

PRELIMINARY STORM DRAINAGE REPORT FOR SUNSET POINTE

REVISED MAY 2023 FEBRUARY 2018

PREPARED FOR:

PETER CHEN & BETH LIU

P.O. Box 31989

PUYALLUP, WA

PREPARED BY: Fred Brown, PE

C.E.S. NW, INC. 429 29th Street NE, Suite D Puyallup, WA 98372 (253) 848-4282

PRELIMINARY STORM DRAINAGE REPORT

FOR

Sunset Pointe Puyallup, Washington

Revised May 2023 February 2018

Prepared for: Peter Chen & Beth Liu P.O. Box 31989 Puyallup, WA

> Prepared by: Fred Brown, PE

Approved By: Craig Deaver, Principal

REPORT #04148.7

This analysis is based on data and records either supplied to, or obtained by, C.E.S. NW, Inc. These documents are referenced within the text of the analysis. The analysis has been prepared utilizing procedures and practices within the standard accepted practices of the industry.

STORM DRA	INAGE	
 Existin Off-sit Permain 	CT OVERVIEW NG CONDITIONS SUMMARY TE ANALYSIS REPORT NENT STORMWATER CONTROL PLAN SSION OF MINIMUM REQUIREMENTS General Exhibits	2 2 4 9
	Vicinity Map Soils Map Soils Description	
Appendix B	Basin Exhibits Existing Overall Basins Existing State Highway Basin Existing Shaw Basin Developed State Highway Basin Developed Shaw Basin FIRM Panel 53053C0342E Downstream Maps	B-2 B-3 B-4 B-5 B-6
Appendix C	Computer Printouts WWHM Modeling Results	C-1
Appendix D	Reports Geotechnical Engineer's Report Groundwater Monitoring Critical Areas Assessment Habitat Letter	
Appendix E	Maintenance Schedules	

PAGE

STORM DRAINAGE

1. Project Overview

This preliminary report accompanies the preliminary plat plans prepared for the Sunset Pointe project which are submitted to the City of Puyallup for review and approval. This document provides site information, and the analysis used to prepare the preliminary storm drainage design. The *Washington State Department of Ecology Stormwater Management Manual for Western Washington, 2019* (Manual), as adopted by Resolution 2464 by the City of Puyallup, June 20, 2022, establishes the methodology and design criteria used for this project.

The Sunset Pointe project proposes an 18-lot plat on parcels 0420353027 and 0420357011, with an area totaling approximately 9.18 acres. An offsite parcel, 0420353009, is proposed as a natural vegetation area for full dispersion of surfaces from this project. The existing site address is 2301 23rd Street SE, Puyallup WA, and a Vicinity Map has been included in Appendix A of this report. A project summary is as follows:

Permit Applied for – Major Plat - Preliminary

Address – 2301 23rd Street SE Puyallup, WA 98372

Parcel Numbers – 0420353027 & 0420357011

Legal description –Parcel C: That portion of the southwest quarter of Section 35,Township 20 North, Range 4 East, W.M., more particularly described as follows:

Commencing at the southwest corner of the southwest quarter of said Section 35, Thence east along the south line thereof a distance of 1,974.60 feet; Thence North 01°06'54" East 615.92 feet to the northeast corner of Lot 10, Stonegate, as shown on the Plat thereof recorded under Auditor's No. 9507200366 and to the true Point of Beginning; Thence North 87°01'41" West 292.30 fee; Thence North 61°33'32" West 44.88 feet; Thence North 15°57'28" West 243.13 feet; Thence North 00°48'44" West 226.43 feet; Thence North 27°29'55" West 143.38 feet; Thence South 88°56'26" East 145.92 feet; Thence North 28°41'48" East 80.82 feet; Thence North 51°21'11" west 132.18 feet to a point on the north line of the south half of the southwest quarter of said Section 35; Thence South 89°22'06" East along said line a distance of 605.46 feet to the northwest corner of Lot 2, Short Plat No. 8105200168; Thence south along the west line of said Short Plat 750.69 feet, more or less, to the true Point of Beginning. (also known as revised Parcel D of Boundary Line Adjustment No. 9507170491).

Parcel D: That portion of Lot 2, as shown on Short Plat No. 8105200168, in Puyallup, Pierce County Washington, Described as follows: Beginning at the northwest corner of Lot 1 of said short plat; Thence along the north line of said Lot 1, North 89°49'07" East 4.70 fee; Thence North 00°22'05" West 78 feet; Thence 00°49'54" West 128.70 feet; Thence 00°32'11" West 325.48 feet to the north line of said Lot 2; Thence along the said North line thereof North 89°29'52" West 11.33 feet to the Point of Beginning.

Situated in the County of Pierce, State of Washington.

The site is accessed from two public roadways 23rd Street Place SE from the south and 19th Avenue SE from the west. According to Figure 2.2 of Volume I in the SMMWW, the project must evaluate all minimum requirements, see Section 5 of this report for a detailed discussion of each minimum requirement. As mapped by the City of Puyallup, the project exists within two drainage basins: Shaw Road basin to the south and State Highway basin to the north. These are further delineated into sub-basins for analyzing the dispersion trench for the proposed roadway, sizing full dispersion BMPs for the State Highway Basin, and stream man-made ponds located within the central portion of the site for the hydroperiod analysis calculations.

2. Existing Conditions Summary

The existing parcels are located northeast of the Plat of Stonegate and west of Kodiak Estates Division III. The site is accessed from 19th Ave. SE from the east and 23rd St. Pl. SE from the south. The existing parcels are approximately 9.18 acres and are irregular in shape. Currently, the site is within the Single-Family Residential (RS-10) zoning district. There are three interconnected ponds which bisect the site. These ponds are connected to Tract C and E of Stonegate and they are drained by an existing 12" culvert pipe which outfalls to the closed conveyance system within Kodiak Estates Division III. The outlet for Pond 'C' will be upgraded with a type 2 48-inch structure with a birdcage prior to being conveyed through Kodiak Estates Division III (see P2). An existing 10 feet wide gravel road crosses the site from the northwest corner to the south of the property line, which will be improved to 12 feet wide along with this project. There were five

existing structures onsite, which helped form the onsite wetlands, which were demolished in approximately 2017. The remaining area of the site consists of pasture areas and a mix of native second-growth conifer and deciduous trees primarily around the perimeter of the three connected stream corridor.

The site soils have been mapped as Everett gravelly sandy Loam (13B) and Kitsap silt loam (20B, 20C) as determined by the National Cooperative Soil Survey of Natural Resources Conservation Service (NRCS). These soils are classified as type A and C, respectively. Type A soils have a low runoff potential and Type C soils have a moderate to high erosion potential. A description of these soils and a copy of the soil map for this site have been included in Appendix A of this report. A geotechnical engineer's report was prepared by Earth Solutions NW, LLC. (ESNW) on January 11, 2018 and updated on April 5, 2023. They performed 25 onsite soil explorations where they encountered native soils generally consistent with Vashon Drift, classified as gravelly sands and loams. ESNW performed two small scale-PIT tests (TP-201 and 202) and the sieve analysis of the native soils, they measured an infiltration rate of zero-inches per hour. It is ESNW's opinion, infiltration is not feasible for this project. A copy of the updated geotechnical engineer's reports can be found in Appendix D.

Federal Emergency Management Agency (FEMA) has prepared flood insurance maps identifying floodplains within the City of Puyallup. The parcel and the proposed improvements are located within Zone X, which is considered out of the 100-year floodplain. A copy of the FIRM Panel 53053C0342E can be found in *Appendix "B"* of this report.

3. Off-site Analysis Report

A quarter mile downstream analysis is required by the City of Puyallup. The project site is located within two City delineated drainage basins Shaw Road which drains through Kodiak Estates Division III to the east and State Highway which flows northerly. Lots 1 through 8 and improvements to 19th Ave SE are fully dispersed to the north (State Highway Basin) onto parcel 0420353009. The driveways for Lots 9 through 18 and the improvements to 23rd Street place SE are collected in the roadway storm conveyance system, treated prior to dispersing in the revegetated Tract 'B'. The roof area for these lots will be dispersed in the rear of the lots. The

pervious area will be amended soils and the rear of the lots revegetated to forest conditions. The following is a qualitative analysis of the existing conditions:

Upstream Areas

The State Highway Basin (Lots 1-9) does not have any upstream flows contributing to the on-site. Shaw Road Basin (Lots 9-18) have upstream flows from Lots 114 through 127, Tract 'E' and Tract 'B' which drains through the buffer within the proposed development.

State Highway Basin Downstream Analysis

The fully dispersed runoff flows through parcel 0420353009 through a native vegetation easement for the full ¹/₄ mile. This drainage path consists of a variety of native vegetation including conifers and deciduous trees. Please refer to the downstream map in Appendix B.

Shaw Road Basin Downstream Analysis

The runoff which drains towards the onsite buffer area ultimately discharges into Kodiak Estates Division III's closed conveyance system. This system is comprised of 12-inch, 15-inch and 18-inch circular pipes. The runoff from the project proceeds between Lots 26 and 27 in a 12-inch pipe where it proceeds into 19th Ave SE and combines with runoff from Brookmonte Dr SE approximately 480-feet downstream. The runoff then proceeds within Brookmonte Dr SE for another 150-feet where it turns east within an 18-inch pipe in 20th Ave Ct SE. The runoff proceeds downstream for another 450-feet within 18-inch pipe where it outfalls into the public stormwater facility within Tract A of Kodiak Estates Division III. The runoff concludes it's ¹/₄ mile downstream path within this facility. Please refer to the downstream map in the Appendix B.

4. Permanent Stormwater Control Plan

Existing Site Hydrology

Section 2 of this report describes the existing site conditions in detail. The existing site is divided into three sub-basins: State Highway basin, Shaw Road basin and a pre-developed Recharge basin. The pre-developed State Highway basin is 1.90-acres (not including the native vegetation easement area). The overall Shaw Road basin is approximately 7.46-acres, including the Buffer Recharge basin. The Recharge basin is approximately 6.0-acres onsite which includes the buffer

area. The west basin which is approximately 1.07-acres which sheet flows towards Lots 27-29 of Kodiak Estates Division III. The northwest basin is approximately 0.36-acres which sheet flows towards Lots 25-26 of Kodiak Estates Division III. The Shaw Road Basin combine within a ¹/₄ mile downstream of the site. The existing basins will be analyzed a forested conditions to determine for existing conditions, except the Recharge Basin will be modeled with existing conditions and is summarized as follows:

Sub-Basin	Description	WWHM Land-use	Area (ac)
Northside of Buffer	Pasture	C, Pasture, Mod	0.964
Gravel	Gravel Roadway	Roadway, Flat	0.272
Buildings	Buildings	Roof, Flat	0.383
Southside of Buffer	Pastures	C, Pasture, Mod	2.026
Buffer Area	Pasture	C, Pasture, Mod	2.38
Total			6.025

Table 4.1– Pre-Developed Recharge Basin

The Pre-Developed Basin Maps can be found in Appendix B of this report.

Developed Site Hydrology

The project is divided into two major basins, the State Highway basin and the Shaw Road basin. The Shaw Road basin is divided into smaller basin: the Recharge Basin; Roadway Basin, West Basin and the Northwest Basin. The roof area for the proposed development was estimated to 3,000 square feet for each lot and the driveway (patio, etc.) is 1,000 square feet for each lot.

State Highway Basin

The developed basin is approximately 2.41-acres (not including the native vegetation easement area). The following is a summary of the developed basin:

Sub-Basin	Description	WWHM Land-use	Area (ac)
Yards	Lawn	C, Pasture, Flat	1.14
Roads	Roadway	Roadway, Flat	0.531
Roof	3,000 per Lot	Roof, Flat	0.551
Driveways	1,000 per Lot	Driveway, Flat	0.184
	Total		2.41

Table 4.1 – Developed State Highway Basin

The improvements to the State Highway basin are fully dispersed to a 11.13-acres native vegetation easement across parcel 0420353009. The impervious area is 1.27-acres, the overall area is 13.54-acres. Therefore, the impervious area for the Shaw Road is approximately 9.4% and provides 100-foot flowpath which meets the requirements of BMP T5.30 for Full Dispersion.

Shaw Road Basin

Recharge Basin

A hydroperiod analysis was prepared due to the presence of amphibians. According to the manual in Section I-3.4.8, the project must attempt to meet both flow control (MR7) and wetland protection (MR8), however if it is unable to meet both, the wetland protection standard will be prioritized. The recharge basin consists of the following in developed conditions:

Sub-Basin	Description	WWHM Land-use	Area (ac)
Gravel	Pathway	Roadway, Mod	0.08
Rear Yards (Lots 1, 3-8	Lawn	C, Pasture, Mod	0.70
Roofs	Roofs Lots 9-18	Roof, Flat	0.69
Rear Yards	Lawn	C, Pasture, Mod	0.76
Rear Yards	Forest	C, Forest, Mod	0.84
Buffer Area	Buffer	C, Pasture, Mod	2.38
Total			

Table 4.2– Developed Recharge Basin

Roadway Basin

The roadway improvement basin consists of the right-of-way of 23rd Street Place SE, extended, and the driveways for Lots 9-18, lawn area for Lots 16-18 are contributing to the basin. The

roadway improvement basin will be collected, treated and discharge to a dispersal trench with a vegetated flowpath of 100-feet. The following is a summary:

Sub-Basin	Description	WWHM Land-use	Area (ac)
Forest	Rear of Lots	C, Forest, Flat	0.23
Lawn	Lawn	C, Pasture, Flat	0.06
Lawn	Lawn	C, Pasture, Mod	0.19
Roadway	Roads, Sidewalk	Roads, Flat	0.34
Driveways	Driveways	Driveways, Mod	0.23
	1.05		

Table 4.3 – Developed Roadway Basin

West Basin

The west basin is the area which under pre-existing conditions, flows towards Lots 28-29 of Kodiak Estates. The following is a summary of the developed conditions:

Sub-Basin	Description	WWHM Land-use	Area (ac)
Rear of Lots 9- 13	Forest	C, Forest, Mod	0.36
Total			0.36

Table 4.4 – Developed West Basin

Northwest Basin

The northwest basin is the area, under pre-existing conditions, which sheet flows towards Lots 25-26 of Kodiak Estates. The following is a summary of the developed conditions:

Description	WWHM Land-use	Area (ac)
Forest	C, Forest, Mod	0.12
Total		
	Forest	Forest C, Forest, Mod

Table 4.5 – Developed Northwest Basin

The Post Developed Basin Maps can be found in Appendix B of this report.

Facility Sizing

State Highway Basin

The State Highway basin is being fully dispersed to a 10.74-acre native vegetation easement in accordance with BMP T5.30 for roadway dispersion BMPs. The runoff from Lots 1-8, access tracts and 19th Avenue SE are collected within the roadway and dispersed with flow dispersal trenches to the native vegetation easement. A single dispersal trench is allowed to disperse 0.50-cfs of runoff. The basin's 100-year event is 1.38-cfs; therefore, three 50-foot long flow dispersal trenches are provided to fully disperse the runoff from the roadway's collection system. Using flow modeling credits the fully dispersed basin results in an increase of 0.05-cfs increase during the 100-year reoccurrence interval. Sizing and capacity calculations will be provided as part of the final engineering submittal. WWHM Modeling results is provided in Appendix C.

Shaw Road Basin

The Recharge basin is being discharged towards the buffer to maintain the hydroperiods to the buffer. According to the manual in section I-3.4.8 the project must attempt to meet both the conservation flow control standard (MR 7) and the wetland protection standard (MR 8), however if it is unable to meet both, the wetland protection standard will be prioritized. The project proposes to naturally discharge its runoff into Tract A, the onsite buffer, to maintain the hydrology. The Roadway Basin is being collected, treated and conveyed to a trench to be fully dispersed onto the 100-foot vegetated flowpath. The West and Northwest Basins will sheet flow as they did in the existing conditions. Computer modeling results are provided in Appendix C.

Water Quality System

Water Quality treatment will be provided for the proposed roadway and driveways in the Shaw Road Basin via a storm cartridge system. The State Highway Basin treatment will be provided through full dispersion.

Buffer Recharge

As mentioned in the Critical Areas Assessment prepared by Habitat Technologies, the onsite ponds were created through previous development activities of Stream A which bisects the site. Since these ponds are non-depressional. Basin maps delineating the areas onsite tributary to the buffer is provided in Appendix B. These basins were analyzed with WWHM to determine the volumes which will flow through the buffer area and downstream monthly. A summary of this analysis is provided in Table 4.6 below:

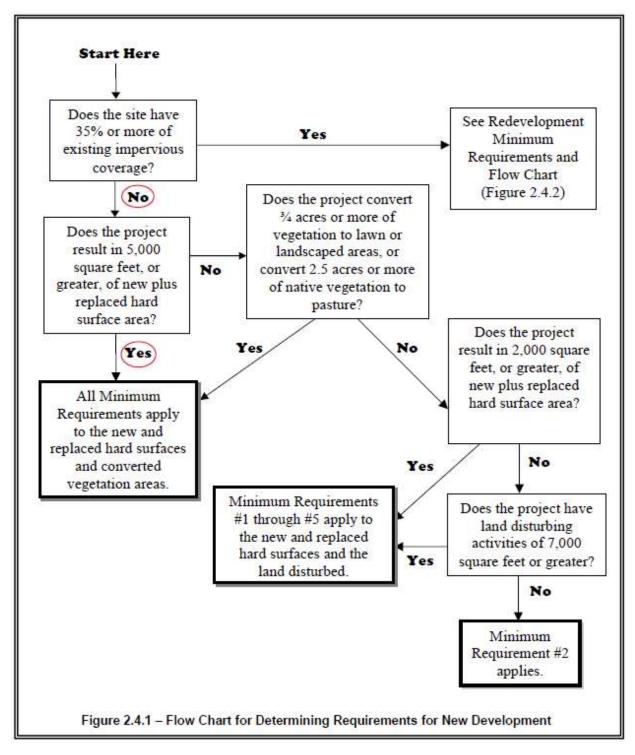

Month	Pre-developed Volume Summary (ac-ft)	Post Developed Volume Summary (ac-ft)	Percent
January	1.0971	0.9664	88.1
February	0.9454	0.8322	88.0
March	0.7053	0.6271	88.9
April	0.3191	0.2925	91.7
May	0.1080	0.1047	96.9
June	0.0387	0.0422	109.0
July	0.0079	0.0096	122.6
August	0.0008	0.0015	182.5
September	0.0060	0.0093	154.3
October	0.0737	0.0875	118.7
November	0.5991	0.5492	91.7
December	1.0717	0.9470	88.4

Table 4.6 – Buffer Recharge Summary

Eight months meet the monthly standard, but the drier summer months (July through October) exceed the monthly standard. The other two months have minimal flow volumes and are difficult to meet the 15 percent requirement. The WWHM computer results are included in Appendix C of this report.

5. Discussion of Minimum Requirements

The following is a summary of the minimum requirements as described in Chapter 2 of Volume I of the SMMWW. Each minimum requirement must be considered per Figure 2.4.1 flowchart.

5.1 Minimum Requirement #1: Preparation of a Stormwater Site Plan

The Stormwater Site Plan is prepared per Chapter 3, Volume I of the SMMWW 2014. Each required Section and Appendix is provided in this document.

5.2 Minimum Requirement #2: Construction Stormwater Pollution Prevention (SWPP)

A SWPP Plan will be prepared for this project at the time of final engineer plan, and all thirteen (13) elements will be addressed in the document.

5.3 Minimum Requirement #3: Source Control of Pollution

Permanent source control BMPs are required for the development's daily operations, and the stormwater facilities must be maintained as described in the Operations and Maintenance Manual will be prepared for this project during the final engineering submittal. Preliminary Maintenance Schedules can be found in Appendix E.

5.4 Minimum Requirement #4: Preservation of Natural Drainage System and Outfalls

Projects are to maintain the natural drainage patterns and locations to the maximum extent possible. The project is located within two drainage basins, Shaw Road and State Highway, as delineated by the City of Puyallup each within their own threshold discharge area. The runoff in the Shaw Road basin discharges to the onsite buffer area which flows offsite towards the east through Kodiak Estates Division III. The project proposes maintaining the hydroperiod to the buffer area and dispersing the flows of the roadway improvement basin. The runoff in the State Highway basin discharges as sheet flow north across parcel 0420353009. The project proposes to fully disperse the improvements within this basin with the use of roadway dispersion BMPs. A downstream analysis is provided for each basin in Section 3 of this report. Calculations are provided in Section 5 of this report.

5.5 Minimum Requirement #5: Onsite Stormwater Management

City requires projects to implement onsite stormwater management BMPs when feasible. This project must meet minimum requirement #1-11; therefore, it evaluates List #2 of the Manual for onsite stormwater management compliance. The site is separated into two drainage basins, the Shaw Road basin which flows through the Kodiak Estates Division III and the State Highway drainage basin which flows through parcel 0420353009. Soil amendments and perforated stubouts are provided in the Shaw Road basins, and soil amendments and full dispersion is proposed in the State Highway basin. The BMPs in List #2 is discussed for each drainage basin as follows:

<u>State Highway</u>

Lawn and Landscape Areas

Soil Preservation and Amendment (Ecology BMP T5.13)
 All disturbed pervious areas that are not converted to impervious surfaces will apply soil amendment per Ecology BMP T5.13.

Roof Areas

• Full dispersion of BMP T5.30 is deemed feasible for this basin. Runoff will be dispersed to parcel 0420353009 with the use of roadway dispersion BMPs. Facility sizing calculations are provided in Section 4 of this report. Since this BMP is deemed feasible no other BMPs are required.

Other Hard Surface

• Full dispersion of BMP T5.30 is deemed feasible for this basin. Runoff will be dispersed to parcel 0420353009 with the use of roadway dispersion BMPs. Facility sizing calculations are provided in Section 4 of this report. Since this BMP is deemed feasible no other BMPs are required.

<u>Shaw Road</u>

Lawn and Landscape Areas

Soil Preservation and Amendment (Ecology BMP T5.13)
 All disturbed pervious areas that are not converted to impervious surfaces will apply soil amendment per Ecology BMP T5.13.

Roof Areas

- Full dispersion of BMP T5.30 is deemed infeasible in this basin since there is not enough area available to accommodate the natural preservation requirements of this BMP.
- Downspout full infiltration was deemed infeasible since a zero-inches per hour infiltration rate was measured onsite and the sieve samples indicated high fines.
- Bioretention facility was deemed infeasible since a xero-inches per hour infiltration rate was measured onsite and the sieve samples indicated high fines.

- Downspout dispersion system was deemed infeasible onsite due to the lack of available dispersion flow paths due to the depth of the lots.
- Perforated Stub-out connections are deemed feasible and proposed for all lots within this basin.

Other Hard Surface

- Full dispersion of BMP T5.30 is deemed infeasible in this basin since there is not enough area available to accommodate the natural preservation requirements of this BMP.
- Permeable Pavement BMP was deemed infeasible since a 0-inch per hour infiltration rate was measured onsite.
- Bioretention BMP was deemed infeasible since a 0-inch per hour infiltration rate was measured onsite.
- Sheet Flow Dispersion was deemed infeasible for driveways since the flow path of 10-20 feet is not available to meet this requirement.

5.6 Minimum Requirement #6: Runoff Treatment

Runoff treatment is provided in the Shaw Road basin for the roadway and driveways with the use of a stormwater cartridge system prior to the flows being dispersed.

5.7 Minimum Requirement #7: Flow Control

For the Shaw Road basin, the recharge basin is maintaining the hydroperiod to the buffer area. The roadway basin is being treated and discharged to a dispersal trench with a 100-foot vegetated flow path. The west and northwest basin will sheet flow towards Kodiak Estates Division as it has historically. Facility sizing calculations are provided in Section 4 of this report. Runoff is fully dispersed within the State Highway basin; therefore, this basin does not exceed flow control thresholds.

5.8 Minimum Requirement #8: Wetlands Protection

Projects that discharge to a wetland meeting this requirement in conjunction with minimum requirements #6 and #7. According to the manual in Section I-3.4.8, the project must attempt to meet both flow control (MR7) and wetland protection (MR8), however if it is unable to meet both, the wetland protection standard will be prioritized. A detailed discussion is shown in section 4 of this report. A hydrologic analysis has been prepared as discussed in Section 4 of this report.

Modeling results is provided in Appendix C. A Critical Areas Assessment Report has been prepared and can be found in Appendix D.

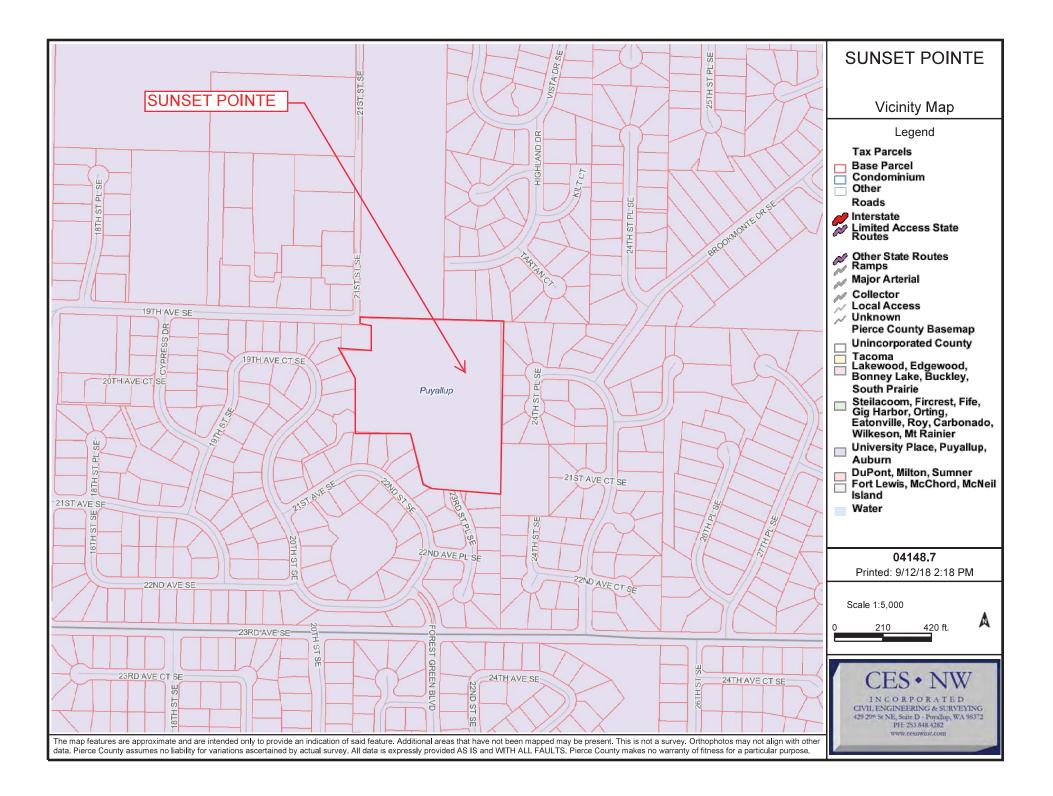
5.9 Minimum Requirement #9: Basin/Watershed Planning

The project is located within two drainage basins as delineated by the City of Puyallup: State Highway and Shaw Road basins. Due to the hydroperiod analysis, a flow control facility is not being proposed for the basins. The State Highway and Shaw Road basins are applying onsite BMPs. The project will not adversely affect these two basins.

5.10 Minimum Requirement #10: Operation and Maintenance

An Operation and Maintenance Manual will be prepared as part of the final engineering submittal. Preliminary Maintenance Schedules can be found in *Appendix "E"*.

5.11 Minimum Requirement #11: Off-Site Analysis and Mitigation


An Offsite Analysis is prepared within this document and can be found in Section 3 of this report.

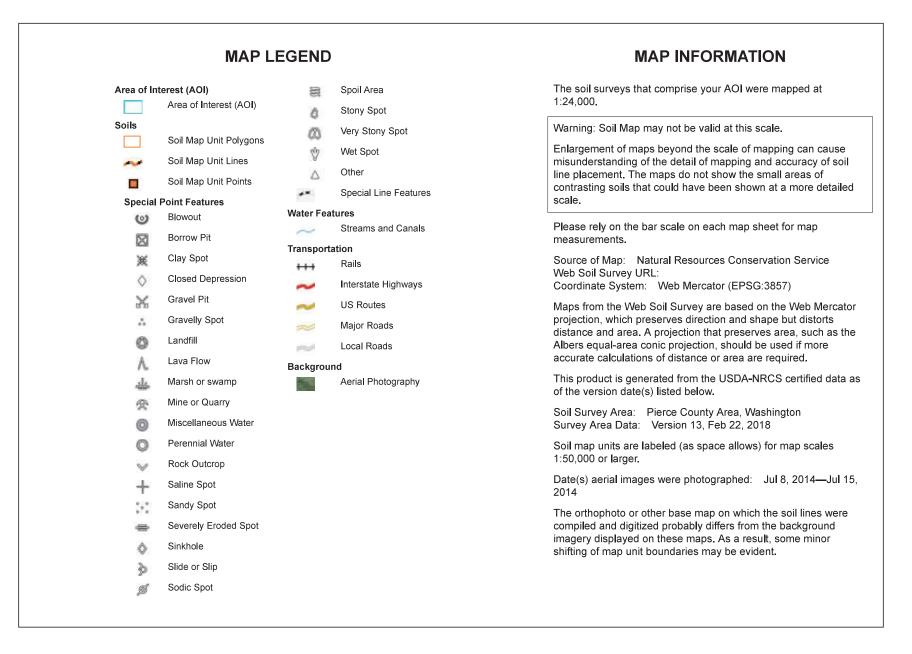
APPENDIX A

General Exhibits

Vicinity Map	A-1
Soils Map	A-2
Soil Description	A-3

VICINITY MAP

SOILS MAP



National Cooperative Soil Survey

Conservation Service

Page 1 of 3

SOIL DESCRIPTION

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
1D	Alderwood gravelly sandy Ioam, 15 to 30 percent slopes	0.0	0.3%
13B	Everett very gravelly sandy loam, 0 to 8 percent slopes	5.4	55.7%
20B	Kitsap silt loam, 2 to 8 percent slopes	3.3	33.5%
20C	Kitsap silt loam, 8 to 15 percent slopes	1.0	9.9%
PITS	Pits	0.1	0.6%
Totals for Area of Interest		9.8	100.0%

Pierce County Area, Washington

1D—Alderwood gravelly sandy loam, 15 to 30 percent slopes

Map Unit Setting

National map unit symbol: 2t627 Elevation: 0 to 1,000 feet Mean annual precipitation: 25 to 60 inches Mean annual air temperature: 46 to 52 degrees F Frost-free period: 160 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Alderwood and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Alderwood

Setting

Landform: Hills, ridges Landform position (two-dimensional): Backslope Landform position (three-dimensional): Nose slope, side slope, talf Down-slope shape: Convex, linear Across-slope shape: Convex Parent material: Glacial drift and/or glacial outwash over dense glaciomarine deposits

Typical profile

A - 0 to 7 inches: gravelly sandy loam Bw1 - 7 to 21 inches: very gravelly sandy loam Bw2 - 21 to 30 inches: very gravelly sandy loam Bg - 30 to 35 inches: very gravelly sandy loam 2Cd1 - 35 to 43 inches: very gravelly sandy loam 2Cd2 - 43 to 59 inches: very gravelly sandy loam

Properties and qualities

Slope: 15 to 30 percent
Depth to restrictive feature: 20 to 39 inches to densic material
Natural drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 18 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very low (about 2.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B

JSDA

Forage suitability group: Limited Depth Soils (G002XN302WA), Limited Depth Soils (G002XF303WA), Limited Depth Soils (G002XS301WA) *Hydric soil rating:* No

Minor Components

Everett

Percent of map unit: 5 percent Landform: Kames, moraines, eskers Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Indianola

Percent of map unit: 5 percent Landform: Eskers, kames, terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Shalcar

Percent of map unit: 3 percent Landform: Depressions Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Norma

Percent of map unit: 2 percent Landform: Depressions, drainageways Landform position (three-dimensional): Dip Down-slope shape: Concave, linear Across-slope shape: Concave Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 13, Feb 22, 2018

Pierce County Area, Washington

13B—Everett very gravelly sandy loam, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2t629 Elevation: 30 to 900 feet Mean annual precipitation: 35 to 91 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 180 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Everett and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Everett

Setting

Landform: Kames, moraines, eskers Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Crest, interfluve Down-slope shape: Convex Across-slope shape: Convex Parent material: Sandy and gravelly glacial outwash

Typical profile

- Oi 0 to 1 inches: slightly decomposed plant material
- A 1 to 3 inches: very gravelly sandy loam
- Bw 3 to 24 inches: very gravelly sandy loam
- C1 24 to 35 inches: very gravelly loamy sand
- C2 35 to 60 inches: extremely cobbly coarse sand

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 3.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4s Hydrologic Soil Group: A

USDA

Forage suitability group: Droughty Soils (G002XN402WA), Droughty Soils (G002XF403WA), Droughty Soils (G002XS401WA) Hydric soil rating: No

Minor Components

Alderwood

Percent of map unit: 10 percent Landform: Hills, ridges Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest, talf Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Indianola

Percent of map unit: 10 percent Landform: Terraces, eskers, kames Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Data Source Information

Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 13, Feb 22, 2018

Pierce County Area, Washington

20B—Kitsap silt loam, 2 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2hpt Elevation: 0 to 590 feet Mean annual precipitation: 37 inches Mean annual air temperature: 50 degrees F Frost-free period: 160 to 200 days Farmland classification: All areas are prime farmland

Map Unit Composition

Kitsap and similar soils: 85 percent *Minor components:* 3 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kitsap

Setting

Landform: Terraces Parent material: Glaciolacustrine deposits

Typical profile

H1 - 0 to 10 inches: ashy silt loam
H2 - 10 to 32 inches: silty clay loam
H3 - 32 to 60 inches: stratified silt to silty clay loam

Properties and qualities

Slope: 2 to 8 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr) Depth to water table: About 16 to 23 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: High (about 11.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: C/D Forage suitability group: Soils with Few Limitations (G002XS501WA) Hydric soil rating: No

Minor Components

Bellingham

Percent of map unit: 3 percent Landform: Depressions

USDA

Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 13, Feb 22, 2018

Pierce County Area, Washington

20C—Kitsap silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2hpv Elevation: 0 to 590 feet Mean annual precipitation: 37 inches Mean annual air temperature: 50 degrees F Frost-free period: 160 to 200 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Kitsap and similar soils: 85 percent *Minor components:* 2 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kitsap

Setting

Landform: Terraces Parent material: Glaciolacustrine deposits

Typical profile

H1 - 0 to 10 inches: ashy silt loam
H2 - 10 to 32 inches: silty clay loam
H3 - 32 to 60 inches: stratified silt to silty clay loam

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 16 to 23 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: High (about 11.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C/D Forage suitability group: Soils with Moderate Limitations (G002XS601WA)

