 🛛 No 🗌
Are Vegetation, Soil, or Hydrology na	turally problematic? ((If needed, explain any answers in	Remarks.)
SUMMARY OF FINDINGS – Attach site map	showing sampling p	oint locations, transects,	important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ⊠ No □ Yes ⊠ No □ Yes ⊠ No □	Is the Sampled Area within a Wetland? Yes ⊠ No □
Remarks: Wetland		

	Absolute	Dominant Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>15ft radius</u>)		Species? Status	Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
1			$\frac{1}{1}$
2			Total Number of Dominant
3			Species Across All Strata: <u>1</u> (B)
4			Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15ft radius)	0	= Total Cover	That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1		· ·	Prevalence Index worksheet:
2			Total % Cover of:Multiply by:
3			OBL species x 1 =
4			FACW species x 2 =
5			FAC species x 3 =
		= Total Cover	FACU species x 4 =
Herb Stratum (Plot size: <u>15ft radius</u>)	<u>.</u>		UPL species x 5 =
1		· ·	Column Totals: (A) (B)
2			
3			Prevalence Index = B/A =
4			Hydrophytic Vegetation Indicators:
5			Rapid Test for Hydrophytic Vegetation
6			☑ Dominance Test is >50%
7			□ Prevalence Index is ≤3.0 ¹
8			Morphological Adaptations ¹ (Provide supporting
9			data in Remarks or on a separate sheet)
10			☐ Wetland Non-Vascular Plants ¹
11			Problematic Hydrophytic Vegetation ¹ (Explain)
		= Total Cover	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 15ft radius)	0		be present, unless disturbed or problematic.
1. Rubus procera	100	yes FAC	
2			Hydrophytic Vegetation
	100	= Total Cover	Present? Yes 🛛 No 🗌
% Bare Ground in Herb Stratum <u>0</u>		-	
Remarks:			

(inches)	Matrix			edox Featur	<u>es</u>			
· · · · · ·	Color (moist)	% <u>Co</u>	lor (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-6	<u>10YR 4/2</u> <u>1</u>	100					SI	
6-18	10YR 4/1 7	<u>70 10</u>	YR 4/6	30	<u> </u>	M	SI	
· .								
	ncentration, D=Deplet					ed Sand G		² Location: PL=Pore Lining, M=Matrix.
	ndicators: (Applicab				ted.)			licators for Problematic Hydric Soils ³ :
Histosol (A	,		Sandy Redo					2 cm Muck (A10)
Histic Epip			Stripped Mat		A) (Red Parent Material (TF2)
Black Hist			Loamy Muck			(MLRA 1)		Very Shallow Dark Surface (TF12)
Hydrogen			Loamy Gleye		2)			Other (Explain in Remarks)
	Below Dark Surface (. ,	Depleted Ma Redox Dark	. ,	\ \		3100	diasters of hydrophytic versition and
	k Surface (A12) Jcky Mineral (S1)		Depleted Dark		,			dicators of hydrophytic vegetation and wetland hydrology must be present,
	eyed Matrix (S4)		Redox Depre	,	,			unless disturbed or problematic.
	ayer (if present):		Redux Depic	23310113 (1 0)				
Type:	ayer (il present).							
	hes):							
							Hydric	: Soil Present? Yes 🛛 No 🖂
	103)							
Remarks:								
Remarks:	Y							
Remarks: 'DROLOG'								
Remarks: 'DROLOG' Wetland Hyd	Y	<u>e required; c</u>	heck all that a	pply)			5	Secondary Indicators (2 or more required)
Remarks: DROLOG Wetland Hyd Primary Indica	Y Irology Indicators: ators (minimum of one	e required; c	heck all that a □ Water-5		ves (B9) (c	xcept MLI		Secondary Indicators (2 or more required)
Remarks: DROLOG Wetland Hyd Primary Indica Surface W	Y Irology Indicators: ators (minimum of one Vater (A1)	<u>e required; c</u>	U Water-S			xcept MLI		· · · · ·
Remarks: DROLOG Wetland Hyd Primary Indica Surface W High Wate	Y Irology Indicators: ators (minimum of one Vater (A1) er Table (A2)	<u>e required; c</u>	☐ Water-S 1, 2	Stained Leav , 4A, and 4		xcept MLI	RA [Water-Stained Leaves (B9) (MLRA 1,
Remarks: 'DROLOG' Wetland Hyd Primary Indica Surface W High Wate Saturation	Y Irology Indicators: ators (minimum of one Vater (A1) er Table (A2) n (A3)	<u>e required; c</u>	☐ Water-S 1, 2 ☐ Salt Cru	Stained Leav , 4A, and 4I ust (B11)	3)	xcept MLI	RA [Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10)
Remarks: 'DROLOG' Wetland Hyd Primary Indica Surface W High Wate Saturation Water Ma	Y Irology Indicators: ators (minimum of one Vater (A1) er Table (A2) n (A3) irks (B1)	<u>e required; c</u>	☐ Water-S 1, 2 ☐ Salt Cru ☐ Aquatic	Stained Leav , 4A, and 4I ust (B11) Invertebrate	3) es (B13)	xcept MLI	RA [Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Remarks: 'DROLOG' Wetland Hyd Primary Indica Surface W High Wate Saturation Water Mai Sediment	Y Irology Indicators: ators (minimum of one Vater (A1) er Table (A2) n (A3) irks (B1) Deposits (B2)	<u>e required; c</u>	Water-S 1, 2 Salt Cru Aquatic	Stained Leav , 4A, and 4I ust (B11) Invertebrate en Sulfide C	3) es (B13) edor (C1)		RA [[[Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (0)
Remarks: 'DROLOG' Wetland Hyd Primary Indica Surface W High Wate Saturation Water Mail Sediment Drift Depo	Y Irology Indicators: ators (minimum of one Vater (A1) er Table (A2) n (A3) irks (B1) Deposits (B2) osits (B3)	e required; c	Water-S 1, 2, Salt Cru Aquatic Hydroge Oxidizer	Stained Leav , 4A, and 4I ust (B11) Invertebrate en Sulfide C d Rhizosphe	3) es (B13) edor (C1) eres along	Living Roc	RA [[[Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C) Geomorphic Position (D2)
Remarks: 'DROLOG' Wetland Hyde Primary Indica Surface W High Wate Saturation Water Mai Sediment Drift Depo Algal Mat	Y Irology Indicators: ators (minimum of one Vater (A1) er Table (A2) n (A3) irks (B1) Deposits (B2) osits (B3) or Crust (B4)	<u>e required; c</u>	 □ Water-S 1, 2 □ Salt Cru □ Aquatic □ Hydroge □ Oxidize □ Presender 	Stained Leav , 4A, and 4I ust (B11) Invertebrate en Sulfide C d Rhizosphe ce of Reduc	3) es (B13) edor (C1) eres along ed Iron (C4	Living Roc 1)	RA [[[[ts (C3) [[Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (G Geomorphic Position (D2) Shallow Aquitard (D3)
Remarks: 'DROLOG' Wetland Hyde Primary Indica Surface W High Wate Saturation Water Mai Sediment Drift Depo Algal Mat Iron Depo	Y Irology Indicators: ators (minimum of one Vater (A1) er Table (A2) n (A3) irks (B1) Deposits (B2) osits (B3) or Crust (B4)	<u>e required; c</u>	Water-S 1, 2, Salt Cru Aquatic Hydroge Oxidize Presend Recent	Stained Leav , 4A, and 4I ust (B11) Invertebrate en Sulfide C d Rhizosphe	3) Indor (C1) Peres along ed Iron (C4 ion in Tille	Living Roc 1) d Soils (C6	RA [[[[ts (C3) [[]	 Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (G Geomorphic Position (D2)

Raised Ant Mounds (D6) (LRR A)
Freet Lleave Llummeeke (D7)

	iai iiliayei y					
Sparsely Vegetated Cond	cave Surfac	ce (B8)				
Field Observations:						
Surface Water Present?	Yes 🗌	No 🖂	Depth (inches):			
Water Table Present?	Yes 🛛	No 🗌	Depth (inches): <u>3</u>			
Saturation Present? (includes capillary fringe)	Yes 🛛	No 🗌	Depth (inches): 0	Wetland Hydrology Present?	Yes 🛛 No 🗌	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:						
Remarks:						

Project/Site: Sunset Pointe	City/County: Puyallup / Pier	<u>ce</u> Sar	mpling Date:03 OCT 2017	
Applicant/Owner:	(State: <u>Washington</u> Sar	mpling Point: <u>SPB-12</u>	
Investigator(s): Habitat Technologies	Section, Townsh	nip, Range: <u>S35, T20, R4</u>	Ε	
Landform (hillslope, terrace, etc.):	Local relief (concave, conv	Local relief (concave, convex, none): Slop		
Subregion (LRR): A	Lat: Lo	ng:	Datum:	
Soil Map Unit Name: <u>Kitsap silt loam</u>		NWI classification:		
Are climatic / hydrologic conditions on the site typical for this ti	ime of year? Yes 🛛 No 🗌 (If no,	explain in Remarks.)		
Are Vegetation, Soil, or Hydrology signifi	icantly disturbed? Are "Normal	Circumstances" present?	?Yes 🛛 No 🗌	
Are Vegetation, Soil, or Hydrology natural	Ily problematic? (If needed, ex	xplain any answers in Rer	marks.)	
SUMMARY OF FINDINGS – Attach site map sh	nowing sampling point locat	ions, transects, im	portant features, etc.	

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ⊠ No □ Yes □ No ⊠ Yes □ No ⊠	Is the Sampled Area within a Wetland?	Yes 🗌 No 🖾
Remarks: Upland			

	Absolute	Dominant Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>15ft radius</u>)		Species? Status	Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
1			$\frac{1}{1}$
2			Total Number of Dominant
3			Species Across All Strata: <u>1</u> (B)
4			Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15ft radius)	0	= Total Cover	That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1		· ·	Prevalence Index worksheet:
2			Total % Cover of:Multiply by:
3			OBL species x 1 =
4			FACW species x 2 =
5			FAC species x 3 =
		= Total Cover	FACU species x 4 =
Herb Stratum (Plot size: <u>15ft radius</u>)	<u> </u>		UPL species x 5 =
1		· ·	Column Totals: (A) (B)
2			
3			Prevalence Index = B/A =
4			Hydrophytic Vegetation Indicators:
5			Rapid Test for Hydrophytic Vegetation
6			☑ Dominance Test is >50%
7			□ Prevalence Index is ≤3.0 ¹
8			Morphological Adaptations ¹ (Provide supporting
9			data in Remarks or on a separate sheet)
10			☐ Wetland Non-Vascular Plants ¹
11			Problematic Hydrophytic Vegetation ¹ (Explain)
		= Total Cover	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 15ft radius)	0		be present, unless disturbed or problematic.
1. Rubus procera	100	yes FAC	
2			Hydrophytic Vegetation
	100	= Total Cover	Present? Yes 🛛 No 🗌
% Bare Ground in Herb Stratum <u>0</u>		-	
Remarks:			