Hydric soil rating: No

Minor Components

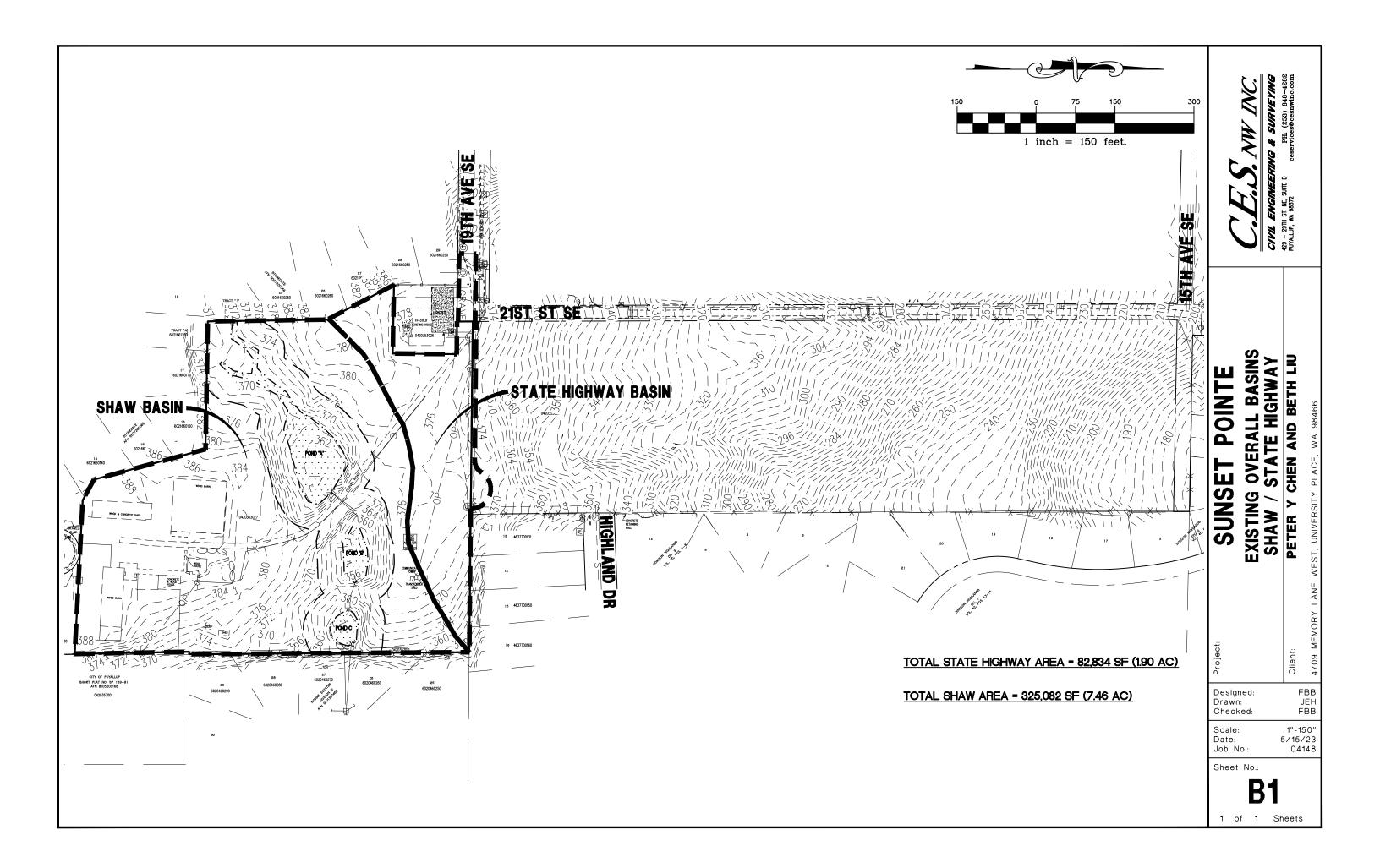
Bellingham

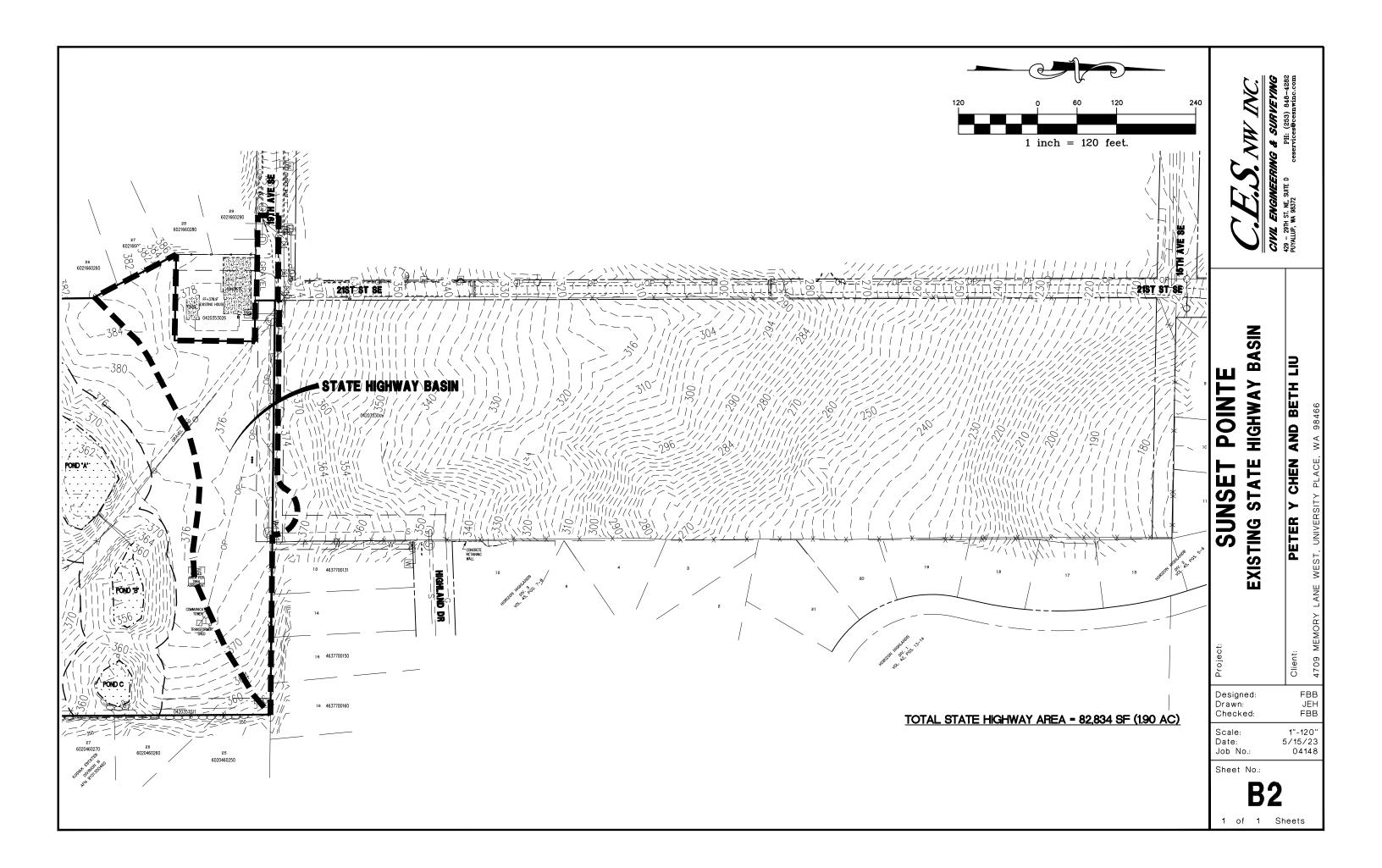
Percent of map unit: 2 percent Landform: Depressions

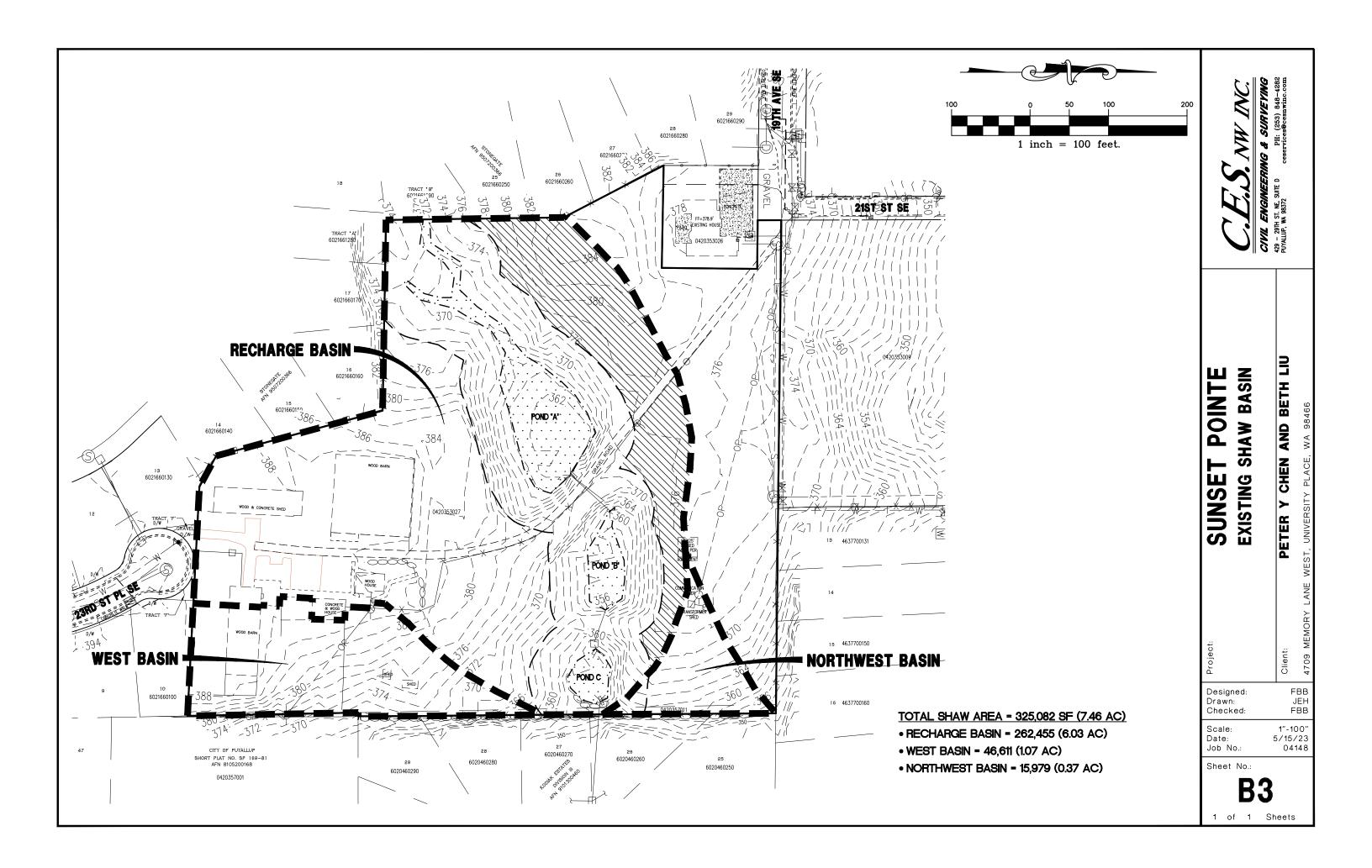
USDA

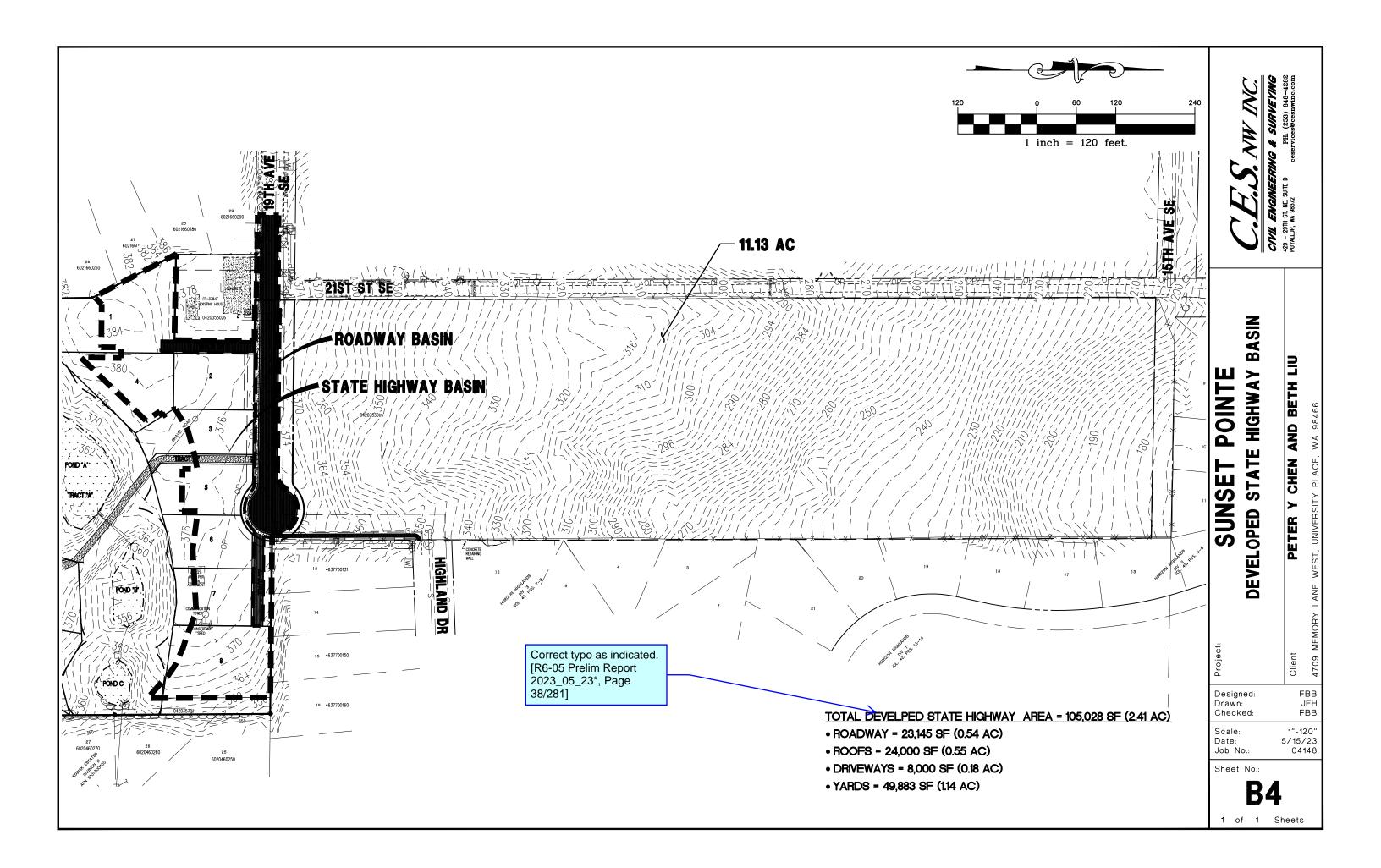
Hydric soil rating: Yes

Data Source Information


Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 13, Feb 22, 2018




APPENDIX B


Basin Exhibits

Existing Overall Basin Map	B-1
Existing State Highway Basin Map	B-2
Existing Shaw Basin Map	B-3
Developed State Highway Basin	B-4
Developed Shaw Basin	B-5
FIRM Panel 53053C0342E	B-6
Downstream Map	B-6

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) Report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS Report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study Report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study Report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study Report for information on flood control structures for this jurisdiction.

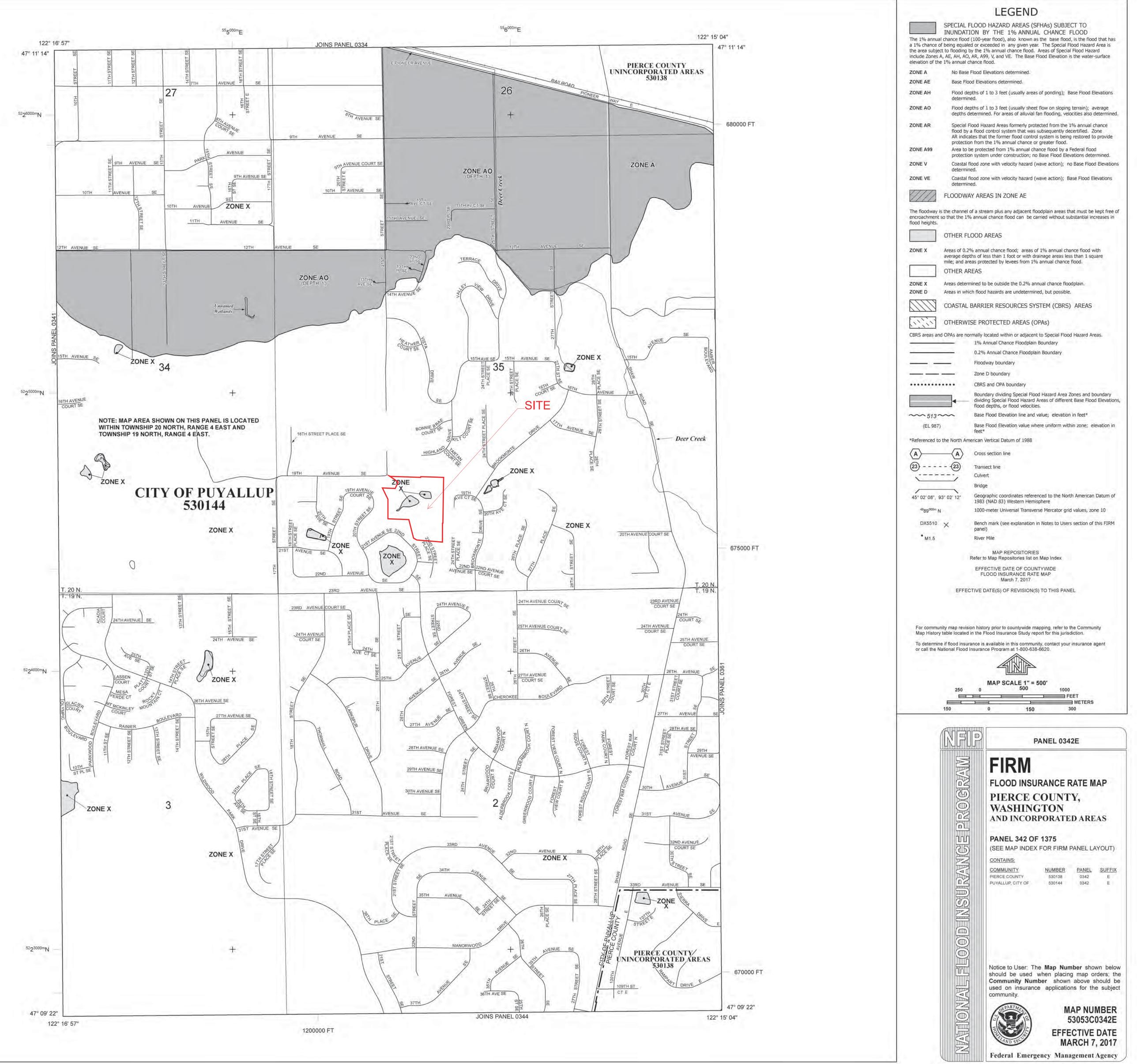
The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 10. The horizontal datum was NAD 83, GRS 1980 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov or contact the National Geodetic Survey at the following address:

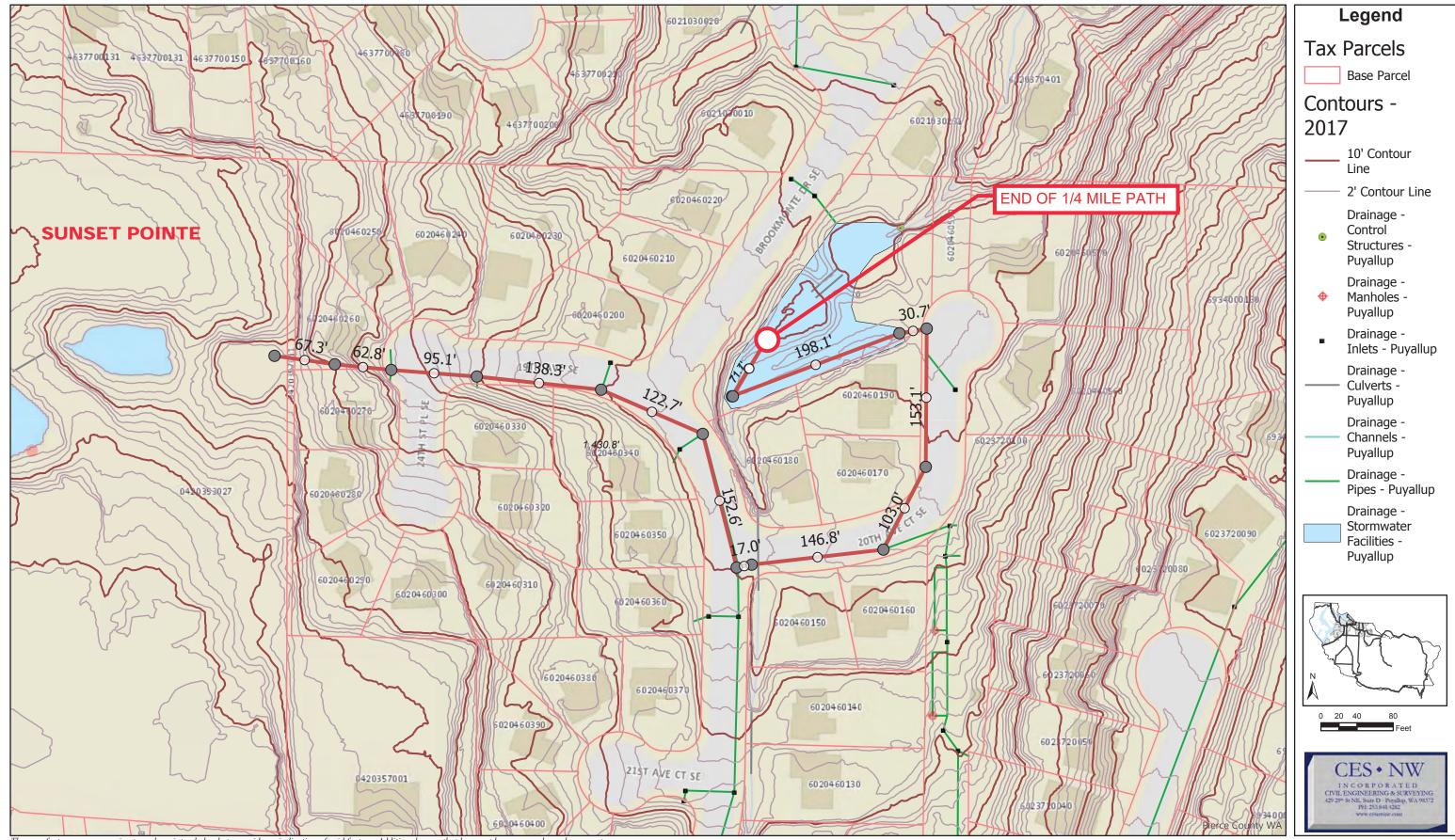
NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713- 3242, or visit its website at http://www.ngs.noaa.gov.

Base map information shown on this FIRM was derived from multiple sources. Base map files were provided in digital format by Pierce County GIS, WA DNR, WSDOT, USFWS, Washington State Department of Ecology, and Puget Sound Regional Council. This information was compiled at scales of 1:1,200 to 1:24,000 during the time period 1996-2012.

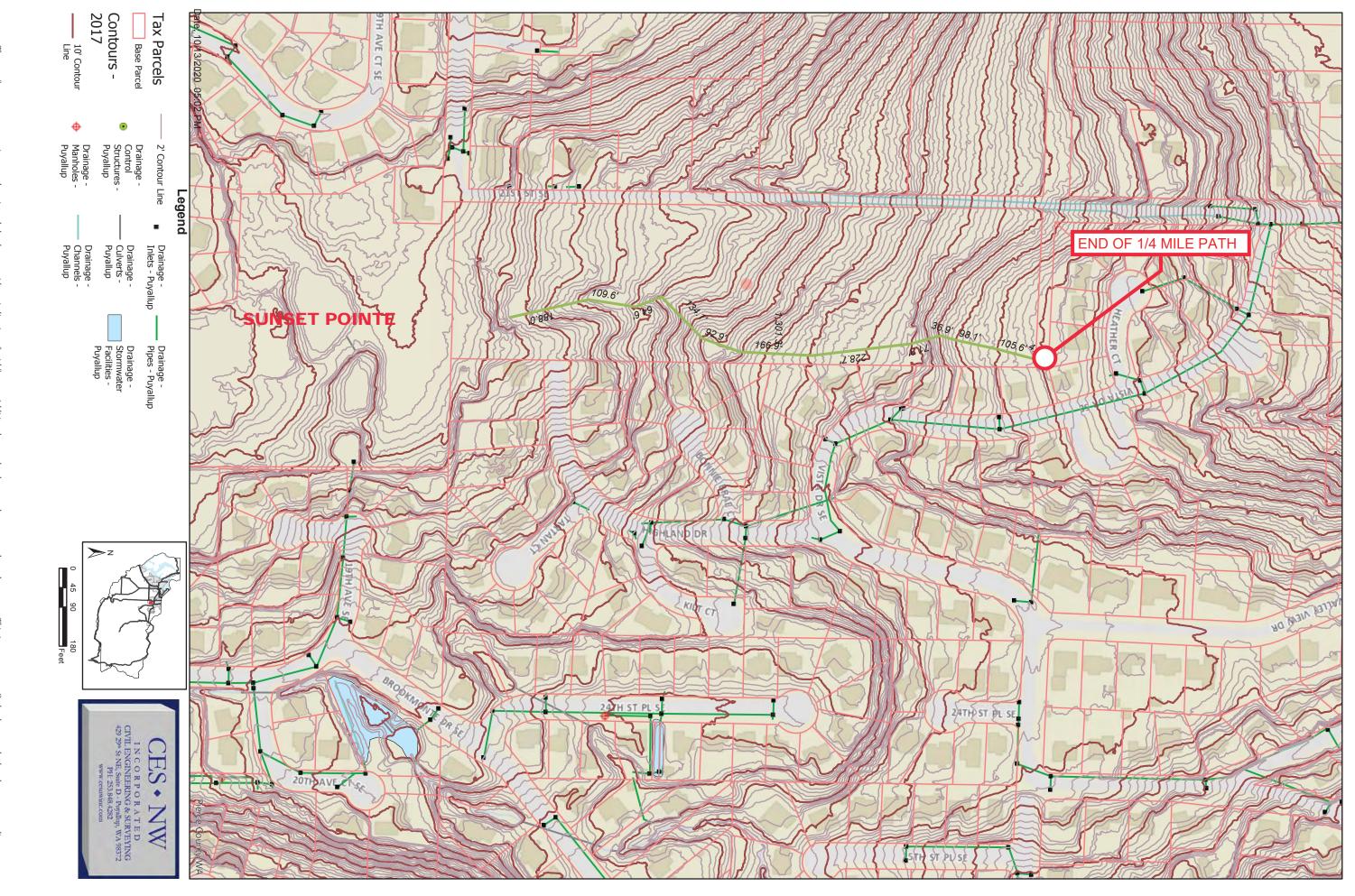

The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data, the profile baseline, in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.


Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

For information on available products associated with this FIRM visit the Map Service Center (MSC) website at http://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the MSC website.

If you have questions about this map, how to order products, or the National Flood Insurance Program in general, please call the FEMA Map Information eXchange (FMIX) at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.



Shaw Road 1/4 Mile Path

The map features are approximate and are intended only to provide an indication of said feature. Additional areas that have not been mapped may be present. This is not a survey. Orthophotos and other data may not align. The County assumes no liability for variations ascertained by actual survey. ALL DATA IS EXPRESSLY PROVIDED 'AS IS' AND 'WITH ALL FAULTS'. The County makes no warranty of fitness for a particular purpose.

Date: 10/13/2020 08:08 PM

The map features are approximate and are The County assumes no liability for varia only to provide an indication of said feature. Additional areas that have not been mapped may be present. This is not a survey. Orthophotos and other data may not align rtained by actual survey. ALL DATA IS EXPRESSLY PROVIDED 'AS IS'AND 'WITH ALL FAULTS'. The County makes no warranty offtiness for a particular purpose.

APPENDIX C

Computer Printouts

WWHM Modeling Results

C-1

STATE HIGHWAY BASIN

WWHM2012 PROJECT REPORT

Project Name: North Basin Dispersion Site Name: South Basin Site Address: 2301 23rd Street SE City : Puyallup, WA Report Date: 5/22/2023 Gage : 40 IN EAST Data Start : 10/01/1901 Data End : 09/30/2059 Precip Scale: 1.00 Version Date: 2021/08/18 Version : 4.2.18

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

Low Flow Threshold for POC 2 : 50 Percent of the 2 Year

High Flow Threshold for POC 2: 50 year

PREDEVELOPED LAND USE

Name : Pre-Dev 19th Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Forest, Mod	1.9
Pervious Total	1.9
Impervious Land Use	acre
Impervious Total	0
Basin Total	1.9

```
Element Flows To:
Surface Interflow
```

Groundwater

Bypass: No

GroundWater: No

Pervious Land Use C, Forest, Mod	$\frac{\text{acre}}{1.9}$
Pervious Total	1.9
Impervious Land Use	acre
Impervious Total	0
Basin Total	1.9

Element Flows To: Surface	Interflow	Groundwater
MITIGATED LAND USE		
Name : Post Dev Bypass: No		
GroundWater: No		

acre

Pervious Land Use

C, Pasture, Flat	1.14
Pervious Total	1.14
Impervious Land Use ROADS FLAT ROOF TOPS FLAT DRIVEWAYS FLAT	<u>acre</u> 0.54 0.551 0.184

Impervious Total1.275Basin Total2.415

Element Flows To: Surface Interflow

Groundwater

Name : Modelling Credits Bypass: No GroundWater: No

<u>Pervious Land Use</u> C, Forest, Mod	<u>acre</u> 2.415
Pervious Total	2.415
Impervious Land Use	acre
Impervious Total	0
Basin Total	2.415

Element Flows To: Surface

Groundwater

ANALYSIS RESULTS

Interflow

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:1.9 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:1.14 Total Impervious Area:1.275

Flow Frequency Return Periods for Predeveloped. POC #1 Return Period Flow(cfs) 2 year 0.043345 0.067109 5 year 10 year 0.080905 25 year 0.095886 50 year 0.105541 100 year 0.113928 Flow Frequency Return Periods for Mitigated. POC #1 Return Period Flow(cfs) 2 year 0.471902 5 year 0.633742 0.75141 10 year 25 year 0.912502 50 year 1.041822 100 year 1.179383

Annual	Peaks for Predevelo		POC #1
Year	Predeveloped	Mitigated	
1902	0.035	0.541	
1903	0.026	0.600	
1904	0.053	0.737	
1905	0.022	0.307	
1906	0.011	0.346	
1907	0.067	0.496	
1908	0.048	0.389	
1909	0.047	0.461	
1910	0.066	0.462	
1911	0.043	0.510	
1912	0.165	0.975	
1913	0.067	0.356	
1914	0.017	1.526	
1915	0.028	0.324	
1916	0.043	0.575	
1917	0.015	0.228	
1918	0.046	0.458	
1919	0.036	0.302	
1920	0.044	0.396	
1921	0.048	0.352	
1922	0.048	0.542	
1923	0.038	0.372	
1924	0.019	0.665	
1925	0.023	0.294	
1926	0.043	0.540	
1927	0.030	0.463	
1928	0.033	0.349	
1929	0.068	0.655	
1930	0.042	0.690	
1931	0.040	0.342	
1932	0.031	0.373	
1933	0.034	0.373	
1934	0.088	0.621	
1935	0.040	0.313	
1936	0.036	0.437	
1937	0.061	0.555	
1938	0.036	0.319	
1939	0.003	0.384	
1940	0.039	0.691	
1941	0.024	0.756	
1942	0.059	0.540	
1943	0.030	0.517	
1944	0.066	0.737	
1945	0.047	0.549	
1946	0.030	0.450	
1947	0.020	0.334	
1948	0.091	0.463	
1949	0.079	0.706	
1950	0.023	0.390	
1951	0.030	0.603	
1050	0.120	0.762	
1952 1953	0.108	0.694	

19760.0480.68919770.0210.27919780.0790.51719790.0230.51119800.0460.51019810.0420.467	19770.0210.27919780.0790.51719790.0230.51119800.0460.51019810.0420.46719820.0200.38019830.0720.53219840.0320.52219850.0510.60519860.0430.31619870.0840.51819880.0510.321	1977 0.021 0.279 1978 0.079 0.517 1979 0.023 0.511 1980 0.046 0.510 1981 0.042 0.467 1982 0.020 0.380 1983 0.072 0.532 1984 0.032 0.522 1985 0.051 0.605 1986 0.043 0.316 1987 0.084 0.518 1988 0.051 0.321 1989 0.047 0.302 1990 0.054 0.396 1991 0.043 0.557 1992 0.056 0.534 1994 0.085 0.439	1977 0.021 0.279 1978 0.079 0.517 1979 0.023 0.511 1980 0.046 0.510 1981 0.042 0.467 1982 0.020 0.380 1983 0.072 0.532 1984 0.032 0.522 1985 0.051 0.605 1986 0.043 0.316 1987 0.084 0.518 1988 0.051 0.321 1989 0.047 0.302 1990 0.056 0.534 1991 0.043 0.557 1992 0.056 0.534 1993 0.058 0.592 1994 0.085 0.439 1995 0.019 0.327 1996 0.095 0.448 1999 0.005 0.519 2000 0.034 0.448 2001 0.019 0.353	1977 0.021 0.279 1978 0.079 0.517 1979 0.023 0.511 1980 0.046 0.510 1981 0.042 0.467 1982 0.020 0.380 1983 0.072 0.532 1984 0.032 0.522 1985 0.051 0.605 1986 0.043 0.316 1987 0.084 0.518 1988 0.051 0.321 1989 0.047 0.302 1990 0.056 0.534 1991 0.043 0.557 1992 0.056 0.534 1993 0.058 0.439 1994 0.085 0.439 1995 0.019 0.327 1996 0.095 0.448 1997 0.038 0.393 1998 0.046 0.488 1999 0.005 0.519 2000 0.034 0.448	1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974	0.038 0.033 0.018 0.057 0.114 0.072 0.021 0.071 0.039 0.019 0.020 0.080 0.023 0.037 0.038 0.037 0.038 0.036 0.055 0.084 0.055 0.084 0.055 0.072 0.043 0.090	0.387 0.348 0.322 0.377 0.499 0.506 0.374 1.040 0.449 0.331 0.970 0.462 0.371 0.534 0.433 0.401 0.463 0.463 0.458 1.403 0.806 0.605 0.672
	19830.0720.53219840.0320.52219850.0510.60519860.0430.31619870.0840.51819880.0510.321	19830.0720.53219840.0320.52219850.0510.60519860.0430.31619870.0840.51819880.0510.32119890.0470.30219900.0540.39619910.0430.55719920.0560.53419930.0850.439	1983 0.072 0.532 1984 0.032 0.522 1985 0.051 0.605 1986 0.043 0.316 1987 0.084 0.518 1988 0.051 0.321 1989 0.047 0.302 1990 0.054 0.396 1991 0.043 0.557 1992 0.056 0.534 1993 0.058 0.592 1994 0.085 0.439 1995 0.019 0.327 1996 0.095 0.448 1997 0.038 0.393 1998 0.046 0.488 1999 0.005 0.519 2000 0.034 0.448 2001 0.019 0.353	1983 0.072 0.532 1984 0.032 0.522 1985 0.051 0.605 1986 0.043 0.316 1987 0.084 0.518 1988 0.051 0.321 1989 0.047 0.302 1990 0.054 0.396 1991 0.043 0.557 1992 0.056 0.534 1993 0.058 0.592 1994 0.085 0.439 1995 0.019 0.327 1996 0.095 0.448 1997 0.038 0.393 1998 0.046 0.488 1999 0.005 0.519 2000 0.034 0.448 2001 0.019 0.353 2002 0.069 0.692 2003 0.053 0.385 2004 0.047 0.552 2005 0.099 1.076 2006 0.027 0.495 2007 0.029 0.562	1978 1979 1980 1981	0.079 0.023 0.046 0.042	0.517 0.511 0.510 0.467

Stream Protection Duration

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated 1 0.1651 1.5257 2 0.1252 1.4028 3 0.1205 1.0760

4 5 6 7 8 9 10 11 12 13 14 15	0.1197 0.1180 0.1141 0.1076 0.1026 0.1002 0.0992 0.0945 0.0913 0.0895 0.0882 0.0879	1.0396 1.0282 0.9746 0.9700 0.9429 0.8559 0.8059 0.7945 0.7945 0.7622 0.7560 0.7485 0.7374
16 17	0.0849 0.0845	0.7368
18	0.0840	0.7061
19	0.0802	0.6989
20	0.0794	0.6948
20 21 22	0.0789 0.0722	0.6938
22 23 24	0.0719 0.0715	0.6910
25	0.0715	0.6903
26	0.0708	0.6827
27	0.0698	0.6719
28	0.0692	0.6696
29	0.0680	0.6649
30	0.0672	0.6554
31	0.0665	0.6289
32	0.0664	0.6206
33	0.0657	0.6053
34	0.0651	0.6046
35	0.0645	0.6027
36	0.0610	0.6027
37	0.0593	0.6005
38	0.0591	0.6000
39 40	0.0590 0.0577	0.5922
41	0.0568	0.5628
42	0.0559	0.5619
43	0.0555	0.5578
44	0.0552	0.5574
45	0.0536	0.5550
46	0.0533	0.5524
47	0.0533	0.5514
48	0.0526	0.5493
49	0.0511	0.5493
50	0.0511	0.5421
51	0.0506	0.5413
52	0.0497	0.5405
53	0.0496	0.5402
54	0.0484	0.5345
55 56	0.0481 0.0480	0.5339
57	0.0480	0.5221
58	0.0479	0.5188
59	0.0476	0.5182
60	0.0475	0.5173

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77	0.0474 0.0474 0.0473 0.0470 0.0469 0.0460 0.0457 0.0457 0.0457 0.0452 0.0445 0.0445 0.0443 0.0437 0.0435 0.0431 0.0430 0.0430 0.0432	0.5169 0.5153 0.5144 0.5114 0.5101 0.5097 0.5067 0.5063 0.4991 0.4970 0.4959 0.4949 0.4881 0.4756 0.4724 0.4716
78 79 80	0.0428 0.0427 0.0426	0.4668 0.4632 0.4629
81 82	0.0425	0.4627 0.4627
83 84	0.0404 0.0403	0.4621 0.4620
85	0.0396	0.4607
86 87	0.0393 0.0388	0.4594 0.4582
88	0.0381	0.4577
89 90	0.0381 0.0379	0.4577 0.4532
91	0.0377	0.4520
92 93	0.0375 0.0370	0.4502 0.4490
94	0.0366	0.4489
95 96	0.0364	0.4488
96 97	0.0363 0.0359	0.4484 0.4481
98	0.0358	0.4400
99 100	0.0357 0.0356	0.4389 0.4380
101	0.0348	0.4368
102 103	0.0342 0.0341	0.4353 0.4344
103	0.0336	0.4333
105 106	0.0333	0.4260 0.4228
106 107	0.0333 0.0328	0.4228
108	0.0324	0.4011
109 110	0.0317 0.0309	0.3963 0.3958
111	0.0305	0.3929
112 113	0.0303 0.0303	0.3900 0.3893
114	0.0299	0.3875
115 116	0.0299 0.0290	0.3847 0.3846
117	0.0286	0.3840

118 119 120 121 122	0.0281 0.0271 0.0270 0.0269 0.0268	0.3840 0.3815 0.3799 0.3774 0.3759
123 124	0.0265 0.0265	0.3755 0.3743
125	0.0263	0.3734
126	0.0258	0.3731
127	0.0252	0.3730
128	0.0245	0.3722
129	0.0244	0.3709
130	0.0240	0.3707
131	0.0238	0.3586
132	0.0234	0.3556
133	0.0234	0.3533
134	0.0233	0.3523
135	0.0232	0.3519
136	0.0231	0.3492
137	0.0220	0.3484
138 139	0.0214 0.0212	0.3468 0.3457
139	0.0212	0.3437
140	0.0201	0.3338
142	0.0198	0.3309
143	0.0196	0.3274
144	0.0193	0.3236
145	0.0189	0.3222
146	0.0187	0.3208
147	0.0186	0.3191
148	0.0186	0.3157
149	0.0176	0.3125
150	0.0174	0.3067
151	0.0172	0.3022
152	0.0149	0.3016
153	0.0146	0.2997
154 155	0.0143 0.0114	0.2938 0.2787
155	0.0014	0.2787
158	0.0039	0.2334
157	0.0030	0.2279
	0.0000	· •

Stream Protection Duration POC #1 The Facility FAILED

Facility FAILED duration standard for 1+ flows.

Flow(cfs) Predev Mit Percentage Pass/Fail 0.0217 55678 381710 685 Fail

0.0225	51273	371295	724	Fail
0.0234	47185	361545	766	Fail
0.0242	43462	352237	810	Fail
0.0251	40105	343373	856	Fail
0.0259	37190	335063	900	Fail
0.0268	34431	326864	949	Fail

0.0276	31889	318997	1000	Fail
0.0284	29551	311739	1054	Fail
0.0293	27495	304704	1108	Fail
0.0301	25634	297778	1161	Fail
0.0310	23867	291130	1219	Fail
0.0318	22304	284870	1277	Fail
0.0327	20892	278665	1333	Fail
0.0335	19551	272460	1393	Fail
0.0344	18288	266699	1458	Fail
0.0352	17102	261048	1526	Fail
0.0361	15961	255563	1601	Fail
0.0369	14903	250411	1680	Fail
0.0378	13955	245480	1759	Fail
0.0386	13063	240439	1840	Fail
0.0395	12271	235564	1919	Fail
0.0403	11518	230854	2004	Fail
0.0412	10787	226201	2096	Fail
0.0420	10083	221824	2199	Fail
0.0429	9413	217503	2310	Fail
0.0437	8792	213348	2426	Fail
0.0445	8233	209304	2542	Fail
0.0454	7728	205204	2655	Fail
0.0462	7224	201271	2786	Fail
0.0471 0.0479	6781 6399	197392 193625	2910 3025	Fail
0.0479	6094	193623	3025	Fail Fail
0.0488	5817	186589	3207	Fail
0.0505	5512	183044	33207	Fail
0.0513	5230	179664	3435	Fail
0.0522	4963	176340	3553	Fail
0.0530	4739	173182	3654	Fail
0.0539	4485	169969	3789	Fail
0.0547	4292	166867	3887	Fail
0.0556	4097	163764	3997	Fail
0.0564	3869	160828	4156	Fail
0.0573	3648	157836	4326	Fail
0.0581	3474	154956	4460	Fail
0.0589	3312	152130	4593	Fail
0.0598	3162	149471	4727	Fail
0.0606	3018	146812	4864	Fail
0.0615	2916	144263	4947	Fail
0.0623	2791	141715	5077	Fail
0.0632	2677	139222	5200	Fail
0.0640	2526	136729	5412	Fail
0.0649	2410	134291	5572	Fail
0.0657	2302	131964	5732	Fail
0.0666 0.0674	2200	129582	5890	Fail Fail
0.0674	2097 1978	127366 125095	6073 6324	Fail
0.0691	1875	122879	6553	Fail
0.0700	1765	120718	6839	Fail
0.0708	1683	118613	7047	Fail
0.0717	1594	116508	7309	Fail
0.0725	1524	114569	7517	Fail
0.0733	1458	112574	7721	Fail
0.0742	1378	110635	8028	Fail
0.0750	1306	108696	8322	Fail

0.0759	1248	106812	8558	Fail
0.0767	1191	104984	8814	Fail
0.0776	1135	103156	9088	Fail
0.0784	1083	101383	9361	Fail
0.0793	1032	99610	9652	Fail
0.0801	981	97838	9973	Fail
0.0810	929	96120	10346	Fail
0.0818	869	94403	10863	Fail
0.0827	819	92796	11330	Fail
0.0835	770	91189	11842	Fail
0.0844	708	89638	12660	Fail
0.0852	663	88142	13294	Fail
0.0861	626	86591	13832	Fail
0.0869	583	85095	14596	Fail
0.0878	539	83600	15510	Fail
0.0886	500	82270	16454	Fail
0.0894	456	80830	17725	Fail
0.0903	416	79500	19110	Fail
0.0911	380	78226	20585	Fail
0.0920	351	76841	21892	Fail
0.0928	318	75566	23762	Fail
0.0937	296	74292	25098	Fail
0.0945	276	72963	26435	Fail
0.0954	263	71744	27279	Fail
0.0962	246	70470	28646	Fail
0.0971	231	69251	29978	Fail
0.0979	216	68143	31547	Fail
0.0988	203	66979	32994	Fail
0.0996	180	65871	36595	Fail
0.1005	157	64819	41285	Fail
0.1013	141	63766	45224	Fail
0.1022	127	62714	49381	Fail
0.1030	113	61606	54518	Fail
0.1038	104	60497	58170	Fail
0.1047	99	59556	60157	Fail
0.1055	89	58503	65733	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow. The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0.2178 acre-feet On-line facility target flow: 0.2341 cfs. Adjusted for 15 min: 0.2341 cfs. Off-line facility target flow: 0.134 cfs. Adjusted for 15 min: 0.134 cfs.

LID Report

LID Techniq	lue	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent	Water Quality	Percent	Comment			
		Treatment?	Needs	Through	Volume	Volume

Volume	Water Quality	7			
Infiltrated	Treated	Treatment	Facility	(ac-ft.)	Infiltration
	iicaccu	(ac-ft)	(ac-ft)		Credit
Total Volume Infiltrated		0.00	0.00	0.00	0.00
0.00 0%	No Treat. C	Credit			
Compliance with LID Stand					
Duration Analysis Result	= Falled				

Stream Protection Duration

Predeveloped Landuse Totals for POC #2 Total Pervious Area:1.9 Total Impervious Area:0

Mitigated Landuse Totals for POC #2 Total Pervious Area:2.415 Total Impervious Area:0

Flow Frequency	Return	Periods for	Predeveloped.	POC #2
Return Period		Flow(cfs)		
2 year		0.043345		
5 year		0.067109		
10 year		0.080905		
25 year		0.095886		
50 year		0.105541		
100 year		0.113928		
Flow Frequency	Poturn	Porioda for	Nitimated T	000 #2
rrow rrequency	Recurn	Ferrous Ior	Mitigated. P	/UC #Z
Return Period	Keturn	Flow(cfs)	Mitigated. P	OC #2
	Recurn		Mitigated. P	OC #2
Return Period	Ke turn	Flow(cfs)	Mitigated. P	UC #2
Return Period 2 year	Neturn	Flow(cfs) 0.055093	Mitigated. P	OC #2
<u>Return Period</u> 2 year 5 year	Neturn	Flow(cfs) 0.055093 0.0853	Mitigated. P	OC #2
<u>Return Period</u> 2 year 5 year 10 year	Ketulii	Flow(cfs) 0.055093 0.0853 0.102835	Mitigated. P	UC #2
Return Period 2 year 5 year 10 year 25 year	Ketulii	Elow(cfs) 0.055093 0.0853 0.102835 0.121876	Mitigated. F	OC #2

Stream Pro	tection Duration		
Annual Pea	ks for Predevelop	ed and Mitigated.	POC #2
Year	Predeveloped	Mitigated	
1902	0.035	0.044	
1903	0.026	0.034	
1904	0.053	0.068	
1905	0.022	0.028	
1906	0.011	0.015	
1907	0.067	0.085	
1908	0.048	0.061	
1909	0.047	0.060	
1910	0.066	0.084	
1911	0.043	0.055	
1912	0.165	0.210	
1913	0.067	0.085	

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927	0.017 0.028 0.043 0.015 0.046 0.036 0.044 0.048 0.048 0.048 0.048 0.038 0.019 0.023 0.043 0.043 0.030	0.022 0.036 0.054 0.019 0.058 0.045 0.055 0.061 0.061 0.048 0.024 0.030 0.054 0.039
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940	0.033 0.068 0.042 0.040 0.031 0.034 0.088 0.040 0.036 0.061 0.036 0.003 0.003 0.003	0.042 0.086 0.054 0.051 0.039 0.044 0.112 0.051 0.046 0.078 0.045 0.004 0.004
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954	0.024 0.059 0.030 0.066 0.047 0.030 0.020 0.091 0.079 0.023 0.030 0.120 0.108 0.038	0.030 0.075 0.038 0.083 0.060 0.038 0.025 0.116 0.101 0.029 0.038 0.152 0.137 0.048
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970	0.033 0.018 0.057 0.114 0.072 0.021 0.071 0.039 0.019 0.020 0.080 0.023 0.023 0.037 0.038 0.036 0.055	0.042 0.022 0.145 0.092 0.027 0.091 0.049 0.024 0.025 0.102 0.030 0.047 0.048 0.045 0.070

2015 0.037 0.046	1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013	0.084 0.055 0.072 0.043 0.090 0.048 0.021 0.079 0.023 0.046 0.042 0.020 0.072 0.032 0.051 0.043 0.051 0.043 0.051 0.043 0.055 0.053 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.059 0.038 0.046 0.050 0.038 0.046 0.050 0.038 0.046 0.005 0.038 0.046 0.005 0.038 0.046 0.005 0.034 0.019 0.069 0.053 0.047 0.029 0.027 0.029 0.027 0.029 0.026 0.024 0.021	0.107 0.071 0.091 0.055 0.114 0.027 0.100 0.029 0.058 0.053 0.026 0.091 0.041 0.065 0.054 0.055 0.065 0.060 0.068 0.055 0.071 0.065 0.071 0.073 0.108 0.025 0.071 0.073 0.025 0.071 0.073 0.025 0.071 0.073 0.025 0.071 0.073 0.025 0.071 0.073 0.025 0.071 0.073 0.025 0.071 0.073 0.025 0.071 0.073 0.025 0.071 0.073 0.025 0.071 0.073 0.025 0.071 0.073 0.025 0.071 0.073 0.025 0.071 0.058 0.024 0.034 0.030 0.030 0.034 0.034 0.034
	2009	0.030	0.038
	2010	0.026	0.033
	2011	0.024	0.030
	2012	0.036	0.046
	2013	0.027	0.034
	2014	0.019	0.024

2028 2029 2030 2031 2032	0.023 0.048 0.088 0.029 0.017	0.030 0.061 0.112 0.037 0.022
2033 2034	0.026 0.026	0.034 0.033
2034	0.100	0.127
2036	0.053	0.068
2037	0.014	0.018
2038	0.047	0.060
2039	0.006	0.007
2040	0.025	0.032
2041	0.034	0.043
2042	0.103	0.130
2043	0.048	0.062
2044	0.065	0.082
2045 2046	0.043 0.051	0.055 0.064
2040	0.037	0.048
2048	0.050	0.040
2049	0.044	0.056
2050	0.032	0.040
2051	0.045	0.057
2052	0.027	0.034
2053	0.048	0.060
2054	0.059	0.075
2055	0.024	0.031
2056	0.021	0.027
2057	0.033	0.042
2058 2059	0.040 0.070	0.050 0.089
2039	0.070	0.009

Stream Protection Duration Ranked Annual Peaks for Predeveloped and Mitigated. POC #2 Rank Predeveloped Mitigated 1 0.1651 0.2098 2 0.1252 0.1591 3 0.1532 0.1205 4 0.1197 0.1522 5 0.1180 0.1499 6 0.1141 0.1450 7 0.1076 0.1367 8 0.1026 0.1304 9 0.1002 0.1273 10 0.0992 0.1261 11 0.0945 0.1201 12 0.0913 0.1161 13 0.0895 0.1138 14 0.0882 0.1120 15 0.0879 0.1117 0.1079 16 0.0849 17 0.1074 0.0845 18 0.0840 0.1068 19 0.0802 0.1020 20 0.0794 0.1009

$\begin{array}{c} 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 9\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 9\\ 70\\ 1\\ 72\end{array}$	0.0789 0.0712 0.0715 0.0715 0.0715 0.0708 0.0698 0.0692 0.0680 0.0672 0.0665 0.0664 0.0657 0.0651 0.0645 0.0610 0.0593 0.0591 0.0590 0.0577 0.0568 0.0559 0.0552 0.0552 0.0552 0.0533 0.0533 0.0526 0.0511 0.0511 0.0506 0.0497 0.0496 0.0481 0.0481 0.0481 0.0481 0.0481 0.0481 0.0481 0.0481 0.0481 0.0481 0.0473 0.0475 0.0474 0.0474 0.0473 0.0475 0.0475 0.0475 0.0475 0.0457 0.0457 0.0443	0.1003 0.0918 0.0914 0.0909 0.0908 0.0900 0.0887 0.0879 0.0865 0.0854 0.0844 0.0844 0.0835 0.0827 0.0820 0.0776 0.0754 0.0752 0.0750 0.0750 0.0750 0.0750 0.0750 0.0710 0.0705 0.0710 0.0705 0.0710 0.0705 0.0710 0.0681 0.0678 0.0678 0.0669 0.0650 0.0643 0.0643 0.0643 0.0611 0.0610 0.0610 0.0610 0.0610 0.0610 0.0610 0.0610 0.0610 0.0610 0.0605 0.0605 0.0605 0.0605 0.0605 0.0604 0.0581 0.0581 0.0581 0.0565 0.0565 0.0563
69 70 71 72 73 74 75 76	0.0457 0.0452 0.0445 0.0443 0.0437 0.0435 0.0431 0.0430	0.0581 0.0575 0.0565 0.0563 0.0555 0.0553 0.0548 0.0547
77	0.0430	0.0546

78	0.0428	0.0544
79	0.0427	0.0543
80	0.0426	0.0542
81	0.0425	0.0540
82	0.0420	0.0534
83	0.0404	0.0514
84	0.0403	0.0512
85	0.0396	0.0504
86	0.0393	0.0499
87	0.0388	0.0493
88	0.0381	0.0484
89	0.0379	0.0484
90	0.0377	0.0484
91	0.0375	0.0481
92	0.0375	0.0481
93	0.0375	0.0480
94	0.0370	0.0476
95	0.0366	0.0470
96	0.0363	0.0465
97	0.0359	0.0462
88	0.0358	0.0454
98	0.0358	0.0454
99	0.0357	0.0454
100	0.0356	0.0453
101	0.0348	0.0442
102	0.0342	0.0435
103	0.0341	0.0434
104	0.0336	0.0427
105	0.0333	0.0423
106	0.0333	0.0423
107	0.0328	0.0416
108	0.0324	0.0412
109	0.0317	0.0403
110	0.0309	0.0392
111	0.0305	0.0387
112	0.0303	0.0385
113	0.0303	0.0385
114	0.0299	0.0380
115	0.0299	0.0380
116	0.0290	0.0369
117	0.0286	0.0363
118	0.0281	0.0357
119	0.0271	0.0344
120	0.0270	0.0343
121	0.0269	0.0342
122	0.0268	0.0341
123	0.0265	0.0337
124	0.0265	0.0337
125	0.0263	0.0335
126	0.0258	0.0329
127	0.0252	0.0320
128	0.0245	0.0311
129	0.0244	0.0311
130	0.0240	0.0305
131	0.0238	0.0303
132	0.0234	0.0298
133 134	0.0234 0.0233	0.0298

135 136 137 138 139	0.0232 0.0231 0.0220 0.0214 0.0212	0.0295 0.0293 0.0280 0.0272 0.0270
140	0.0210	0.0270
141	0.0201	0.0256
142	0.0198	0.0252
143	0.0196	0.0249
144	0.0193	0.0245
145	0.0189	0.0240
146	0.0187	0.0238
147	0.0186	0.0237
148	0.0186	0.0236
149	0.0176	0.0223
150	0.0174	0.0221
151	0.0172	0.0219
152	0.0149	0.0190
153	0.0146	0.0186
154	0.0143	0.0181
155	0.0114	0.0145
156	0.0059	0.0075
157	0.0046	0.0059
158	0.0030	0.0038

Stream Protection Duration POC #2 The Facility FAILED

Facility FAILED duration standard for 1+ flows.

Flow(cfs)	Predev	Mit Perc	centage	Pass/Fail
0.0217	55678	92519	166	Fail
0.0225	51273	85760	167	Fail
0.0234	47185	79389	168	Fail
0.0242	43462	73683	169	Fail
0.0251	40105	68475	170	Fail
0.0259	37190	63822	171	Fail
0.0268	34431	59445	172	Fail
0.0276	31889	55456	173	Fail
0.0284	29551	51944	175	Fail
0.0293	27495	48692	177	Fail
0.0301	25634	45595	177	Fail
0.0310	23867	42753	179	Fail
0.0318	22304	40171	180	Fail
0.0327	20892	37805	180	Fail
0.0335	19551	35595	182	Fail
0.0344	18288	33567	183	Fail
0.0352	17102	31551	184	Fail
0.0361	15961	29678	185	Fail
0.0369	14903	28060	188	Fail
0.0378	13955	26520	190	Fail
0.0386	13063	25124	192	Fail
0.0395	12271	23767	193	Fail
0.0403	11518	22520	195	Fail
0.0412	10787	21396	198	Fail

0.0420 0.0429 0.0437 0.0445 0.0454 0.0454 0.0462 0.0471 0.0479 0.0488 0.0496	10083 9413 8792 8233 7728 7224 6781 6399 6094 5817	20288 19279 18282 17357 16443 15545 14759 14027 13318 12665	201 204 207 210 212 215 217 219 218 217	Fail Fail Fail Fail Fail Fail Fail Fail
0.0505 0.0513 0.0522 0.0530 0.0539 0.0547 0.0556 0.0564 0.0573 0.0581 0.0589	5512 5230 4963 4739 4485 4292 4097 3869 3648 3474 3312	12027 11457 10881 10327 9762 9257 8787 8321 7922 7534 7147	218 219 217 217 215 214 215 214 215 217 216 215	Fail Fail Fail Fail Fail Fail Fail Fail
0.0598 0.0606 0.0615 0.0623 0.0632 0.0640 0.0649 0.0657 0.0666 0.0674	3162 3018 2916 2791 2677 2526 2410 2302 2200 2097	6798 6498 6244 6011 5778 5551 5324 5105 4908 4730	214 215 214 215 215 219 220 221 223 225	Fail Fail Fail Fail Fail Fail Fail Fail
0.0683 0.0691 0.0700 0.0708 0.0717 0.0725 0.0733 0.0742 0.0750 0.0759	1978 1875 1765 1683 1594 1524 1458 1378 1306 1248	4532 4360 4226 4053 3877 3700 3549 3415 3298 3180	229 232 239 240 243 242 243 247 252 254	Fail Fail Fail Fail Fail Fail Fail Fail
0.0767 0.0776 0.0784 0.0793 0.0801 0.0810 0.0818 0.0827 0.0835 0.0844	1191 1135 1083 1032 981 929 869 819 770 708	3064 2974 2880 2786 2695 2572 2482 2390 2303 2225	257 262 265 269 274 276 285 291 299 314	Fail Fail Fail Fail Fail Fail Fail Fail
0.0852 0.0861 0.0869 0.0878 0.0886 0.0894	663 626 583 539 500 456	2152 2057 1967 1884 1794 1730	324 328 337 349 358 379	Fail Fail Fail Fail Fail Fail

0.0903	416	1657	398	Fail
0.0911	380	1590	418	Fail
0.0920	351	1532	436	Fail
0.0928	318	1481	465	Fail
0.0937	296	1426	481	Fail
0.0945	276	1359	492	Fail
0.0954	263	1306	496	Fail
0.0962	246	1261	512	Fail
	231	1209	523	Fail
0.0979	216	1174	543	Fail
	203	1127	555	Fail
0.0996	180 157	1086	603 667	Fail Fail
0.1013	141	1007	714	Fail
0.1022	127	967	761	Fail
	113	929	822	Fail
0.1038	104	882	848	Fail
0.1047	99	840	848	Fail
0.1055	89	797	895	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow. The development has an increase in flow durations for more than 50% of the flows for the range of the

duration analysis.

Water Quality BMP Flow and Volume for POC #2 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Techniq	ue	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent	Water Quality	Percent	Comment			
		Treatment?	Needs	Through	Volume	Volume
Volume		Water Quality				
			Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated		Treated				
			(ac-ft)	(ac-ft)		Credit
Total Volume	e Infiltrated		0.00	0.00	0.00	0.00
0.00	08	No Treat. C:	redit			
Compliance	with LID Standa	rd 8				
Duration An	alysis Result =	Failed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation.

In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

RECHARGE BASIN

WWHM2012 PROJECT REPORT

```
Project Name: Wetland 2023.05.19
Site Name: Sunset Pointe
Site Address: 2301 23rd Ave Ne
City : Puyallup
Report Date: 5/22/2023
Gage : 40 IN EAST
Data Start : 10/01/1901
Data End : 09/30/2059
Precip Scale: 1.00
Version Date: 2021/08/18
Version : 4.2.18
```

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name: Building Roof AreasBypass: NoImpervious Land Use
ROOF TOPS FLATacre
0.383

Element Flows To: Outlet 1 Outlet 2 Pasture

Name : Pasture Bypass: No

GroundWater: No

Pervious Land Use C, Pasture, Mod <u>acre</u> 2.026

Element	: Flows	To:
Surface	9	
Buffer	Area	

Interflow Buffer Area **Groundwater** Buffer Area

Name: GravelBypass:NoImpervious Land UseacreROADS FLAT0.272

Element Flows To: Outlet 1 Buffer Area	Outlet 2	
Name : Northside of Bypass: No	Bufffer	
GroundWater: No		
Pervious Land Use C, Pasture, Mod	<u>acre</u> .964	
Element Flows To:		
Surface Buffer Area	Interflow Buffer Area	Groundwater Buffer Area
Name : Buffer Area Bypass: No		
GroundWater: No		
Pervious Land Use C, Pasture, Mod	<u>acre</u> 2.38	
Element Flows To: Surface	Interflow	Groundwater
MITIGATED LAND USE		
Name : Buffer Area Bypass: No		
GroundWater: No		
Pervious Land Use C, Pasture, Mod	<u>acre</u> 2.38	
Element Flows To: Surface	Interflow	Groundwater

Name : Rear Yards of Lots 1, 3-8 Bypass: No

GroundWater: No

Pervious Land Use C, Pasture, Mod	acre .71	
Element Flows To:		
Surface	Interflow	Groundwater
Buffer Area	Buffer Area	Buffer Area
Name : Gravel Path Bypass: No	(north of Buffer)	
Impervious Land Use	acre	
ROADS MOD	0.023	
Element Flows To: Outlet 1 Buffer Area	Outlet 2	
Name : Roof Area lo Bypass: No Impervious Land Use ROOF TOPS FLAT	ets 9-15 <u>acre</u> 0.482	
Element Flows To: Outlet 1 Lawn Lots 9-15	Outlet 2	
Name : Lawn Lots 9- Bypass: No	15	
GroundWater: No		
Pervious Land Use C, Pasture, Mod	<u>acre</u> .543	
Element Flows To:		
Surface	Interflow	Groundwater
Forest Lots 9-15	Forest Lots 9-15	Forest Lots 9-15
Name : Forest Lots Bypass: No	9-15	
GroundWater: No		
<u>Pervious Land Use</u> C, Forest, Mod	<u>acre</u> .394	

Element Flows To:		
Surface	Interflow	Groundwater
Buffer Area	Buffer Area	Buffer Area
Name : Gravel Pat	th South of Buffer	
Bypass: No		
Impervious Land Use		
ROADS MOD	0.053	
Element Flows To:		
Outlet 1	Outlet 2	
Buffer Area		
Name : Tract B Fo Bypass: No	prest	
GroundWater: No		
GIOUNUMACEI. NO		
Pervious Land Use	acre	
C, Forest, Mod	. 446	
Element Flows To:		
Surface Buffer Area	Interflow Buffer Area	Groundwater Buffer Area
Buller Area	Buller Area	Buller Area
Name : Roof Lots	16-18	
Bypass: No		
Impervious Land Use		
ROOF TOPS FLAT	0.207	
Element Flows To:		
Outlet 1	Outlet 2	
Buffer Area		
	ANALYSIS RESULTS	
St	ream Protection Durati	ion
Predeveloped Landu	se Totals for DOC #1	

Predeveloped Landuse Totals for POC #1 Total Pervious Area:5.37 Total Impervious Area:0.655 Mitigated Landuse Totals for POC #1 Total Pervious Area:4.473 Total Impervious Area:0.765

Flow Frequency R	eturn	Periods	for	Predevelope	d. POC #1
Return Period		Flow(cfs	3)		
2 year		0.1128	372		
5 year		0.1936	571		
10 year		0.2645	542		
25 year		0.3775	53		
50 year		0.4812	219		
100 year		0.6038	397		
Flow Frequency R	eturn	Periods	for	Mitigated.	POC #1
Return Period		Flow(cfs	3)		
2 year		0.0977	715		
5 year		0.1657	74		
10 year		0.2248	384		
25 year		0.3185	502		
50 year		0.4038	377		
100 year		0.5043	383		

Stream Prote	ction Duration		
Annual Peaks	for Predeveloped	d and Mitigated.	POC #1
Year	Predeveloped	Mitigated	
1902	0.095	0.078	
1903	0.081	0.069	
1904	0.332	0.259	
1905	0.075	0.066	
1906	0.031	0.028	
1907	0.156	0.139	
1908	0.110	0.097	
1909	0.095	0.088	
1910	0.147	0.135	
1911	0.115	0.100	
1912	1.091	0.879	
1913	0.186	0.157	
1914	0.049	0.042	
1915	0.094	0.084	
1916	0.112	0.094	
1917	0.041	0.037	
1918	0.139	0.120	
1919	0.116	0.096	
1920	0.113	0.101	
1921	0.131	0.114	
1922	0.179	0.154	
1923	0.108	0.094	
1924	0.065	0.055	
1925	0.072	0.061	
1926	0.101	0.091	
1927	0.067	0.060	
1928	0.085	0.074	
1929	0.148	0.137	

1930	0.097	0.086
1931	0.098	0.087
1932	0.086	0.075
1933	0.112	0.093
1934	0.268	0.227
1935	0.111	0.099
1936	0.109	0.092
1937	0.147	0.137
1938	0.117	0.096
1939	0.024	0.022
1940	0.120	0.106
1941	0.051	0.047
1942	0.195	0.167
1943	0.086	0.075
1944	0.225	0.200
1945	0.120	0.102
1946	0.106	0.096
1947	0.060	0.051
1948	0.202	0.177
1949	0.206	0.179
1950	0.068	0.060
1951	0.082	0.070
1952	0.585	0.475
1953	0.282	0.253
1954	0.108	0.092
1955	0.083	0.071
1956	0.056	0.048
1957	0.144	0.122
1958	0.299	0.254
1950 1959 1960 1961 1962 1963 1964 1965	0.250 0.055 0.258 0.102 0.063 0.104 0.197	0.221 0.049 0.212 0.086 0.054 0.087 0.170
1966	0.061	0.054
1967	0.134	0.114
1968	0.122	0.103
1969	0.091	0.080
1970	0.138	0.123
1971	0.214	0.178
1972	0.142	0.125
1973	0.210	0.178
1974	0.127	0.113
1975	0.351	0.310
1976	0.225	0.185
1977	0.062	0.052
1978	0.203	0.179
1979	0.069	0.058
1980	0.124	0.110
1981	0.111	0.097
1982	0.060	0.051
1983	0.194	0.160
1984	0.097	0.087
1985	0.205	0.165
1986	0.119	0.103

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004	0.264 0.104 0.114 0.136 0.112 0.122 0.140 0.191 0.069 0.278 0.080 0.126 0.045 0.116 0.045 0.116 0.047 0.353 0.144 0.105	0.226 0.092 0.098 0.114 0.096 0.112 0.121 0.166 0.060 0.236 0.073 0.113 0.037 0.099 0.044 0.285 0.122 0.098
2005	0.497	0.406
2006	0.074	0.064
2007	0.081	0.073
2008	0.122	0.101
2009	0.091	0.076
2010	0.075	0.063
2011	0.059	0.052
2012	0.109	0.102
2013	0.072	0.061
2014	0.064	0.055
2015	0.237	0.198
2016	0.043	0.039
2017	0.135	0.119
2018	0.360	0.301
2019	0.397	0.337
2020	0.113	0.101
2021	0.137	0.115
2022	0.068	0.061
2023	0.120	0.107
2024	0.936	0.762
2025	0.133	0.109
2026	0.175	0.154
2027	0.090	0.074
2028	0.065	0.058
2029	0.110	0.096
2030	0.198	0.174
2031	0.073	0.062
2032	0.052	0.047
2033	0.075	0.065
2034	0.081	0.070
2035	0.247	0.217
2036	0.129	0.115
2037	0.045	0.039
2038	0.145	0.130
2039	0.029	0.024
2040	0.091	0.077
2041	0.090	0.076
2042	0.264	0.231
2043	0.146	0.127

2044	0.167	0.135
2045	0.119	0.105
2046	0.151	0.124
2047	0.105	0.093
2048	0.129	0.109
2049	0.104	0.094
2050	0.076	0.070
2051	0.172	0.154
2052	0.084	0.071
2053	0.141	0.119
2054	0.351	0.270
2055	0.066	0.060
2056	0.070	0.057
2057	0.104	0.088
2058	0.111	0.092
2059	0.184	0.165

Stream Protection Duration Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Ranked	Annual Peaks for	Predeveloped and Mitigated.	POC
Rank	Predeveloped	Mitigated	
1	1.0909	0.8794	
2	0.9355	0.7616	
3	0.5848	0.4746	
4	0.4975	0.4060	
5	0.3967	0.3368	
6	0.3602	0.3102	
7	0.3530	0.3011	
8	0.3509	0.2849	
9	0.3508	0.2704	
10	0.3316	0.2594	
11	0.2990	0.2544	
12	0.2818	0.2533	
13	0.2780	0.2355	
14	0.2678	0.2312	
15	0.2643	0.2265	
16	0.2638	0.2259	
17	0.2582	0.2208	
18	0.2499	0.2169	
19	0.2474	0.2120	
20	0.2371	0.1996	
21	0.2248	0.1979	
22	0.2246	0.1849	
23	0.2141	0.1795	
24	0.2099	0.1788	
25	0.2064	0.1783	
26	0.2050	0.1782	
27	0.2032	0.1767	
28	0.2015	0.1745	
29	0.1983	0.1704	
30	0.1971	0.1666	
31	0.1952	0.1657	
32	0.1941	0.1653	
33	0.1907	0.1647	
34	0.1864	0.1595	
35	0.1839	0.1572	
36	0.1793	0.1540	