Depth (inches)	<u>Matrix</u> Color (moist)	%	Color (moist)	dox Feature %		Loc ²	Textur	re Remarks
)-12	10YR 3/3	100					SI	
12-18						M		
12-10	1011(4/2	_ <u>= =</u>					<u> </u>	
Type: C=0	Concentration, D=De	– ——— pletion, RM=	Reduced Matrix,	CS=Covere	ed or Coat	ed Sand Gra	ains.	² Location: PL=Pore Lining, M=Matrix.
ydric Soi	I Indicators: (Applie	cable to all	LRRs, unless oth	erwise no	ted.)		In	dicators for Problematic Hydric Soils ³ :
] Histoso	. ,		□ Sandy Redox	(S5)] 2 cm Muck (A10)
	pipedon (A2)		Stripped Matri	. ,] Red Parent Material (TF2)
Black H	. ,		Loamy Mucky			t MLRA 1)	_	Very Shallow Dark Surface (TF12)
	en Sulfide (A4)		Loamy Gleyed		2)] Other (Explain in Remarks)
	ed Below Dark Surfac	;e (A11)	Depleted Matr	. ,			2.	
	ark Surface (A12)		Redox Dark S	· · · ·			lle	ndicators of hydrophytic vegetation and
	Mucky Mineral (S1)		Depleted Dark		,			wetland hydrology must be present,
	Gleyed Matrix (S4)		Redox Depres	sions (F8)			1	unless disturbed or problematic.
Type:								
	nches):							
	ncnes)						Hydri	ic Soil Present? Yes 🗌 No 🖂
Remarks:								
DROLO	GY							
Vetland H	ydrology Indicators	:						
rimary Ind	licators (minimum of	one required	1; check all that ap	ply)				Secondary Indicators (2 or more required)
Surface	Water (A1)							
			U water-St	ained Leav	ves (B9) (e	except MLR	Α	□ Water-Stained Leaves (B9) (MLRA 1,
	ater Table (A2)					except MLR	A	Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B)
High W			1, 2,	4A, and 4E		except MLR	Α	4A, and 4B)
☐ High W] Saturat	ion (A3)		1, 2, ☐ Salt Crus	4A, and 4E st (B11)	3)	except MLR	Α	4A, and 4B) ☐ Drainage Patterns (B10)
High W Saturat Water N	ion (A3) ⁄/arks (B1)		1, 2, ☐ Salt Crus ☐ Aquatic I	4A, and 4E st (B11) nvertebrate	3) es (B13)	except MLR	A	 4A, and 4B) □ Drainage Patterns (B10) □ Dry-Season Water Table (C2)
 High W Saturat Water N Sedime 	ion (A3) ⁄Iarks (B1) ent Deposits (B2)		1, 2, Salt Crus Aquatic I Hydrogen	4A, and 4E st (B11) nvertebrate n Sulfide O	3) es (B13) dor (C1)			 4A, and 4B) □ Drainage Patterns (B10) □ Dry-Season Water Table (C2) □ Saturation Visible on Aerial Imagery (Calculated on the second second
High W Saturat Water N Sedime Drift De	ion (A3) Marks (B1) ent Deposits (B2) eposits (B3)		1, 2, Salt Crus Aquatic I Hydrogen	4A, and 4E st (B11) nvertebrate n Sulfide O Rhizosphe	3) es (B13) dor (C1) eres along	Living Root		4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2)
High W Saturat Water N Sedime Drift De Algal M	ion (A3) Marks (B1) Int Deposits (B2) Iposits (B3) Int or Crust (B4)		1, 2, Salt Crus Aquatic I Hydrogel Oxidized	4A, and 4E st (B11) nvertebrate n Sulfide O Rhizosphe e of Reduce	3) dor (C1) eres along ed Iron (C4	Living Root	s (C3)	 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3)
High W Saturat Water N Sedime Drift De Algal M Iron De	ion (A3) Marks (B1) Int Deposits (B2) Inposits (B3) Inposits (B3) Inposits (B5)		1, 2, Salt Crus Aquatic I Hydroger Oxidized Presence	4A, and 4E st (B11) nvertebrate n Sulfide O Rhizosphe e of Reduce ron Reducti	3) dor (C1) eres along ed Iron (C4 ion in Tille	Living Root 4) d Soils (C6)	s (C3)	4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
High W Saturat Vater N Sedime Drift De Algal M Iron De Surface	ion (A3) Marks (B1) Int Deposits (B2) Int Deposits (B3) Int or Crust (B4) Int or Crust (B4) Int or Crust (B5) Interval (B5)	Imagany (P7	1, 2, Salt Crus Aquatic I Hydroger Oxidized Presence Recent In Stunted o	4A, and 4E st (B11) nvertebrate n Sulfide O Rhizosphe e of Reduce ron Reducti or Stressed	3) dor (C1) eres along ed Iron (C- ion in Tille I Plants (D	Living Root	s (C3)	4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
High W Saturat Vater N Sedime Drift De Algal M Iron De Surface Inundat	ion (A3) Marks (B1) Int Deposits (B2) Iposits (B3) at or Crust (B4) Iposits (B5) Isoil Cracks (B6) Ion Visible on Aerial		1, 2, 4 Salt Crus Aquatic I Hydrogen Oxidized Presence Recent In Stunted of Other (E)	4A, and 4E st (B11) nvertebrate n Sulfide O Rhizosphe e of Reduce ron Reducti	3) dor (C1) eres along ed Iron (C- ion in Tille I Plants (D	Living Root 4) d Soils (C6)	s (C3)	4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
High W High W Saturat Water M Sedime Drift De Algal M Iron De Surface Inundat Sparse	ion (A3) Marks (B1) Int Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aerial y Vegetated Concav		1, 2, 4 Salt Crus Aquatic I Hydrogen Oxidized Presence Recent In Stunted of Other (E)	4A, and 4E st (B11) nvertebrate n Sulfide O Rhizosphe e of Reduce ron Reducti or Stressed	3) dor (C1) eres along ed Iron (C- ion in Tille I Plants (D	Living Root 4) d Soils (C6)	s (C3)	 Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
High W Saturat Vater N Sedime Drift De Algal M Iron De Surface Inundat Field Obse	ion (A3) Marks (B1) Int Deposits (B2) posits (B3) at or Crust (B4) posits (B5) e Soil Cracks (B6) ion Visible on Aerial by Vegetated Concav	e Surface (E	1, 2, 4 Salt Crus Aquatic I Hydrogen Oxidized Presence Recent In Stunted of Other (E)	4A, and 4E at (B11) nvertebrate n Sulfide O Rhizosphe e of Reduce ron Reducti or Stressed xplain in Re	3) dor (C1) eres along ed Iron (C- ion in Tille I Plants (D	Living Root 4) d Soils (C6)	s (C3)	4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)

(includes capillary fringe)
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Depth (inches):

Depth (inches):

Yes 🗌 No 🖂

Yes 🗌 No 🖂

Remarks:

Water Table Present?

Saturation Present?

Wetland Hydrology Present? Yes 🗌 No 🖂

Project/Site: Sunset Pointe	City/County: Puyallup / Pi	erce	Sampling Date:03 OCT 2017	
Applicant/Owner:		State: Washington	Sampling Point: <u>SPB-16</u>	
Investigator(s): Habitat Technologies	Section, Town	ship, Range: <u>S35, T20,</u>	R4E	
Landform (hillslope, terrace, etc.):	Local relief (concave, co	Local relief (concave, convex, none):		
Subregion (LRR): A	_ Lat: L	_ong:	Datum:	
Soil Map Unit Name: Kitsap silt loam		NWI classificati	ion:	
Are climatic / hydrologic conditions on the site typical for this	time of year? Yes 🛛 No 🗌 (If no	o, explain in Remarks.)		
Are Vegetation, Soil, or Hydrology signi	ficantly disturbed? Are "Norm	al Circumstances" prese	ent? Yes 🛛 No 🗌	
Are Vegetation, Soil, or Hydrology nature	ally problematic? (If needed,	explain any answers in	Remarks.)	
SUMMARY OF FINDINGS – Attach site map s	howing sampling point loc	ations, transects, i	important features, etc.	

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ⊠ No □ Yes □ No ⊠ Yes □ No ⊠	Is the Sampled Area within a Wetland? Yes	s 🔲 No 🛛
Remarks: Upland			

	Absolute	Dominant		Dominance Test worksheet:	
Tree Stratum (Plot size: <u>15ft radius</u>)	% Cover	Species?	Status	Number of Dominant Species	
1. <u>Alnus rubra</u>	20	yes	FAC	That Are OBL, FACW, or FAC: 3	(A)
2				Total Number of Dominant	
3				Species Across All Strata: 3	(B)
4				·	
		= Total Co		Percent of Dominant Species	
Sapling/Shrub Stratum (Plot size: <u>15ft radius</u>)	20	- 10tal 00	5761	That Are OBL, FACW, or FAC: <u>100</u>	(A/B)
1				Prevalence Index worksheet:	
2				Total % Cover of:Multiply b	ov:
				OBL species x 1 =	
3				FACW species x 2 =	
4					
5				FAC species x 3 =	
Light Stratum (Dist size, 45ft radius)	0	= Total Co	over	FACU species x 4 =	
Herb Stratum (Plot size: <u>15ft radius</u>)				UPL species x 5 =	
1. <u>Equisetum arvense</u>		yes		Column Totals: (A)	(B)
2					
3				Prevalence Index = B/A =	_
4				Hydrophytic Vegetation Indicators:	
5				Rapid Test for Hydrophytic Vegetation	
6				☑ Dominance Test is >50%	
7				□ Prevalence Index is ≤3.0 ¹	
8				Morphological Adaptations ¹ (Provide su	pporting
				data in Remarks or on a separate sh	
9				☐ Wetland Non-Vascular Plants ¹	
10				Problematic Hydrophytic Vegetation ¹ (E	xplain)
11				¹ Indicators of hydric soil and wetland hydrol	. ,
Marchelling Oberture (Distributed AFftureditor)	30	= Total Co	over	be present, unless disturbed or problematic	
Woody Vine Stratum (Plot size: <u>15ft radius</u>)					
1. <u>Rubus procera</u>	100	yes	FAC	Hydrophytic	
2				Vegetation	
	100	= Total Co	over	Present? Yes 🛛 No 🗌	
% Bare Ground in Herb Stratum <u>0</u>					
Remarks:					

Depth (inches)	<u>Matrix</u> <u>Color (moist)</u>	%	Colo	r (moist)	dox Features %		Loc ²	Textur	reRemarks
0-18	10YR 3/3	100							
	Concentration, D=De I Indicators: (Appl						ed Sand Gr		² Location: PL=Pore Lining, M=Matrix. ndicators for Problematic Hydric Soils ³ :
☐ Histoso				Sandy Redox					2 cm Muck (A10)
	pipedon (A2)			Stripped Matri					Red Parent Material (TF2)
Black H				_oamy Mucky	· · ·) (except	MLRA 1)		Very Shallow Dark Surface (TF12)
Hydroge	en Sulfide (A4)		Πι	oamy Gleyeo	I Matrix (F2)				Other (Explain in Remarks)
Deplete	d Below Dark Surfa	ice (A11)		Depleted Matr	ix (F3)				
	ark Surface (A12)			Redox Dark S	. ,			³ Ir	ndicators of hydrophytic vegetation and
	Mucky Mineral (S1)			Depleted Dark		7)			wetland hydrology must be present,
	Gleyed Matrix (S4)		E F	Redox Depres	sions (F8)				unless disturbed or problematic.
Restrictive Type:	Layer (if present):								
	nches):								
	ioneo)							Hyari	ric Soil Present? Yes 🗌 No 🛛
Remarks:									
	0)/								
DROLO									
•	ydrology Indicator		ired: ch	ock all that an	nlv)				Secondary Indicators (2 or more required)
	Water (A1)			U Water-St		c (R0) (o	vcont MI B	•	□ Water-Stained Leaves (B9) (MLRA 1,
	ater Table (A2)				4A, and 4B)		vceht MEN	~	4A, and 4B)
Saturati				Salt Crus					Drainage Patterns (B10)
				Aquatic I	. ,	(B13)			Dry-Season Water Table (C2)
Water N									
	nt Denosits (B2)					. ,			
Sedime	nt Deposits (B2)				n Sulfide Odo	or (C1)	Living Root	e (C3)	Saturation Visible on Aerial Imagery (C
Sedime	posits (B3)			Oxidized	n Sulfide Odo Rhizosphere	or (C1) es along		s (C3)	 Saturation Visible on Aerial Imagery (C Geomorphic Position (D2)
Sedime Drift De Algal M	posits (B3) at or Crust (B4)			OxidizedPresence	n Sulfide Odo Rhizosphere e of Reduced	or (C1) es along I Iron (C4	4)		 Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3)
 Sedime Drift De Algal M Iron De 	posits (B3) at or Crust (B4) posits (B5)			 Oxidized Presence Recent Ir 	n Sulfide Odo Rhizosphere of Reduced	or (C1) es along I Iron (C4 n in Tilleo	l) d Soils (C6))	 Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
 Sedime Drift De Algal M Iron De Surface 	posits (B3) at or Crust (B4) posits (B5) soil Cracks (B6)	Imagery	(87)	 Oxidized Presence Recent Ir Stunted of 	n Sulfide Odd Rhizosphere e of Reduced ron Reduction or Stressed F	or (C1) es along I Iron (C4 n in Tilleo Plants (D	l) d Soils (C6))	 Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Sedime Drift De Algal M Iron De Surface Inundat	posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeria	0,	()	 Oxidized Presence Recent Ir Stunted of 	n Sulfide Odo Rhizosphere of Reduced	or (C1) es along I Iron (C4 n in Tilleo Plants (D	l) d Soils (C6))	 Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
Sedime Drift De Algal M Iron De Surface Inundat Sparsel	posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeria y Vegetated Conca	0,	()	 Oxidized Presence Recent Ir Stunted of 	n Sulfide Odd Rhizosphere e of Reduced ron Reduction or Stressed F	or (C1) es along I Iron (C4 n in Tilleo Plants (D	l) d Soils (C6))	 Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Sedime Drift De Algal M Iron De Surface Inundat Sparsel	posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeria y Vegetated Conca rvations:	ve Surfac	e (B8)	 Oxidized Presence Recent Ir Stunted of Other (E) 	n Sulfide Odd Rhizosphere of Reduced ron Reduction or Stressed F xplain in Rem	or (C1) es along I Iron (C4 n in Tilleo Plants (D narks)	l) d Soils (C6))	 Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Drift De Algal M Iron De Surface Inundat Sparsel	posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) ion Visible on Aeria y Vegetated Conca rvations: atter Present?	ve Surfac	()	 Oxidized Presence Recent Ir Stunted of Other (E) 	n Sulfide Odd Rhizosphere e of Reduced ron Reduction or Stressed F xplain in Rem es):	or (C1) es along I Iron (C4 n in Tilleo Plants (D narks)	l) d Soils (C6))	 Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)

Saturation Present?

Remarks:

Yes No No Depth (inches):

(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Wetland Hydrology Present? Yes 🗌 No 🖂

Project/Site: Sunset Pointe	City/County: Puyallup / Pierce	Samp	oling Date:03 OCT 2017	
Applicant/Owner:	Stat	e: <u>Washington</u> Samp	oling Point: <u>SPB-18</u>	
Investigator(s): Habitat Technologies	Section, Township,	Range: <u>S35, T20, R4E</u>		
Landform (hillslope, terrace, etc.):	Local relief (concave, convex,	Local relief (concave, convex, none): Slope (%		
Subregion (LRR): A	_at: Long:		Datum:	
Soil Map Unit Name: <u>Kitsap silt loam</u>		NWI classification:		
Are climatic / hydrologic conditions on the site typical for this tim	ne of year? Yes 🛛 🛛 No 🗌 (If no, exp	lain in Remarks.)		
Are Vegetation, Soil, or Hydrology signific	antly disturbed? Are "Normal Cir	rcumstances" present?	Yes 🛛 No 🗌	
Are Vegetation, Soil, or Hydrology naturally	y problematic? (If needed, expla	ain any answers in Rema	arks.)	
SUMMARY OF FINDINGS – Attach site map sho	owing sampling point location	ns, transects, impo	ortant features, etc.	

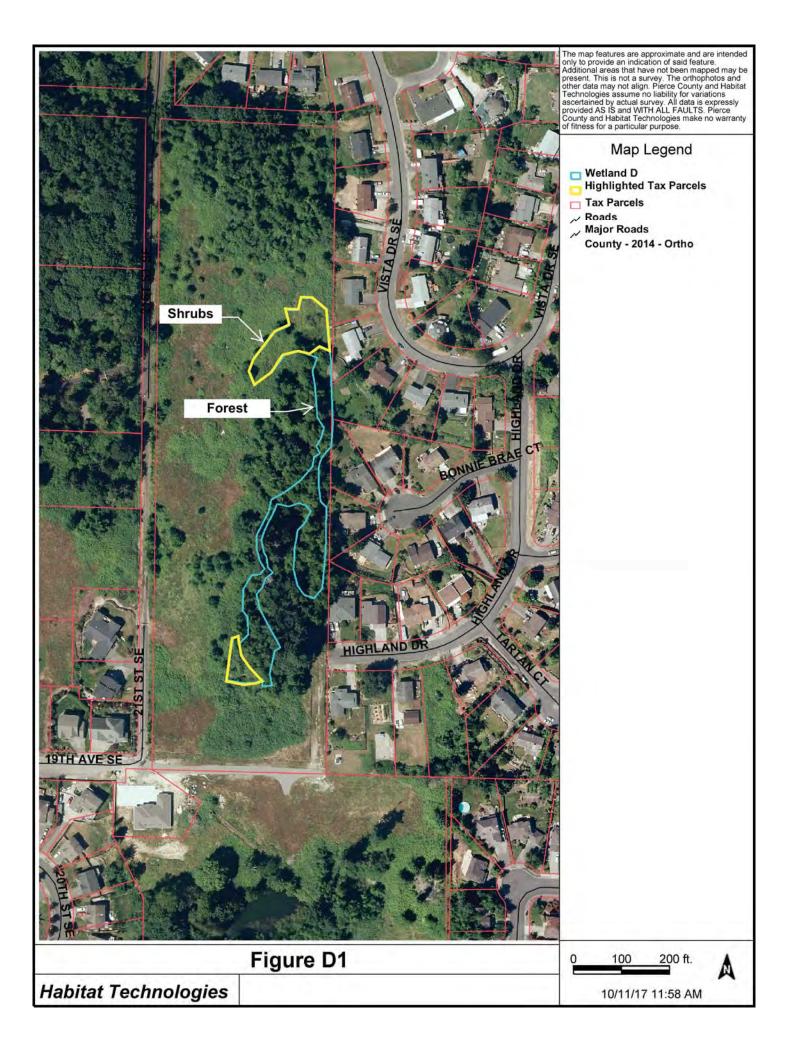
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ⊠ No □ Yes ⊠ No □ Yes ⊠ No □	Is the Sampled Area within a Wetland? Yes 🛛	3 No 🗌
Remarks: Wetland			

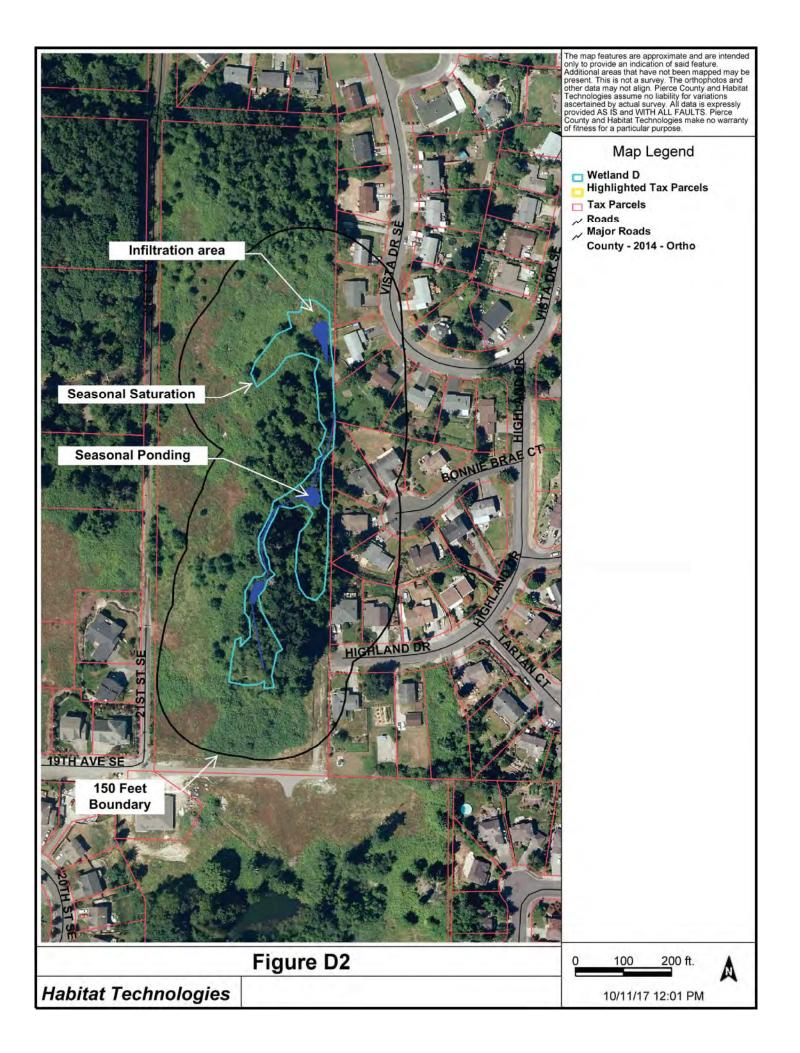
	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: <u>15ft radius</u>)	% Cover	Species?	Status	Number of Dominant Species
1. <u>Alnus rubra</u>	40	yes	FAC	That Are OBL, FACW, or FAC: 6 (A)
2				Total Number of Dominant
3				Species Across All Strata: 6 (B)
4				\ \
	40			Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)
Sapling/Shrub Stratum (Plot size: <u>15ft radius</u>)	10	rotar e		That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of:Multiply by:
3				OBL species x 1 =
				FACW species x 2 =
4				FAC species x 2 =
5				
Herb Stratum (Plot size: 15ft radius)	0	= Total C	over	FACU species x 4 =
	20		FACW	UPL species x 5 =
1. Juncus effusus		yes		Column Totals: (A) (B)
2. Equisetum arvense		yes		Drovolonce Index - P/A -
3. <u>Athyrium filix-femina</u>	30			Prevalence Index = B/A =
4. Ranunculus repens	20	yes	FAC	Hydrophytic Vegetation Indicators:
5				Rapid Test for Hydrophytic Vegetation
6				☑ Dominance Test is >50%
7				□ Prevalence Index is ≤3.0 ¹
8				Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10				☐ Wetland Non-Vascular Plants ¹
				Problematic Hydrophytic Vegetation ¹ (Explain)
11	100	- Total C		¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 15ft radius)	<u>100</u>	= Total C	over	be present, unless disturbed or problematic.
1. Rubus procera	30	yes	FAC	
				Hydrophytic
2				Vegetation Present? Yes ⊠ No □
% Bare Ground in Herb Stratum 0	<u>30</u>	= Total C	over	
Remarks:				1