54 0.1374 0.1188 55 0.1355 0.1152 56 0.1350 0.1146 57 0.1343 0.1143 58 0.1334 0.1142 59 0.1311 0.1139 60 0.1294 0.1132 61 0.1287 0.1132 62 0.1272 0.1125 63 0.1260 0.1098 64 0.1245 0.1092 65 0.1218 0.1067 67 0.1216 0.1057 68 0.1202 0.1047 69 0.1199 0.1026 70 0.1198 0.1026 70 0.1192 0.1018 72 0.1192 0.1016 73 0.1172 0.1016 74 0.1160 0.1007 75 0.1160 0.1007 76 0.1131 0.0985 80 0.1121 0.0984 81 0.1120 0.0972 82 0.1118 0.0969 83 0.1112 0.0964 84 0.1105 0.0962 87 0.1098 0.0959 88 0.1095 0.0941 90 0.1084 0.0935 91 0.1057 0.0928 93 0.1055 0.0924	37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	0.1748 0.1718 0.1672 0.1562 0.1508 0.1479 0.1473 0.1471 0.1460 0.1448 0.1443 0.1443 0.1423 0.1423 0.1405 0.1398 0.1391 0.1385	0.1540 0.1535 0.1388 0.1374 0.1370 0.1353 0.1350 0.1299 0.1268 0.1246 0.1243 0.1226 0.1219 0.1217 0.1212 0.1217 0.1212
57 0.1343 0.1143 58 0.1334 0.1142 59 0.1311 0.1139 60 0.1294 0.1132 61 0.1287 0.1132 62 0.1272 0.1125 63 0.1260 0.1098 64 0.1245 0.1092 65 0.1219 0.1088 66 0.1218 0.1067 67 0.1216 0.1057 68 0.1202 0.1047 69 0.1199 0.1026 70 0.1192 0.1018 72 0.1192 0.1016 73 0.1172 0.1014 74 0.1160 0.1007 75 0.1160 0.1007 76 0.1131 0.0985 79 0.1131 0.0985 80 0.1121 0.0984 81 0.1120 0.0972 82 0.1110 0.0969 83 0.1112 0.0964 84 0.1105 0.0962 87 0.1098 0.0959 88 0.1095 0.0941 90 0.1084 0.0935 91 0.1076 0.0928 92 0.1057 0.0928	54 55	0.1374	0.1188
58 0.1334 0.1142 59 0.1311 0.1139 60 0.1294 0.1132 61 0.1287 0.1132 62 0.1272 0.1125 63 0.1260 0.1098 64 0.1245 0.1092 65 0.1219 0.1088 66 0.1218 0.1067 67 0.1216 0.1057 68 0.1202 0.1047 69 0.1199 0.1026 70 0.1192 0.1018 72 0.1192 0.1016 73 0.1172 0.1014 74 0.1160 0.1007 75 0.1160 0.1007 76 0.1153 0.1005 79 0.1131 0.0985 80 0.1121 0.0984 81 0.1122 0.0964 84 0.1112 0.0964 85 0.1110 0.0963 86 0.1055 0.0941 89 0.1094 0.0941			
60 0.1294 0.1132 61 0.1287 0.1132 62 0.1272 0.1125 63 0.1260 0.1098 64 0.1245 0.1092 65 0.1219 0.1088 66 0.1218 0.1067 67 0.1216 0.1057 68 0.1202 0.1047 69 0.1199 0.1026 70 0.1192 0.1018 72 0.1192 0.1016 73 0.1172 0.1014 74 0.1160 0.1007 75 0.1160 0.1007 76 0.1153 0.1005 77 0.1140 0.0991 78 0.1121 0.0985 80 0.1121 0.0964 81 0.1120 0.0972 82 0.1110 0.0963 86 0.1105 0.0964 84 0.1122 0.0964 85 0.1105 0.0962 87 0.1098 0.0959 88 0.1095 0.0941 90 0.1084 0.0935 91 0.1076 0.0928 92 0.1057 0.0928			
62 0.1272 0.1125 63 0.1260 0.1098 64 0.1245 0.1092 65 0.1219 0.1088 66 0.1218 0.1067 67 0.1216 0.1057 68 0.1202 0.1047 69 0.1199 0.1026 70 0.1192 0.1018 72 0.1192 0.1016 73 0.1172 0.1014 74 0.1160 0.1007 75 0.1160 0.1007 76 0.1153 0.1005 77 0.1140 0.0985 79 0.1131 0.0985 80 0.1121 0.0944 81 0.1120 0.0972 82 0.1118 0.0969 83 0.1112 0.0964 84 0.1112 0.0964 85 0.1110 0.0959 88 0.1095 0.0941 90 0.1084 0.0935 91 0.1076 0.0928 92 0.1057 0.0928	60	0.1294	0.1132
64 0.1245 0.1092 65 0.1219 0.1088 66 0.1218 0.1067 67 0.1216 0.1057 68 0.1202 0.1047 69 0.1199 0.1026 70 0.1192 0.1018 72 0.1192 0.1016 73 0.1172 0.1014 74 0.1160 0.1007 75 0.1160 0.1007 76 0.1153 0.1005 77 0.1140 0.0985 79 0.1131 0.0985 80 0.1121 0.0964 81 0.1122 0.0964 84 0.1112 0.0964 85 0.1105 0.0962 87 0.1098 0.0959 88 0.1095 0.0941 90 0.1084 0.0928 92 0.1057 0.0928			
65 0.1219 0.1088 66 0.1218 0.1067 67 0.1216 0.1057 68 0.1202 0.1047 69 0.1199 0.1026 70 0.1198 0.1026 71 0.1192 0.1018 72 0.1192 0.1016 73 0.1172 0.1014 74 0.1160 0.1007 75 0.1160 0.1007 76 0.1153 0.1005 77 0.1140 0.0991 78 0.1131 0.0985 80 0.1121 0.0984 81 0.1120 0.0972 82 0.1118 0.0969 83 0.1112 0.0964 84 0.1112 0.0964 84 0.1105 0.0962 87 0.1098 0.0959 88 0.1095 0.0941 99 0.1084 0.0935 91 0.1076 0.0928 92 0.1057 0.0928			
66 0.1218 0.1067 67 0.1216 0.1057 68 0.1202 0.1047 69 0.1199 0.1026 70 0.1198 0.1026 71 0.1192 0.1018 72 0.1192 0.1016 73 0.1172 0.1014 74 0.1160 0.1007 75 0.1160 0.1007 76 0.1153 0.1005 77 0.1140 0.0985 79 0.1131 0.0985 80 0.1121 0.0984 81 0.1120 0.0972 82 0.1118 0.0969 83 0.1112 0.0964 84 0.1112 0.0964 84 0.1105 0.0962 87 0.1098 0.0959 88 0.1095 0.0941 90 0.1084 0.0935 91 0.1076 0.0928 92 0.1057 0.0928			
68 0.1202 0.1047 69 0.1199 0.1026 70 0.1198 0.1026 71 0.1192 0.1018 72 0.1192 0.1016 73 0.1172 0.1014 74 0.1160 0.1007 75 0.1160 0.1007 76 0.1153 0.1005 77 0.1140 0.0991 78 0.1134 0.0985 80 0.1121 0.0984 81 0.1120 0.0972 82 0.1118 0.0969 83 0.1112 0.0964 84 0.1112 0.0964 84 0.1105 0.0962 87 0.1098 0.0959 88 0.1095 0.0941 90 0.1084 0.0935 91 0.1076 0.0928 92 0.1057 0.0928			
69 0.1199 0.1026 70 0.1198 0.1026 71 0.1192 0.1018 72 0.1192 0.1016 73 0.1172 0.1014 74 0.1160 0.1007 75 0.1160 0.1007 76 0.1153 0.1005 77 0.1140 0.0991 78 0.1134 0.0985 80 0.1121 0.0984 81 0.1120 0.0972 82 0.1118 0.0969 83 0.1112 0.0964 84 0.1112 0.0964 85 0.1105 0.0962 87 0.1098 0.0959 88 0.1095 0.0941 89 0.1094 0.0941 90 0.1084 0.0928 92 0.1057 0.0928			
70 0.1198 0.1026 71 0.1192 0.1018 72 0.1192 0.1016 73 0.1172 0.1014 74 0.1160 0.1007 75 0.1160 0.1007 76 0.1153 0.1005 77 0.1140 0.0991 78 0.1134 0.0985 80 0.1121 0.0984 81 0.1120 0.0972 82 0.1118 0.0969 83 0.1112 0.0964 84 0.1112 0.0964 85 0.1105 0.0962 87 0.1098 0.0959 88 0.1095 0.0941 90 0.1084 0.0935 91 0.1076 0.0928 92 0.1057 0.0928			
71 0.1192 0.1018 72 0.1192 0.1016 73 0.1172 0.1014 74 0.1160 0.1007 75 0.1160 0.1007 76 0.1153 0.1005 77 0.1140 0.0991 78 0.1134 0.0985 79 0.1121 0.0984 81 0.1120 0.0972 82 0.1118 0.0969 83 0.1112 0.0964 84 0.1112 0.0964 85 0.1110 0.0963 86 0.1095 0.0941 89 0.1094 0.0941 90 0.1084 0.0935 91 0.1076 0.0928 92 0.1057 0.0928			
73 0.1172 0.1014 74 0.1160 0.1007 75 0.1160 0.1007 76 0.1153 0.1005 77 0.1140 0.0991 78 0.1134 0.0985 79 0.1131 0.0985 80 0.1121 0.0984 81 0.1120 0.0972 82 0.1118 0.0969 83 0.1112 0.0964 84 0.1112 0.0964 85 0.1110 0.0963 86 0.1105 0.0959 88 0.1095 0.0941 90 0.1084 0.0935 91 0.1076 0.0928 92 0.1057 0.0928		0.1192	
740.11600.1007 75 0.11600.1007 76 0.11530.1005 77 0.11400.0991 78 0.11340.0985 79 0.11310.0985 80 0.11210.0984 81 0.11200.0972 82 0.11180.0969 83 0.11120.0964 84 0.11120.0964 85 0.11100.0963 86 0.11050.0962 87 0.10980.0959 88 0.10950.0941 90 0.10840.0935 91 0.10760.0928 92 0.10570.0928			
75 0.1160 0.1007 76 0.1153 0.1005 77 0.1140 0.0991 78 0.1134 0.0985 79 0.1131 0.0985 80 0.1121 0.0984 81 0.1120 0.0972 82 0.1118 0.0969 83 0.1112 0.0964 84 0.1112 0.0964 85 0.1110 0.0963 86 0.1105 0.0962 87 0.1098 0.0959 88 0.1095 0.0941 90 0.1084 0.0935 91 0.1076 0.0928 92 0.1057 0.0928			
77 0.1140 0.0991 78 0.1134 0.0985 79 0.1131 0.0985 80 0.1121 0.0984 81 0.1120 0.0972 82 0.1118 0.0969 83 0.1112 0.0964 84 0.1112 0.0964 85 0.1110 0.0963 86 0.1105 0.0962 87 0.1098 0.0959 88 0.1095 0.0941 89 0.1094 0.0941 90 0.1084 0.0935 91 0.1076 0.0928 92 0.1057 0.0928	75	0.1160	0.1007
78 0.1134 0.0985 79 0.1131 0.0985 80 0.1121 0.0984 81 0.1120 0.0972 82 0.1118 0.0969 83 0.1112 0.0964 84 0.1112 0.0964 85 0.1110 0.0963 86 0.1105 0.0962 87 0.1098 0.0959 88 0.1095 0.0941 89 0.1094 0.0941 90 0.1084 0.0935 91 0.1076 0.0928 92 0.1057 0.0928			
790.11310.0985800.11210.0984810.11200.0972820.11180.0969830.11120.0964840.11120.0964850.11100.0963860.11050.0962870.10980.0959880.10950.0941890.10940.0941900.10840.0935910.10760.0928920.10570.0928			
810.11200.0972820.11180.0969830.11120.0964840.11120.0964850.11100.0963860.11050.0962870.10980.0959880.10950.0941890.10940.0935910.10760.0928920.10570.0928	79	0.1131	0.0985
820.11180.0969830.11120.0964840.11120.0964850.11100.0963860.11050.0962870.10980.0959880.10950.0941890.10940.0941900.10840.0935910.10760.0928920.10570.0928			
830.11120.0964840.11120.0964850.11100.0963860.11050.0962870.10980.0959880.10950.0941890.10940.0941900.10840.0935910.10760.0928920.10570.0928			
850.11100.0963860.11050.0962870.10980.0959880.10950.0941890.10940.0941900.10840.0935910.10760.0928920.10570.0928			
860.11050.0962870.10980.0959880.10950.0941890.10940.0941900.10840.0935910.10760.0928920.10570.0928			
880.10950.0941890.10940.0941900.10840.0935910.10760.0928920.10570.0928			
890.10940.0941900.10840.0935910.10760.0928920.10570.0928			
900.10840.0935910.10760.0928920.10570.0928			
92 0.1057 0.0928			

94 95 96 97 98 99 100 101 102 103 104 105 106 107	0.1052 0.1045 0.1043 0.1038 0.1019 0.1014 0.0975 0.0966 0.0954 0.0949 0.0940 0.0911	0.0924 0.0922 0.0921 0.0907 0.0880 0.0879 0.0874 0.0874 0.0873 0.0862 0.0857 0.0841 0.0802 0.0878
108	0.0909	0.0774
109	0.0908	0.0763
110	0.0902	0.0760
111	0.0897	0.0754
112	0.0863	0.0747
112 113 114 115 116	0.0858 0.0851 0.0840 0.0835	0.0744 0.0738 0.0729 0.0728
117	0.0824	0.0712
118	0.0813	0.0709
119	0.0812	0.0705
120	0.0810	0.0702
121	0.0797	0.0697
122	0.0763	0.0695
123	0.0750	0.0659
124	0.0748	0.0655
125	0.0745	0.0641
126	0.0739	0.0631
127	0.0725	0.0617
128	0.0722	0.0614
129	0.0717	0.0611
130	0.0697	0.0607
131	0.0694	0.0605
132	0.0689	0.0602
133	0.0683	0.0602
134	0.0678	0.0596
135	0.0673	0.0583
136	0.0661	0.0580
137	0.0654	0.0571
138	0.0653	0.0555
130	0.0633	0.0333
139	0.0644	0.0552
140	0.0627	0.0541
141	0.0616	0.0537
142	0.0610	0.0524
143	0.0604	0.0523
144	0.0598	0.0508
145	0.0594	0.0507
146	0.0555	0.0490
147	0.0554	0.0484
148	0.0516	0.0472
149	0.0509	0.0471
150	0.0487	0.0443

151	0.0466	0.0425
152	0.0452	0.0389
153	0.0447	0.0387
154	0.0428	0.0367
155	0.0414	0.0365
156	0.0314	0.0284
157	0.0286	0.0236
158	0.0237	0.0221

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Perc	entage	Pass/Fail
0.0564	131189	87367	66	Pass
0.0607	111798	73073	65	Pass
0.0650	91743	58725	64	Pass
0.0693	78724	49534	62	Pass
0.0736	68143	42044	61	Pass
0.0779	59168	35650	60	Pass
0.0822	49462	29130	58	Pass
0.0865	43262	24858	57	Pass
0.0908	38105	21257	55	Pass
0.0951	32083	17363	54	Pass
0.0993	28083	14986	53	Pass
0.1036	24692	12864	52	Pass
0.1079	21573	11213	51	Pass
0.1122	18194	9562	52	Pass
0.1165	16050	8360	52	Pass
0.1208	14171	7462	52	Pass
0.1251	12210	6526	53	Pass
0.1294	10875	5895	54	Pass
0.1337	9762	5220	53	Pass
0.1380	8604	4685	54	Pass
0.1423	7662	4104	53	Pass
0.1465	7058	3665	51	Pass
0.1508	6582	3272	49	Pass
0.1551	5900	2825	47	Pass
0.1594	5409	2490	46	Pass
0.1637	4963	2183	43	Pass
0.1680	4540	1905	41	Pass
0.1723	4013	1624	40	Pass
0.1766	3642	1410	38	Pass
0.1809	3329	1255	37	Pass
0.1852	2950	1080	36	Pass
0.1894	2667	976	36	Pass
0.1937	2383	879	36	Pass
0.1980	1978	754	38	Pass
0.2023	1771	666	37	Pass
0.2066	1602	574	35	Pass
0.2109	1472	452	30	Pass
0.2152	1326	339	25	Pass
0.2195	1212	285	23	Pass
0.2238	1102	218	19	Pass

0.2281 0.2324 0.2366 0.2409 0.2452 0.2538 0.2538 0.2581 0.2624 0.2667 0.2710 0.2753 0.2796 0.2838 0.2881 0.2924 0.2967 0.3010	995 897 835 766 636 493 411 334 284 244 227 200 177 156 125 93 60 47	185 164 142 122 81 61 45 37 34 29 29 26 25 24 23 22 22 22 21	18 17 15 12 10 11 11 12 13 14 15 18 23 36 44	Pass Pass Pass Pass Pass Pass Pass Pass
0.3053 0.3096 0.3139 0.3182 0.3225 0.3268 0.3310 0.3353 0.3396 0.3439 0.3482 0.3525 0.3568 0.3611 0.3654 0.3697 0.3740 0.3782	34 33 27 27 26 25 24 23 23 21 20 19 19 19 19 18 18	20 20 19 19 19 19 19 19 19 18 18 17 17 17 17 17 15 15 14 13	58 60 70 73 76 79 75 78 75 80 85 89 78 78 78 77 72	Pass Pass Pass Pass Pass Pass Pass Pass
0.3825 0.3868 0.3911 0.3954 0.3997 0.4040 0.4083 0.4126 0.4169 0.4211 0.4254 0.4297 0.4340 0.4383 0.4426 0.4383 0.4426 0.4469 0.4555 0.4598 0.4641 0.4683	18 18 18 17 17 17 17 17 17 17 17 15 14 14 14 14 14 14 14 13 13 13 13	13 13 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12	72 72 72 76 76 70 70 70 70 80 85 85 85 85 85 85 85 85 85 85 85 85 85	Pass Pass Pass Pass Pass Pass Pass Pass

0.4726	13	11	84	Pass	
0.4769	13	10	76	Pass	
0.4812	13	10	76	Pass	

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

Wetlar		Volume		
	ge Annual		eft)	
Series		OC 1 Prede		
Series			gated flo	
	Series 1	Series 2		•
Jan	1.0971	0.9664	88.1	Pass
Feb	0.9454	0.8322	88.0	Pass
Mar	0.7053	0.6271	88.9	Pass
Apr	0.3191	0.2925	91.7	Pass
May	0.1080	0.1047	96.9	Pass
Jun	0.0387	0.0422	109.0	Pass
Jul	0.0079	0.0096	122.6	Fail
Aug	0.0008	0.0015	182.5	Fail
Sep	0.0060	0.0093	154.3	Fail
Oct	0.0737	0.0875	118.7	Fail
Nov	0.5991	0.5492	91.7	Pass
Dec	1.0717	0.9470	88.4	Pass
Day	Series 1			Pass/Fail
Jan1	0.0319	0.0283	88.9	Pass
2	0.0328	0.0292	89.1	Pass
3	0.0371	0.0326	87.9	Pass
4	0.0362	0.0314	86.8	Pass
5	0.0340	0.0299	87.8	Pass
6	0.0339	0.0299	88.3	Pass
7	0.0341	0.0300	88.1	Pass
8	0.0323	0.0284	88.0	Pass
9	0.0327	0.0290	88.7	Pass
10	0.0329	0.0291	88.5	Pass
11	0.0340	0.0299	88.0	Pass
12	0.0328	0.0288	87.8	Pass
13	0.0355	0.0313	88.2	Pass
14	0.0398	0.0348	87.2	Pass
15	0.0404	0.0350	86.5	Pass
16	0.0393	0.0343	87.1	Pass
17	0.0386	0.0339	87.7	Pass
18	0.0415	0.0365	88.0	Pass
19	0.0432	0.0377	87.3	Pass
20	0.0424	0.0369	87.1	Pass
21	0.0362	0.0320	88.3	Pass
22	0.0346	0.0310	89.8	Pass
23	0.0367	0.0326	89.0	Pass

24	0.0382	0.0335	87.7	Pass
25	0.0354	0.0309	87.5	Pass
26	0.0355	0.0314	88.5	Pass
27	0.0344	0.0303	88.1	Pass
28	0.0321	0.0284	88.4	Pass
29	0.0284	0.0253	89.3	Pass
30	0.0277	0.0250	90.2	Pass
31	0.0315	0.0280	89.0	Pass
Feb1	0.0346	0.0303	87.5	Pass
2	0.0340	0.0292	86.8	Pass
3	0.0336	0.0294	87.5	Pass
4	0.0289	0.0256	88.7	Pass
5	0.0327	0.0292	89.3	Pass
6	0.0344	0.0300	87.0	Pass
7	0.0336	0.0294	87.4	Pass
8	0.0337	0.0294	87.4	Pass
9	0.0303	0.0267	88.2	Pass
10	0.0298	0.0264	88.7	Pass
11	0.0290	0.0258	88.9	Pass
12	0.0303	0.0267	88.2	Pass
13	0.0312	0.0274	87.9	Pass
14	0.0307	0.0269	87.7	Pass
15	0.0310	0.0275	88.5	Pass
16	0.0369	0.0325	88.1	Pass
10	0.0414	0.0329		
			86.7	Pass
18	0.0436	0.0377	86.5	Pass
19	0.0442	0.0382	86.4	Pass
20	0.0389	0.0340	87.3	Pass
21	0.0343	0.0306	89.2	Pass
22	0.0320	0.0288	89.9	Pass
23	0.0285	0.0257	90.2	Pass
24	0.0299	0.0270	90.2	Pass
25	0.0322	0.0284	88.1	Pass
26	0.0326	0.0287	88.1	Pass
27	0.0339	0.0297	87.5	Pass
28	0.0331	0.0290	87.6	Pass
29	0.0291	0.0256	87.9	Pass
Mar1	0.0269	0.0241	89.6	Pass
Ma11 2			89.6	
	0.0264	0.0236		Pass
3	0.0254	0.0227	89.6	Pass
4	0.0254	0.0226	89.1	Pass
5	0.0251	0.0224	89.2	Pass
6	0.0238	0.0211	88.7	Pass
7	0.0215	0.0194	90.2	Pass
8	0.0237	0.0213	90.2	Pass
9	0.0255	0.0225	88.1	Pass
10	0.0245	0.0215	87.9	Pass
11	0.0247	0.0219	88.7	Pass
12	0.0252	0.0223	88.6	Pass
13	0.0246	0.0217	88.3	Pass
14	0.0243	0.0216	88.7	Pass
15	0.0231	0.0205	88.7	Pass
16	0.0212	0.0189	89.2	Pass
17	0.0195	0.0139	90.1	Pass
18	0.0195	0.0178	90.1 90.3	
				Pass
19	0.0177	0.0160	90.6	Pass
20	0.0173	0.0156	89.8	Pass

21	0.0177	0.0158	89.5	Pass
22	0.0214	0.0190	88.7	Pass
23	0.0226	0.0195	86.6	Pass
24	0.0219	0.0191	87.3	Pass
25	0.0213	0.0188	88.1	Pass
26	0.0210	0.0187	89.2	Pass
27	0.0215	0.0191	88.6	Pass
28	0.0210	0.0187	89.1	Pass
29	0.0224	0.0199	88.9	Pass
30	0.0223	0.0197	88.5	Pass
31	0.0213	0.0189	88.7	Pass
Apr1	0.0177	0.0159	89.9	Pass
2	0.0140	0.0129	92.6	Pass
3	0.0131	0.0123	94.5	Pass
4	0.0140	0.0129	92.6	Pass
5	0.0142	0.0129	90.5	Pass
6	0.0135	0.0121	90.1	Pass
7	0.0131	0.0118	90.3	Pass
8	0.0140	0.0126	89.9	Pass
9	0.0143	0.0127	89.0	Pass
10	0.0146	0.0130	89.1	Pass
11	0.0133	0.0120	90.1	Pass
12	0.0129	0.0117	90.8	Pass
13	0.0106	0.0097	92.3	Pass
14	0.0083	0.0080	95.9	Pass
15	0.0071	0.0069	97.5	Pass
16	0.0066	0.0065	98.8	Pass
17	0.0072	0.0068	95.0	Pass
18	0.0065	0.0061	94.5	Pass
19	0.0075	0.0070	93.5	Pass
20	0.0093	0.0082	89.1	Pass
21	0.0088	0.0078	88.7	Pass
22	0.0082	0.0075	90.5	Pass
23	0.0096	0.0087	90.5	Pass
24	0.0096	0.0085	89.2	Pass
25	0.0077	0.0070	91.4	Pass
26	0.0064	0.0061	95.9	Pass
27			97.1	
	0.0060	0.0058		Pass
28	0.0054	0.0053	97.9	Pass
29	0.0048	0.0047	98.9	Pass
30	0.0048	0.0048	99.1	Pass
May1	0.0070	0.0066	94.0	Pass
2	0.0077	0.0069	89.9	Pass
3	0.0072	0.0065	90.9	Pass
4	0.0068	0.0063	92.9	Pass
5	0.0070	0.0065	92.9	
				Pass
6	0.0064	0.0059	92.6	Pass
7	0.0056	0.0054	95.0	Pass
8	0.0048	0.0046	96.7	Pass
9	0.0035	0.0036	101.3	Pass
10	0.0027	0.0029	106.2	Pass
11	0.0025	0.0026	105.1	Pass
12	0.0022	0.0023	103.5	Pass
13	0.0024	0.0024	100.5	Pass
14	0.0024	0.0024	100.0	Pass
15	0.0018	0.0020	106.1	Pass
16	0.0024	0.0025	103.6	Pass

. –				
17	0.0029	0.0028	97.4	Pass
18	0.0025	0.0025	98.7	Pass
19	0.0020	0.0021	106.4	Pass
20	0.0023	0.0024	103.8	Pass
21	0.0022	0.0023	101.1	Pass
22	0.0022	0.0022	100.2	Pass
23	0.0022	0.0022	98.5	Pass
24	0.0022	0.0021	97.7	Pass
25	0.0023	0.0022	96.1	Pass
26	0.0021	0.0020	96.8	Pass
27	0.0021	0.0020	97.5	Pass
28	0.0019	0.0019	99.0	Pass
20	0.0019	0.0013	100.2	
				Pass
30	0.0020	0.0020	100.8	Pass
31	0.0018	0.0019	106.5	Pass
Jun1	0.0019	0.0021	106.4	Pass
2	0.0026	0.0026	99.0	Pass
3	0.0023	0.0023	97.9	Pass
4	0.0021	0.0021	102.2	Pass
5	0.0024	0.0025	100.6	Pass
6	0.0022	0.0022	101.3	Pass
7	0.0022	0.0022	100.6	Pass
8	0.0019	0.0020	102.1	Pass
9	0.0023	0.0024	102.0	Pass
10	0.0024	0.0024	100.3	Pass
11	0.0021	0.0022	102.5	Pass
12	0.0015	0.0017	110.1	Pass
13	0.0012	0.0014	117.5	Pass
13				
	0.0009	0.0012	124.3	Fail
15	0.0008	0.0010	126.2	Fail
16	0.0007	0.0009	129.9	Fail
17	0.0006	0.0008	132.4	Fail
18	0.0008	0.0010	119.2	Pass
19	0.0008	0.0009	116.1	Pass
20	0.0006	0.0008	124.4	Fail
21	0.0006	0.0007	126.3	Fail
22	0.0005	0.0007	135.8	Fail
23	0.0006	0.0008	128.8	Fail
24	0.0007	0.0008	117.8	Pass
25	0.0005	0.0007	129.2	Fail
26	0.0004	0.0006	148.4	Fail
27	0.0004	0.0006	141.6	Fail
28	0.0004	0.0005	137.3	Fail
29	0.0004	0.0005	129.1	Fail
30	0.0005	0.0005	117.7	Pass
Jul1	0.0006	0.0003	110.9	Pass
2	0.0006	0.0007	109.8	Pass
2	0.0004	0.0005		
			127.4	Fail
4	0.0003	0.0004	151.3	Fail
5	0.0002	0.0004	161.2	Fail
6	0.0002	0.0003	177.8	Fail
7	0.0002	0.0003	159.1	Fail
8	0.0002	0.0003	148.4	Fail
9	0.0002	0.0003	162.8	Fail
10	0.0001	0.0002	181.8	Fail
11	0.0001	0.0002	155.7	Fail
12	0.0005	0.0005	105.6	Pass

13	0.0006	0.0006	92.1	Pass
14	0.0007	0.0007	97.8	Pass
15	0.0006	0.0006	104.3	Pass
16	0.0004	0.0005	118.4	Pass
17	0.0003	0.0004	134.8	Fail
18	0.0004	0.0004	115.5	Pass
19	0.0003	0.0003	114.0	Pass
20	0.0002	0.0002	123.7	Fail
21	0.0001	0.0002	133.8	Fail
22	0.0001	0.0002	152.9	Fail
22	0.0001		182.0	
		0.0001		Fail
24	0.0000	0.0001	211.9	Fail
25	0.0000	0.0001	210.2	Fail
26	0.0000	0.0000	180.6	Fail
27	0.0000	0.0000	154.5	Fail
28	0.0000	0.0000	143.6	Fail
29	0.0000	0.0000	145.2	Fail
30	0.0000	0.0000	150.8	Fail
31	0.0000	0.0000	132.2	Fail
Aug1	0.0000	0.0000	112.5	Pass
2	0.0000	0.0000	106.2	Pass
3	0.0000	0.0000	107.4	Pass
4	0.0000	0.0000	159.4	Fail
5	0.0000	0.0000	194.5	Fail
6	0.0000	0.0000	212.3	Fail
7	0.0000	0.0000	212.9	Fail
8	0.0000	0.0000	200.4	Fail
9	0.0000	0.0000	188.1	Fail
-				
10	0.0000	0.0000	127.6	Fail
11	0.0000	0.0000	119.7	Pass
12	0.0000	0.0000	150.7	Fail
13	0.0000	0.0000	179.9	Fail
14	0.0000	0.0000	161.2	Fail
15	0.0000	0.0000	138.1	Fail
16	0.0000	0.0000	127.9	Fail
17	0.0000	0.0000	128.8	Fail
18	0.0000	0.0000	141.3	Fail
19	0.0000	0.0000	167.9	Fail
20	0.0000	0.0000	177.9	Fail
21	0.0000	0.0000	188.7	Fail
22	0.0000	0.0000	166.2	Fail
23	0.0000	0.0000	132.8	Fail
24	0.0000	0.0001	130.3	Fail
25	0.0000	0.0001	159.9	Fail
26	0.0001	0.0001	181.4	Fail
27	0.0001	0.0001	199.4	Fail
28	0.0001	0.0001	210.1	Fail
29	0.0001	0.0002	247.5	Fail
30	0.0001	0.0002	303.8	Fail
31	0.0005	0.0002	116.5	Pass
Sep1	0.0006	0.0006	101.7	Pass
-				
2	0.0005	0.0005	113.6 120 E	Pass
3	0.0003	0.0004	139.5	Fail
4	0.0002	0.0004	176.3	Fail
5	0.0001	0.0003	218.8	Fail
6	0.0001	0.0002	264.5	Fail
7	0.0001	0.0002	281.0	Fail

8	0.0001	0.0001	251.7	Fail
9	0.0001	0.0001	248.5	Fail
10	0.0000	0.0001	269.2	Fail
11	0.0000	0.0001	301.6	Fail
12	0.0000	0.0001	318.8	Fail
13	0.0000	0.0001	328.0	Fail
14	0.0000	0.0001	248.7	Fail
14	0.0000	0.0001		
			183.7	Fail
16	0.0000	0.0001	141.1	Fail
17	0.0001	0.0001	136.9	Fail
18	0.0001	0.0001	160.3	Fail
19	0.0001	0.0002	206.6	Fail
20	0.0001	0.0002	208.9	Fail
21	0.0002	0.0004	156.0	Fail
22	0.0007	0.0007	100.6	Pass
23	0.0006	0.0007	104.6	Pass
24	0.0005	0.0006	134.0	Fail
25	0.0003	0.0006	179.6	Fail
26	0.0002	0.0005	228.4	Fail
27	0.0002	0.0004	257.2	Fail
28	0.0001	0.0004	285.2	Fail
28	0.0001	0.0004	350.0	Fail
30	0.0002	0.0004	251.5	Fail
Oct1	0.0004	0.0006	150.9	Fail
2	0.0004	0.0006	168.1	Fail
3	0.0003	0.0006	225.6	Fail
4	0.0003	0.0006	249.6	Fail
5	0.0003	0.0006	240.7	Fail
6	0.0018	0.0020	107.8	Pass
7	0.0024	0.0023	96.1	Pass
8	0.0022	0.0023	104.4	Pass
9	0.0022	0.0025	110.1	Pass
10	0.0018	0.0023	124.2	Fail
11	0.0016	0.0022	138.8	Fail
12	0.0014	0.0021	148.2	Fail
13	0.0011	0.0018	159.3	Fail
14	0.0010	0.0018	167.1	Fail
15	0.0010	0.0016	156.9	Fail
16	0.0015	0.0019	131.1	Fail
17	0.0017	0.0020	123.2	Fail
18	0.0023	0.0026	112.4	Pass
19	0.0022	0.0026	117.3	Pass
20	0.0024	0.0029	123.3	Fail
21	0.0026	0.0032	124.1	Fail
22	0.0028	0.0034	123.1	Fail
23	0.0026	0.0034	130.4	Fail
24	0.0030	0.0038	126.5	Fail
25	0.0031	0.0039	127.3	Fail
26	0.0043	0.0050	118.0	Pass
27	0.0059	0.0064	107.3	Pass
28	0.0070	0.0072	107.5	Pass
28	0.0070	0.0072	103.9	
				Pass
30	0.0072	0.0077	106.4	Pass
31	0.0094	0.0094	100.0	Pass
Nov1	0.0086	0.0086	99.1	Pass
2	0.0094	0.0093	98.4	Pass
3	0.0093	0.0090	97.3	Pass

4	0.0084	0.0085	102.0	Pass
5	0.0077	0.0083	107.6	Pass
6	0.0086	0.0092	107.4	Pass
7	0.0096	0.0098	102.3	Pass
8	0.0095	0.0097	102.7	Pass
9	0.0111	0.0110	99.3	Pass
10	0.0129	0.0124	96.4	Pass
11	0.0147	0.0138	93.9	Pass
12	0.0161	0.0148	92.4	Pass
13	0.0175	0.0140	92.5	Pass
14	0.0187	0.0102	91.3	Pass
14	0.0189	0.0174		Pass
			92.1	
16	0.0215	0.0197	91.7	Pass
17	0.0211	0.0193	91.1	Pass
18	0.0219	0.0198	90.6	Pass
19	0.0247	0.0223	90.2	Pass
20	0.0258	0.0229	88.7	Pass
21	0.0258	0.0230	89.0	Pass
22	0.0272	0.0244	89.4	Pass
23	0.0326	0.0290	89.1	Pass
24	0.0367	0.0321	87.5	Pass
25	0.0396	0.0344	86.9	Pass
26	0.0367	0.0320	87.1	Pass
27	0.0331	0.0295	89.2	Pass
28	0.0312	0.0281	90.3	Pass
29	0.0310	0.0282	90.8	Pass
30	0.0329	0.0282	89.0	
				Pass
Dec1	0.0327	0.0290	88.6	Pass
2	0.0351	0.0311	88.6	Pass
3	0.0378	0.0330	87.4	Pass
4	0.0381	0.0333	87.3	Pass
5	0.0379	0.0332	87.6	Pass
6	0.0367	0.0323	88.2	Pass
7	0.0346	0.0309	89.2	Pass
8	0.0319	0.0287	89.9	Pass
9	0.0291	0.0266	91.4	Pass
10	0.0321	0.0290	90.2	Pass
11	0.0336	0.0298	88.7	Pass
12	0.0338	0.0297	87.9	Pass
13	0.0333	0.0295	88.5	Pass
14	0.0346	0.0306	88.4	Pass
15	0.0347	0.0306	88.2	Pass
16	0.0366	0.0323	88.2	Pass
17	0.0353	0.0323	87.4	Pass
	0.0315		88.5	
18		0.0279		Pass
19	0.0322	0.0288	89.5	Pass
20	0.0346	0.0305	88.2	Pass
21	0.0371	0.0324	87.3	Pass
22	0.0369	0.0321	87.0	Pass
23	0.0339	0.0297	87.7	Pass
24	0.0325	0.0289	89.0	Pass
25	0.0332	0.0297	89.3	Pass
26	0.0376	0.0332	88.1	Pass
27	0.0361	0.0315	87.3	Pass
28	0.0351	0.0309	88.1	Pass
29	0.0365	0.0322	88.2	Pass
30	0.0338	0.0296	87.6	Pass

LID Report

LID Techniq	ue	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent	Water Quality	Percent	Comment			
		Treatment?	Needs	Through	Volume	Volume
Volume		Water Quality				
			Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated		Treated				
			(ac-ft)	(ac-ft)		Credit
Total Volume	e Infiltrated		0.00	0.00	0.00	0.00
0.00	08	No Treat. C	redit			
Compliance ·	with LID Standa	rd 8				
Duration An	alysis Result =	Passed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

ROADWAY BASIN

WWHM2012 PROJECT REPORT

Project Name: Flow Analysis Site Name: Sunset Site Address: 2301 23rd City : Puyallup Report Date: 5/22/2023 Gage : 40 IN EAST Data Start : 10/01/1901 Data End : 09/30/2059 Precip Scale: 1.00 Version Date: 2021/08/18 Version : 4.2.18

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year PREDEVELOPED LAND USE Name : Basin 1 Bypass: No GroundWater: No Pervious Land Use acre C, Forest, Mod 1.177 Pervious Total 1.177 Impervious Land Use acre Impervious Total 0 1.177 Basin Total Element Flows To:

Surface Interflow Groundwater

MITIGATED LAND USE

Name : Basin 1 Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Pasture, Mod	.247
C, Pasture, Flat	.076
C, Forest, Mod	.23
Pervious Total	0.553
Impervious Land Use	acre
ROADS FLAT	0.269
RUADS FLAT	0.269
DRIVEWAYS MOD	0.23
	0.200

Element Flows To: Surface

Interflow

Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:1.177 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0.553 Total Impervious Area:0.499

Flow Frequency Return Periods for Predeveloped. POC #1 Return Period Flow(cfs) 2 year 0.026851 0.041573 5 year 10 year 0.050119 25 year 0.059399 50 year 0.06538 0.070576 100 year Flow Frequency Return Periods for Mitigated. POC #1 Return Period Flow(cfs) 2 year 0.193076 5 year 0.261022 0.310679 10 year 25 year 0.378941

50 year	0.43394
100 year	0.492614

WEST BASIN

WWHM2012 PROJECT REPORT

Project Name: Flow Analysis - West Site Name: Sunset Site Address: 2301 23rd City : Puyallup Report Date: 5/22/2023 Gage : 40 IN EAST Data Start : 10/01/1901 Data End : 09/30/2059 Precip Scale: 1.00 Version Date: 2021/08/18 Version : 4.2.18

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year PREDEVELOPED LAND USE Name : Pre-West Bypass: No GroundWater: No Pervious Land Use acre C, Forest, Mod 1.072 Pervious Total 1.072 Impervious Land Use acre Impervious Total 0 1.072 Basin Total

Element Flows To: Surface Interflow Groundwater

MITIGATED LAND USE

Name : Post West Bypass: No

GroundWater: No

Pervious Land Use C, Forest, Mod	<u>acre</u> .355
Pervious Total	0.355
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.355

Element Flows To: Surface Interflow

Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:1.072 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0.355 Total Impervious Area:0

Flow Frequency Return	Periods for	Predeveloped	I. POC #1
Return Period	Flow(cfs)		
2 year	0.024456		
5 year	0.037864		
10 year	0.045648		
25 year	0.0541		
50 year	0.059547		
100 year	0.06428		
Flow Frequency Return	Periods for	Mitigated.	POC #1
Return Period	Flow(cfs)		
2 year	0.008099		
5 year	0.012539		
10 year	0.015117		
25 year	0.017916		
50 year	0.019719		
100 year	0.021287		

Annual	Peaks	for Predevelo	ped and Mitigated.
Year		Predeveloped	
1902		0.020	0.006
1903		0.015	0.005
1904		0.030	0.010
1905		0.012	0.004
1906		0.006	0.002
1907		0.038	0.012
1908		0.027	0.009
1909		0.026	0.009
1910		0.037	0.012
1911		0.024	0.008
1912		0.093	0.031
1913		0.038	0.013
1914		0.010	0.003
1915		0.016	0.005
1916		0.024	0.008
1917		0.008	0.003
1918		0.026	0.009
1919		0.020	0.007
1920		0.025	0.008
1921		0.027	0.009
1922		0.027	0.009
1923		0.021	0.007
1924		0.010	0.003
1925		0.013	0.004
1926		0.024	0.008
1927		0.017 0.018	0.006
1928			0.006
1929 1930		0.038 0.024	0.013 0.008
1931		0.023	0.008
1932		0.017	0.006
1933		0.019	0.006
1934		0.050	0.016
1935		0.023	0.008
1936		0.021	0.007
1937		0.034	0.011
1938		0.020	0.007
1939		0.002	0.001
1940		0.022	0.007
1941		0.013	0.004
1942		0.033	0.011
1943		0.017	0.006
1944		0.037	0.012
1945		0.027	0.009
1946		0.017	0.006
1947		0.011	0.004
1948		0.052	0.017
1949		0.045	0.015
1950		0.013	0.004
1951		0.017	0.006
1952		0.068	0.022
1953		0.061	0.020
1954		0.021	0.007
1955		0.019	0.006