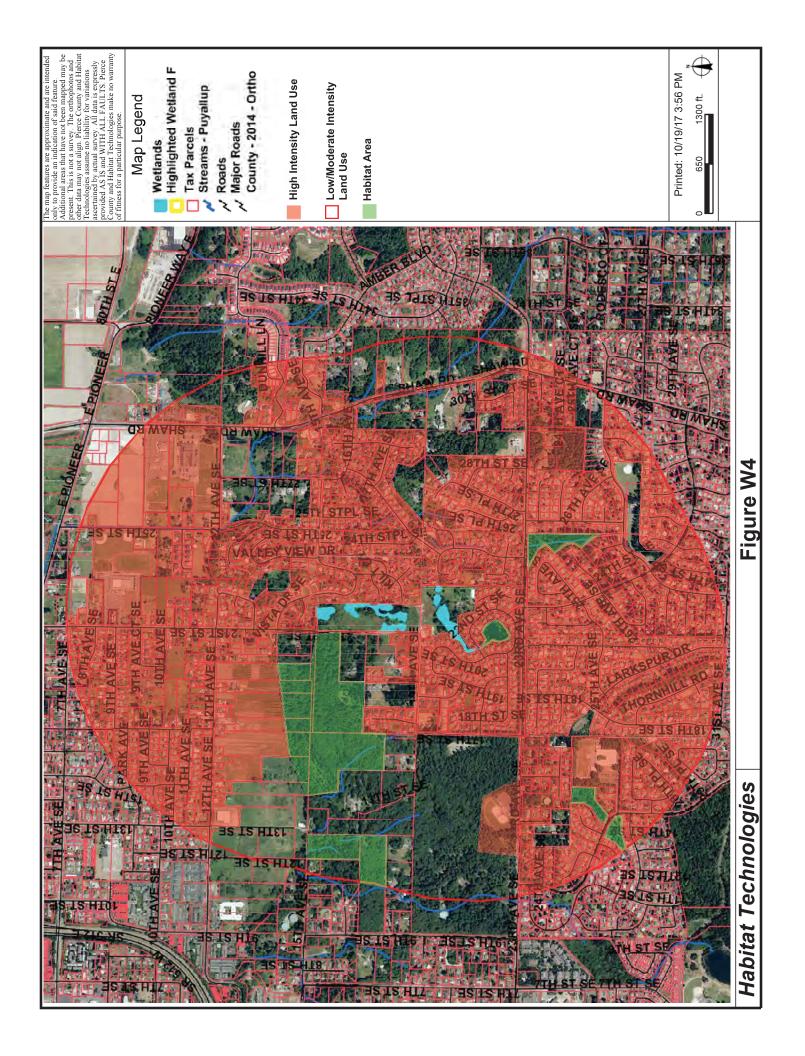
(inches) C	Matrix Color (moist)	% C	color (moist)	dox Feature %		_Loc ²	Textu	re	Remarks
· · · · · ·	0YR 4/2	100	· · · · · · · · ·						
1-20 1	0YR 4/1	_ <u>80</u>	0YR 4/6	20		M	<u> </u>		
	centration, D=De					ed Sand G			=Pore Lining, M=Matrix.
-	dicators: (Applie				ted.)				blematic Hydric Soils ³ :
 Histosol (A Histic Epipe Black Histic Hydrogen S Depleted B 	edon (A2) c (A3)		 Sandy Redox Stripped Matr Loamy Mucky Loamy Gleyer Depleted Matr 	ix (S6) / Mineral (F d Matrix (F2	, .	t MLRA 1)			terial (TF2) 0ark Surface (TF12)
Thick Dark	Surface (A12)		Redox Dark S	Surface (F6)	·		3	•	phytic vegetation and
	ky Mineral (S1) yed Matrix (S4)		Depleted Dariest Depleted Dariest Depleted Dariest Depleted Dariest Depression Depres	•	,			•	gy must be present, d or problematic.
	yer (if present):								
	• • • •								
Туре:									
	es):						Hydr	ic Soil Present?	Yes 🖂 No 🗌
							Hydr	ic Soil Present?	Yes 🛛 No 🗌
Depth (inche							Hydr	ic Soil Present?	Yes 🛛 No 🗌
Depth (inche							Hydr	ic Soil Present?	Yes 🛛 No 🗌
Depth (inche							Hydr	ic Soil Present?	Yes 🛛 No 🗌
Depth (inche Remarks:	es):						Hydr	ic Soil Present?	Yes 🛛 No 🗌
Depth (inche Remarks: DROLOGY	es):						Hydr	ic Soil Present?	Yes 🛛 No 🗌
Depth (inche Remarks: DROLOGY Wetland Hydro	es):	 		ορίγ)			Hydr		Yes ⊠ No □ ators (2 or more required)
Depth (inche Remarks: DROLOGY Vetland Hydro Primary Indicat	es): , ology Indicators tors (minimum of e	 		• • • •	/es (B9) (€	xcept MLI		Secondary Indic	
Depth (inche Remarks: DROLOGY Vetland Hydro Primary Indicat	es): ology Indicators tors (minimum of e ater (A1)	 	<u>check all that ap</u>	• • • •		except MLI		Secondary Indic	<u>ators (2 or more required)</u> ed Leaves (B9) (MLRA 1,
Depth (inche Remarks: DROLOGY Vetland Hydro Primary Indicat Surface Wa High Water	es): ology Indicators tors (minimum of d ater (A1) r Table (A2)	 	<u>check all that ap</u>	tained Leav 4A, and 4E		xcept MLI		Secondary Indic	<u>ators (2 or more required)</u> ed Leaves (B9) (MLRA 1, 4B)
Depth (inche Remarks: DROLOGY Vetland Hydro Primary Indicat Surface Wa High Water Saturation	es): ology Indicators tors (minimum of e ater (A1) r Table (A2) (A3)	 	<u>check all that ap</u>	tained Leav 4A, and 4E st (B11)	3)	xcept MLI		Secondary Indic Water-Staine 4A, and Drainage Pa	<u>ators (2 or more required)</u> ed Leaves (B9) (MLRA 1, 4B)
Depth (inche Remarks: DROLOGY Vetland Hydro Primary Indicat Surface Wa Saturation Saturation Water Mark	es): ology Indicators tors (minimum of e ater (A1) r Table (A2) (A3) (s (B1)	 	<u>check all that ap</u> ☐ Water-S 1, 2, ☐ Salt Crus ☐ Aquatic	tained Leav 4A, and 4E st (B11)	3) es (B13)	xcept MLI		Secondary Indic Water-Staine 4A, and Drainage Pa Dry-Season	<u>ators (2 or more required)</u> ed Leaves (B9) (MLRA 1, 4B) tterns (B10)
Depth (inche Remarks: DROLOGY Vetland Hydro Primary Indicat Surface Wa Saturation Saturation Water Mark Sediment D	es): ology Indicators tors (minimum of e ater (A1) r Table (A2) (A3) (A3) (ss (B1) Deposits (B2)	 		tained Leav 4 A, and 4E st (B11) Invertebrate	3) es (B13) dor (C1)		RA	Secondary Indic Water-Staine 4A, and Drainage Pa Dry-Season Saturation V	<u>ators (2 or more required)</u> ed Leaves (B9) (MLRA 1, 4B) tterns (B10) Water Table (C2)
Depth (inche Remarks: DROLOGY Vetland Hydro Primary Indicat Surface Wa High Water Saturation Water Mark Sediment D Drift Depos	es): ology Indicators tors (minimum of e ater (A1) r Table (A2) (A3) (A3) (ss (B1) Deposits (B2)	 	check all that ap Water-S 1, 2, Salt Crus Aquatic Hydroge	tained Leav 4A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe	3) es (B13) dor (C1) eres along	Living Roc	RA	Secondary Indic Water-Staine 4A, and Drainage Pa Dry-Season Saturation V	<u>ators (2 or more required)</u> ed Leaves (B9) (MLRA 1, 4B) tterns (B10) Water Table (C2) isible on Aerial Imagery (C Position (D2)
Depth (inche Remarks: DROLOGY Vetland Hydro Primary Indicat Surface Wa Saturation Saturation Water Mark Sediment E Drift Depos Algal Mat o	es): ology Indicators tors (minimum of d ater (A1) r Table (A2) (A3	 	<u>check all that ap</u> Water-S 1, 2, Salt Crus Aquatic Hydroge Oxidized	tained Leav 4A, and 4E st (B11) Invertebrate n Sulfide O	3) es (B13) dor (C1) eres along ed Iron (C4	Living Roc 4)	RA ots (C3)	Secondary Indic Water-Staine 4A, and Drainage Pa Dry-Season Saturation V Geomorphic Shallow Aqu	ators (2 or more required) ed Leaves (B9) (MLRA 1, 4B) tterns (B10) Water Table (C2) isible on Aerial Imagery ((Position (D2) itard (D3)
Depth (inche Remarks: DROLOGY Wetland Hydro Primary Indicat Surface Wa Saturation Water Mark Saturation Water Mark Algal Mat o Iron Depos	es): ology Indicators tors (minimum of e ater (A1) r Table (A2) (A3	 	<u>check all that ap</u> Water-S 1, 2, Salt Crus Aquatic Hydroge Oxidized Presenc Recent I	tained Leav 4 A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe e of Reduce ron Reduct	3) dor (C1) eres along ed Iron (C4 ion in Tille	Living Roc 4) d Soils (C6	RA 0ts (C3)	Secondary Indic Water-Staine 4A, and Drainage Pa Dry-Season Saturation V Geomorphic Shallow Aqu FAC-Neutral	ators (2 or more required) ed Leaves (B9) (MLRA 1, 4B) tterns (B10) Water Table (C2) isible on Aerial Imagery (C Position (D2) itard (D3) Test (D5)
Depth (inche Remarks: 'DROLOGY Wetland Hydro Primary Indicat Surface Wa Surface Wa Saturation Water Mark Sediment D Drift Depos Algal Mat o Iron Depos Surface So	es): ology Indicators tors (minimum of d ater (A1) r Table (A2) (A3	: one required;	check all that ap Water-S 1, 2, Salt Crus Aquatic Hydroge Oxidized Presenc Recent I	tained Leav 4A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe e of Reduct ron Reduct or Stressec	3) dor (C1) eres along ed Iron (C- ion in Tille I Plants (D	Living Roc 4) d Soils (C6	RA 0ts (C3)	Secondary Indic Water-Staine 4A, and Drainage Pa Dry-Season Saturation V Geomorphic Shallow Aqu FAC-Neutral Raised Ant M	ators (2 or more required) ed Leaves (B9) (MLRA 1, 4B) tterns (B10) Water Table (C2) isible on Aerial Imagery ((Position (D2) itard (D3)
Depth (inche Remarks: 'DROLOGY Wetland Hydro Primary Indicat Surface Wa Surface Wa Saturation Water Mark Sediment D Drift Depos Algal Mat o Iron Depos Surface So Inundation	es): ology Indicators tors (minimum of e ater (A1) r Table (A2) (A3) (A5	: one required; Imagery (B7)	check all that ap Water-S 1, 2, Salt Crus Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	tained Leav 4 A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe e of Reduce ron Reduct	3) dor (C1) eres along ed Iron (C- ion in Tille I Plants (D	Living Roc 4) d Soils (C6	RA 0ts (C3)	Secondary Indic Water-Staine 4A, and Drainage Pa Dry-Season Saturation V Geomorphic Shallow Aqu FAC-Neutral Raised Ant M	ators (2 or more required) ed Leaves (B9) (MLRA 1, 4B) tterns (B10) Water Table (C2) isible on Aerial Imagery (Position (D2) itard (D3) Test (D5) Mounds (D6) (LRR A)

Inundation Visible on Aeri	al Imagery	r (B7)	Other (Explain in Remarks)	Frost-Heave Hummocks (D7)
Sparsely Vegetated Conc	ave Surfac	ce (B8)		
Field Observations:				
Surface Water Present?	Yes 🗌	No 🖂	Depth (inches):	
Water Table Present?	Yes 🛛	No 🗌	Depth (inches): <u>4</u>	
Saturation Present? (includes capillary fringe)	Yes 🛛	No 🗌	Depth (inches): 0	Wetland Hydrology Present? Yes 🛛 No 🗌
Describe Recorded Data (stre	eam gauge	, monitor	ing well, aerial photos, previous inspec	tions), if available:
Remarks:				

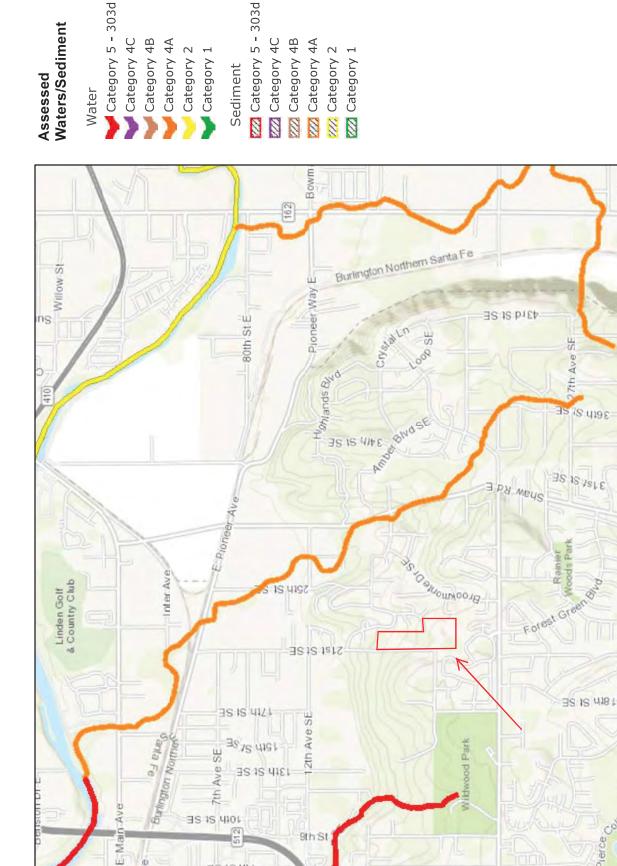
Project/Site: Sunset Pointe	City/County:	Puyallup / Pierce	Sampling Date:03 OCT 2017			
Applicant/Owner:		State: Washington	Sampling Point: SPB-24			
Investigator(s): Habitat Technologies	s	Section, Township, Range: <u>S35, T20</u>	, R4E			
Landform (hillslope, terrace, etc.):	Local relief	Local relief (concave, convex, none): Slope (
Subregion (LRR): A	Lat:	Long:	Datum:			
Soil Map Unit Name: <u>Kitsap silt loam</u>		NWI classifica	tion:			
Are climatic / hydrologic conditions on the site typical for	or this time of year? Yes 🛛	No 🔲 (If no, explain in Remarks.)				
Are Vegetation, Soil, or Hydrology	significantly disturbed?	Are "Normal Circumstances" pres	sent? Yes 🛛 No 🗌			
Are Vegetation, Soil, or Hydrology	naturally problematic?	(If needed, explain any answers in	n Remarks.)			
SUMMARY OF FINDINGS – Attach site m	nap showing sampling	point locations, transects,	important features, etc.			


Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ⊠ No □ Yes ⊠ No □ Yes ⊠ No □	Is the Sampled Area within a Wetland?	Yes 🛛 No 🗌
Remarks: Wetland.			


	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: <u>15ft radius</u>)	% Cover	Species?	Status	Number of Dominant Species
1. <u>Alnus rubra</u>	30	yes	FAC	That Are OBL, FACW, or FAC: <u>5</u> (A)
2				Total Number of Dominant
3				Species Across All Strata: <u>5</u> (B)
4				
		= Total C		Percent of Dominant Species That Are OBL, FACW, or FAC: <u>100</u> (A/B)
Sapling/Shrub Stratum (Plot size: <u>15ft radius</u>)				
1. <u>Rubus spectabilis</u>	20	yes	FAC	Prevalence Index worksheet:
2				Total % Cover of:Multiply by:
3				OBL species x 1 =
4				FACW species x 2 =
5				FAC species x 3 =
		= Total C		FACU species x 4 =
Herb Stratum (Plot size: <u>15ft radius</u>)	20	rotar o	0001	UPL species x 5 =
1. Lysichitum americanum	80	yes	FACW	Column Totals: (A) (B)
2. Equisetum arvense	20	yes	FAC	
3. <u>Athyrium filix-femina</u>		-		Prevalence Index = B/A =
4				Hydrophytic Vegetation Indicators:
5				Rapid Test for Hydrophytic Vegetation
6				☑ Dominance Test is >50%
7				□ Prevalence Index is ≤3.0 ¹
8				Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
				Wetland Non-Vascular Plants ¹
10				Problematic Hydrophytic Vegetation ¹ (Explain)
11				¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 15ft radius)	100	= Total C	over	be present, unless disturbed or problematic.
//				
1				Hydrophytic
2				Vegetation Present? Yes ⊠ No □
% Bare Ground in Herb Stratum 0	0	= Total C	over	
Remarks:				1


Sampling Point: SPB-24

Profile Des	cription: (Descril	be to the d	lepth n	eeded to docur	ment the i	ndicator	or confir	n the ab	sence	of indicator	's.)	
Depth	Matrix				x Features						-	
(inches)	Color (moist)	%	Cold	or (moist)	%	Type ¹	Loc ²	<u>l extu</u>	re		Remarks	
0-18	<u>10YR 3/1</u>	100				·		Sil				
						·						
						·						
¹ Type: C=0	Concentration, D=D	epletion, F	 RM=Rec	duced Matrix, CS		d or Coate	ed Sand G	rains.	² Loc	cation: PL=F	Pore Lining, N	/I=Matrix.
	I Indicators: (App								ndicato	ors for Probl	ematic Hydı	ric Soils ³ :
🗌 Histoso	l (A1)			Sandy Redox (S	S5)			C] 2 cm	n Muck (A10)	1	
	pipedon (A2)			Stripped Matrix						Parent Mate		
Black H				Loamy Mucky M			MLRA 1)		- ,		rk Surface (T	F12)
	en Sulfide (A4)			Loamy Gleyed I	, ,			Ľ] Othe	er (Explain in	Remarks)	
	d Below Dark Surfa	ace (A11)		Depleted Matrix	. ,			3				
	ark Surface (A12)			Redox Dark Su	()	7)		3			hytic vegetat	
	Mucky Mineral (S1) Gleyed Matrix (S4)			Depleted Dark S Redox Depress		()					/ must be pre or problemati	
	Layer (if present)			Redux Depress	10115 (1-0)				unies			0.
	nches):							Llude	in Sail	Brocont?	Yes 🛛 N	
Remarks:	/			_				Ilyu		Fiesent:		
DROLO	GY											
	ydrology Indicator	rs:										
Primary Ind	icators (minimum c	of one requ	ired; ch	eck all that appl	y)				<u>Secor</u>	ndary Indicat	ors (2 or moi	re required)
Surface	Water (A1)			Water-Stai	ned Leave	es (B9) (e	xcept ML	RA	ΟW	ater-Stained	Leaves (B9)) (MLRA 1, 2,
🛛 High W	ater Table (A2)			1, 2, 4/	A, and 4B))				4A, and 4I	3)	
🛛 Saturati	ion (A3)			Salt Crust	(B11)					rainage Patte	erns (B10)	
Water N	/larks (B1)			Aquatic Inv	/ertebrates	s (B13)			🗌 Di	ry-Season W	ater Table (0	C2)
Sedime	nt Deposits (B2)			Hydrogen	Sulfide Od	lor (C1)			🗌 Sa	aturation Vis	ble on Aeria	l Imagery (C9)
Drift De	posits (B3)			Oxidized R	Rhizospher	es along	Living Ro	ots (C3)	G	eomorphic P	osition (D2)	
🗌 Algal M	at or Crust (B4)			Presence of	of Reduced	d Iron (C4	4)		🗆 SI	hallow Aquita	ard (D3)	
Iron De	posits (B5)			Recent Iro	n Reductic	on in Tille	d Soils (Ce	6)	🗌 F/	AC-Neutral T	est (D5)	
Surface	Soil Cracks (B6)			Stunted or	Stressed	Plants (D	1) (LRR A	.)	🗌 Ra	aised Ant Mo	ounds (D6) (l	RR A)
Inundat	ion Visible on Aeria	al Imagery	(B7)	Other (Exp	lain in Rer	marks)			🗌 Fr	rost-Heave H	lummocks (D	07)
Sparsel	y Vegetated Conca	ve Surface	e (B8)									
Field Obse	rvations:											
Surface Wa	iter Present?	Yes 🗌	No 🖂	Depth (inches	s):							
Water Table	e Present?	Yes 🖂	No 🗌	Depth (inches	s): <u>3</u>							
Saturation I (includes ca	Present? apillary fringe)	Yes 🛛	No 🗌	Depth (inches	s): <u>0</u>		Wet	land Hy	drolog	y Present?	Yes 🛛 🛛 N	lo 🗌
	ecorded Data (strea	am gauge,	monito	ring well, aerial	photos, pre	evious ins	spections)	if availa	ble:			
Remarks:												
Remarks:												
Remarks:												


APPENDIX B – Wetland Rating Worksheets

LO .
<
Le
J
D
1.
ш.

DEPARTMENT OF ECOLOGY State of Washington

0.5

0.25

0

Miles

Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, ©

2

31st Ave SE

Prerce Ose West Acc

23rd-Ave-SE

Park

← €

St SE

E Ploneer-Ave

314 ST SE

BN 1S HIS

3rd St

JS 1S 412

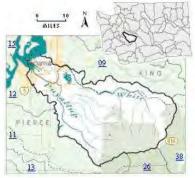
Good Samantan Hosp

Multicare

TMDL Project Information for WRIA 10 | WA State Department of Ecology

Figure W6

Water Quality Improvement Projects (TMDLs)


<u>Water Quality Improvement</u> > <u>Water Quality Improvement Projects by WRIA</u> > WRIA 10: Puyallup-White

WRIA 10: Puyallup-White

The following table lists overview information for water quality improvement projects (also known as total maximum daily loads, or TMDLs) for this water resource inventory area (<u>WRIA</u>). Please use links (where available) for more information on a project.

Counties

- King County
- Pierce County

Waterbody Name	Pollutant	Status**	TMDL Leads	
Clarks Creek Meeker Creek	<u>Dissolved Oxygen</u> Sediment	Approved by EPA Has an implementation plan	<u>Donovan Grav</u> 360-407-6407	
	Fecal Coliform	Approved by EPA Has an implementation plan		
Commencement Bay	Dioxin	Approved by EPA	<u>Donovan Gray</u> 360-407-6407	
Puyallup River Watershed	Fecal Coliform	Approved by EPA	Donovan Gray	
	<u>Multi-parameter</u> Ammonia-N BOD (5-day)	Approved by EPA	360-407-6407	
	White River Watershed Upper White: • Sediment	Approved by EPA	~	
	Temperature Lower White pH	Under Development		
<u>South Prairie Creek</u> Tributary: Wilkeson/Gale Creek	Fecal Coliform Temperature	Approved by EPA Has an implementation plan	<u>Donovan Gray</u> 360-407-6407	

** Status will be listed as one of the following: Approved by EPA, Under Development or Implementation

For more information about WRIA 10:

- <u>Waterbodies in WRIA 10</u> using the Water Quality Assessment Query Tool
- Watershed Information for WRIA 10

 $\underline{*}$ The Department of Ecology and other state resource agencies frequently use a system of 62 "Water Resource Inventory Areas" or "WRIAs" to refer to the state's major watershed basins.

Back to top of page

Last updated October 2016

Feedback?

RATING SUMMARY – Western Washington

 Name of wetland (or ID #): Sunset Pointe
 Date of site visit: 11 OCT 2017

 Rated by
 Habitat Technologies
 Trained by Ecology? x Yes No Date of training 2014

 HGM Class used for rating
 Slope
 Wetland has multiple HGM classes? Y x N

NOTE: Form is not complete without the figures requested (figures can be combined). Source of base aerial photo/map__Pierce County GIS______

OVERALL WETLAND CATEGORY _ 4_ (based on functions ____ or special characteristics ____)

1. Category of wetland based on FUNCTIONS

Category I – Total score = 23 - 27

Category II – Total score = 20 - 22

____Category III – Total score = 16 - 19

X Category IV – Total score = 9 - 15

FUNCTION	Improving Water Quality		Hydrologic			Habitat				
					Circle t	the ap	oropi	riate ra	itings	
Site Potential	Н	Μ	L	Н	М	L	Н	Μ	L	
Landscape Potential	Н	Μ	L	Н	Μ	Ľ	Н	Μ	L	
Value	н	Μ	L	н	Μ	L	Н	Μ	L	TOTA
Score Based on Ratings		5			5			4		14

Score for each function based on three ratings (order of ratings is not important)

9 = H,H,H 8 = H,H,M 7 = H,H,L 7 = H,M,M 6 = H,M,L 6 = M,M,M 5 = H,L,L 5 = M,M,L 4 = M,L,L

3 = L,L,L

AL

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC CATEG						
Estuarine	I II					
Wetland of High Conservation Value	I					
Bog	I					
Mature Forest	I					
Old Growth Forest	I					
Coastal Lagoon	Ι	II				
Interdunal	I II III IV					
None of the above	x					

Maps and figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	N/A
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	V

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	N/A
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
dth of unit vs. width of stream (can be added to another figure)R 4.1		
Map of the contributing basinR 2.2, R 2.3, R 5.2		
1 km Polygon: Area that extends 1 km from entire wetland edge - including polygons for accessible habitat and undisturbed habitat	H 2.1, H 2.2, H 2.3	
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	Ŵ

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	N/A
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	V

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	D1
Hydroperiods	H 1.2	D2
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	D1
Plant cover of dense, rigid trees, shrubs, and herbaceous plants	S 4.1	
(can be added to figure above)		D1
Boundary of 150 ft buffer (can be added to another figure)	S 2.1, S 5.1	D2
1 km Polygon: Area that extends 1 km from entire wetland edge - including polygons for accessible habitat and undisturbed habitat	H 2.1, H 2.2, H 2.3	W4
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	W5
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	W6

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides except during floods?

NO – go to 2

YES – the wetland class is **Tidal Fringe** – go to 1.1

1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?

NO – Saltwater Tidal Fringe (Estuarine) If your wetland can be classified as a Freshwater Tidal Fringe use the forms for **Riverine** wetlands. If it is Saltwater Tidal Fringe it is an **Estuarine** wetland and is not scored. This method **cannot** be used to score functions for estuarine wetlands.

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

YES – The wetland class is **Flats** NO – go to 3 *If your wetland can be classified as a Flats wetland, use the form for Depressional wetlands.*

3. Does the entire wetland unit **meet all** of the following criteria? ____The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size; ____At least 30% of the open water area is deeper than 6.6 ft (2 m).

NO – go to 4

YES – The wetland class is **Lake Fringe** (Lacustrine Fringe)

- 4. Does the entire wetland unit **meet all** of the following criteria?
 - X The wetland is on a slope (*slope can be very gradual*),
 - **x** The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks,
 - **X** The water leaves the wetland **without being impounded**.

NO - go to 5

YES – The wetland class is **Slope**

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

- 5. Does the entire wetland unit **meet all** of the following criteria?
 - The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river.
 - ____The overbank flooding occurs at least once every 2 years.

YES – Freshwater Tidal Fringe

Wetland name or number ____

NO - go to 6YES - The wetland class is RiverineNOTE: The Riverine unit can contain depressions that are filled with water when the river is not
flooding

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.*

NO – go to 7

YES – The wetland class is Depressional

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

NO – go to 8

YES – The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit being rated	HGM class to use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

SLOPE WETLANDS		
Water Quality Functions - Indicators that the site functio	ons to improve water quality	
S 1.0. Does the site have the potential to improve water quality?		
S 1.1. Characteristics of the average slope of the wetland: (a 1% slope has a 1 ft vert 100 ft of horizontal distance)	ical drop in elevation for every	
Slope is 1% or less	points = 3	0
Slope is > 1%-2%	points = 2	0
Slope is > 2%-5%	points = 1	
Slope is greater than 5%	points = 0	
S 1.2. <u>The soil 2 in below the surface (or duff layer)</u> is true clay or true organic <i>(use N</i>	RCS definitions): Yes = 3 No = 0	0
 S 1.3. Characteristics of the plants in the wetland that trap sediments and pollutants: Choose the points appropriate for the description that best fits the plants in the have trouble seeing the soil surface (>75% cover), and uncut means not grazed than 6 in. Dense, uncut, herbaceous plants > 90% of the wetland area Dense, uncut, herbaceous plants > ½ of area Dense, woody, plants > ½ of area Dense, uncut, herbaceous plants > ¼ of area Does not meet any of the criteria above for plants 	ne wetland. Dense means you	3
Total for S 1 Ac	d the points in the boxes above	3
Rating of Site Potential If score is: $12 = H$ 6-11 = M X0-5 = L S 2.0. Does the landscape have the potential to support the water quality fun	Record the rating on t	he first po
S 2.1. Is > 10% of the area within 150 ft on the uphill side of the wetland in land uses	that generate pollutants? Yes = 1 No = 0	1
S 2.2. Are there other sources of pollutants coming into the wetland that are not liste	ed in question S 2.1?	0

Rating of Landscape Potential If score is: X 1-2 = M ____0 = L

Other sources

Total for S 2

Record the rating on the first page

1

Yes = 1 No = 0

Add the points in the boxes above

S 3.0. Is the water quality improvement provided by the site valuable to society?	
S 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the 303(d) list? Yes = 1 No = 0	0
S 3.2. Is the wetland in a basin or sub-basin where water quality is an issue? At least one aquatic resource in the basin is on the 303(d) list. Yes = 1 No = 0	0
S 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality? Answer YES if there is a TMDL for the basin in which unit is found. Yes = 2 No = 0	1
Total for S 3Add the points in the boxes above	1

Rating of Value If score is: 2-4 = H X 1 = M 0 = L

Record the rating on the first page

SLOPE WETLANDS	
Hydrologic Functions - Indicators that the site functions to reduce flooding and stream eros	sion
S 4.0. Does the site have the potential to reduce flooding and stream erosion?	
S 4.1. Characteristics of plants that reduce the velocity of surface flows during storms: Choose the points appropriate for the description that best fits conditions in the wetland. <i>Stems of plants should be thick enough (usually > 1/8 in), or dense enough, to remain erect during surface flows.</i> Dense, uncut, rigid plants cover > 90% of the area of the wetland points = 1 All other conditions points = 0	1
Rating of Site Potential If score is: X_1 = M0 = L Record the rating on	the first page
S 5.0. Does the landscape have the potential to support the hydrologic functions of the site?	