Stream Protection Duration

POC #1

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995	0.010 0.032 0.064 0.041 0.012 0.040 0.022 0.011 0.011 0.045 0.021 0.021 0.021 0.021 0.021 0.021 0.031 0.048 0.031 0.044 0.031 0.045 0.031 0.045 0.027 0.012 0.045 0.013 0.026 0.024 0.011 0.024 0.011 0.029 0.024 0.029 0.024 0.029 0.024 0.029 0.024 0.029 0.024 0.029 0.024 0.033 0.026 0.033 0.026 0.033 0.026 0.033 0.021 0.029 0.026 0.033 0.021 0.029 0.026 0.033 0.021 0.029 0.026 0.033 0.021 0.029 0.026 0.033 0.021 0.029 0.026 0.033 0.021 0.026 0.033 0.011 0.053 0.021 0.026 0.033 0.021 0.026 0.033 0.021 0.026 0.033 0.021 0.026 0.033 0.021 0.029 0.026 0.033 0.021 0.029 0.026 0.033 0.021 0.029 0.021 0.029 0.021 0.029 0.021 0.029 0.021 0.029 0.021 0.029 0.021 0.029 0.021 0.029 0.021 0.029 0.021 0.029 0.021 0.029 0.021 0.021 0.029 0.021 0	0.003 0.011 0.021 0.013 0.004 0.013 0.007 0.004 0.015 0.004 0.015 0.007 0.007 0.007 0.007 0.007 0.010 0.016 0.010 0.013 0.008 0.017 0.009 0.004 0.015 0.004 0.010 0.010 0.005 0.004 0.015 0.004 0.010 0.010 0.010 0.005 0.004 0.010 0.010 0.010 0.010 0.001 0.004 0.015 0.007 0.007 0.007 0.007 0.007 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.004 0.015 0.004 0.010 0.010 0.010 0.010 0.001 0.004 0.015 0.004 0.010 0.010 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.009 0.004 0.010 0.008 0.010 0.008 0.010 0.008 0.010 0.008 0.010 0.008 0.010 0.009 0.004 0.010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008	0.021 0.026 0.003 0.019 0.011 0.039 0.030 0.027 0.056 0.015 0.016 0.026	0.007 0.009 0.001 0.006 0.003 0.013 0.010 0.009 0.019 0.005 0.005 0.005 0.009
2009 2010 2011 2012	0.017 0.015 0.014 0.020	0.006 0.005 0.004 0.007

2013 2014 2015 2016 2017 2018 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2030 2031 2035 2036 2037 2038 2039 2040 2041 2045 2040 2041 2042 2043 2044 2045 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053	0.015 0.011 0.021 0.008 0.037 0.067 0.068 0.020 0.033 0.014 0.028 0.071 0.025 0.040 0.015 0.013 0.027 0.050 0.016 0.010 0.015 0.015 0.015 0.057 0.050 0.015 0.057 0.030 0.027 0.036 0.025 0.029 0.021 0.028 0.025 0.025 0.027 0.031 0.025 0.025 0.025 0.025 0.027 0.031 0.025 0.025 0.027 0	0.005 0.003 0.007 0.003 0.012 0.022 0.023 0.007 0.011 0.005 0.009 0.023 0.008 0.013 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.0010 0.005 0.0010 0.005 0.0010 0.005 0.0010 0.005 0.0010 0.005 0.009 0.012 0.009 0.012 0.009 0.009 0.009 0.0012 0.009 0.
2051	0.026	0.008
2052	0.015	0.005

Stream Protection Duration						
Ranked	Annual Peaks for	Predeveloped and Mitigated.	POC #1			
Rank	Predeveloped	Mitigated				
1	0.0931	0.0308				
2	0.0706	0.0234				
3	0.0680	0.0225				
4	0.0676	0.0224				
5	0.0666	0.0220				

6	0.0644	0.0213
7	0.0607	0.0201
8	0.0579	0.0192
9	0.0565	0.0187
10	0.0560	0.0185
11	0.0533	0.0177
12	0.0515	0.0171
13	0.0505	0.0167
14	0.0497	0.0165
15	0.0496	0.0164
16	0.0479	0.0159
17	0.0477	0.0158
18	0.0474	0.0157
19	0.0453	0.0150
20	0.0448	0.0148
21	0.0445	0.0147
22	0.0408	0.0135
23	0.0406	0.0134
24	0.0403	0.0134
25	0.0403	0.0134
26	0.0399	0.0132
27	0.0394	0.0130
28	0.0390	0.0129
29	0.0384	0.0127
30	0.0379	0.0126
31	0.0375	0.0124
32	0.0374	0.0123
33	0.0371	0.0123
34	0.0367	0.0122
35	0.0364	0.0121
36	0.0344	0.0114
37	0.0335	0.0111
38	0.0334	0.0110
39	0.0333	0.0110
40	0.0325	0.0108
41	0.0321	0.0106
42	0.0315	0.0104
43	0.0313	0.0104
44	0.0311	0.0103
45	0.0302	0.0100
46	0.0301	0.0100
47	0.0301	0.0100
48	0.0297	0.0098
49	0.0289	0.0096
50	0.0288	0.0095
51	0.0285	0.0094
52	0.0281	0.0093
53	0.0280	0.0093
54	0.0273	0.0090
55	0.0271	0.0090
56	0.0271	0.0090
57	0.0271	0.0090
58	0.0270	0.0089
59	0.0269	0.0089
60	0.0268	0.0089
61	0.0268	0.0089
62	0.0267	0.0088

63 64 65 66 67 68 69 70 71 72 73 74 75	0.0267 0.0265 0.0264 0.0259 0.0258 0.0258 0.0258 0.0255 0.0251 0.0250 0.0246 0.0245 0.0243	0.0088 0.0088 0.0086 0.0085 0.0085 0.0085 0.0085 0.0085 0.0083 0.0083 0.0082 0.0081 0.0081
76 77 78	0.0243 0.0243 0.0241	0.0080 0.0080 0.0080
79 80	0.0241 0.0241	0.0080 0.0080
81	0.0240	0.0079
82 83	0.0237 0.0228	0.0078 0.0076
84	0.0227	0.0075
85 86	0.0224 0.0222	0.0074 0.0073
87	0.0219	0.0072
88 89	0.0215 0.0215	0.0071 0.0071
90	0.0214	0.0071
91 92	0.0213 0.0211	0.0071 0.0070
93	0.0209	0.0069
94 95	0.0206 0.0205	0.0068 0.0068
96	0.0205	0.0068
97	0.0203 0.0202	0.0067 0.0067
98 99	0.0201	0.0067
100	0.0201	0.0067
101 102	0.0196 0.0193	0.0065 0.0064
103	0.0193	0.0064
104 105	0.0190 0.0188	0.0063 0.0062
105	0.0188	0.0062
107	0.0185	0.0061 0.0061
108 109	0.0183 0.0179	0.0059
110	0.0174	0.0058
111 112	0.0172 0.0171	0.0057 0.0057
113	0.0171	0.0057
114 115	0.0169 0.0169	0.0056 0.0056
116	0.0164	0.0054
117 118	0.0161 0.0158	0.0053 0.0052
119	0.0153	0.0051

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153	0.0152 0.0151 0.0149 0.0149 0.0149 0.0149 0.0146 0.0142 0.0138 0.0138 0.0135 0.0135 0.0132 0.0132 0.0131 0.0131 0.0131 0.0131 0.0124 0.0121 0.0120 0.0118 0.0113 0.0112 0.0113 0.0112 0.0111 0.0109 0.0105 0.0105 0.0099 0.0098 0.0097 0.0084 0.0082	0.0050 0.0050 0.0049 0.0049 0.0049 0.0049 0.0046 0.0046 0.0046 0.0045 0.0045 0.0045 0.0044 0.0043 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0032 0.0028 0.0027
152	0.0084	0.0028

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Per	centage	Pass/Fail
0.0122	55733	2332	4	Pass
0.0127	51284	2018	3	Pass
0.0132	47185	1710	3	Pass
0.0137	43456	1475	3	Pass
0.0141	40165	1268	3	Pass
0.0146	37207	1102	2	Pass
0.0151	34448	940	2	Pass
0.0156	31900	780	2	Pass
0.0161	29529	632	2	Pass

0.0165 0.0170 0.0175 0.0180 0.0184 0.0189 0.0194 0.0204 0.0208 0.0213 0.0213 0.0223 0.0227 0.0232 0.0227 0.0232 0.0237 0.0242 0.0247 0.0251 0.0256 0.0261 0.0256 0.0261 0.0256 0.0261 0.0256 0.0261 0.0256 0.0270 0.0275 0.0280 0.0275 0.0280 0.0285 0.0290 0.0294 0.0299 0.0304 0.0309 0.0313 0.0318 0.0323 0.0328 0.0328 0.0328	27517 25656 23883 22299 20886 19573 18299 17102 15961 14903 13972 13075 12277 11512 10787 10088 9418 8792 8233 7728 7235 6787 6399 6094 5812 5515 5232 4965 4734 4483 4297 4099 3871 3648 3474 3312	511 386 298 247 203 143 105 80 61 43 21 9 6 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pass Pass Pass Pass Pass Pass Pass Pass
0.0261	7235		0	Pass
			0	Pass
	4483	1	0	Pass
		-		
		-		
		-		
		-		
0.0337	3166	0	0	Pass
0.0342	3019	0	0	Pass
0.0347	2915	0	0	Pass
0.0352	2789	0	0	Pass
0.0356	2680	0	0	Pass
0.0361 0.0366	2527 2410	0 0	0 0	Pass Pass
0.0371	2302	0	0	Pass
0.0376	2200	0	0	Pass
0.0380	2097	0	0	Pass
0.0385	1978	0	0	Pass
0.0390	1875	0	0	Pass
0.0395	1767	0	0	Pass
0.0400 0.0404	1682 1594	0 0	0 0	Pass Pass
0.0404	1594	0	0	Pass Pass
0.0414	1458	0	0	Pass
0.0419	1378	0	0	Pass
0.0423	1305	0	0	Pass
0.0428	1249	0	0	Pass
0.0433	1191	0	0	Pass

0.0438	1135	0	0	Pass
0.0443	1083	0	0	Pass
0.0447	1032	0	0	Pass
0.0452	982	0	0	Pass
0.0457	929	0	0	Pass
0.0462	869	0	0	Pass
0.0466	819	0	0	Pass
0.0471	771	0	0	Pass
0.0476	710	0	0	Pass
0.0481	663	0	0	Pass
0.0486	626	0	0	Pass
0.0490	583	0	0	Pass
0.0495	541	0	0	Pass
0.0500	500	0	0	Pass
0.0505	456	0	0	Pass
0.0509	417	0	0	Pass
0.0514	380	0	0	Pass
0.0519	352	0	0	Pass
0.0524	318	0	0	Pass
0.0529	297	0	0	Pass
0.0533	276	0	0	Pass
0.0538	263	0	0	Pass
0.0543	246	0	0	Pass
0.0548	231	0	0	Pass
0.0552	216	0	0	Pass
0.0557	203	0	0	Pass
0.0562	180	0	0	Pass
0.0567	154	0	0	Pass
0.0572	142	0	0	Pass
0.0576	126	0	0	Pass
0.0581	112	0	0	Pass
0.0586	104	0	0	Pass
0.0591	99	0	0	Pass
0.0595	89	0	0	Pass

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

Total Volume Volume LID Technique Used for Infiltration Cumulative Percent Water Quality Percent Comment Treatment? Needs Through Volume Volume Volume Water Quality Treatment Facility (ac-ft.) Infiltration Infiltrated Treated (ac-ft) (ac-ft) Credit 0.00 0.00 Total Volume Infiltrated 0.00 0.00 No Treat. Credit 0.00 0 % Compliance with LID Standard 8

Duration Analysis Result = Passed

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

NORTHWEST BASIN

WWHM2012 PROJECT REPORT

Project Name: Flow Analysis - NW
Site Name: Sunset
Site Address: 2301 23rd
City : Puyallup
Report Date: 5/22/2023
Gage : 40 IN EAST
Data Start : 10/01/1901
Data End : 09/30/2059
Precip Scale: 1.00
Version Date: 2021/08/18
Version : 4.2.18

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Pre-Northwest Bypass: No

GroundWater: No

Pervious Land Use	acre
C, Forest, Mod	.366
Pervious Total	0.366
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.366

Element	Flows	To:	
Surface			Interflow

Groundwater

MITIGATED LAND USE

Name : Post Northwest Bypass: No

GroundWater: No

Pervious Land Use C, Forest, Mod	<u>acre</u>
Pervious Total	0.115
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.115

Element Flows To: Surface Interflow

Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1 Total Pervious Area:0.366 Total Impervious Area:0

Mitigated Landuse Totals for POC #1 Total Pervious Area:0.115 Total Impervious Area:0

100 year

Flow Frequency Return	Periods for	Predevelope	d. POC #1
Return Period	Flow(cfs)		
2 year	0.00835		
5 year	0.012927		
10 year	0.015585		
25 year	0.018471		
50 year	0.02033		
100 year	0.021946		
Flow Frequency Return	Periods for	Mitigated.	POC #1
Return Period	Flow(cfs)		
2 year	0.002623		
5 year	0.004062		
10 year	0.004897		
25 year	0.005804		
50 year	0.006388		

0.006896

Annual	Peaks	for Predevelo	ped and Mitigated.
Year		Predeveloped	Mitigated
1902		0.007	0.002
1903		0.005	0.002
1904		0.010	0.003
1905		0.004	0.001
1906		0.002	0.001
1907		0.013	0.004
1908		0.009	0.003
1909		0.009	0.003
1910		0.013	0.004
1911		0.008	0.003
1912		0.032	0.010
1913		0.013	0.004
1913		0.003	0.001
1915		0.005	0.002
1916		0.008	0.003
1917		0.003	0.001
1918		0.009	0.003
1919		0.007	0.002
1920		0.008	0.003
1920		0.009	0.003
1922		0.009	0.003
1923		0.007	0.002
1923		0.004	0.001
1925		0.005	0.001
1926		0.008	0.003
1927		0.006	0.002
1928		0.006	0.002
1929		0.013	0.004
1930		0.008	0.003
1931		0.008	0.002
1932		0.006	0.002
1933		0.007	0.002
1934		0.017	0.005
1935		0.008	0.002
1936		0.007	0.002
1937		0.012	0.004
1938		0.007	0.002
1939		0.001	0.000
1940		0.008	0.002
1941		0.005	0.001
1942		0.011	0.004
1943		0.006	0.002
1944		0.013	0.004
1945		0.009	0.003
1946		0.006	0.002
1947		0.004	0.001
1948		0.018	0.006
1949		0.015	0.005
1950		0.004	0.001
1951		0.006	0.002
1952		0.023	0.007
1953		0.021	0.007
1954		0.007	0.002
1955		0.006	0.002

Stream Protection Duration

POC #1

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990	0.003 0.011 0.022 0.014 0.004 0.014 0.007 0.004 0.005 0.005 0.007 0.007 0.007 0.007 0.007 0.011 0.016 0.011 0.014 0.008 0.017 0.009 0.004 0.005 0.004 0.015 0.004 0.015 0.004 0.015 0.004 0.015 0.004 0.015 0.004 0.015 0.004 0.015 0.004 0.015 0.004 0.015 0.004 0.015 0.004 0.015 0.004 0.015 0.004 0.015 0.004 0.015 0.008 0.010 0.008 0.010 0.009 0.010 0.009 0.010 0.008 0.010 0.008 0.010 0.008 0.010 0.008 0.011	0.001 0.003 0.007 0.004 0.001 0.002 0.001 0.005 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.005 0.003 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.003 0.001 0.003
1990	0.010	0.003
1991	0.008	0.003
1992	0.011	0.003
1993	0.011	0.003
1994	0.016	0.005
1995	0.004	0.001
1996	0.018	0.006
1997	0.007	0.002
1998	0.009	0.003
1999	0.001	0.000
2000	0.007	0.002
2001	0.004	0.001
2002	0.013	0.004
2003	0.010	0.003
2004 2005	0.009 0.019	0.003
2006 2007	0.005	0.002
2008	0.009	0.003
2009 2010	0.006 0.005	0.002
2011	0.005	0.001
2012	0.007	0.002

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2040 2041 2042 2044 2045 2044 2045 2046 2047 2048 2044 2045 2046 2047 2048 2049 2050 2050 2050 2050	0.005 0.004 0.007 0.003 0.013 0.023 0.023 0.023 0.007 0.011 0.005 0.010 0.024 0.009 0.014 0.009 0.014 0.005 0.004 0.009 0.017 0.006 0.003 0.005 0.005 0.005 0.005 0.0010 0.003 0.005 0.0010 0.003 0.005 0.0010 0.003 0.005 0.0010 0.005 0.0010 0.005 0.0010 0.005 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0010 0.005 0.005 0.005 0.005 0.005 0.005 0.0010 0.005 0.005 0.0010 0.005 0.005 0.005 0.0010 0.005	0.002 0.001 0.002 0.001 0.004 0.007 0.007 0.002 0.004 0.001 0.003 0.008 0.003 0.004 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.003 0.001 0.003 0.001 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058	0.010 0.009 0.006 0.009	0.003 0.002 0.003 0.002 0.003 0.004 0.001 0.001 0.001 0.002 0.002
2059	0.010	0.004

Stream Protection Duration				
Ranked	Annual Peaks for	Predeveloped and Mitigated.	POC #1	
Rank	Predeveloped	Mitigated		
1	0.0318	0.0100		
2	0.0241	0.0076		
3	0.0232	0.0073		
4	0.0231	0.0072		
5	0.0227	0.0071		

33 0.0127 0.0040 34 0.0125 0.0039 35 0.0124 0.0039 36 0.0118 0.0037 37 0.0114 0.0036 38 0.0114 0.0036 39 0.0114 0.0036 40 0.0111 0.0035 41 0.0109 0.0034 42 0.0108 0.0034 43 0.0107 0.0034 44 0.0106 0.0032 46 0.0103 0.0032 46 0.0103 0.0032 47 0.0103 0.0032 48 0.0101 0.0031 50 0.0099 0.0031 51 0.0097 0.0031 52 0.0096 0.0030 53 0.0096 0.0030 54 0.0093 0.0029 55 0.0093 0.0029	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	0.0220 0.0207 0.0198 0.0193 0.0191 0.0182 0.0176 0.0172 0.0170 0.0169 0.0163 0.0163 0.0162 0.0155 0.0155 0.0155 0.0152 0.0139 0.0138 0.0138 0.0138 0.0134 0.0131 0.0129 0.0128 0.0128	0.0069 0.0062 0.0061 0.0057 0.0055 0.0054 0.0053 0.0053 0.0051 0.0051 0.0051 0.0049 0.0048 0.0048 0.0048 0.0048 0.0048 0.0044 0.0043 0.0043 0.0043 0.0043 0.0042 0.0041 0.0040 0.0040
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38 0.0114 0.0036 39 0.0114 0.0036 40 0.0111 0.0035 41 0.0109 0.0034 42 0.0108 0.0034 43 0.0107 0.0034 44 0.0106 0.0033 45 0.0103 0.0032 46 0.0103 0.0032 47 0.0103 0.0032 48 0.0101 0.0032 49 0.0099 0.0031 50 0.0098 0.0031 51 0.0096 0.0030 53 0.0096 0.0030 54 0.0093 0.0029 55 0.0092 0.0029 57 0.0092 0.0029 58 0.0092 0.0029 59 0.0092 0.0029 60 0.0092 0.0029	35 36	0.0124 0.0118	0.0039 0.0037
430.01070.0034440.01060.0033450.01030.0032460.01030.0032470.01030.0032480.01010.0032490.00990.0031500.00980.0031510.00960.0030530.00960.0030540.00930.0029550.00930.0029	43 0.0107 0.0034 44 0.0106 0.0033 45 0.0103 0.0032 46 0.0103 0.0032 47 0.0103 0.0032 48 0.0101 0.0032 49 0.0099 0.0031 50 0.0098 0.0031 51 0.0097 0.0031 52 0.0096 0.0030 53 0.0096 0.0029 54 0.0093 0.0029 56 0.0092 0.0029 57 0.0092 0.0029 58 0.0092 0.0029 59 0.0092 0.0029 60 0.0092 0.0029	38 39 40 41	0.0114 0.0114 0.0111 0.0109	0.0036 0.0036 0.0035 0.0034
480.01010.0032490.00990.0031500.00980.0031510.00970.0031520.00960.0030530.00960.0030540.00930.0029550.00930.0029	480.01010.0032490.00990.0031500.00980.0031510.00970.0031520.00960.0030530.00960.0030540.00930.0029550.00930.0029560.00920.0029570.00920.0029580.00920.0029590.00920.0029600.00920.0029	43 44 45 46	0.0107 0.0106 0.0103 0.0103	0.0034 0.0033 0.0032 0.0032
530.00960.0030540.00930.0029550.00930.0029	530.00960.0030540.00930.0029550.00930.0029560.00920.0029570.00920.0029580.00920.0029590.00920.0029600.00920.0029	48 49 50 51	0.0101 0.0099 0.0098 0.0097	0.0032 0.0031 0.0031 0.0031
	580.00920.0029590.00920.0029600.00920.0029	53 54 55	0.0096 0.0093 0.0093	0.0030 0.0029 0.0029

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103	0.0091 0.0090 0.0090 0.0089 0.0088 0.0088 0.0088 0.0087 0.0086 0.0085 0.0084 0.0083 0.0083 0.0083 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0078 0.0078 0.0078 0.0075 0.0075 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0072 0.0071 0.0070 0.0070 0.0070 0.0069 0.0069 0.0069 0.0069	0.0029 0.0028 0.0028 0.0028 0.0028 0.0028 0.0027 0.0027 0.0027 0.0026 0.0022 0.0022 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	0.0069 0.0067 0.0066 0.0066 0.0065 0.0064 0.0064 0.0063 0.0062 0.0061 0.0059 0.0059 0.0059 0.0058 0.0058	0.0022 0.0021 0.0021 0.0021 0.0020 0.0020 0.0020 0.0020 0.0020 0.0019 0.0019 0.0019 0.0018 0.0018 0.0018
115 116 117 118 119	0.0058 0.0056 0.0055 0.0054 0.0052	0.0018 0.0018 0.0017 0.0017 0.0016

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152	0.0052 0.0052 0.0051 0.0051 0.0051 0.0051 0.0050 0.0048 0.0047 0.0047 0.0046 0.0046 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0042 0.0041 0.0041 0.0041 0.0041 0.0039 0.0038 0.0038 0.0038 0.0036 0.0036 0.0036 0.0036 0.0036 0.0034 0.0033 0.0033 0.0029 0.0028	0.0016 0.0016 0.0016 0.0016 0.0016 0.0015 0.0015 0.0015 0.0015 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011
151	0.0033	0.0010
153 154 155 156 157 158	0.0028 0.0027 0.0022 0.0011 0.0009 0.0006	0.0009 0.0009 0.0007 0.0004 0.0003 0.0002

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Dor	contago	Pass/Fail
			-	-
0.0042	55678	1888	3	Pass
0.0043	51223	1594	3	Pass
0.0045	47163	1359	2	Pass
0.0047	43451	1173	2	Pass
0.0048	40110	1003	2	Pass
0.0050	37174	831	2	Pass
0.0052	34415	666	1	Pass
0.0053	31883	535	1	Pass
0.0055	29523	405	1	Pass

0.0056 0.0058 0.0060 0.0061	27484 25634 23867 22288	305 251 203 141	1 0 0 0	Pass Pass Pass
0.0063	20886	104	0	Pass Pass
0.0065 0.0066	19551 18282	78 60	0 0	Pass Pass
0.0068	17097	38	0	Pass
0.0069	15955	15	0	Pass
0.0071	14903	8	0	Pass
0.0073 0.0074	13944 13063	5 4	0 0	Pass Pass
0.0076	12271	3	0	Pass
0.0078	11512	3	0	Pass
0.0079	10787	3	0	Pass
0.0081	10083	3	0	Pass
0.0083	9413	3	0	Pass
0.0084	8792	3	0	Pass
0.0086 0.0087	8233 7728	2 2	0 0	Pass Pass
0.0089	7230	2	0	Pass
0.0091	6781	2	0	Pass
0.0092	6399	2	0	Pass
0.0094	6094	2	0	Pass
0.0096	5812	2	0	Pass
0.0097	5511	2	0	Pass
0.0099 0.0100	5230	1	0	Pass
0.0100	4974 4739	0 0	0 0	Pass Pass
0.0102	4490	0	0	Pass
0.0105	4309	0	0	Pass
0.0107	4099	0	0	Pass
0.0109	3874	0	0	Pass
0.0110	3657	0	0	Pass
0.0112	3475	0	0	Pass
0.0114 0.0115	3315 3175	0 0	0 0	Pass Pass
0.0113	3019	0	0	Pass
0.0118	2917	0	0	Pass
0.0120	2800	0	0	Pass
0.0122	2677	0	0	Pass
0.0123	2528	0	0	Pass
0.0125 0.0127	2416	0	0	Pass
0.0127	2302 2201	0 0	0 0	Pass Pass
0.0120	2099	0	0	Pass
0.0132	1978	0	0	Pass
0.0133	1876	0	0	Pass
0.0135	1769	0	0	Pass
0.0136	1688	0	0	Pass
0.0138	1594	0	0	Pass
0.0140 0.0141	1528 1461	0 0	0 0	Pass Pass
0.0141	1379	0	0	Pass
0.0145	1306	0	0	Pass
0.0146	1250	0	0	Pass
0.0148	1191	0	0	Pass

0.0149 0.0151	1137 1085	0 0	0 0	Pass Pass
0.0153	1032	0	0	Pass
0.0154	983	0	0	Pass
0.0156	930	0	0	Pass
0.0158	869	0	0	Pass
0.0159	819	0	0	Pass
0.0161	774	0	0	Pass
0.0163	708	0	0	Pass
0.0164	663	0	0	Pass
0.0166	627	0	0	Pass
0.0167	583	0	0	Pass
0.0169	541	0	0	Pass
0.0171	501	0	0	Pass
0.0172	458	0	0	Pass
0.0174	417	0	0	Pass
0.0176	380	0	0	Pass
0.0177	354	0	0	Pass
0.0179	318	0	0	Pass
0.0180	297	0	0	Pass
0.0182	277	0	0	Pass
0.0184	263	0	0	Pass
0.0185	246	0	0	Pass
0.0187	231	0	0	Pass
0.0189	216	0	0	Pass
0.0190	203	0	0	Pass
0.0192	180	0	0	Pass
0.0194	154	0	0	Pass
0.0195	142	0	0	Pass
0.0197	127	0	0	Pass
0.0198	112	0	0	Pass
0.0200	104	0	0	Pass
0.0202	99	0	0	Pass
0.0203	89	0	0	Pass

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

Total Volume Volume LID Technique Used for Infiltration Cumulative Percent Water Quality Percent Comment Treatment? Needs Through Volume Volume Volume Water Quality Treatment Facility (ac-ft.) Infiltration Infiltrated Treated (ac-ft) (ac-ft) Credit 0.00 0.00 Total Volume Infiltrated 0.00 0.00 No Treat. Credit 0.00 0 % Compliance with LID Standard 8

Duration Analysis Result = Passed

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

APPENDIX D

Reports

Geotechnical Engineer's Report	D-1
Groundwater Monitoring	D-2
Critical Areas Assessment	D-3
Habitat Letter	D-4

GEOTECHNICAL ENGINEER'S REPORT

Geotechnical Engineering Construction Observation/Testing Environmental Services

> GEOTECHNICAL ENGINEERING STUDY SUNSET POINTE 2301 - 23RD STREET SOUTHEAST PUYALLUP, WASHINGTON

JAL THE

ES-5559

1805 - 136th Place N.E., Suite 201 Bellevue, WA 98005 (425) 449-4704 Fax (425) 449-4711 www.earthsolutionsnw.com

PREPARED FOR

PETER CHEN

January 11, 2018 Updated May 26, 2023

han 6. 13

Chase G. Halsen, L.G., L.E.G. Senior Project Geologist

Scott S. Riegel, L.G., L.E.G. Associate Principal Geologist

GEOTECHNICAL ENGINEERING STUDY SUNSET POINTE 2301 – 23RD STREET SOUTHEAST PUYALLUP, WASHINGTON

ES-5559

Earth Solutions NW, LLC 15365 Northeast 90th Street, Suite 100 Redmond, Washington 98052 Phone: 425-449-4704 | Fax: 425-449-4711 www.earthsolutionsnw.com

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will <u>not</u> be adequate to develop geotechnical design recommendations for the project.

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.*

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept* responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform constructionphase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note* conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures.* If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, *proper implementation of the geotechnical engineer's recommendations will <u>not</u> of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration* by including building-envelope or mold specialists on the design team. *Geotechnical engineers are <u>not</u> building-envelope or mold specialists.*

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent or intentional (fraudulent) misrepresentation.

January 11, 2018 Updated May 26, 2023 ES-5559

Earth Solutions NW LLC

Geotechnical Engineering, Construction Observation/Testing and Environmental Services

Peter Chen 4709 Memory Lane West University Place, Washington 98488

Greetings:

Earth Solutions NW, LLC (ESNW) is pleased to present this report in support of the proposed project. Based on the results of our investigation, the proposed residential plat is feasible from a geotechnical standpoint. Our study indicates the site is underlain by areas of existing fill that overly Vashon drift glacial deposits Light to heavy perched groundwater seepage was encountered at three test pit locations at an approximate exposure depth of about one-and-one-half to six feet below the existing ground surface. As such, it is our opinion that the contractor should be prepared to manage zones of perched groundwater seepage during construction.

In our opinion, the proposed residential structures may be constructed on conventional continuous and spread footing foundations bearing upon competent native soil, recompacted native soil, recompacted existing fill, or suitable structural fill placed directly on competent native soils. In general, native soils suitable for foundation support are anticipated to be encountered at depths of approximately two to five feet below the existing ground surface. Areas underlain by existing fill may require additional preparation efforts to establish suitable and uniform bearing conditions. Additional preparation activities will likely involve overexcavating unsuitable existing fill may be feasible in areas where the fill is devoid of organic and deleterious material but must be evaluated by ESNW during grading. Areas of deeper fill (if encountered) may require additional or complete over excavation and restoration or alternative foundation support designs. In general, where loose or unsuitable soil conditions are exposed at foundation subgrade elevations, compaction of soils to the specifications of structural fill, or overexcavation and replacement with a suitable structural fill material, will be necessary.

Stormwater management is currently proposed using dispersion/level spreader BMPs for roadways and on targeted lots. Based on the soil and groundwater conditions and the results of representative in-situ infiltration testing it is our opinion that infiltration is considered infeasible in the areas tested. Further discussion of infiltration feasibility is provided in this report.

Originally completed in January 2018, this report has been updated to reflect the current proposed site layout and to provide responses to comments prepared by the City of Puyallup (see attached DRT letter). The current project proposal no longer includes the development of the northernmost site parcel (currently referred to as Parcel A). As such, soil and groundwater exposed at test pits TP-14 through TP-18 were not utilized as a basis for the recommendations and evaluations provided in this report.

Recommendations for foundation design, site preparation, drainage, and other pertinent development aspects are provided in this study. We appreciate the opportunity to be of service to you on this project. If you have questions regarding the content of this geotechnical engineering study, please call.

Sincerely,

EARTH SOLUTIONS NW, LLC

Chase G. Halsen, L.G., L.E.G Senior Project Geologist

Table of Contents

ES-5559

<u>PAGE</u>

INTRODUCTION	1
<u>General</u>	1
Project Description	2
SITE CONDITIONS	2
Surface	2
Subsurface	3
Topsoil and Fill	3
Native Soil	3
Geologic Setting	4
Groundwater	4
<u>Geologically Hazardous Areas</u>	4
Landslide Hazard	5
Erosion Hazard	6
DRT Comments and Response	6
	Ũ
DISCUSSION AND RECOMMENDATIONS	8
General	8
Site Preparation and Earthwork	8
Temporary Erosion Control	9
Stripping	9
In-situ and Imported Soils	9
Subgrade Preparation	10
	10
Structural Fill	-
Slope Fill	10
Temporary Excavations and Slopes	11
Foundations	11
Seismic Design	12
Slab-on-Grade Floors	13
Retaining Walls	13
Drainage	14
Infiltration Feasibility Evaluation	14
Stormwater System	15
Utility Support and Trench Backfill	15
Preliminary Pavement Sections	15
LIMITATIONS	16
Additional Services	16

Table of Contents

Cont'd

ES-5559

GRAPHICS

Plate 1	Vicinity Map
Plate 2	Test Pit Location Plan
Plate 3	Slope Fill Detail
Plate 4	Retaining Wall Drainage Detail
Plate 5	Footing Drain Detail
APPENDICES	
Appendix A	Subsurface Exploration

Subsullace Exploration
Test Pit Logs

Appendix B Laboratory Test Results

GEOTECHNICAL ENGINEERING STUDY SUNSET POINTE 2301 – 23RD STREET SOUTHEAST PUYALLUP, WASHINGTON

ES-5559

INTRODUCTION

<u>General</u>

This geotechnical engineering study (study) was prepared for the proposed residential plat to be completed at $2301 - 23^{rd}$ Street Southeast in Puyallup, Washington. The purpose of this study was to provide geotechnical recommendations for currently proposed development plans. Our scope of services for completing this study included the following:

- Completion of test pits for purposes of characterizing site soils.
- Completion of laboratory testing of soil samples collected at the test pit locations.
- Conduction of engineering analyses and preparation of this report.

The following documents and maps were reviewed as part of our study preparation:

- Sunset Pointe Preliminary Plat Set, prepared by CES NW, Inc., dated May 22, 2023;
- Puyallup Municipal Code Chapter 21.06;
- Development Review Team Letter, prepared by the City of Puyallup, dated May 16, 2022;
- Online Web Soil Survey (WSS) resource, maintained by the Natural Resources Conservation Service under the United States Department of Agriculture;
- Liquefaction Susceptibility for Pierce County incorporating data from the Washington State Department of Natural Resources, dated September 2004, and;
- Geologic Map of the South Half of the Tacoma Quadrangle, Washington, by Timothy J. Walsh, 1987.

Project Description

We understand the site will be developed into a residential plat consisting of 18 residential lots and general site improvements. Stormwater management will be provided using dispersion/level spreader BMPs at some locations. At the time of report submission, building load plans were not available for review; however, based on our experience with similar developments, the proposed residential structures will likely be two to three stories in height and constructed using relatively lightly loaded wood framing supported on conventional foundations. Perimeter footing loads of about 1 to 2 kips per lineal foot (klf) are expected. Slab-on-grade loading is anticipated to be approximately 150 pounds per square foot (psf). We understand that grade fills of up to 20 feet will be necessary to achieve design elevations across the building pads and grading will occur in a stepped configuration where practical do reduce the site modifications required. Deeper excavations will likely be required to construct the stormwater pond.

If the above design assumptions are incorrect or change, ESNW should be contacted to review the recommendations provided in this report. ESNW should review the final designs to confirm that appropriate geotechnical recommendations have been incorporated into the plans.

SITE CONDITIONS

<u>Surface</u>

The subject site is located east of the intersection between 19th Avenue Southeast and 21st Street Southeast in Puyallup, Washington. The approximate location of the subject site is depicted on Plate 1 (Vicinity Map). The irregular-shaped property is comprised of two adjoining tax parcels (Pierce County Parcel Nos. 042035-3027) totaling approximately 9.09 acres.

The site is bordered on all sides primarily by existing residential development. A sewer and water easement is present on site, trending roughly east to west along the entire northern edge of the development area. A relay station is present within the east-central site area. Multiple barn and storage structures appear to have been present within the southern site area but had been demolished before our fieldwork. Based on our field observations, it appears that the land has been previously modified through the placement of fill material. It appears that the fill had been placed to establish an access pathway to the southern site area, to level sloping areas, and fill an existing natural trough feature. Based on our observations, it is our opinion the site modification was likely not associated with recent development. Current topography varies across the site; however, maintains an overall northerly/northeasterly declivity. Approximately 30 to 35 feet of total elevation change occurs within the proposed development area. Three existing wetlands (designated A-C on the referenced plans) are present within the central site area.

<u>Subsurface</u>

The subsurface explorations and in-situ filed testing consisted of the following:

- October 24, 2017: Completing 19 test pits were conducted across the entire site area (including Parcel A).
- May 15, 2019: Completing four test pits were conducted and targeted to the proposed stormwater management pond (Tract B). Three shallow groundwater monitoring piezometers were installed during this exploration.
- January 22, 2020: Completing two test pits were performed to conduct small-scale pilot infiltration testing at representative site areas. A shallow, groundwater monitoring piezometer was installed at both test pit locations.

Each exploration and in-situ testing program was observed, logged, and sampled by an ESNW representative and completed using machinery and an operator retained by our firm and completed to assess and classify subsurface soil and groundwater conditions across the site. The approximate locations of the test pits are depicted on Plate 2 (Test Pit Location Plan). Please refer to the test pit logs provided in Appendix A for a more detailed description of subsurface conditions. Representative soil samples collected at the test pit locations were analyzed in accordance with the Unified Soil Classification System (USCS) and United States Department of Agriculture (USDA) methods and procedures.

Topsoil and Fill

Topsoil was encountered generally within the upper 2 to 18 inches of existing grades at the test pit locations. The topsoil was characterized by dark brown color, the presence of fine organic material, and small root intrusions.

Fill was observed at the majority of the test pit locations, ranging in approximate depths from 1 to 13 feet below the existing ground surface (bgs). The fill was observed to be variable in nature, typically consisting of silty sand to sandy silt, and encountered in a loose to medium dense and moist condition. In general, the majority of the fill was observed to be free of debris, except isolated areas of brick and wire debris and trace organics. Due to the high variability in texture of the fill soils, ESNW should be retained to evaluate the suitability of fill encountered during construction.