S 5.0. Does the landscape have the potential to support the hydrologic functions of the site? S 5.1. Is more than 25% of the area within 150 ft upslope of wetland in land uses or cover that generate excess surface runoff? Yes = 1 No = 0

Rating of Landscape Potential If score is: 1 = M X 0 = L

Record the rating on the first page

S 6.0. Are the hydrologic functions provided by the site valuable to society?	
S 6.1. Distance to the nearest areas downstream that have flooding problems: The sub-basin immediately down-gradient of site has flooding problems that result in damage to human or natural resources (e.g., houses or salmon redds) points = 2 Surface flooding problems are in a sub-basin farther down-gradient points = 1 No flooding problems anywhere downstream points = 0	0
S 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan? Yes = 2 No = 0	0
Total for S 6Add the points in the boxes above	0

Rating of Value If score is: ___2-4 = H ___1 = M __X_0 = L

Record the rating on the first page

NOTES and FIELD OBSERVATIONS:

These questions apply to wetlands	of all HGM classes.	
HABITAT FUNCTIONS - Indicators that site functions to provide	e important habitat	
H 1.0. Does the site have the potential to provide habitat?		
 H 1.1. Structure of plant community: Indicators are Cowardin classes and structure of plant classes in the wetland. Up to 10 patches may be comboused of % ac or more than 10% of the unit if it is smaller than 2.5 ac. Add theAquatic bedEmergent X Scrub-shrub (areas where shrubs have > 30% cover) X Forested (areas where trees have > 30% cover) If the unit has a Forested class, check if: X The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrut that each cover 20% within the Forested polygon 	ined for each class to meet the threshold e number of structures checked. 4 structures or more: points = 4 3 structures: points = 2 2 structures: points = 1 1 structure: points = 0	2
H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the w more than 10% of the wetland or ¼ ac to count (<i>see text for descriptio</i> Permanently flooded or inundated XSeasonally flooded or inundated XSaturated only Permanently flowing stream or river in, or adjacent to, the wetlar XSeasonally flowing stream in, or adjacent to, the wetland Lake Fringe wetland Freshwater tidal wetland	ans of hydroperiods). 4 or more types present: points = 3 3 types present: points = 2 2 types present: points = 1 1 type present: points = 0	2
H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 1 Different patches of the same species can be combined to meet the siz the species. Do not include Eurasian milfoil, reed canarygrass, purp If you counted: > 19 species 5 - 19 species < 5 species	e threshold and you do not have to name	1
H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowar the classes and unvegetated areas (can include open water or mudflat have four or more plant classes or three classes and open water, the ro None = 0 points All three diagrams in this row are HIGH = 3points	din plants classes (described in H 1.1), or ts) is high, moderate, low, or none. <i>If you</i>	1

H 1.5. Special habitat features:	
 Check the habitat features that are present in the wetland. The number of checks is the number of points. X Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long). X Standing snags (dbh > 4 in) within the wetland X Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends at least 3.3 ft (1 m) over a stream (or ditch) in, or contiguous with the wetland, for at least 33 ft (10 m) Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet weathered where wood is exposed) At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas that are 	3
permanently or seasonally inundated <i>(structures for egg-laying by amphibians)</i> Invasive plants cover less than 25% of the wetland area in every stratum of plants (<i>see H 1.1 for list of strata</i>)	
Total for H 1Add the points in the boxes above	9

Rating of Site Potential If score is: ____**15-18 = H** ____**7-14 = M** ____**0-6 = L**

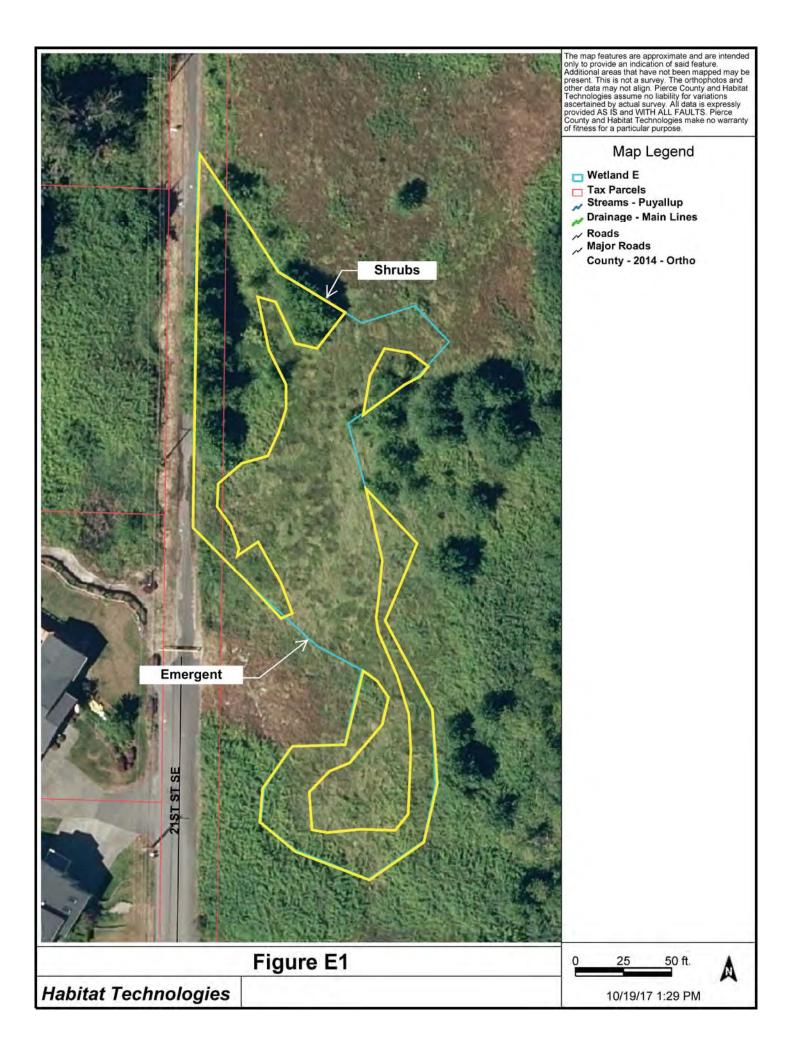
Record the rating on the first page

H 2.0. Does the landscape have the potential to support the habitat functions of the site? H 2.1. Accessible habitat (include <i>only habitat that directly abuts wetland unit</i>).		
<i>Calculate:</i> % undisturbed habitat <u>5</u> + [(% moderate and low intensity land uses)/2]	3 = 8 %	
If total accessible habitat is:	<u> </u>	
$> \frac{1}{3}$ (33.3%) of 1 km Polygon	points = 3	0
20-33% of 1 km Polygon	points = 2	0
10-19% of 1 km Polygon	points = 1	
< 10% of 1 km Polygon	points = 0	
I 2.2. Undisturbed habitat in 1 km Polygon around the wetland.		
<i>Calculate:</i> % undisturbed habitat <u>12</u> + [(% moderate and low intensity land uses)/2]	<u>20</u> = <u>32</u> %	
Undisturbed habitat > 50% of Polygon	points = 3	
Undisturbed habitat 10-50% and in 1-3 patches	points = 2	2
Undisturbed habitat 10-50% and > 3 patches	points = 1	-
Undisturbed habitat < 10% of 1 km Polygon	points = 0	
1 2.3. Land use intensity in 1 km Polygon: If		
> 50% of 1 km Polygon is high intensity land use	points = (- 2)	(-2)
≤ 50% of 1 km Polygon is high intensity	points = 0	
Total for H 2Add the points in the	he boxes above	0
tating of Landscape Potential If score is:4-6 = H1-3 = MX < 1 = L Rec	ord the rating on th	ne first pag

H 3.0. Is the habitat provided by the site valuable to society?	
H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies? Choose only the highest score	
that applies to the wetland being rated.	
Site meets ANY of the following criteria: points = 2	
 It has 3 or more priority habitats within 100 m (see next page) 	
— It provides habitat for Threatened or Endangered species (any plant or animal on the state or federal lists)	0
 It is mapped as a location for an individual WDFW priority species 	_
 It is a Wetland of High Conservation Value as determined by the Department of Natural Resources 	
— It has been categorized as an important habitat site in a local or regional comprehensive plan, in a	
Shoreline Master Plan, or in a watershed plan	
Site has 1 or 2 priority habitats (listed on next page) within 100 m points = 1	
Site does not meet any of the criteria above points = 0	
Rating of Value If score is: $2 = H$ $1 = M$ $x_0 = L$ Record the rating on	the first page

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

WDFW Priority Habitats

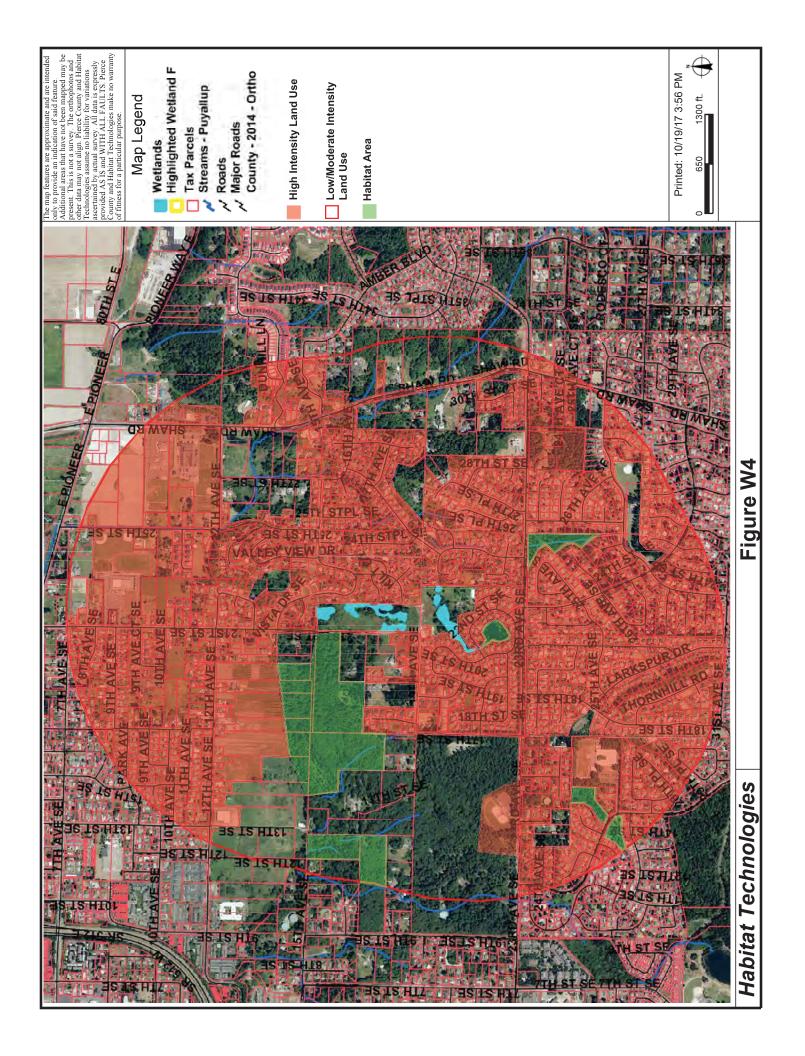

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. <u>http://wdfw.wa.gov/publications/00165/wdfw00165.pdf</u> or access the list from here: <u>http://wdfw.wa.gov/conservation/phs/list/</u>)

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: **NOTE:** This question is independent of the land use between the wetland unit and the priority habitat.

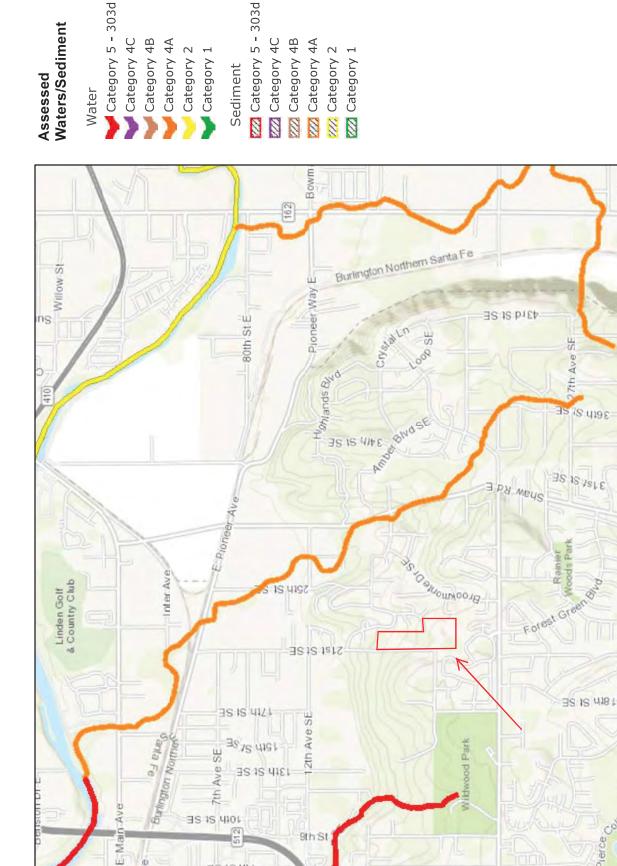
- **Aspen Stands:** Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
- Old-growth/Mature forests: <u>Old-growth west of Cascade crest</u> Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. <u>Mature forests</u> Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- **Oregon White Oak:** Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- **Westside Prairies:** Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- **Instream:** The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- Nearshore: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report see web link on previous page*).
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- **Talus:** Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015



The map features are approximate and are intended only to provide an indication of said feature. Additional areas that have not been mapped may be present. This is not a survey. The orthophotos and other data may not align. Pierce County and Habitat Technologies assume no liability for variations ascertained by actual survey. All data is expressly provided AS IS and WITH ALL FAULTS. Pierce County and Habitat Technologies make no warranty of fitness for a particular purpose.