Native Soil

Underlying topsoil and fill, native soils were encountered consisting of soils associated with and representative of glacial drift deposits. In general, the predominant native soil type should be considered silty sand with or without gravel (USCS: SM). However, localized areas and depositional lenses of poorly graded sand and silt (USCS: SP and ML, respectively) were encountered. The native soils were typically encountered in a medium dense and moist conditions.

Geologic Setting

The referenced geologic map resource identifies Vashon undifferentiated drift (Qdv) across the site and surrounding areas. Although not specifically characterized within the geologic map resource, Vashon drift typically consists of glacial till, glaciofluvial, and glaciolacustrine sediments. The reference WSS resource indicates soils of the Everett very gravelly sandy loam, Indianola loamy sand, and Kitsap silt loam (Map Unit Symbols: 13B, 18C, 20B, and 20C, respectively). These soil groups are typically associated with moraines, eskers, kames, and terrace landforms, derived from glacial outwash and glaciolacustrine material. The variability in the makeup of the native soils is generally consistent with that of Vashon drift.

Groundwater

Perched groundwater seepage was encountered at TP-4, TP-201, and TP-202 during the subsurface explorations. In general, the seepage was exposed at depths of about one-and-one-half to six feet bgs and characterized as light to heavy.

In our opinion, the contractor should anticipate, and be prepared to manage, zones of perched groundwater seepage during construction, especially within deeper excavations depending on the time of year grading occurs. Groundwater seepage is common within glacial sediments, particularly within relatively permeable lenses and/or atop dense to very dense, unweathered deposits. Seepage rates and elevations fluctuate depending on many factors, including precipitation duration and intensity, the time of year, and soil conditions. In general, groundwater flow rates are higher during the wetter, winter months.

ESNW is currently performing a groundwater monitoring program for the site at three of the previously installed shallow wells. The results of the program and applicable design recommendations will be provided in a summary letter separate from this report.

Geologically Hazardous Areas

In preparation of this report, we reviewed the applicable city of Puyallup mapping and geologically hazardous area code section 21.06.

Landslide Hazard

As defined in Puyallup Municipal Code (PMC) 21.06.1210, landslide and erosion hazard areas include those identified by the U.S. Department of Agriculture Natural Resources Conservation Service as having a moderate to severe, severe, or very severe erosion hazard because of natural characteristics, including vegetative cover, soil texture, slope, gradient, and rainfall patterns, or human-induced changes to natural characteristics. Landslide and erosion hazard areas include areas with the following characteristics:

- Areas that have shown mass movement during the Holocene epoch (from 10,000 years ago to the present) or that are underlain or covered by mass wastage debris of that epoch;
- Slopes that are parallel or subparallel to planes of weakness (such as bedding planes, joint systems, and fault planes) in subsurface materials;
- Slopes having gradients steeper than 80 percent subject to rock fall during seismic shaking;
- Areas potentially unstable because of stream incision or stream bank erosion;
- Areas located in a canyon, ravine, or on an active alluvial fan, presently or potentially subject to inundation by debris flows or flooding;
- Any area with a slope of 40 percent or steeper and a vertical relief of 10 or more feet, except areas composed of consolidated rock and properly engineered manmade slopes/retained fill. A slope is delineated by establishing its toe and top and measured by averaging the inclination over at least 10 feet of vertical relief;
- Areas with a severe limitation for building development because of slope conditions, according to the Natural Resource Conservations Service, and;
- Areas meeting all three of the following criteria: (A) slopes steeper than 15 percent, except that slopes of less than 15 percent may be considered erosion hazard areas if they have certain unstable soil and drainage characteristics; (B) hillsides intersecting geologic contacts with a relatively permeable sediment overlying a relatively impermeable sediment or bedrock; and (C) wet season springs or groundwater seepage.

Based on the conditions encountered during our subsurface explorations, review of available topographic information, and review of the referenced slope schematic (which includes delineations of slopes greater than 40 percent), it appears that the majority of the site does not contain a landslide hazard, as defined by the PMC, except as noted below.

Slopes of 40 percent or greater have been delineated within the central site area and are associated with the sidewalls of Wetland A and Wetland C. However, these slopes are isolated and relatively minor in extent. Based on a review of the referenced preliminary plat plan set, a 25-foot buffer has been applied to each respective steep slope feature. Although the buffer appears to intersect the northwest corner of Lot 14, it is outside of the proposed building pad area; therefore, is outside future structural improvements.

In general, the development areas of the site do not contain a landslide hazard. Although some areas on site may meet the PMC criteria for landslide hazard, they are isolated and limited in occurrence. In our opinion, the site does not contain a hazard that would preclude successful development. However, remediation of unsuitable existing soils and groundwater drainage improvements will likely be necessary to assist in maintaining or improving post-construction soil stability. As such, ESNW should be present during grading activities to help identify areas of unsuitable soil and groundwater seepage and provide such mitigation recommendations. From a geotechnical standpoint, provided the recommendations of the referenced report and those contained within this letter are incorporated into the project designs, it is our opinion, based on our understanding of the current scope, the project can be developed as is currently proposed.

Erosion Hazard

As delineated in Puyallup Municipal Code (PMC) 21.06.1210, erosion hazard areas include those identified by the U.S. Department of Agriculture Natural Resources Conservation Service as having a moderate to severe, severe, or very severe erosion hazard because of natural characteristics, including vegetative cover, soil texture, slope, gradient, and rainfall patterns, or human-induced changes to natural characteristics.

Site soils are considered to have moderate to severe erosion potential when exposed to precipitation. In our opinion, provided appropriate temporary and permanent erosion and sediment control (ESC) measures are incorporated into final designs, the potential for erosion will remain low both during and after construction. Site BMPs and other means of sediment and surface flow control measures should be actively maintained during construction to ensure proper performance and functions. While seasonal grading restrictions may not be required for this project, we recommend the developer be prepared to employ enhanced ESC measures during the rainy season and be prepared to suspend grading activities if adequate BMPs cannot perform as intended during intense precipitation.

Provided the above recommendations and considerations are included with the construction plan and sequence, it is our opinion that the proposed development will not adversely affect soil stability on adjacent properties. Please note that our evaluation and corresponding lot recommendations are based on plans and site layouts made available to ESNW during report preparation. If site layout plans change, ESNW should be notified to provide updated recommendations.

DRT Comments and Response

For ease of review and clarity, this section of the report will be focused on responding to geotechnically related jurisdictional comments provided in the referenced DRT letter. Some elements of this response may be a duplicated from the discussion, evaluations, and/or recommendations provided in this report.

Planning and Review Comment 4: A 25' native growth protection area (NGPA) shall be provided on the rear of lot 13 due to slopes and protective buffer areas of 40% (or more) slopes and wetlands, per the Geotech report. These areas shall be landscaped and landscape plan shall be provided for these lots during final landscape plan and approval. February 2022, staff follow up comment: Please revise the lot layout with this protection area shown on the plat sheet(s) as 40% (or more) area (using the same call out as on Tract A) and show buffer setback.

ESNW Response: As indicated on the referenced plan set, a NGPA easement of 35' feet has been incorporated along the east property line and encompasses all or a part of Lots 8 through 13. Furthermore, a 25-foot buffer has been incorporated in sloping areas that meet or exceed 40 percent, both of which are located around Wetland A or C. The slope buffer in proximity to Wetland A encompasses a part of Lot 14; however does not encroach into the building envelope for that lot. With respect to Wetland C, the slope buffer does not encroach on any adjacent lot areas.

Engineering Review Comment 2: First and foremost, there will be no further review of the civil portion of the Major Plat due to the non-response to repeated requests for detailed long term groundwater monitoring. In addition, 2 test pits are not adequate for a site this size. Infiltration must be shown as infeasible in order for the project to claim that it is infeasible and not use it. Provide detailed account of testing and tabulated results.

ESNW Response: Site subsurface conditions were explored in October 2017, May 2019, and January 2020 and indicated variability concerning soil types present and grain size distribution across the site. Per USDA testing methods and procedures, native soils are also classified as slightly gravelly sand, gravelly loamy coarse sand, very gravelly loamy sand, and loam. Fines contents were about 6 percent within the sands, 26 to 40 percent within the sandy loam, and 58 to 98 percent within the gravelly loam and loam, as indicated by the sieve results of representative samples. To further evaluate site infiltration potential, two small-scale pilot infiltration tests (PITs) were performed in January 2020. The following table depicts each infiltration test location, encountered soil type, test depth, measured rate, appropriate safety factors, and recommended design rate.

Location	Soil	Test Depth	Measured	Correc	tion Fac	tors	Recommended Design Rate
	Туре	(ft bgs)	Rate (in/hr)	CFv	CFt	CFm	(in/hr)
TP-201	ML	4.0	0	0.33	0.5	0.9	0
TP-202	ML	4.0	0	0.33	0.5	0.9	0

In accordance with our previous evaluations and recommendations, it is our opinion that infiltration be considered infeasible for the proposed project. Based on the soil and groundwater conditions exposed during each subsurface exploration, and the observed field infiltration rate of zero in/hr. at both PIT locations, it is our opinion that infiltration infeasibility has been sufficiently demonstrated.

Engineering Review Comment 6b: The stormwater pond is located within a steep slope buffer. Per the DOE stormwater manual, the facility shall not be located above a slope that exceeds 15 percent.

Engineering Review Comment 6d: The stormwater pond will be a City-owned infrastructure. The city does not accept its current location above a steep slope that leads to a wetland. This configuration will likely cause additional maintenance and has a potential for failure over time. The pond shall be relocated.

ESNW Response: From a geotechnical standpoint, construction of the stormwater pond at the proposed location may be considered feasible provided that lateral water migration can be sufficiently prevented. In our opinion, this can be achieved by including a low-permeable liner in the pond construction. Liners can consist of a geo-membrane or compacted soil that meets the requirements of the governing stormwater manual.

Engineering Review Comment 7: Does the soils within the wetland tract have any capabilities of infiltrating?

ESNW Response: From a geotechnical standpoint, infiltration should not be considered within the wetland areas. The presence of perennial, ponded water indicates that the wetland area is underlying by a confining or restrictive layer. Vertical transmission of water may occur; however, based on the soil conditions encountered at the test pit locations and or field observations, it would likely be a nearly negligible amount in concurrence with lateral water migration, however, it is not expected to the degree which would allow for successful, targeted infiltration designs to the area.

DISCUSSION AND RECOMMENDATIONS

<u>General</u>

Based on the results of our investigation, the construction of the proposed residential development is feasible from a geotechnical standpoint. The primary geotechnical considerations associated with the proposed development include foundation support, slab-on-grade subgrade support, the suitability of using on-site soils as structural fill, and construction of the stormwater facility(s).

Site Preparation and Earthwork

Initial site preparation activities will consist of installing temporary erosion control measures, establishing grading limits, and performing clearing and site stripping. Subsequent earthwork activities will involve mass site grading and related infrastructure improvements.

Temporary Erosion Control

The following temporary erosion control measures are offered:

- Temporary construction entrances and drive lanes, consisting of at least six inches of quarry spalls, should be considered to both minimize off-site soil tracking and provide a stable access entrance surface. The placement of a geotextile fabric beneath the quarry spalls will provide greater stability if needed. Existing asphalt/gravel drive lanes can be considered for use as a temporary construction entrance and should be observed by ESNW before construction.
- Silt fencing should be placed around the site perimeter.
- When not in use, soil stockpiles should be covered or otherwise protected.
- Temporary measures for controlling surface water runoff, such as interceptor trenches, sumps, or interceptor swales, should be installed before beginning earthwork activities.
- Dry soils disturbed during construction should be wetted to minimize dust.

Additional BMPs, as specified by the project civil engineer and indicated on the plans, should be incorporated into construction activities. Temporary erosion control measures should be continually maintained and improved to provide proper function over the course of construction.

Stripping

Topsoil was encountered generally within the upper 2 to 18 inches of existing grades at the test pit locations. Based on the encountered conditions, an average topsoil thickness of about eight to nine inches may be assumed ESNW should be retained to observe site stripping activities at the time of construction so that the degree of required stripping may be assessed. The exposed subgrade may still possess root elements, other organic material, or be present in a loose condition. As such, ESNW should evaluate the exposed soil subgrade to determine if further stripping or in-situ compaction efforts prior to fill operations or finish grading is necessary. Overstripping should be avoided, as it is unnecessary and may result in increased project development costs. Topsoil and organic-rich soil are neither suitable for foundation support nor for use as structural fill. Topsoil and organic-rich soil may be used in non-structural areas if desired.

In-situ and Imported Soils

On-site soils are highly moisture sensitive; therefore, successful use as structural fill largely being dictated by the moisture content at the time of placement and compaction. Remedial measures, such as soil aeration and/or cement treatment (where allowed by the local jurisdiction or utility district), may be necessary as part of site grading and earthwork activities. Existing fill soils to be used within structural applications must be free of deleterious debris, especially concerning construction-like debris and organic material. If the on-site soils cannot be successfully compacted, the use of an imported soil may be necessary. In our opinion, a contingency should be provided in the project budget for the export of soil that cannot be successfully compacted as structural fill if grading activities take place during periods of extended rainfall activity. Soils with fine contents greater than 5 percent typically degrade rapidly when exposed to periods of rainfall.

Imported soil intended for use as structural fill should consist of a well-graded, granular soil with a moisture content that is at (or slightly above) the optimum level. During wet weather conditions, imported soil intended for use as structural fill should consist of a well-graded, granular soil with a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction).

Subgrade Preparation

Following site stripping, cuts and fills will be completed to establish proposed subgrade elevations across the site. To establish a suitable subgrade for structural elements, recompaction of existing fill soils will likely be necessary for some areas. Due to the variable thickness and extent of the existing fill, it is our opinion that structural elements within the deeper fill areas be underlain by at least four feet of structural fill. It may be possible to recompact and reuse existing fill provided that it is free of deleterious material and contain a moisture content that is near optimum and is approved by ESNW at the time of placement and compaction.

Subgrades founded in competent native soils can likely be compacted in situ with mechanical equipment until a uniformly firm and unyielding condition is achieved. ESNW should observe the subgrade(s) during initial site preparation activities to confirm soil conditions are as anticipated and to provide supplementary recommendations for subgrade preparation, as necessary.

Please note the above considerations are based on current site layout plans available to ESNW, as depicted on the Test Pit Location Plan attached to this report. Should site layout designs change, ESNW should be informed and allowed to reevaluate necessary preparation efforts in relation to corresponding Lot numbers.

Structural Fill

Structural fill is defined as compacted soil placed in the foundation, slab-on-grade, roadway, permanent slope, retaining wall, and utility trench backfill areas. Soils placed in structural areas should be placed in loose lifts of 12 inches or less and compacted to a relative compaction of 95 percent, based on the laboratory maximum dry density as determined by the Modified Proctor Method (ASTM D1557). Soils intended for use as structural fill should be generally free of organic and deleterious material. For soil placed in utility trenches underlying structural areas, compaction requirements are dictated by the local city, county, or utility district, and are typically specified to a relative compaction of at least 95 percent.

Slope Fill

Structural fill placed along sloping areas (where a "sloping area" is defined as an area inclined at 15 percent or steeper) should be placed on a level bench as depicted on Plate 3 (Slope Fill Detail). Benches must be "keyed" into the slope and subsequently filled and compacted with suitable structural fill before continuing to the next bench. Sloping finish grades should be "overbuilt" using a bench-style fill and cut to the design gradient to ensure a permanent compacted slope face is maintained. ESNW should observe structural fill placement to confirm subgrade conditions and provide additional drainage recommendations, as necessary.

Temporary Excavations and Slopes

Excavation activities will likely expose loose to medium dense fill and weathered native soils that transition to medium dense to dense native soils at depth. Based on the soil conditions observed at the test pit locations, the following allowable temporary slope inclinations, as a function of horizontal to vertical (H:V) inclination, may be used. The applicable Federal Occupation Safety and Health Administration (OSHA) and Washington Industrial Safety and Health Act (WISHA) soil classifications are also provided:

•	Loose to medium dense soil	1.5H:1V (Type C)
•	Areas containing groundwater seepage	1.5H:1V (Type C)
•	Dense to very dense native soil	0.75H:1V (Type A)

Steeper temporary slope inclinations within undisturbed, very dense native deposits may be feasible based on the soil and groundwater conditions exposed within the excavations. Steeper inclinations may be considered and must be subsequently approved, by ESNW at the time of grading.

Permanent slopes should be planted with vegetation to enhance stability and minimize erosion and should maintain a maximum gradient of 2H:1V or inclination prescribed by the governing jurisdiction. The presence of perched groundwater may cause localized sloughing of temporary slopes due to excess seepage forces. An ESNW representative should observe temporary and permanent slopes to confirm the slope inclinations are suitable for the exposed soil conditions and to provide additional excavation and slope recommendations, as necessary. If the recommended temporary slope inclinations cannot be achieved, temporary shoring may be necessary to support excavations.

Foundations

In our opinion, the proposed residential structures may be constructed on conventional continuous and spread footing foundations bearing upon competent native soil, recompacted existing fill, or suitable structural fill placed directly on competent native soils. In general, native soils competent for foundation support are anticipated to be encountered at approximate depths of two to five feet below the existing ground surface elevation. Areas underlain by existing fill may require additional preparation techniques to establish suitable and uniform bearing conditions, such as overexcavating unsuitable existing fill and restoring grades with suitable structural fill. Re-working and re-compacting the in-place fill may be feasible in areas where the fill is devoid of organic and deleterious material but must be evaluated by ESNW during grading. Areas of deeper fill may require additional or complete over excavation and restoration or alternative foundation support implementations (see Subgrade Preparation section of the report). In general, where loose or unsuitable soil conditions are exposed at foundation subgrade elevations, compaction of soils to the specifications of structural fill, or overexcavation and replacement with a suitable structural fill material, will be necessary.

Provided the foundations will be supported as described above, the following parameters may be used for the design:

•	Allowable soil bearing capacity	2,500 psf
٠	Passive earth pressure	300 pcf (equivalent fluid)
•	Coefficient of friction	0.40

A one-third increase in the allowable soil bearing capacity may be assumed for short-term wind and seismic loading conditions. The above passive pressure and friction values include a factorof-safety of 1.5. With structural loading as expected, total settlement in the range of one inch and differential settlement of about one-half inch is anticipated. The majority of the settlements should occur during construction, as dead loads are applied.

Seismic Design

The 2018 International Building Code (2018 IBC) recognizes the most recent edition of the Minimum Design Loads for Buildings and Other Structures manual (ASCE 7-16) for seismic design, specifically concerning earthquake loads. Based on the soil conditions encountered at the test pit locations, the parameters and values provided below are recommended for seismic design per the 2018 IBC.

Parameter	Value
Site Class	D*
Mapped short period spectral response acceleration, $S_S(g)$	1.255
Mapped 1-second period spectral response acceleration, $S_1(g)$	0.432
Short period site coefficient, Fa	1.0
Long period site coefficient, F_v	1.868†
Adjusted short period spectral response acceleration, $S_{MS}(g)$	1.255
Adjusted 1-second period spectral response acceleration, $S_{M1}(g)$	0.807†
Design short period spectral response acceleration, $S_{DS}(g)$	0.837
Design 1-second period spectral response acceleration, $S_{D1}(g)$	0.538†

^{*} Assumes medium dense native soil conditions, encountered to a maximum depth of 18 feet bgs during the October 207, May 2019, and January 2020 field exploration, remain medium dense (if not become denser) to at least 100 feet bgs.

[†] Values assume F_v may be determined using linear interpolation per Table 11.4-2 in ASCE 7-16.

As indicated in the table footnote, several of the seismic design values provided above are dependent on the assumption that site-specific ground motion analysis (per Section 11.4.8 of ASCE 7-16) will not be required for the subject project. ESNW recommends the validity of this assumption be confirmed at the earliest available opportunity during the planning and early design stages of the project. Further discussion between the project structural engineer, the project owner, and ESNW may be prudent to determine the possible impacts to the structural design due to increased earthquake load requirements under the 2018 IBC. ESNW can provide additional consulting services to aid with design efforts, including supplementary geotechnical and geophysical investigation, upon request.

Liquefaction is a phenomenon where saturated or loose soil suddenly loses internal strength and behaves as a fluid. This behavior is in response to increased pore water pressures resulting from an earthquake or another intense ground shaking. In our opinion, site susceptibility to liquefaction may be considered low. The depth of the regional groundwater table and the encountered in-situ density of the native soil were the primary bases for this opinion.

Slab-on-Grade Floors

Slab-on-grade floors for the proposed residential structures should be supported on a wellcompacted, firm, and unyielding subgrade. Where feasible, competent native soil exposed at the slab-on-grade subgrade level can likely be compacted in situ to the specifications of structural fill. Unstable or yielding areas of the subgrade should be recompacted, or overexcavated and replaced with suitable structural fill, before construction of the slab.

A capillary break consisting of a minimum of four inches of free-draining crushed rock or gravel should be placed below the slab. The free-draining material should have a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction). In areas where slab moisture is undesirable, the installation of a vapor barrier below the slab should be considered. If a vapor barrier is to be utilized, it should be a material specifically designed for use as a vapor barrier and should be installed in accordance with the specifications of the manufacturer.

Retaining Walls

Retaining walls must be designed to resist earth pressures and applicable surcharge loads. The following parameters may be used for the design:

Active earth pressure (yielding condition)	35 pcf (equivalent fluid)
At-rest earth pressure (restrained condition)	55 pcf
Traffic surcharge (passenger vehicles)	70 psf (rectangular distribution)*
Passive earth pressure	300 pcf (equivalent fluid)
Coefficient of friction	0.40
Seismic surcharge	8H psf**

* Where applicable.

** Where H equals the retained height (in feet).

The above design parameters are based on a level backfill condition and level grade at the wall toe. Revised design values will be necessary if sloping grades are to be used above or below retaining walls. Additional surcharge loading from adjacent foundations, sloped backfill, or other relevant loads should be included in the retaining wall design.

Retaining walls should be backfilled with free-draining material that extends along the height of the wall and a distance of at least 18 inches behind the wall. The upper 12 inches of the wall backfill may consist of a less permeable soil if desired. A perforated drainpipe should be placed along the base of the wall and connected to an approved discharge location. A typical retaining wall drainage detail is provided on Plate 4. If drainage is not provided, hydrostatic pressures should be included in the wall design.

<u>Drainage</u>

Based on our field observations, isolated zones of perched groundwater seepage should be anticipated within site excavations depending on the time of year grading occurs. Temporary measures to control surface water runoff and groundwater seepage during construction would likely involve interceptor trenches and sumps. ESNW should be consulted during preliminary grading to identify areas of seepage and provide recommendations to reduce the potential for instability related to seepage effects.

Finish grades must be designed to direct surface drain water away from structures and slopes. Water must not be allowed to pond adjacent to structures or slopes. In our opinion, foundation drains should be installed along building perimeter footings. A typical foundation drain detail is provided on Plate 5.

Infiltration Feasibility Evaluation

Site subsurface conditions were initially explored in October 2017, May 2019, and January 2020 and indicated variability concerning soil types present and grain size distribution across the site. Per USDA testing methods and procedures, native soils are also classified as slightly gravelly sand, gravelly loamy coarse sand, very gravelly loamy sand, and loam. Fines contents were about 6 percent within the sands, 26 to 40 percent within the sandy loam, and 58 to 98 percent within the gravelly loam and loam, as indicated by the sieve results of representative samples. To further evaluate site infiltration potential, two small-scale pilot infiltration tests (PITs) were performed in January 2020. The following table depicts each infiltration test location, encountered soil type, test depth, measured rate, appropriate safety factors, and recommended design rate.

Location	Soil Type	Depth	Measured Rate (in/hr)	Correction Factors			Recommended Design Rate
				CFv	CFt	CFm	(in/hr)
TP-201	ML	4.0	0	0.33	0.5	0.9	0
TP-202	ML	4.0	0	0.33	0.5	0.9	0

In accordance with our previous evaluations and recommendations, it is our opinion that infiltration be considered infeasible for the proposed project. Based on the soil and groundwater conditions exposed during each subsurface exploration, and the observed field infiltration rate of zero in/hr. at both PIT locations, it is our opinion that infiltration infeasibility has been sufficiently demonstrated.

Stormwater System

We understand that roof runoff will be collected and conveyed to individual lot dispersion/level spreader BMPs. The intent of this configuration is to reduce the potential for concentrated discharge and recharge the site wetland/pond areas to preserve functions and values of those features. In our opinion, this approach is acceptable from a geotechnical standpoint.

Utility Support and Trench Backfill

In our opinion, on-site soils will generally be suitable for the support of utilities. Remedial measures may be necessary for some areas to provide support for utilities, such as overexcavation and replacement with structural fill and/or placement of geotextile fabric. Groundwater seepage may be encountered within utility excavations, and caving of trench walls may occur where groundwater is encountered. Depending on the time of year and conditions encountered, dewatering, as well as temporary trench shoring, may be necessary during utility trench excavation and installation.

Successful use will depend on the soil's moisture content at the time of placement and compaction. The silt soils encountered at our test pit locations is not suitable for utility trench backfill. Moisture conditioning of the soils may be necessary at some locations before use as structural fill. Each section of the utility lines must be adequately supported in the bedding material. Utility trench backfill should consist of and be placed and compacted to the specifications of structural fill as previously detailed in this report, or to the applicable specifications of the governing jurisdiction or agency.

Preliminary Pavement Sections

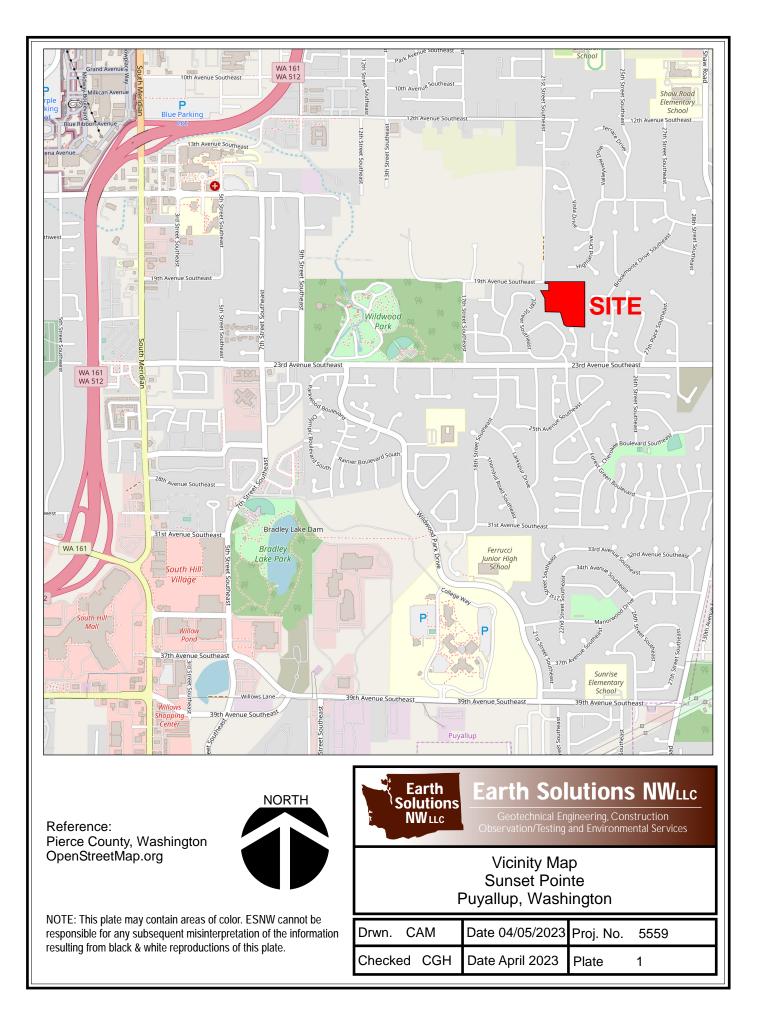
The performance of site pavements is largely related to the condition of the underlying subgrade. To ensure adequate pavement performance, the subgrade should be in a firm and unyielding condition when subjected to proofrolling with a loaded dump truck. Structural fill in pavement areas should be compacted to the specifications previously detailed in this report. Soft, wet, or otherwise unsuitable subgrade areas may still exist after base grading activities. Areas containing unsuitable or yielding subgrade conditions will require remedial measures, such as over-excavation and/or placement of thicker crushed rock or structural fill sections, before pavement.

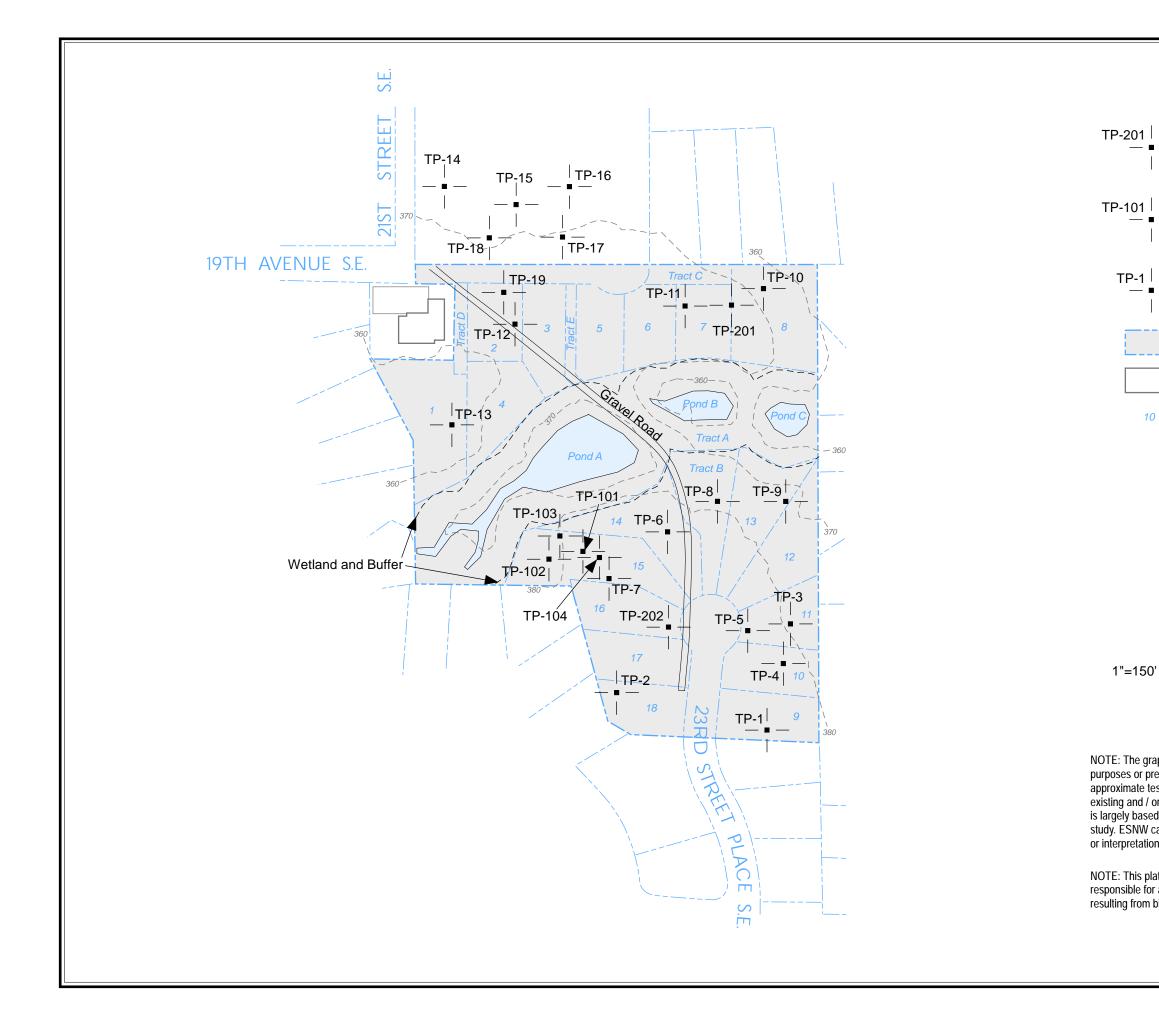
We anticipate new pavement sections will be subjected primarily to passenger vehicle traffic. For lightly loaded pavement areas subjected primarily to passenger vehicles, the following preliminary pavement sections may be considered:

- A minimum of two inches of hot mix asphalt (HMA) placed over four inches of crushed rock base (CRB), or;
- A minimum of two inches of HMA placed over three inches of asphalt-treated base (ATB).

For heavy-loaded pavement areas such as main interior access roads and areas subject to occasional large commercial vehicle traffic, the following preliminary pavement sections may be considered:

- Three inches of HMA placed over six inches of CRB, or;
- Three inches of HMA placed over three inches of ATB.


The HMA, ATB, and CRB materials should conform to WSDOT specifications. All soil base material should be compacted to a relative compaction of 95 percent, based on the laboratory maximum dry density as determined by a modified proctor test (ASTM D1557). Final pavement design recommendations, including recommendations for heavy traffic areas, access roads, and frontage improvement areas, can be provided once final traffic loading has been determined. Road standards utilized by the governing jurisdiction may supersede the recommendations provided in this report. If the roadway will be constructed with an inverted crown, additional drainage recommendations may be necessary, as evaluated and recommended by ESNW at the time of construction.


LIMITATIONS

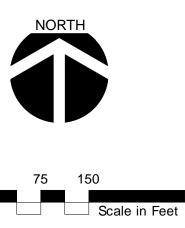
The recommendations and conclusions provided in this study are professional opinions consistent with the level of care and skill that is typical of other members in the profession currently practicing under similar conditions in this area. A warranty is neither expressed nor implied. Variations in the soil and groundwater conditions observed at the test pit locations may exist and may not become evident until construction. ESNW should reevaluate the conclusions provided in this study if variations are encountered.

Additional Services

ESNW should have an opportunity to review final project plans with respect to the geotechnical recommendations provided in this report. ESNW should also be retained to provide testing and consultation services during construction.

LEGEND

Approximate Location of ESNW Test Pit, Proj. No. ES-5559.03, Jan. 2020

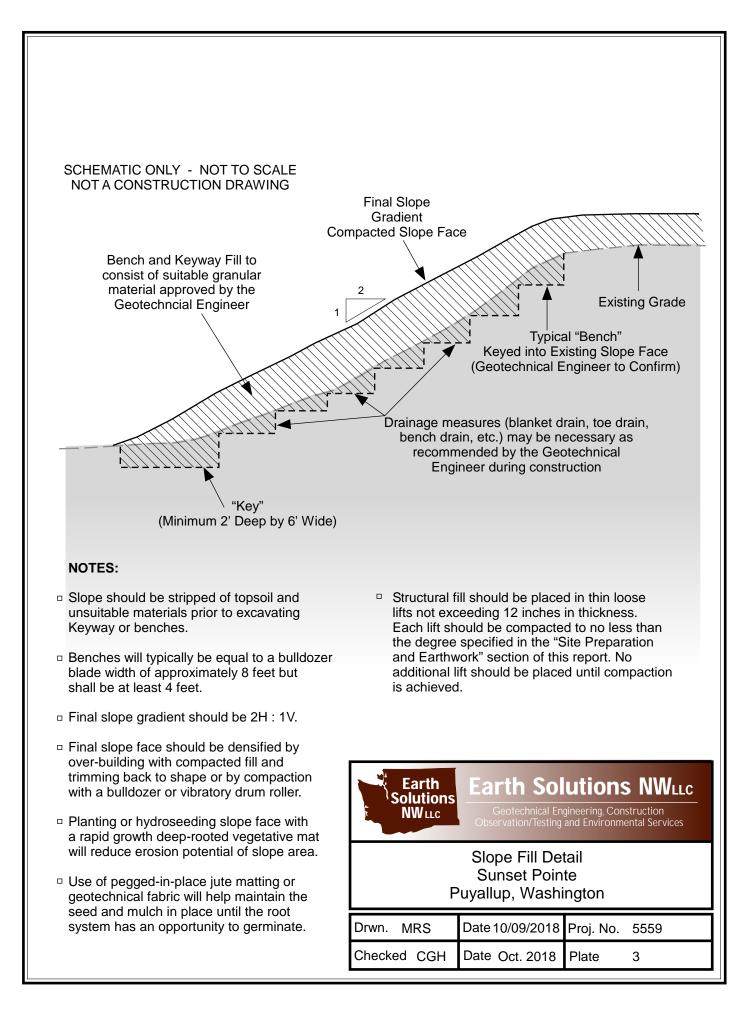

Approximate Location of ESNW Test Pit, Proj. No. ES-5559, May 2019

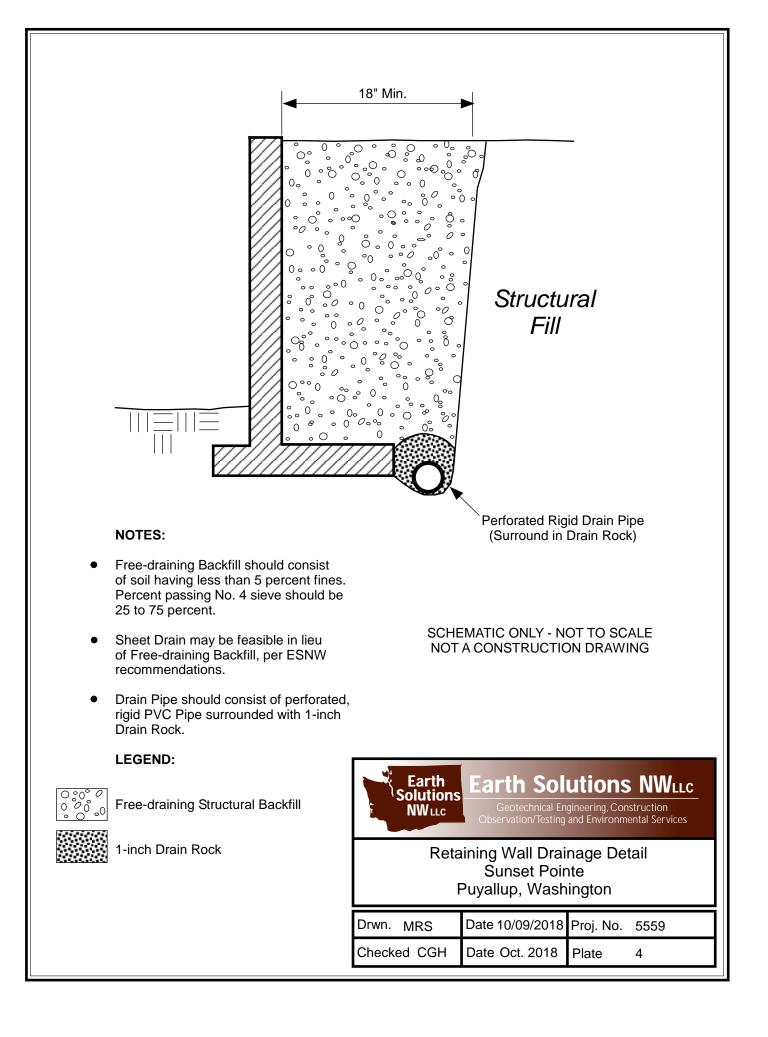
Approximate Location of ESNW Test Pit, Proj No. ES-5559, Oct. 2017

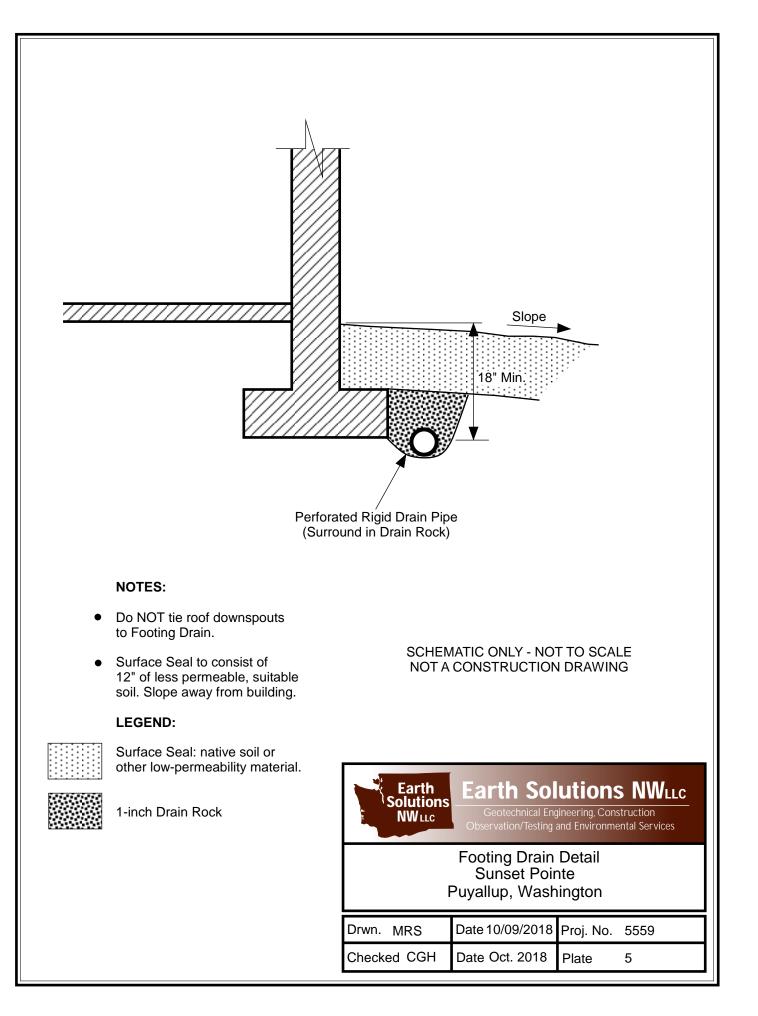
Subject Site

Existing Building

Proposed Lot Number




0


NOTE: The graphics shown on this plate are not intended for design purposes or precise scale measurements, but only to illustrate the approximate test locations relative to the approximate locations of existing and / or proposed site features. The information illustrated is largely based on data provided by the client at the time of our study. ESNW cannot be responsible for subsequent design changes or interpretation of the data by others.

NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

Appendix A

Subsurface Exploration Test Pit Logs

ES-5559

Subsurface conditions at the subject site were explored by an ESNW representative on October 24, 2017, May 15, 2019, and January 22, 2020. A total of 25 test pits were excavated at accessible areas of the site using an operator and trackhoe retained by ESNW. The approximate locations of the test pits are illustrated on Plate 2 of this study. The test pits logs are provided in this Appendix. The test pits were excavated to a maximum depth of approximately 18 feet bgs.

The final logs represent the interpretations of the field logs and the results of laboratory analyses. The stratification lines on the logs represent the approximate boundaries between soil types. In actuality, the transitions may be more gradual.

	irse /e		GW	Well-graded gravel with or without sand, little to	Moisture	e Content	Symbols		
	of Coarse 4 Sieve	Line Line		no fines	Dry - Absence of n the touch	noisture, dusty, dry to			
	0		GP	Poorly graded gravel with or without sand, little to no fines	Damp - Perceptible optimum MC	e moisture, likely below	Static water		
200 Sieve	More Than 50% Retained on No.			Silty gravel with or without	at/near optimum M		Seal ✓ ∷ Filter pack with ∵ ∵ blank casing √ ∵ section		
	s - Mor on Ret		GM	sand	likely above optime	e but not free draining, um MC earing - Visible free	Screened casing 		
Coarse-Grained Soils - More Than 50% Retained on No.	Gravels - Fraction	12%	GC	Clayey gravel with or without sand	water, typically bel	ow groundwater table	e Density and Consistency		
Coarse-Grained 50% Retained	<u> </u>				Coarse-Grain	-	Test Symbols & Units		
e-G	Ð	۵ ۵	sw	Well-graded sand with or without gravel, little to		SPT blows/foot			
ars 0%	Coarse Sieve	Fines		no fines	Density Very Loose	< 4	Fines = Fines Content (%)		
n So	U S S S S S S	2% E	•		Loose	4 to 9	MC = Moisture Content (%)		
Tha		N N	SP	Poorly graded sand with or without gravel, little to	Medium Dense	10 to 29	DD = Dry Density (pcf)		
ore .	Mor es N			no fines	Dense Very Dense	30 to 49 ≥ 50	Str = Shear Strength (tsf)		
2	Sands - 50% or More Fraction Passes No.	Ś	SM	Silty sand with or without			PID = Photoionization Detector (ppm)		
	- 50 on F	line	JIVI	gravel	Fine-Grained		OC = Organic Content (%)		
	nds . racti	2% F			Consistency Very Soft	SPT blows/foot < 2	CEC = Cation Exchange Capacity (meq/100 g		
	Sa	∽ /////	SC	Clayey sand with or without gravel	Soft	2 to 3	LL = Liquid Limit (%)		
					Medium Stiff	4 to 7	PL = Plastic Limit (%)		
	50			Silt with or without sand	Stiff Very Stiff	8 to 14 15 to 29	PI = Plasticity Index (%)		
	s han		ML	or gravel; sandy or gravelly silt	Hard	≥ 30			
Sieve	Silts and Clays Liquid Limit Less Than			Clay of low to medium plasticity; lean clay with		Componen	t Definitions		
	s an nit L		CL	or without sand or gravel; sandy or gravelly lean clay	Descriptive Term		e and Sieve Number		
s - 200	Silts		4		Boulders	Larger thar 3" to 12"	ו 12"		
Soil No.	quic		OL	Organic clay or silt of low plasticity	Cobbles Gravel		(4 75 mm)		
Grained Passes	<u> </u>				Coarse Gravel Fine Gravel	Coarse Gravel 3" to 3/4"			
Gra Pae	Ð			Elastic silt with or without	Sand		o. 4 (4.75 mm) to No. 200 (0.075 mm) o. 4 (4.75 mm) to No. 10 (2.00 mm)		
Fine-Grained 50% or More Passes	ys r Mor		МН	sand or gravel; sandy or gravelly elastic silt	Coarse Sand Medium Sand Fine Sand	No. 10 (2.0	9 mm) to No. 10 (2.00 mm) 90 mm) to No. 40 (0.425 mm) 925 mm) to No. 200 (0.075 mm)		
or	Cla 50 o			Clay of high plasticity; fat clay with or without	Silt and Clay	Smaller that	an No. 200 (0.075 mm)		
50%	Silts and Clays Liquid Limit 50 or More		СН	sand or gravel; sandy or gravelly fat clay		Modifier I	Definitions		
	Silt Jid L				Percentage by Weight (Approx.)	Modifier			
	Ligu		ОН	Organic clay or silt of medium to high plasticity	< 5	Trace (san	d, silt, clay, gravel)		
	~		9		5 to 14	Slightly (sa	ndy, silty, clayey, gravelly)		
Highly	Organic Soils	<u>77 77</u> 77 7	PT	Peat, muck, and other	15 to 29	Sandy, silty	<i>ı</i> , clayey, gravelly		
Ξ	с S		1	highly organic soils	≥ 30	Very (sand	y, silty, clayey, gravelly)		
	E FILL			Made Ground	field and/or laboratory ob plasticity estimates, and Visual-manual and/or lab	servations, which include de should not be construed to it	as shown on the exploration logs are based on visua ensity/consistency, moisture condition, grain size, and mply field or laboratory testing unless presented herei ds of ASTM D2487 and D2488 were used as an System.		
		Eart Soluti NWL	ons	Earth Solution Geotechnical Engineering, C Observation/Testing and Environ	S NWLLC				

EXPLORATION LOG KEY

	Eart Soluti NWL	008 Redmond,	. 90th Wash : 425-	Street, ington 449-47	Suite 100 98052	TEST PIT NUMBER TP-2 PAGE 1 O	
PROJ		IBER	3			PROJECT NAME Sunset Pointe	
DATE	STARTE	D <u>1/22/20</u>	(СОМРІ	_ETED <u>1/22/20</u>	GROUND ELEVATION 374 ft	
EXCA			W Exc	avatin	g	LATITUDE LONGITUDE	
					KED BY SSR		
NOTE	S Depth	of Topsoil & Sod	3 <u>": g</u> ra	SS		${ar $\!$	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
			TPSL	<u>718</u> 7		DIL, root intrusions to 1'	373.5
		MC = 20.7	ML		Tan SILT, medium	dense, moist to wet	
		MC = 32.6 Fines = 88.9			4.5 [USDA Classification	-	369.5
5		MC = 15.1	SP			I SAND, dense, moist to wet taining at contact, light groundwater seepage at 6'	368.0
		l		<u> </u>	0.0	d, dense, moist to wet	000.0
		MC = 30.7 MC = 30.5	ML		0.0 -	on: slightly gravelly LOAM]	366.0
	,	Fines = 78.7	/		Test pit terminated 6.0 feet during exca	at 8.0 feet below existing grade. Groundwater seepage encountered at avation. No caving observed.	
					J. J		

	Eart Soluti NW	ONS Redmond.	. 90th Wash : 425-	Street ington -449-47	, Suite 100 98052			TEST PIT NUMBER TP- PAGE 1	
PROJI	CT NUN	IBER _ES-5559.03	3				PROJECT NAME Sunset P	Pointe	
		D _1/22/20						3 ft	
							GROUND WATER LEVEL:		
		of Topsoil & Sod							
								ATION	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DES		
			TPSL	<u>7, 1</u> × 7/	_{0.5} Darl	rk brown TOPSO	IL, root intrusions to 6"		387.5
			FILL		1	ushed rock (Fill)			
			· ·		1.0 -	ht perched groun			386.5
		MC = 31.9	SM		~<8' 2.7	8" sand lens	dium dense, moist		385.3
		MC = 19.4 Fines = 58.7	ML		-bec	n sandy SILT, de ecomes gray	nse, moist n: slightly gravelly LOAM]		
		MC = 31.8	SM		Gray	ay silty SAND, de ht iron oxide stail	nse, moist		383.5
\vdash -					incr	creased sand cor	stant		
		$M_{0} = 12.2$			1191		n: slightly gravelly fine sandy		200.0
I		MC = 13.3 Fines = 39.9	\vdash		Test	st pit terminated	at 8.0 feet below existing gra	ade. Groundwater seepage encountered at	380.0
					1.0 1) foot during exca	vation. No caving observed.		

	k Ear Soluti NW	ONS Redmond,	. 90th Wash : 425-	Street, ington 449-47	Suite 100 IEST FIT NOWBER IF-I 98052 PAGE 1 C	
PROJI	ECT NUN	IBER ES-5559			PROJECT NAME Sunset Pointe	
					ETED 5/19/19 GROUND ELEVATION 383 ft	
					LATITUDE LONGITUDE	
					ED BY SSR GROUND WATER LEVEL:	
					amble AT TIME OF EXCAVATION	
					AFTER EXCAVATION	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
			TPSL	<u></u>	Dark brown TOPSOIL, root intrusions to 12"	
 		MC = 13.8 MC = 20.0 MC = 27.3 Fines = 90.0	ML		1.0 Gray silty SAND with gravel, dense, moist (Fill) -sand lens ~12" thick 5.5 Gray SILT, medium dense, moist (Fill) -becomes brown, increased fines [USDA Classification: slightly gravelly LOAM]	382.0
		MC = 31.9 Fines = 95.8	ML	****	13.0 Tan SILT, medium dense, wet [USDA Classification: LOAM]	370.0
		MC = 35.3	SM		15.0 Tan silty SAND, medium dense, wet to saturated -minor iron oxide staining -sand lens 6"- 12" thick	368.0
		MC = 28.5			18.0	365.0
		<u> IVIC - 20.3</u>	,		Test pit terminated at 18.0 feet below existing grade. No groundwater encountered during excavation. No caving observed.	

Ear Solut NW	th 15365 N.E IONS Redmond	utions NW, LLC E. 90th Street, Sui I, Washington 980 e: 425-449-4704 -449-4711		TEST PIT NUMBER TP-102 PAGE 1 OF 1		
DATE STARTE EXCAVATION LOGGED BY _ NOTES _Depti	D _5/15/19 CONTRACTOR _1 CGH h of Topsoil & Sod	COMPLETE COMPLETE CHECKED CHECKED 12": heavy bramb	ED <u>5/15/19</u>			
o DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC LOG		MATERIAL DESCRIPTION		
· -	MC = 25.4 Fines = 98.3	TPSL 2.5	Dark brown TOF Brown silty SAN Gray SILT, dens [USDA Classifica -heavy iron oxide	e, moist ation: LOAM]	375	
5	MC = 32.0 Fines = 92.5	ML	-becomes browr [USDA Classific: -becomes wet to	ation: LOAM]		
	MC = 35.2	9.5		ed at 9.5 feet below existing grade. No gro	366 pundwater encountered during	
			excavation. No			

Ear Solut NW	Earth Sol 15365 N. Redmond Telephon Fax: 425	E. 90th S d, Washir ie: 425-4	Street, Sui ngton 980 49-4704	ite 100 52	TEST PIT NUMBER TP-103 PAGE 1 OF 1		
DATE STARTE EXCAVATION LOGGED BY NOTES Dept	ED <u>5/15/19</u> CONTRACTOR CGH h of Topsoil & Soc	<u>NW Exca</u> <u>NW Exca</u> <u>C</u> d 8": heav	OMPLET avating HECKED /y bush	ED <u>5/15/19</u>			
o DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
 	MC = 11.3 MC = 10.4 MC = 11.7 MC = 20.2	SM		Gray silty SAND w -asphalt debris -increased sand c -erratic silt interbe			383.4
				excavation. No ca			

	Earth 15365 N.I Solutions Redmond NWLLC Telephon	utions NW, LLC E. 90th Street, Suite I, Washington 9805 e: 425-449-4704 -449-4711	: 100	TEST PIT NUMBER TP-104 PAGE 1 OF 1		
DATE ST EXCAVA LOGGED NOTES	ARTED _5/15/19 TION CONTRACTOR _1 DBY _CGH Depth of Topsoil & Sod	COMPLETE	PROJECT NAME Sunset Pointe 0 5/15/19 GROUND ELEVATION 383 ft LATITUDE LONGITUDE Y SSR GROUND WATER LEVEL: Y AT TIME OF EXCAVATION			
		U.S.C.S. GRAPHIC LOG	AFTER EXCAVATION			
	MC = 19.9	TPSL 0.6	Dark brown TOPSOIL, root intrusions to 12" Gray silty SAND with gravel, medium dense to dense, moist -becomes brown -becomes gray	382.4		
	MC = 23.5	ML	-heavy iron oxide staining Gray SILT, loose, moist to wet -becomes brown, wet	378.(
10	MC = 29.8 Fines = 93.5	11.0	[USDA Classification: LOAM] Test pit terminated at 11.0 feet below existing grade. No groundwater encounter excavation. No caving observed.	<u>372.0</u> red during		
GENERAL BH / 1 P / WELL - 3099.6PU - GINI US.6UI - 40123						

Ear Solut	th 15365 N.E ions Redmond LC Fax: 425-	E. 90th Str , Washing e: 425-449	eet, Suit ton 9805		TEST PIT NUMBER TP-1 PAGE 1 OF 1		
DATE STARTE EXCAVATION LOGGED BY _ NOTES _Depth	D 10/24/17 CONTRACTOR N CGH n of Topsoil &Sod	CO <u>IW Excava</u> CHI 1"- 3": gras	MPLETE ating ECKED I	D <u>10/24/17</u>			
o DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC	DOG		MATERIAL DESCRIPTION		
	MC = 7.4 Fines = 6.2 MC = 4.4 MC = 7.4	SP-SM	9.0	[USDA Classificati -increased gravel of -becomes medium	ed SAND with silt, medium dense, moist on: slightly gravelly SAND] content in dense to dense		

	Ear Soluti NW	01S Redmond.	. 90th Wash : 425-	Street ington 449-47	, Suite 1 98052	100	TEST PIT NUMBER TP-2 PAGE 1 OF 1		
PROJ	ECT NUN	BER <u>ES-5559</u>					PROJECT NAME _Sunset Pointe		
DATE	STARTE	D 10/24/17					GROUND ELEVATION		
EXCA	VATION		W Exc	avatin	g		LATITUDE LONGITUDE		
							GROUND WATER LEVEL:		
NOTE	S Depth	n of Topsoil & Sod 4	4": bru	sh			${\underline{ au}}$ at time of excavation		
SURF							AFTER EXCAVATION		
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION		
							DIL (Fill), root intrusions to 7'		
			Fill		1.0	Clean washed ROO	· · /		
 5		MC = 21.6	ML		5.0	-light iron oxide sta	ILT, medium dense, moist ining 2'- 4'		
			SP		6.5	Gray poorly graded	I SAND, medium dense to dense, moist		
		MC = 9.5	ML		8.0	Tan sandy SILT, de	ense, moist		
			SP				I SAND with gravel, dense, moist		
		MC = 4.8	┝───		9.0		excavation activities at 9.0 feet below existing grade. No groundwater seepage encountered		
						during excavation.	Caving observed from 6.0 to 6.5 feet and 8.0 feet to BOH.		

Ear Solut	011S Redmond	. 90th Wash : 425-	Street, ington 449-47	Suite 100 98052		TEST PIT NUMBER TP-3 PAGE 1 OF 1
	MBER <u>ES-5559</u>				PROJECT NAME Sunset F	Pointe
					GROUND WATER LEVEL:	
NOTES Dept	n of Topsoil & Sod	18": br	ush		${ar ar ar Z}$ at time of ex	CAVATION
SURFACE CO					AFTER EXCAV	ATION
o DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL D	ESCRIPTION
		TPSL	-		OIL (Fill), intrusions to 7'	
	MC = 8.9 MC = 8.1 Fines = 15.9 MC = 19.2	SM		-clean washed roc -becomes brown d [USDA Classificati 7.0 Gray SILT with sat	lense on: very gravelly loamy SANE nd, medium dense, moist (Fill d at 9.0 feet below existing gra	D]

	Eart Soluti NW∟	011S Redmond	E. 90th , Wash e: 425-	Street, Suit ington 980 449-4704	e 100 52	TEST PIT NUMBER TP-4 PAGE 1 OF 1		
PROJE	ECT NUM	BER ES-5559				PROJECT NAME Sunset Pointe		
						GROUND ELEVATION		
EXCA			W Exc	avating		LATITUDE LONGITUDE		
LOGG	ED BY _(CGH	(CHECKED	BY HTW	GROUND WATER LEVEL:		
SURFA	ACE CON					AFTER EXCAVATION		
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
					Brown silty SAN), loose to medium dense, moist (Fill)		
			SM		-root intrusions to	o 9'		
5		MC = 12.3		7.0		roundwater seepage and, loose to medium dense, wet (Fill)		
 <u>10</u>		MC = 19.3	ML		-trace organics -light iron oxide s			
┣ ┥		MC = 22.1		12.0	Brown sandy SIL	T, dense, moist		
			ML		-light iron oxide s			
15		MC = 27.4		15.0				
						ed at 15.0 feet below existing grade. Groundwater encountered seepage .0 feet during excavation. Caving observed from 0.0 to 9.0 feet.		

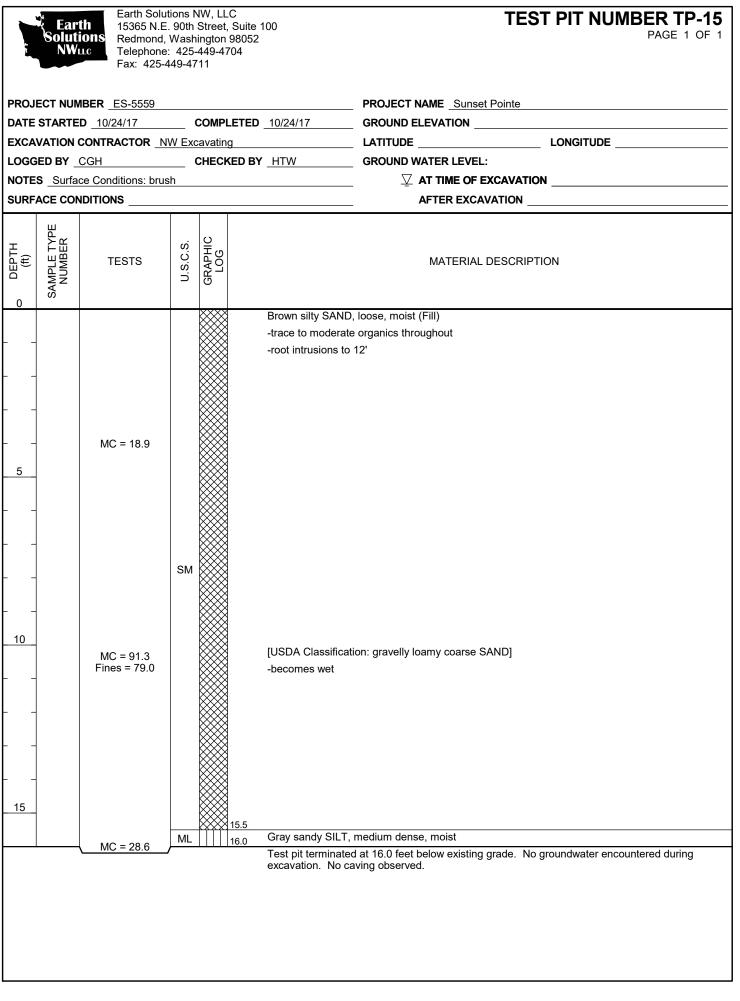
Solu Solu	rth 15365 N.E tions Redmond,	itions NW, LLC E. 90th Street, S Washington 98 9: 425-449-4704 449-4711	3052	TEST PIT NUMBER TP-5 PAGE 1 OF 1		
DATE START EXCAVATION LOGGED BY NOTES _Dep	ED _10/24/17 I CONTRACTOR _N _CGH th of Topsoil & Sod	COMPLE W Excavating CHECKE 12": brush	TED 10/24/17			
O DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC LOG		MATERIAL DESCRIPTION		
	MC = 7.2	TPSL 4 4 4 1.1	0	SOIL, root intrusions to 3'), medium dense, moist imp to moist		
	MC = 20.9			staining		
	- <u>MC = 12.4</u>	, <u>, , , , , , , , , , , , , , , , , , </u>		ed at 9.5 feet below existing grade. No groundwater encountered during aving observed.		

	Soluti NW	15365 N.E 011S Redmond	utions NW, L E. 90th Stree , Washingtor e: 425-449-4 449-4711	et, Suite 100 n 98052	TEST PIT NUMBER TP-6 PAGE 1 OF 1
DATE EXCA LOGG	STARTE	D <u>10/24/17</u> CONTRACTOR <u>N</u> CGH	COMF	PLETED <u>10/24/17</u> ng :KED BY <u>HTW</u>	PROJECT NAME Sunset Pointe GROUND ELEVATION
				3	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC LOG		MATERIAL DESCRIPTION
			SM	Brown silty SAt -root intrusions	ND, medium dense, moist (Fill) to 7'
		MC = 20.5	ML	2.5 Relic TOPSOIL	ILT, medium dense, moist (Fill) bris
 _ <u>10</u>		MC = 10.0	SP	-light iron oxide	
		MC = 31.7			ated at 12.0 feet below existing grade. No groundwater encountered during
				excavation. No	o caving observed.

	Earth 19 Solutions R NWLC T	arth Solutions N 5365 N.E. 90th tedmond, Wash elephone: 425- ax: 425-449-47	Street, Suite ington 98052 449-4704	100	TEST PIT NUMBER TP-7 PAGE 1 OF 1		
DATE ST EXCAVA LOGGED NOTES	TARTED 10/24	/17 (CTOR <u>NW Exc</u> (bil & Sod 6"- 8":	COMPLETED avating CHECKED BY brush	10/24/17	GROUND ELEVATION LATITUDE GROUND WATER LEVEL: $$$\overline{1}$ AT TIME OF EXCAN$	nte LONGITUDE VATION ON	
o DEPTH (ff)	SAMPLE TYPE NUMBER	STS STS	GRAPHIC LOG		MATERIAL DESC	CRIPTION	
 		= 9.5 SM	9.0		-		
	(MC =	= 18.0		Test pit terminate excavation. No ca		No groundwater encountered during	

Ear Soluti	15365 N.E 011S Redmond	utions NW, LLC E. 90th Street, Suite , Washington 9805 a: 425-449-4704 449-4711		TEST PIT NUMBER TP-8 PAGE 1 OF 1		
DATE STARTE EXCAVATION (LOGGED BY NOTESDepth	D _10/24/17 CONTRACTOR _1 CGH of Topsoil & Sod	COMPLETEI	y <u>HTW</u>			
DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC LOG		MATERIAL DESCRIPTION		
	MC = 16.3 MC = 17.8 MC = 3.2	TPSL 3 6 3 0.5 SM 8.0 SP 9.0	Brown silty SAN	SOIL, root intrusions to 5' D, medium dense, moist dense led SAND, dense, moist ed at 9.0 feet below existing grade. No groundwater encountered during caving observed.		

Eart Soluti NW	ONS Redmond	E. 90th \$ I, Washi e: 425-4	Street, ington 449-47	Suite 100 98052	TEST PIT NUMBER TP-9 PAGE 1 OF 1		
ATE STARTE XCAVATION (DGGED BY _ OTES _Depth	D _10/24/17 CONTRACTOR _1 CGH of Topsoil & Sod	<u>NW Exc</u> 0 4": gras	COMPL avating CHECK		GROUND ELEVATION LONGITUDE LONGITUDE GROUND WATER LEVEL:		
SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
0		TPSL	<u></u>		PSOIL, root intrusions to 3' sand, medium dense to dense, moist		
5	MC = 21.7 Fines = 81.2	ML		[USDA Classific -becomes gray -light iron oxide			
_		SP		6.0	ded SAND, dense, moist		
	MC = 3.9			Test pit terminat	ed at 6.5 feet below existing grade. No groundwater encountered during caving observed.		


Ear Solut NW	th 15365 N.I ions Redmond	utions NW, LLC E. 90th Street, Sui I, Washington 980 e: 425-449-4704 -449-4711		TEST PIT NUMBER TP-10 PAGE 1 OF 1		
DATE STARTE EXCAVATION LOGGED BY _ NOTES _Depth	D 10/24/17 CONTRACTOR 1 CGH n of Topsoil & Sod	COMPLETE COMPLETE CHECKED 2": grass	ED <u>10/24/17</u>			
o DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC LOG		MATERIAL DESCRIPTION		
	MC = 12.4	SM 2.0 TPSL 2.5	-root intrusions Relic TOPSOIL			
 	MC = 18.7	SM	-becomes gray	, dense		
	MC = 8.9	9.0		ated at 9.0 feet below existing grade. No groundwater encountered during o caving observed.		

Ear Soluti NW	th 15365 N. ions Redmond uc Telephon	utions NW, LLC E. 90th Street, Suit I, Washington 9805 e: 425-449-4704 -449-4711	e 100 2	TEST PIT NUMBER TP-11 PAGE 1 OF 1		
DATE STARTE EXCAVATION (LOGGED BY NOTESDepth	D <u>10/24/17</u> CONTRACTOR _ CGH n of Topsoil & Soc	NW Excavating	D <u>10/24/17</u> BY <u>HTW</u>	GROUND ELEVATION LATITUDE GROUND WATER LEVEL: \[\[\] AT TIME OF EXCAVA	Longitude	
o DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC LOG		MATERIAL DESCR	IPTION	
		TPSL 20.5	Tan silty SAND	PSOIL, root intrusions to 4' , medium dense, moist oxide staining to 4'		
 <u>- 5</u> 	MC = 21.1 MC = 20.1	SM	-intermittent lig -becomes dens	ht iron oxide staining e		
	MC = 16.0	10.0	Test pit termina	ated at 10.0 feet below existing grade.	No groundwater encountered during	
			excavation. No	o caving observed.		

	Ear Solut NW	01S Redmond.	. 90th Wash : 425	Street nington -449-4	, Suite 100 98052	TEST PIT NUMBER TP-12 PAGE 1 OF 1		
PROJ	ECT NUN	IBER <u>ES-5559</u>				PROJECT NAME Sunset Pointe		
						GROUND ELEVATION		
EXCA	VATION		W Exe	cavatin	g	LATITUDE LONGITUDE		
						GROUND WATER LEVEL:		
SURF						AFTER EXCAVATION		
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
	-		ML		Brown sandy SILT -root intrusions to -becomes gray	, medium dense, moist 3'		
		MC = 15.2 Fines = 60.2 MC = 17.3			[USDA Classificati	on: LOAM]		
					excavation. No ca	t at 6.0 feet below existing grade. No groundwater encountered during ving observed.		

Solutions NWLLC	lutions NW, LLC E. 90th Street, Suit d, Washington 9805 he: 425-449-4704 5-449-4711		TEST PIT NUMBER TP-13 PAGE 1 OF 1		
PROJECT NUMBER ES-5559			PROJECT NAME Sunset Poin	nte	
EXCAVATION CONTRACTOR _	NW Excavating			LONGITUDE	
LOGGED BY CGH			-		
NOTES Depth of Topsoil & Soc					
SURFACE CONDITIONS			_ AFTER EXCAVATI	ON	
DEPTH (ft) (ft) (ft) (ft) DEPTH LESTS	U.S.C.S. GRAPHIC LOG		MATERIAL DES	CRIPTION	
		Brown sandy SIL	Γ, loose to medium dense, moist		
MC = 27.3 MC = 27.3 MC = 23.9	ML	-becomes gray			
 10 MC - 16.0	9.5 SP	Gray poorly grade	ed SAND with gravel, dense, wet		
MC = 16.0			d at 10.0 feet below existing grad	e. No groundwater encountered during	

	Ear Solut NW	018 Redmond	. 90th Wash : 425-	Street ington 449-4	t, Suite 100 1 98052	TEST PIT NUMBER TP-14 PAGE 1 OF 1		
DATE EXCA LOGG NOTE	STARTE	CONTRACTOR _N CGH n of Topsoil & Sod	IW Exc 6"- 8":	COMP avatin CHECI grass	ng 10/24/17	LATITUDE GROUND WATER LEVEL: $\[mathscale{2mm}]$ AT TIME OF EXCAVATION	_ Longitude	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIP	TION	
 		MC = 15.2	SM					
		MC = 7.1	SP		7.0 Gray poorly grade	d SAND, dense, moist		
<u> 10 </u> _ _		MC = 12.5	SM		10.0 Brown silty SAND,	dense, moist		
		MC = 9.0		<u>17+17-17-</u>	Test pit terminated excavation. No ca	l at 12.0 feet below existing grade. No ving observed.	groundwater encountered during	

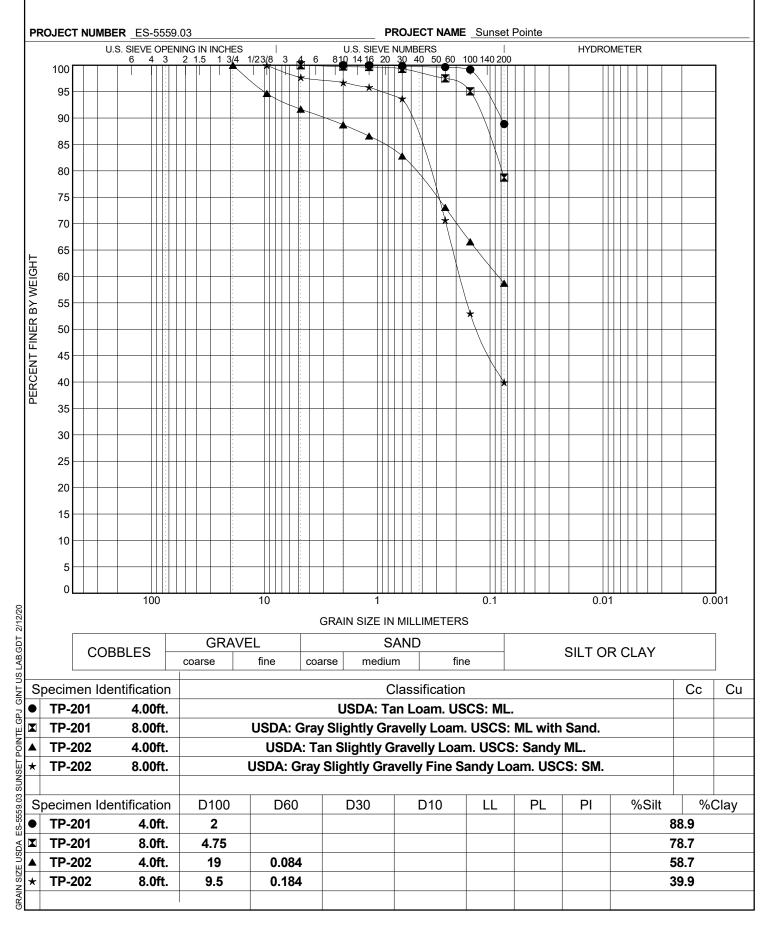
	Ear Soluti NW	Earth Solutions 15365 N.E Redmond Telephone Fax: 425-	E. 90th , Wash ə: 425·	Street, nington -449-47	Suite 1 98052	00	TEST PIT NUMBER TP-16 PAGE 1 OF 1
PROJ	ECT NUN	IBER <u>ES-5559</u>					PROJECT NAME Sunset Pointe
							GROUND ELEVATION
EXCA	VATION		W Exc	cavating	g		LATITUDE LONGITUDE
LOGG	GED BY	CGH		CHECK	ED BY	HTW	_ GROUND WATER LEVEL:
SURF	ACE CON						AFTER EXCAVATION
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION
 		MC = 30.8 MC = 16.5	SM			Dark brown silty S -root intrusions to -becomes brown, 1	
					6.0	-becomes gray	
		MC = 7.9				Test pit terminated excavation. No ca	ed at 6.0 feet below existing grade. No groundwater encountered during aving observed.