Habitat Technologies

10/19/17 2:05 PM

LO .
<
Le
J
0
ш.

DEPARTMENT OF ECOLOGY State of Washington

0.5

0.25

0

Miles

Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, ©

2

31st Ave SE

Prerce Ose West Acc

23rd-Ave-SE

Park

← €

St SE

E Ploneer-Ave

314 ST SE

BN 1S HIS

3rd St

JS 1S 412

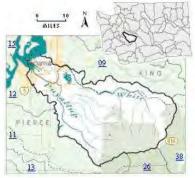
Good Samantan Hosp

Multicare

TMDL Project Information for WRIA 10 | WA State Department of Ecology

Figure W6

Water Quality Improvement Projects (TMDLs)


<u>Water Quality Improvement</u> > <u>Water Quality Improvement Projects by WRIA</u> > WRIA 10: Puyallup-White

WRIA 10: Puyallup-White

The following table lists overview information for water quality improvement projects (also known as total maximum daily loads, or TMDLs) for this water resource inventory area (<u>WRIA</u>). Please use links (where available) for more information on a project.

Counties

- King County
- Pierce County

Waterbody Name	Pollutant	Status**	TMDL Leads
Clarks Creek Meeker Creek	<u>Dissolved Oxygen</u> Sediment	Approved by EPA Has an implementation plan	<u>Donovan Gray</u> 360-407-6407
	Fecal Coliform	Approved by EPA Has an implementation plan	
Commencement Bay	Dioxin	Approved by EPA	<u>Donovan Gray</u> 360-407-6407
Puyallup River Watershed	Fecal Coliform	Approved by EPA	Donovan Gray
	<u>Multi-parameter</u> Ammonia-N BOD (5-day)	Approved by EPA	360-407-6407
	White River Watershed Upper White: • Sediment	Approved by EPA	~
	• Temperature Lower White • pH	Under Development	
<u>South Prairie Creek</u> Tributary: Wilkeson/Gale Creek	Fecal Coliform Temperature	Approved by EPA Has an implementation plan	<u>Donovan Gray</u> 360-407-6407

** Status will be listed as one of the following: Approved by EPA, Under Development or Implementation

For more information about WRIA 10:

- <u>Waterbodies in WRIA 10</u> using the Water Quality Assessment Query Tool
- Watershed Information for WRIA 10

 $\underline{*}$ The Department of Ecology and other state resource agencies frequently use a system of 62 "Water Resource Inventory Areas" or "WRIAs" to refer to the state's major watershed basins.

Back to top of page

Last updated October 2016

Feedback?

RATING SUMMARY – Western Washington

 Name of wetland (or ID #): Sunset Pointe
 Date of site visit: 11 OCT 2017

 Rated by
 Habitat Technologies
 Trained by Ecology? x Yes No Date of training 2014

 HGM Class used for rating
 Slope
 Wetland has multiple HGM classes? Y x N

NOTE: Form is not complete without the figures requested (figures can be combined).

Source of base aerial photo/map Pierce County GIS

OVERALL WETLAND CATEGORY _4_ (based on functions ____ or special characteristics ____)

1. Category of wetland based on FUNCTIONS

Category I – Total score = 23 - 27

Category II – Total score = 20 - 22

_____Category III – Total score = 16 - 19

X Category IV – Total score = 9 - 15

FUNCTION		nprov Iter Q	ving uality	H	ydrolo	gic		Habit	at	
					Circle t	he ap	oropr	iate ra	atings	
Site Potential	Н	Μ	L	Н	М	L	Н	Μ	L	
Landscape Potential	н	Μ	L	Н	Μ	L	Н	Μ	L	
Value	н	Μ	L	Н	Μ	L	Н	Μ	L	тоти
Score Based on Ratings		5			5			3		13

Score for each function based on three ratings (order of ratings is not important) 9 = H,H,H

8 = H,H,M 7 = H,H,L 7 = H,M,M 6 = H,M,L 6 = M,M,M 5 = H,L,L 5 = M,M,L 4 = M,L,L

3 = L,L,L

AL

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CATEGORY	
Estuarine	Ι	II
Wetland of High Conservation Value	I	
Bog	I	
Mature Forest	I	
Old Growth Forest		I
Coastal Lagoon	Ι	II
Interdunal	I II	III IV
None of the above	х	

Maps and figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	N/A
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	V

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	N/A
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including polygons for accessible habitat and undisturbed habitat	H 2.1, H 2.2, H 2.3	
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	W

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	N/A
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	\vee

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	E1
Hydroperiods	H 1.2	E2
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	E1
Plant cover of dense, rigid trees, shrubs, and herbaceous plants (can be added to figure above)	S 4.1	E1
Boundary of 150 ft buffer (can be added to another figure)	S 2.1, S 5.1	E2
1 km Polygon: Area that extends 1 km from entire wetland edge - including polygons for accessible habitat and undisturbed habitat	H 2.1, H 2.2, H 2.3	W4
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	W5
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	W6

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides except during floods?

NO – go to 2

YES – the wetland class is **Tidal Fringe** – go to 1.1

1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?

NO – Saltwater Tidal Fringe (Estuarine) If your wetland can be classified as a Freshwater Tidal Fringe use the forms for **Riverine** wetlands. If it is Saltwater Tidal Fringe it is an **Estuarine** wetland and is not scored. This method **cannot** be used to score functions for estuarine wetlands.

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

YES – The wetland class is **Flats** NO – go to 3 *If your wetland can be classified as a Flats wetland, use the form for Depressional wetlands.*

3. Does the entire wetland unit **meet all** of the following criteria? ____The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size; ____At least 30% of the open water area is deeper than 6.6 ft (2 m).

NO – go to 4

YES – The wetland class is **Lake Fringe** (Lacustrine Fringe)

- 4. Does the entire wetland unit **meet all** of the following criteria?
 - X The wetland is on a slope (*slope can be very gradual*),
 - **x** The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks,
 - **X** The water leaves the wetland **without being impounded**.

NO - go to 5

YES – The wetland class is **Slope**

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

- 5. Does the entire wetland unit **meet all** of the following criteria?
 - The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river.
 - ____The overbank flooding occurs at least once every 2 years.

YES – Freshwater Tidal Fringe

Wetland name or number <u>E</u>

NO - go to 6YES - The wetland class is RiverineNOTE: The Riverine unit can contain depressions that are filled with water when the river is not
flooding

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.*

NO – go to 7

YES – The wetland class is Depressional

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

NO – go to 8

YES – The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit	HGM class to		
being rated	use in rating		
Slope + Riverine	Riverine		
Slope + Depressional	Depressional		
Slope + Lake Fringe	Lake Fringe		
Depressional + Riverine along stream Depressiona			
within boundary of depression			
Depressional + Lake Fringe Depressiona			
Riverine + Lake Fringe	Riverine		
Salt Water Tidal Fringe and any other	Treat as		
class of freshwater wetland	ESTUARINE		

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

SLOPE WETLANDS	
Water Quality Functions - Indicators that the site functions to improve water quality	
S 1.0. Does the site have the potential to improve water quality?	
S 1.1. Characteristics of the average slope of the wetland: (a 1% slope has a 1 ft vertical drop in elevation for every 100 ft of horizontal distance) Slope is 1% or less points = 3 Slope is > 1%-2% points = 2	0
Slope is > 2%-5%points = 1Slope is greater than 5%points = 0	
S 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic (use NRCS definitions): Yes = 3 No = 0	0
S 1.3. Characteristics of the plants in the wetland that trap sediments and pollutants: Choose the points appropriate for the description that best fits the plants in the wetland. Dense means you have trouble seeing the soil surface (>75% cover), and uncut means not grazed or mowed and plants are higher than 6 in. Dense, uncut, herbaceous plants > 90% of the wetland area points = 6 Dense, uncut, herbaceous plants > ½ of area points = 3 Dense, woody, plants > ½ of area points = 2 Dense, uncut, herbaceous plants > ¼ of area points = 1 Does not meet any of the criteria above for plants points = 0	3
Total for S 1Add the points in the boxes above	3
Rating of Site Potential If score is: $12 = H$ $6-11 = M$ X $0-5 = L$ Record the rating on the second the rating on the second the	the first page
S 2.1. Is > 10% of the area within 150 ft on the uphill side of the wetland in land uses that generate pollutants? Yes = 1 No = 0	1
S 2.2. Are there other sources of pollutants coming into the wetland that are not listed in question S 2.1? Other sources Yes = 1 No = 0	0
Total for S 2Add the points in the boxes above	1

Rating of Landscape Potential If score is: <u>X</u> 1-2 = M ____0 = L

Record the rating on the first page

S 3.0. Is the water quality improvement provided by the site valuable to society?	
S 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the 303(d) list? Yes = 1 No = 0	
S 3.2. Is the wetland in a basin or sub-basin where water quality is an issue? At least one aquatic resource in the basin is on the 303(d) list. Yes = 1 No = 0	
S 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality? Answer YES if there is a TMDL for the basin in which unit is found.Yes = 2No = 0	
Total for S 3Add the points in the boxes above	1

Rating of Value If score is: 2-4 = H X 1 = M 0 = L

Record the rating on the first page

SLOPE WETLANDS			
Hydrologic Functions - Indicators that the site functions to reduce flooding and stream erosion			
S 4.0. Does the site have the potential to reduce flooding and stream erosion?			
S 4.1. Characteristics of plants that reduce the velocity of surface flows during storms: Choose the points appropriate for the description that best fits conditions in the wetland. <i>Stems of plants should be thick enough (usually > ¹/₈</i> <i>in), or dense enough, to remain erect during surface flows.</i> Dense, uncut, rigid plants cover > 90% of the area of the wetland All other conditions Rating of Site Potential If score is: x 1 = M 0 = L <i>Record the rating on</i>	1 the first page		
S 5.0. Does the landscape have the potential to support the hydrologic functions of the site?			
S 5.1. Is more than 25% of the area within 150 ft upslope of wetland in land uses or cover that generate excess surface runoff? Yes = 1 No = 0			

Rating of Landscape Potential If score is: 1 = M X 0 = L

Record the rating on the first page

S 6.0. Are the hydrologic functions provided by the site valuable to society?	
S 6.1. Distance to the nearest areas downstream that have flooding problems: The sub-basin immediately down-gradient of site has flooding problems that result in damage to human or natural resources (e.g., houses or salmon redds) points = 2 Surface flooding problems are in a sub-basin farther down-gradient points = 1 No flooding problems anywhere downstream points = 0	
S 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan? Yes = 2 No = 0	
Total for S 6Add the points in the boxes above	1

Rating of Value If score is: ___2-4 = H ___1 = M ___0 = L

Record the rating on the first page

NOTES and FIELD OBSERVATIONS:

These questions apply to wetlands of all HGM classes.		
HABITAT FUNCTIONS - Indicators that site functions to provide important habitat		
H 1.0. Does the site have the potential to provide habitat? H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked.		
that each cover 20% within the Forested polygon H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see text for descriptions of hydroperiods). Permanently flooded or inundated 4 or more types present: points = 3 Seasonally flooded or inundated 3 types present: points = 2 Occasionally flooded or inundated 2 types present: points = 1 XSaturated only 1 type present: points = 0 Permanently flowing stream or river in, or adjacent to, the wetland 2 points Seasonally flowing stream in, or adjacent to, the wetland 2 points Lake Fringe wetland 2 points Freshwater tidal wetland 2 points		
H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft ² . Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle If you counted: > 19 species points = 2 5 - 19 species points = 1 < 5 species points = 0	1	
H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. <i>If you</i> <i>have four or more plant classes or three classes and open water, the rating is always high.</i> None = 0 points All three diagrams in this row are HIGH = 3points	1	

otal for H 1 Add the points in the boxes above	5
Invasive plants cover less than 25% of the wetland area in every stratum of plants (see H 1.1 for list of strata)	
At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas that are permanently or seasonally inundated <i>(structures for egg-laying by amphibians)</i>	
slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet weathered where wood is exposed)	
Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree	1
over a stream (or ditch) in, or contiguous with the wetland, for at least 33 ft (10 m)	
Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends at least 3.3 ft (1 m)	
Standing snags (dbh > 4 in) within the wetland	
<u>X</u> Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long).	
Check the habitat features that are present in the wetland. The number of checks is the number of points.	
I.5. Special habitat features:	

Rating of Site Potential If score is: ___15-18 = H ___7-14 = M __X_0-6 = L

Record the rating on the first page

H 2.0. Does the landscape have the potential to support the habitat functions of the site		
H 2.1. Accessible habitat (include <i>only habitat that directly abuts wetland unit</i>). <i>Calculate:</i> % undisturbed habitat 2 + [(% moderate and low intensity land uses),	/2] 3 = 5 %	
If total accessible habitat is:	/2]_0/0	
$> \frac{1}{3}$ (33.3%) of 1 km Polygon	points = 3	0
20-33% of 1 km Polygon	points = 2	0
10-19% of 1 km Polygon	points = 1	
< 10% of 1 km Polygon	points = 0	
H 2.2. Undisturbed habitat in 1 km Polygon around the wetland.		
<i>Calculate:</i> % undisturbed habitat <u>12</u> + [(% moderate and low intensity land uses),	/2] <u>20</u> = <u>32</u> %	
Undisturbed habitat > 50% of Polygon	points = 3	
Undisturbed habitat 10-50% and in 1-3 patches	points = 2	2
Undisturbed habitat 10-50% and > 3 patches points = 1		-
Undisturbed habitat < 10% of 1 km Polygon	points = 0	
H 2.3. Land use intensity in 1 km Polygon: If		(-2)
> 50% of 1 km Polygon is high intensity land use points = (- 2)		
≤ 50% of 1 km Polygon is high intensity	points = 0	
Total for H 2 Add the points	in the boxes above	0
Rating of Landscape Potential If score is:4-6 = H1-3 = MX < 1 = L	Record the rating on th	e first pag

H 3.0. Is the habitat provided by the site valuable to society?	
H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies? Choose only the highest score	
that applies to the wetland being rated.	
Site meets ANY of the following criteria: points = 2	
 It has 3 or more priority habitats within 100 m (see next page) 	
— It provides habitat for Threatened or Endangered species (any plant or animal on the state or federal lists)	0
 It is mapped as a location for an individual WDFW priority species 	_
 It is a Wetland of High Conservation Value as determined by the Department of Natural Resources 	
— It has been categorized as an important habitat site in a local or regional comprehensive plan, in a	
Shoreline Master Plan, or in a watershed plan	
Site has 1 or 2 priority habitats (listed on next page) within 100 m points = 1	
Site does not meet any of the criteria above points = 0	
Rating of Value If score is: 2 = H 1 = M X 0 = L Record the rating on	the first page

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

WDFW Priority Habitats

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. <u>http://wdfw.wa.gov/publications/00165/wdfw00165.pdf</u> or access the list from here: <u>http://wdfw.wa.gov/conservation/phs/list/</u>)

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: **NOTE:** This question is independent of the land use between the wetland unit and the priority habitat.

- Aspen Stands: Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
- Old-growth/Mature forests: <u>Old-growth west of Cascade crest</u> Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. <u>Mature forests</u> Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- **Oregon White Oak:** Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- **Westside Prairies:** Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- **Instream:** The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- Nearshore: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and
 Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report –
 see web link on previous page*).
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- **Talus:** Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

APPENDIX E

Maintenance Schedules

4.6 Maintenance Standards for Drainage Facilities

The facility-specific maintenance standards contained in this section are intended to be conditions for determining if maintenance actions are required as identified through inspection. They are not intended to be measures of the facility's required condition at all times between inspections. In other words, exceedence of these conditions at any time between inspections and/or maintenance does not automatically constitute a violation of these standards. However, based upon inspection observations, the inspection and maintenance schedules shall be adjusted to minimize the length of time that a facility is in a condition that requires a maintenance action.

Table 4.5.2 Maintenance Standards

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expected When Maintenance Is Performed
General	Trash & Debris	Any trash and debris which exceed 1 cubic feet per 1,000 square feet. In general, there should be no visual evidence of dumping.	Trash and debris cleared from site.
		If less than threshold all trash and debris will be removed as part of next scheduled maintenance.	
	Poisonous Vegetation and noxious weeds	Any poisonous or nuisance vegetation which may constitute a hazard to maintenance personnel or the public.	No danger of poisonous vegetation where maintenance personnel or the public might normally be. (Coordinate with local health department)
		Any evidence of noxious weeds as defined by State or local regulations. (Apply requirements of adopted IPM policies for the use of herbicides).	Complete eradication of noxious weeds may not be possible. Compliance with State or local eradication policies required
	Contaminants and Pollution	Any evidence of oil, gasoline, contaminants or other pollutants (Coordinate removal/cleanup with local water quality response agency).	No contaminants or pollutants present.
	Rodent Holes	Any evidence of rodent holes if facility is acting as a dam or berm, or any evidence of water piping through dam or berm via rodent holes.	Rodents destroyed and dam or berm repaired. (Coordinate with local health department; coordinate with Ecology Dam Safety Office if pond exceeds 10 acre-feet.)

No. 1 – Detention Ponds

No. 1 – Detention Ponds

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expected When Maintenance Is Performed
	Beaver Dams	Dam results in change or function of the facility.	Facility is returned to design function. (Coordinate trapping of beavers and removal of dams with appropriate permitting agencies)
	Insects	When insects such as wasps and hornets interfere with maintenance activities.	Insects destroyed or removed from site. Apply insecticides in compliance with adopted IPM policies
	Tree Growth and Hazard Trees	Tree growth does not allow maintenance access or interferes with maintenance activity (i.e., slope mowing, silt removal, vactoring, or equipment movements). If trees are not interfering with access or maintenance, do not remove	Trees do not hinder maintenance activities. Harvested trees should be recycled into mulch or other beneficial uses (e.g., alders for firewood). Remove hazard Trees
		If dead, diseased, or dying trees are identified (Use a certified Arborist to determine health of tree or removal requirements)	
Side Slopes of Pond	Erosion	Eroded damage over 2 inches deep where cause of damage is still present or where there is potential for continued erosion.	Slopes should be stabilized using appropriate erosion control measure(s); e.g., rock reinforcement, planting of grass, compaction.
		Any erosion observed on a compacted berm embankment.	If erosion is occurring on compacted berms a licensed civil engineer should be consulted to resolve source of erosion.
Storage Area	Sediment	Accumulated sediment that exceeds 10% of the designed pond depth unless otherwise specified or affects inletting or outletting condition of the facility.	Sediment cleaned out to designed pond shape and depth; pond reseeded if necessary to control erosion.
	Liner (If Applicable)	Liner is visible and has more than three 1/4-inch holes in it.	Liner repaired or replaced. Liner is fully covered.
Pond Berms (Dikes)	Settlements	Any part of berm which has settled 4 inches lower than the design elevation.	Dike is built back to the design elevation.
		If settlement is apparent, measure berm to determine amount of settlement.	
		Settling can be an indication of more severe problems with the berm or outlet works. A licensed civil engineer should be consulted to determine the source of the settlement.	
	Piping	Discernable water flow through pond berm. Ongoing erosion with potential for erosion to continue.	Piping eliminated. Erosion potential resolved.
		(Recommend a Goethechnical engineer be called in to inspect and evaluate condition and recommend repair of condition.	

No. 1 – Detention Ponds

Maintenance Component	Defect	Conditions When Maintenance Is Needed	Results Expected When Maintenance Is Performed	
Emergency Overflow/ Spillway and Berms over 4 feet in height.	Tree Growth	Tree growth on emergency spillways creates blockage problems and may cause failure of the berm due to uncontrolled overtopping. Tree growth on berms over 4 feet in height may lead to piping through the berm which could lead to failure of the berm.	Trees should be removed. If root system is small (base less than 4 inches) the root system may be left in place. Otherwise the roots should be removed and the berm restored. A licensed civil engineer should be consulted for proper berm/spillway restoration.	
	Piping	Discernable water flow through pond berm. Ongoing erosion with potential for erosion to continue. (Recommend a Goethechnical engineer be called in to inspect and evaluate condition and recommend repair of condition.	Piping eliminated. Erosion potential resolved.	
Emergency Overflow/ Spillway	Emergency Overflow/ Spillway	Only one layer of rock exists above native soil in area five square feet or larger, or any exposure of native soil at the top of out flow path of spillway. (Rip-rap on inside slopes need not be replaced.)	Rocks and pad depth are restored to design standards.	
	Erosion	See "Side Slopes of Pond"		

Maintenance Component	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
General	Trash and Debris (Includes Sediment)	Material exceeds 25% of sump depth or 1 foot below orifice plate.	Control structure orifice is not blocked. All trash and debris removed.
	Structural Damage	Structure is not securely attached to manhole wall.	Structure securely attached to wall and outlet pipe.
		Structure is not in upright position (allow up to 10% from plumb).	Structure in correct position.
		Connections to outlet pipe are not watertight and show signs of rust.	Connections to outlet pipe are water tight; structure repaired or replaced and works as designed.
		Any holesother than designed holesin the structure.	Structure has no holes other than designed holes.
Cleanout Gate	Damaged or Missing	Cleanout gate is not watertight or is missing.	Gate is watertight and works as designed.
		Gate cannot be moved up and down by one maintenance person.	Gate moves up and down easily and is watertight.
		Chain/rod leading to gate is missing or damaged.	Chain is in place and works as designed.
		Gate is rusted over 50% of its surface area.	Gate is repaired or replaced to meet design standards.
Orifice Plate	Damaged or Missing	Control device is not working properly due to missing, out of place, or bent orifice plate.	Plate is in place and works as designed.
	Obstructions	Any trash, debris, sediment, or vegetation blocking the plate.	Plate is free of all obstructions and works as designed.
Overflow Pipe	Obstructions	Any trash or debris blocking (or having the potential of blocking) the overflow pipe. Pipe is free of all obstructions and works as designed	
Manhole	See "Closed Detention Systems" (No. 3).	See "Closed Detention Systems" (No. 3). See "Closed Detention Systems" (No. 3). (No. 3).	
Catch Basin	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).

No. 5 – Catch Basins

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is performed
General	Trash & Debris	Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the basin by more than 10%.	No Trash or debris located immediately in front of catch basin or on grate opening.
		Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the catch basin.
		Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.
		Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within the catch basin.
	Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin
	Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch (Intent is to make sure no material is running into basin).	Top slab is free of holes and cracks.
		Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached	Frame is sitting flush on the riser rings or top slab and firmly attached.
	Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.
		Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	Pipe is regrouted and secure at basin wall.
	Settlement/ Misalignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.
	Vegetation	Vegetation growing across and blocking more than 10% of the basin opening.	No vegetation blocking opening to basin.
		Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.	No vegetation or root growth present.
	Contamination and Pollution	See "Detention Ponds" (No. 1).	No pollution present.

No. 5 – Catch Basins

Maintenance Component	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is performed
Catch Basin Cover	Cover Not in Place	Cover is missing or only partially in place. Any open catch basin requires maintenance.	Catch basin cover is closed
	Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.
	Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. (Intent is keep cover from sealing off access to maintenance.)	Cover can be removed by one maintenance person.
Ladder	Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, not securely attached to basin wall, misalignment, rust, cracks, or sharp edges.	Ladder meets design standards and allows maintenance person safe access.
Metal Grates (If Applicable)	Grate opening Unsafe	Grate with opening wider than 7/8 inch.	Grate opening meets design standards.
	Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
	Damaged or Missing.	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.

No. 6 – Debris Barriers (e.g., Trash Racks)

Maintenance Components	Defect	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
General	Trash and Debris	Trash or debris that is plugging more than 20% of the openings in the barrier.	Barrier cleared to design flow capacity.
Metal	Damaged/ Missing Bars.	Bars are bent out of shape more than 3 inches.	Bars in place with no bends more than 3/4 inch.
		Bars are missing or entire barrier missing.	Bars in place according to design.
		Bars are loose and rust is causing 50% deterioration to any part of barrier.	Barrier replaced or repaired to design standards.
	Inlet/Outlet Pipe	Debris barrier missing or not attached to pipe	Barrier firmly attached to pipe

No. 7 – Energy Dissipaters

Maintenance Components	Defect	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed
External:	1		
Rock Pad	Missing or Moved Rock	Only one layer of rock exists above native soil in area five square feet or larger, or any exposure of native soil.	Rock pad replaced to design standards.
	Erosion	Soil erosion in or adjacent to rock pad.	Rock pad replaced to design standards.
Dispersion Trench	Pipe Plugged with Sediment	Accumulated sediment that exceeds 20% of the design depth.	Pipe cleaned/flushed so that it matches design.
	Not Discharging Water Properly	Visual evidence of water discharging at concentrated points along trench (normal condition is a "sheet flow" of water along trench). Intent is to prevent erosion damage.	Trench redesigned or rebuilt to standards.
	Perforations Plugged.	Over 1/2 of perforations in pipe are plugged with debris and sediment.	Perforated pipe cleaned or replaced.
	Water Flows Out Top of "Distributor" Catch Basin.	Maintenance person observes or receives credible report of water flowing out during any storm less than the design storm or its causing or appears likely to cause damage.	Facility rebuilt or redesigned to standards.
	Receiving Area Over- Saturated	Water in receiving area is causing or has potential of causing landslide problems.	No danger of landslides.
Internal:	1		
Manhole/Chamber	Worn or Damaged Post, Baffles, Side of Chamber	Structure dissipating flow deteriorates to 1/2 of original size or any concentrated worn spot exceeding one square foot which would make structure unsound.	Structure replaced to design standards.
	Other Defects	See "Catch Basins" (No. 5).	See "Catch Basins" (No. 5).