	NWLLC	Earth Solutions 15365 N.E. 90 Redmond, Wa Telephone: 42 Fax: 425-449-	th Street shington 5-449-47	, Suite 1 98052	100	TEST PIT NUMBER TP-17 PAGE 1 OF 1		
PROJEC		ES-5559				PROJECT NAME Sunset Pointe		
						GROUND ELEVATION		
EXCAVA	TION CONTR	ACTOR NW E	xcavatin	g		LATITUDE LONGITUDE		
						_ GROUND WATER LEVEL:		
SURFAC		IS				AFTER EXCAVATION		
O DEPTH (ft)	SAMPLE TYPE NUMBER	ESTS C	GRAPHIC LOG			MATERIAL DESCRIPTION		
 - 5 	MC	SI 2 = 24.1	и		Brown silty SANE			
		SI	-10000	7.0 7.5	Tan silty SAND, r	nedium dense, moist		
	<u>— М</u>	C = 6.3	vi [2].[2]	7.5		d at 7.5 feet below existing grade. No groundwater encountered during		

	Ear Soluti NW	018 Redmond	E. 90th , Wash e: 425-	Street, ington 9 -449-47	Suite 100 98052	TEST PIT NUMBER TP-18 PAGE 1 OF 1		
PROJ		BER ES-5559				PROJECT NAME _Sunset Pointe		
						GROUND ELEVATION		
						LATITUDELONGITUDE		
						_ GROUND WATER LEVEL:		
SURF	ACE CON		-1			AFTER EXCAVATION		
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
		MC = 14.9	SM		-root intrusions to	D, loose, moist (Fill) 9 3'		
		MC = 6.3	SM		3.0	nedium dense, moist ed at 6.0 feet below existing grade. No groundwater encountered during		
					excavation. No o			

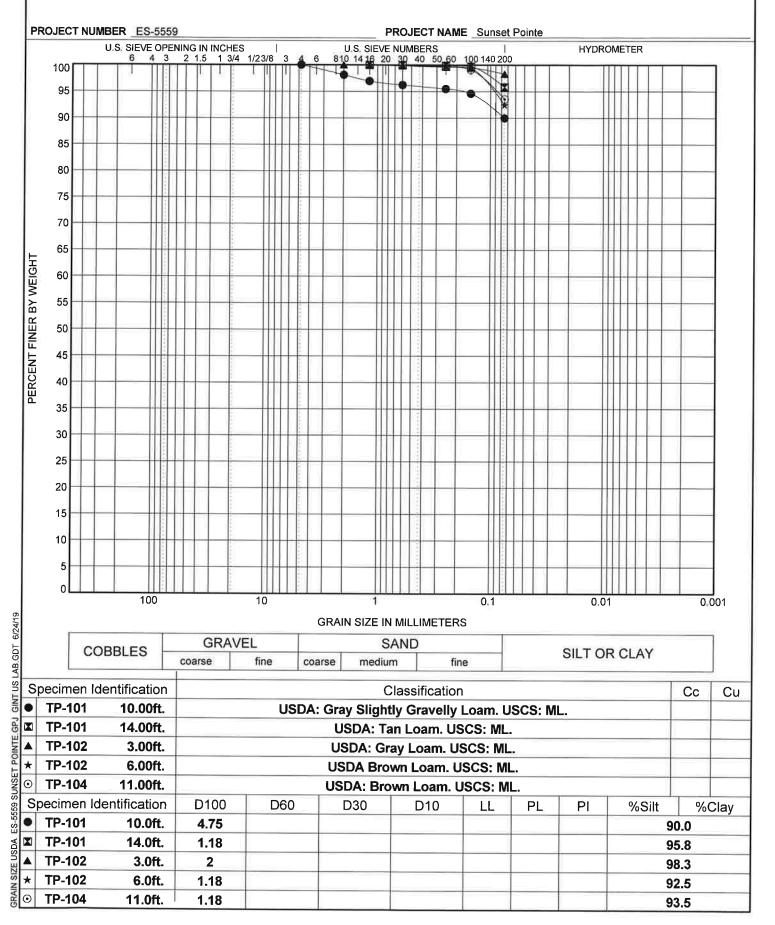
	Earth Solutions NWitc	Earth Solu 15365 N.E Redmond Telephone Fax: 425-	E. 90th St , Washin e: 425-44	reet, Suite gton 98052 19-4704	100 2		TEST PIT NU	PAGE 1 OF 1
DATE S EXCAVA LOGGEI NOTES	TARTED _1 ATION CON D BY _CGH _Depth of T	0/24/17 TRACTOR I Topsoil & Sod	CC <u>JW Excav</u> <u>CH</u> 10": brus	DMPLETED vating IECKED B	0 10/24/17			
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	LOG		MATERIAL DE	ESCRIPTION	
		MC = 13.0	SM	1.0		OIL, root intrusions to 2'		
		<u>MC = 15.4</u>	,		Test pit terminate excavation. No ca	d at 5.0 feet below existing grad aving observed.	de. No groundwater enco	ountered during

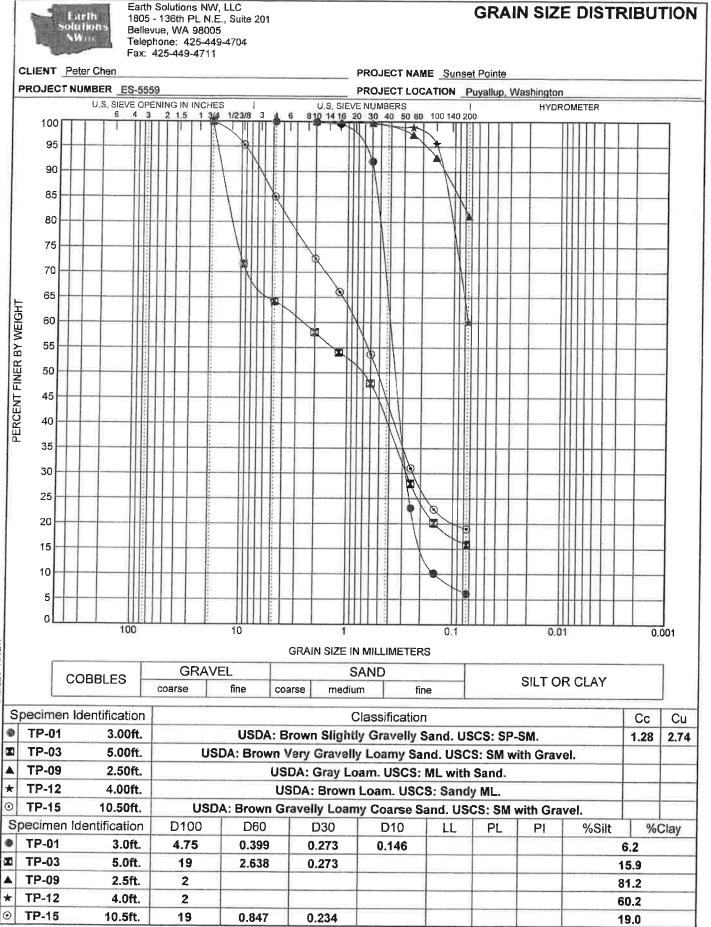
Appendix B


Laboratory Test Results

ES-5559

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711


GRAIN SIZE DISTRIBUTION



Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005 Telephone: 425-449-4704 Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

GINT US LAB. GDT 11/10/17

ES-5559 SUNSET POINTE.GPJ **GRAIN SIZE USDA**

Report Distribution

ES-5559

- EMAIL ONLYPeter Chen4709 Memory Lane WestUniversity Place, Washington 98488
- EMAIL ONLYCES NW, Inc.429 29th Street Northeast, Suite DPuyallup, Washington 98372

Attention: Fred Brown, P.E.

May 9, 2023 Updated May 25, 2023 ES-5559.05 Earth Solutions NW LLC

Geotechnical Engineering, Construction Observation/Testing and Environmental Services

Peter Chen 4709 Memory Lane West University Place, Washington 98488

- Subject: Groundwater Monitoring Program Summary Sunset Pointe 2301 – 23rd Street Southeast Puyallup, Washington
- Reference: Earth Solutions NW, LLC Geotechnical Engineering Study, ES-5559, updated April 5, 2023

Dear Peter:

As requested, Earth Solutions NW, LLC (ESNW) has prepared this letter summarizing the recently completed groundwater monitoring program for the proposed development.

Groundwater Monitoring

Seasonal groundwater monitoring was conducted at three monitoring locations across the subject development area, which ESNW installed during earlier phases of work for the site. Please refence the attached Plate 1 (Test Pit Location Plan) for the approximate monitoring areas. The monitoring period was conducted from December 16, 2022, through the end of April 2023. Groundwater depths and fluctuations were recorded via hand measurements in combination with daily recordings obtained by dataloggers. The following table depicts the approximate surface elevation of each well, the approximate peak groundwater condition (GWC), the corresponding approximate groundwater elevation, and the occurrence date. Please note that if more precise peak GWC values are necessary, the surface elevations of each well location should be surveyed and recorded by a professional land surveyor.

Monitoring Well Location	Peak GWC Depth (ft bgs)	Approximate Surface Elevation (ft)	Approximate GWC Elevation (ft)	Peak Date
TP-104	10.6'	384	373.4	12/16/2022*
TP-201	N/A	376	N/A	N/A
TP-202	N/A	388	N/A	N/A

* Peak GWC elevation occurred on multiple dates.

Peter Chen May 9, 2023 Updated May 25, 2023

Based on our observations and the recorded conditions, the site does not have a shallow, uniform groundwater table. There were no indications or records of significant subsurface water exposures at TP-201 or TP-202. Date are attached for levels recorded during our monitoring program. A relatively consistent water level was recorded at TP-104; however, in our opinion, represents a minor accumulation of water that could not infiltrate given the soil conditions in the area and not related to groundwater. This correlates with the subsurface conditions encountered at the test pit locations, which consist predominately of dense glacially consolidated deposits with isolated and discontinuous sandy layers.

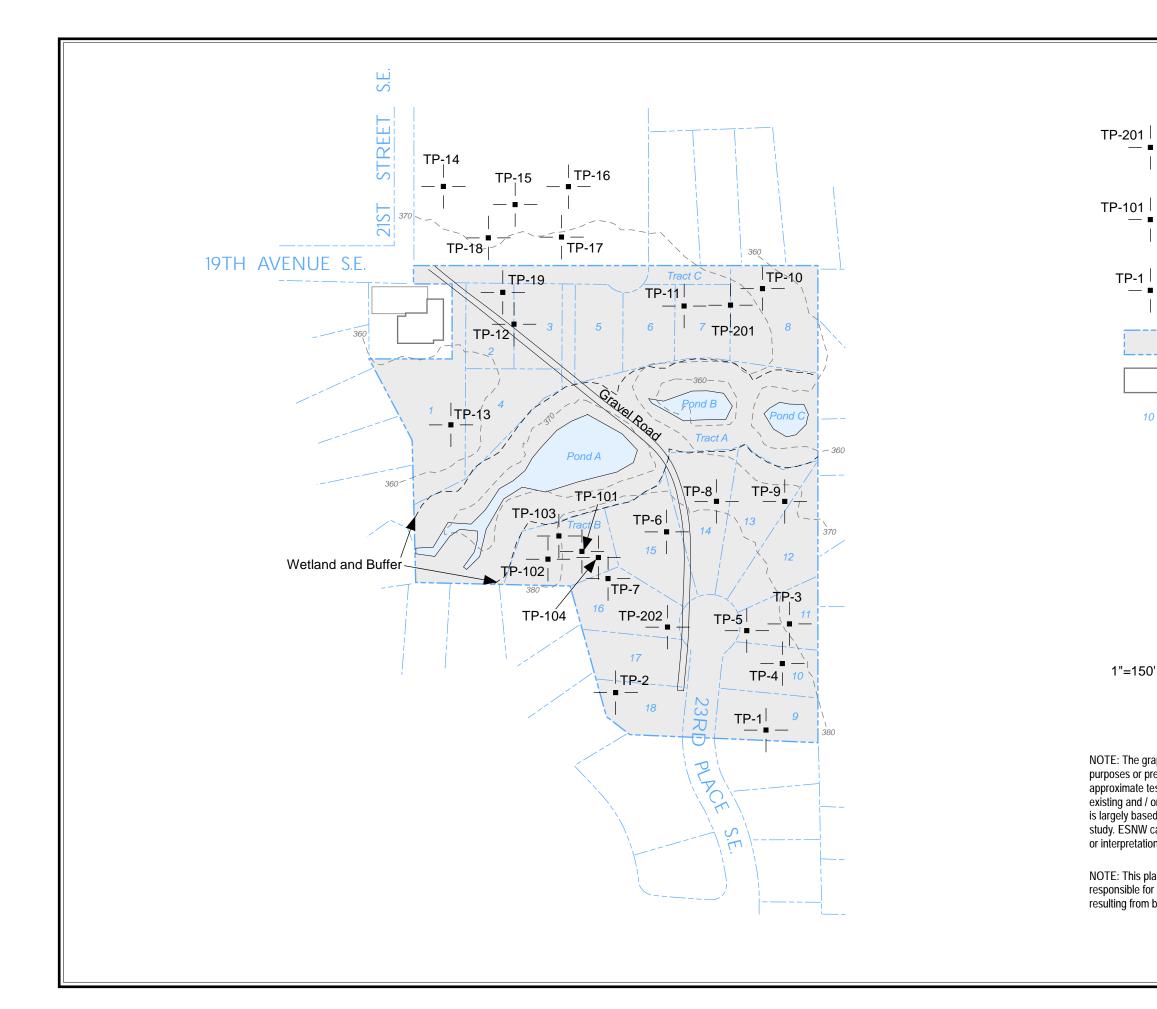
The opinions and evaluations provided in this letter do not cover unforeseen or changed conditions. ESNW should observe the infiltration surface during construction to confirm soil conditions are as anticipated and to provide supplemental recommendations, if deemed necessary.

We trust this letter meets your current needs. Should you have any questions regarding the content herein, or require additional information, please call.

Sincerely,

EARTH SOLUTIONS NW, LLC

Chase G. Halsen, L.G., L.E.G. Senior Project Geologist


csote of Washingroup
X
Engineering Geologist 2561 · c 05/25/2023
Scott S. Riegel

Scott S. Riegel, L.G., L.E.G. Associate Principal Geologist

Attachments: Plate 1 – Test Pit Location Plan Groundwater Level Data

CC:

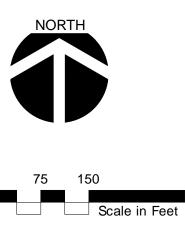
CES NW, Inc. Attention: Fred Brown, P.E. (Email only) Dawn Markakis (Email only)

LEGEND

Approximate Location of ESNW Test Pit, Proj. No. ES-5559.03, Jan. 2020

Approximate Location of ESNW Test Pit, Proj. No. ES-5559, May 2019

Approximate Location of ESNW Test Pit, Proj No. ES-5559, Oct. 2017


Subject Site

10

0

Existing Building

Proposed Lot Number

NOTE: The graphics shown on this plate are not intended for design purposes or precise scale measurements, but only to illustrate the approximate test locations relative to the approximate locations of existing and / or proposed site features. The information illustrated is largely based on data provided by the client at the time of our study. ESNW cannot be responsible for subsequent design changes or interpretation of the data by others.

NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

Serial_number:						
2151506						
Project ID:						
ES-5559.05 Sunset Pointe						
Location: TP-104						
Tract Area						
LEVEL UNIT: m						
Offset: 0.000000 m						
TEMPERATURE						
UNIT: °C						
Date Time ms	LEVEL	TEMPERATURE	M. to Ft.	Approximate Depth from Ground Surface	Highest Recorded Elevation (ft. bgs)	Total Well Depth
12/17/2022 12:00:00 AM	0 0.0			10.32		10.62'
12/18/2022 12:00:00 AM	0 0.09					
12/19/2022 12:00:00 AM 12/20/2022 12:00:00 AM	0 0.09			10.31 10.35		
12/21/2022 12:00:00 AM	0 0.082			10.33		
12/22/2022 12:00:00 AM	0 0.09			10.31		
12/23/2022 12:00:00 AM	0 0.089	10.737	0.29	10.33	1	
12/24/2022 12:00:00 AM	0 0.091	.5 10.692	0.30	10.32	1	
12/25/2022 12:00:00 AM	0 0.083			10.35		
12/26/2022 12:00:00 AM	0 0.094			10.31		
12/27/2022 12:00:00 AM 12/28/2022 12:00:00 AM	0 0.097 0 0.107			10.30 10.27		
12/29/2022 12:00:00 AM	0 0.095			10.27		
12/30/2022 12:00:00 AM	0 0.101			10.29		
12/31/2022 12:00:00 AM	0 0.103			10.28		
1/1/2023 12:00:00 AM	0 0.100			10.29		
1/2/2023 12:00:00 AM	0 0.107			10.27		
1/3/2023 12:00:00 AM	0 0.113			10.25		
1/4/2023 12:00:00 AM 1/5/2023 12:00:00 AM	0 0.104 0 0.101			10.28 10.29		
1/6/2023 12:00:00 AM	0 0.101			10.25		
1/7/2023 12:00:00 AM	0 0.092			10.32		
1/8/2023 12:00:00 AM	0 0.105	9.968	0.35	10.27	,	
1/9/2023 12:00:00 AM	0 0.093		0.31	10.31		
1/10/2023 12:00:00 AM	0 0.099			10.29		
1/11/2023 12:00:00 AM	0 0.101			10.29		
1/12/2023 12:00:00 AM 1/13/2023 12:00:00 AM	0 0.099			10.29 10.29		
1/14/2023 12:00:00 AM	0 0.105			10.25		
1/15/2023 12:00:00 AM	0 0.1			10.26		
1/16/2023 12:00:00 AM	0 0.111	.4 9.675	0.37	10.25	i	
1/17/2023 12:00:00 AM	0 0.101			10.29		
1/18/2023 12:00:00 AM	0 0.100			10.29		
1/19/2023 12:00:00 AM	0 0.108			10.26		
1/20/2023 12:00:00 AM 1/21/2023 12:00:00 AM	0 0.094 0 0.103			10.31 10.28		
1/22/2023 12:00:00 AM	0 0.108			10.26		
1/23/2023 12:00:00 AM	0 0.096			10.30		
1/24/2023 12:00:00 AM	0 0.097	2 9.504	0.32	10.30	1	
1/25/2023 12:00:00 AM	0 0.094			10.31		
1/26/2023 12:00:00 AM	0 0.093					
1/27/2023 12:00:00 AM	0 0.096					
1/28/2023 12:00:00 AM 1/29/2023 12:00:00 AM	0 0.102 0 0.118					
1/30/2023 12:00:00 AM	0 0.109					
1/31/2023 12:00:00 AM	0 0.109					
2/1/2023 12:00:00 AM	0 0.113			10.25	i	
2/2/2023 12:00:00 AM	0 0.113					
2/3/2023 12:00:00 AM	0 0.097					
2/4/2023 12:00:00 AM 2/5/2023 12:00:00 AM	0 0.107					
2/6/2023 12:00:00 AM	0 0.092 0 0.105					
2/7/2023 12:00:00 AM	0 0.116					
2/8/2023 12:00:00 AM	0 0.118					
2/9/2023 12:00:00 AM	0 0.113	9.339	0.37	10.25	i	
2/10/2023 12:00:00 AM	0 0.124					
2/11/2023 12:00:00 AM	0 0.122					
2/12/2023 12:00:00 AM	0 0.125					
2/13/2023 12:00:00 AM 2/14/2023 12:00:00 AM	0 0.118 0 0.117					
2/14/2023 12:00:00 AM	0 0.112					
2/16/2023 12:00:00 AM	0 0.120					
2/17/2023 12:00:00 AM	0 0.125					
2/18/2023 12:00:00 AM	0 0.110					
2/19/2023 12:00:00 AM	0 0.113					
2/20/2023 12:00:00 AM	0 0.108					
2/21/2023 12:00:00 AM 2/22/2023 12:00:00 AM	0 0.110 0 0.127					
_,, _020 22.00.00 / W	- 0.12)	5.070	0.42	10.20		

2/23/2023	12:00:00 AM	0	0.125	9.059	0.41	10.21
2/24/2023	12:00:00 AM	0	0.1295	9.05	0.42	10.20
2/25/2023	12:00:00 AM	0	0.1189	9.039	0.39	10.23
	12:00:00 AM	0	0.1165	9.024	0.38	10.24
2/27/2023	12:00:00 AM	0	0.1037	9.003	0.34	10.28
	12:00:00 AM	0	0.1229	8.996	0.40	10.22
	12:00:00 AM	0	0.1173	8.981	0.38	10.24
	12:00:00 AM	0	0.1173	8.976	0.38	10.24
	12:00:00 AM	0	0.1059	8.966	0.35	10.27
	12:00:00 AM	0	0.1166	8.955	0.38	10.24
	12:00:00 AM	0	0.1243	8.928	0.41	10.21
	12:00:00 AM	0	0.1125	8.921	0.37	10.25
3/7/2023	12:00:00 AM	0	0.1078	8.909	0.35	10.27
3/8/2023	12:00:00 AM	0	0.1024	8.889	0.34	10.28
3/9/2023	12:00:00 AM	0	0.1064	8.867	0.35	10.27
3/10/2023	12:00:00 AM	0	0.1136	8.85	0.37	10.25
3/11/2023	12:00:00 AM	0	0.1105	8.827	0.36	10.26
3/12/2023	12:00:00 AM	0	0.1058	8.812	0.35	10.27
	12:00:00 AM	0	0.1161	8.789	0.38	10.24
	12:00:00 AM	0	0.1158	8.77	0.38	10.24
	12:00:00 AM	0	0.1249	8.746	0.41	10.21
	12:00:00 AM	0	0.1249	8.725	0.35	10.21
	12:00:00 AM	0	0.1182	8.707	0.39	10.23
	12:00:00 AM	0				
			0.1069	8.68	0.35	10.27
	12:00:00 AM	0	0.1144	8.663	0.38	10.24
	12:00:00 AM	0	0.1199	8.647	0.39	10.23
	12:00:00 AM	0	0.1093	8.635	0.36	10.26
	12:00:00 AM	0	0.111	8.625	0.36	10.26
	12:00:00 AM	0	0.1072	8.612	0.35	10.27
3/24/2023	12:00:00 AM	0	0.1057	8.603	0.35	10.27
3/25/2023	12:00:00 AM	0	0.1069	8.595	0.35	10.27
3/26/2023	12:00:00 AM	0	0.1041	8.583	0.34	10.28
3/27/2023	12:00:00 AM	0	0.101	8.577	0.33	10.29
3/28/2023	12:00:00 AM	0	0.1103	8.562	0.36	10.26
3/29/2023	12:00:00 AM	0	0.1152	8.554	0.38	10.24
3/30/2023	12:00:00 AM	0	0.1085	8.543	0.36	10.26
3/31/2023	12:00:00 AM	0	0.1	8.538	0.33	10.29
	12:00:00 AM	0	0.1229	8.531	0.40	10.22
	12:00:00 AM	0	0.115	8.526	0.38	10.24
	12:00:00 AM	0	0.117	8.519	0.38	10.24
	12:00:00 AM	0	0.1097	8.505	0.36	10.26
	12:00:00 AM	0	0.1037	8.505	0.34	10.20
	12:00:00 AM	0				
			0.1093	8.495	0.36	10.26
	12:00:00 AM	0	0.1175	8.486	0.39	10.23
	12:00:00 AM	0	0.0978	8.479	0.32	10.30
	12:00:00 AM	0	0.1014	8.468	0.33	10.29
	12:00:00 AM	0	0.105	8.461	0.34	10.28
, ,	12:00:00 AM	0	0.111	8.451	0.36	10.26
4/12/2023	12:00:00 AM	0	0.1063	8.44	0.35	10.27
4/13/2023	12:00:00 AM	0	0.1055	8.434	0.35	10.27
4/14/2023	12:00:00 AM	0	0.1075	8.43	0.35	10.27
4/15/2023	12:00:00 AM	0	0.1092	8.428	0.36	10.26
4/16/2023	12:00:00 AM	0	0.1044	8.433	0.34	10.28
4/17/2023	12:00:00 AM	0	0.1076	8.435	0.35	10.27
4/18/2023	12:00:00 AM	0	0.1252	8.436	0.41	10.21
	12:00:00 AM	0	0.1105	8.437	0.36	10.26
	12:00:00 AM	0	0.1105	8.437	0.36	10.26
	12:00:00 AM	0	0.1177	8.442	0.39	10.23
	12:00:00 AM	0	0.1061	8.449	0.35	10.27
	12:00:00 AM	0	0.11001	8.455	0.39	10.23
	12:00:00 AM	0	0.1153	8.46	0.39	10.23
	12:00:00 AM					
	12:00:00 AM	0	0.1126	8.46	0.37	10.25
		0	0.108	8.461	0.35	10.27
	12:00:00 AM	0	0.109	8.465	0.36	10.26
	12:00:00 AM	0	0.1171	8.471	0.38	10.24
	12:00:00 AM	0	0.1321	8.48	0.43	10.19
	12:00:00 AM	0	0.1172	8.486	0.38	10.24
5/1/2023	12:00:00 AM	0	0.1046	8.496	0.34	10.28

Serial number:							
2151508							
Project ID: TP-201							
	TP-201						
ES-5559.05							
LEVEL UNIT: m							
Offset: 0.000000 m							
TEMPERATURE							
UNIT: °C	Time				M to Ft	Approximate Donth from Cround Surface	Highest Desorded Flourises (ft. bas) Total Well Dooth
	Time ms 12:00:00 AM	0	EVEL -0.0351	10.223	-0.12	Approximate Depth from Ground Surface	Highest Recorded Elevation (ft. bgs)Total Well Depth7.926.797.8'
	12:00:00 AM	0	-0.0309	10.164	-0.10		7.90
	12:00:00 AM	0	-0.0237	10.111			7.88
	12:00:00 AM 12:00:00 AM	0 0	-0.0398 -0.0254	10.06 10.012			7.93 7.88
	12:00:00 AM	0	-0.0344	9.941	-0.11		7.91
	12:00:00 AM	0	-0.0432	9.883	-0.14		7.94
	12:00:00 AM 12:00:00 AM	0 0	-0.0342 -0.0424	9.824 9.801	-0.11 -0.14		7.91 7.94
	12:00:00 AM	0	-0.0282	9.714	-0.09		7.89
	12:00:00 AM	0	-0.0159	9.582			7.85
	12:00:00 AM 12:00:00 AM	0 0	0.3065 0.1625	8.343 8.321	1.01 0.53		6.79 Outliers 7.27
	12:00:00 AM	0	-0.0064	8.868			7.82
	12:00:00 AM	0	-0.01	8.86			7.83
	12:00:00 AM 12:00:00 AM	0 0	-0.0272 -0.0366	8.817 8.8	-0.09 -0.12		7.89 7.92
	12:00:00 AM	0	-0.0266	8.8	-0.09		7.89
	12:00:00 AM	0	-0.0229	8.804	-0.08		7.88
	12:00:00 AM 12:00:00 AM	0 0	-0.0429 -0.0249	8.811 8.817	-0.14 -0.08		7.94 7.88
	12:00:00 AM	0	-0.0342	8.822			7.91
	12:00:00 AM	0	-0.0391	8.826			7.93
	12:00:00 AM 12:00:00 AM	0 0	-0.038 -0.0284	8.824 8.818	-0.12 -0.09		7.92 7.89
	12:00:00 AM	0	-0.0268	8.806			7.89
	12:00:00 AM	0	-0.0283	8.795	-0.09		7.89
	12:00:00 AM 12:00:00 AM	0 0	-0.0425 -0.0352	8.782 8.764	-0.14 -0.12		7.94 7.92
	12:00:00 AM	0	-0.0322	8.758	-0.11		7.91
	12:00:00 AM	0	-0.0278	8.732	-0.09		7.89
	12:00:00 AM 12:00:00 AM	0 0	-0.0262 -0.0354	8.705 8.678	-0.09 -0.12		7.89 7.92
	12:00:00 AM	0	-0.0217	8.659	-0.07		7.87
	12:00:00 AM	0	-0.0348	8.648	-0.11		7.91
	12:00:00 AM 12:00:00 AM	0 0	-0.0317 -0.0237	8.639 8.633	-0.10 -0.08		7.90 7.88
	12:00:00 AM	0	-0.0312	8.629	-0.10		7.90
	12:00:00 AM	0	-0.0296	8.623	-0.10		7.90
	12:00:00 AM 12:00:00 AM	0 0	-0.0295 -0.0345	8.616 8.605	-0.10 -0.11		7.90 7.91
	12:00:00 AM	0	-0.0479	8.594	-0.16		7.96
	12:00:00 AM	0	-0.0402	8.584			7.93 7.86
	12:00:00 AM 12:00:00 AM	0 0	-0.0198 -0.0281	8.58 8.568			7.89
1/31/2023	12:00:00 AM	0	-0.0331	8.553	-0.11		7.91
	12:00:00 AM 12:00:00 AM	0 0	-0.0278 -0.0268	8.543 8.531			7.89 7.89
	12:00:00 AM	0	-0.0208	8.519			7.94
	12:00:00 AM	0	-0.0289	8.508			7.89
	12:00:00 AM 12:00:00 AM	0 0	-0.0467 -0.0216	8.493 8.474	-0.15 -0.07		7.95 7.87
	12:00:00 AM	0	-0.0358	8.454	-0.12		7.92
	12:00:00 AM	0	-0.0235	8.432			7.88
	12:00:00 AM 12:00:00 AM	0 0	-0.0378 -0.0288	8.409 8.391	-0.12 -0.09		7.92 7.89
	12:00:00 AM	0	-0.0289	8.364			7.89
	12:00:00 AM	0	-0.031	8.34			7.90
	12:00:00 AM 12:00:00 AM	0 0	-0.0379 -0.0354	8.321 8.302			7.92 7.92
	12:00:00 AM	0	-0.0334	8.286			7.94
	12:00:00 AM	0	-0.0346	8.27			7.91
	12:00:00 AM 12:00:00 AM	0 0	-0.0268 -0.0293	8.255 8.239			7.89 7.90
	12:00:00 AM	0	-0.0255	8.224			7.89
	12:00:00 AM	0	-0.0343	8.21			7.91
	12:00:00 AM 12:00:00 AM	0 0	-0.045 -0.0289	8.192 8.174			7.95 7.89
	12:00:00 AM	0	-0.0205	8.157			7.90
	12:00:00 AM	0	-0.0225	8.132			7.87
2/25/2023	12:00:00 AM	0	-0.0349	8.115	-0.11		7.91

2/26/2023	12:00:00 AM	0	-0.039	8.098	-0.13	7.93
2/27/2023	12:00:00 AM	0	-0.0298	8.084	-0.10	7.90
2/28/2023	12:00:00 AM	0	-0.0317	8.068	-0.10	7.90
3/1/2023	12:00:00 AM	0	-0.0204	8.057	-0.07	7.87
	12:00:00 AM	0	-0.0329	8.039	-0.11	7.91
	12:00:00 AM	0	-0.0313	8.022	-0.10	7.90
	12:00:00 AM	0	-0.0375	8	-0.12	7.92
3/5/2023		0	-0.0246	7.976	-0.08	7.88
	12:00:00 AM	0	-0.0249	7.953	-0.08	7.88
	12:00:00 AM	0	-0.0298	7.932	-0.10	7.90
	12:00:00 AM	0	-0.0377	7.907	-0.12	7.92
	12:00:00 AM	0 0	-0.0319	7.881	-0.10	7.90
	12:00:00 AM 12:00:00 AM	0	-0.0388 -0.0241	7.86 7.833	-0.13 -0.08	7.93 7.88
	12:00:00 AM	0	-0.0241	7.811	-0.08	7.88
	12:00:00 AM	0	-0.0355	7.79	-0.11	7.92
	12:00:00 AM	0	-0.0252	7.767	-0.08	7.88
	12:00:00 AM	0	-0.022	7.74	-0.07	7.87
	12:00:00 AM	0	-0.03	7.705	-0.10	7.90
	12:00:00 AM	0	-0.028	7.673	-0.09	7.89
	12:00:00 AM	0	-0.0322	7.646	-0.11	7.91
3/19/2023	12:00:00 AM	0	-0.0362	7.628	-0.12	7.92
3/20/2023	12:00:00 AM	0	-0.0305	7.616	-0.10	7.90
3/21/2023	12:00:00 AM	0	-0.0318	7.604	-0.10	7.90
3/22/2023	12:00:00 AM	0	-0.0302	7.598	-0.10	7.90
3/23/2023	12:00:00 AM	0	-0.0267	7.593	-0.09	7.89
	12:00:00 AM	0	-0.0281	7.587	-0.09	7.89
	12:00:00 AM	0	-0.0263	7.585	-0.09	7.89
	12:00:00 AM	0	-0.0319	0.941	-0.10	7.90
	12:00:00 AM	0	-0.0319	7.231	-0.10	7.90
	12:00:00 AM	0	-0.039	7.251	-0.13	7.93
	12:00:00 AM	0	-0.0314	7.375	-0.10	7.90
3/30/2023		0	-0.0326	7.394	-0.11	7.91
	12:00:00 AM	0	-0.0313	7.411	-0.10	7.90
	12:00:00 AM	0	-0.0231	7.431	-0.08	7.88
	12:00:00 AM	0	-0.0328	7.444	-0.11	7.91
	12:00:00 AM	0 0	-0.0273	7.455	-0.09	7.89
	12:00:00 AM 12:00:00 AM	0	-0.03 -0.0284	7.47 7.486	-0.10 -0.09	7.90 7.89
	12:00:00 AM	0	-0.0284	7.486	-0.09	7.89
	12:00:00 AM	0	-0.0286	7.517	-0.09	7.89
	12:00:00 AM	0	-0.0321	7.531	-0.11	7.91
	12:00:00 AM	0	-0.0294	7.545	-0.10	7.90
	12:00:00 AM	0	-0.0279	7.557	-0.09	7.89
	12:00:00 AM	0	0.027	7.566	0.09	7.71
4/12/2023	12:00:00 AM	0	-0.029	7.616	-0.10	7.90
	12:00:00 AM	0	-0.0382	7.633	-0.13	7.93
4/14/2023	12:00:00 AM	0	-0.0302	7.655	-0.10	7.90
4/15/2023	12:00:00 AM	0	-0.0277	7.681	-0.09	7.89
4/16/2023	12:00:00 AM	0	-0.0377	7.706	-0.12	7.92
	12:00:00 AM	0	-0.0315	7.735	-0.10	7.90
	12:00:00 AM	0	-0.0287	7.764	-0.09	7.89
	12:00:00 AM	0	-0.0276	7.793	-0.09	7.89
4/20/2023	12:00:00 AM	0	-0.027	7.819	-0.09	7.89
	12:00:00 AM	0	-0.0201	7.851	-0.07	7.87
	12:00:00 AM	0	-0.0355	7.876	-0.12	7.92
	12:00:00 AM	0	-0.0367	7.898	-0.12	7.92
	12:00:00 AM	0	-0.0247	7.931	-0.08	7.88
	12:00:00 AM	0	-0.027	7.945	-0.09	7.89
	12:00:00 AM	0	-0.0319	7.964	-0.10	7.90
	12:00:00 AM 12:00:00 AM	0	-0.0306 -0.0302	7.985 8.009	-0.10	7.90
	12:00:00 AM	0 0		8.009	-0.10 -0.07	7.90 7.87
	12:00:00 AM 12:00:00 AM	0	-0.0221 -0.029	8.035	-0.07 -0.10	7.87 7.90
	12:00:00 AM	0	-0.029	8.101	-0.10	7.90
5/ 1/ 2025	12.00.00 AN	0	0.0009	0.101	5.10	7.50

Serial_number:										
	2151491									
Project ID:										
ES-5559.05 Sun										
Location:	1	TP-202								
TP-202										
LEVEL					W					
UNIT: m										
Offset: 0.00000	00 m									
TEMPERATURE										
UNIT: °C										
Date	1	Time m	S	LEVEL	TEMPERATURE M to Ft.		Approximate Depth from Ground Surface	e H	ighest Recorded Elevation (ft. bgs)	Total Well Depth
	12/17/2022	12:00:00 AM	0	-0.0393	10.92	-0.13		7.88	6.94	7.75'
	12/18/2022	12:00:00 AM	0	-0.0344	10.858	-0.11		7.86		
	12/19/2022	12:00:00 AM	0	-0.0277	10.785	-0.09		7.84		
	12/20/2022	12:00:00 AM	0	-0.0436	10.741	-0.14		7.89		
	12/21/2022	12:00:00 AM	0	-0.0299	10.676	-0.10		7.85		
	12/22/2022	12:00:00 AM	0	-0.0393	10.613	-0.13		7.88		
	12/23/2022	12:00:00 AM	0	-0.0469	10.561	-0.15		7.90		
	12/24/2022	12:00:00 AM	0	-0.0381	10.495	-0.12		7.87		
	12/25/2022	12:00:00 AM	0	-0.037	9.883	-0.12		7.87		
	12/26/2022	12:00:00 AM	0	-0.0459	9.897	-0.15		7.90		
	12/27/2022	12:00:00 AM	0	0.2456	7.589	0.81		<mark>6.94</mark> 0	utliers	
	12/28/2022	12:00:00 AM	0	0.1281	7.625	0.42		7.33		
	12/29/2022	12:00:00 AM	0	-0.0426	8.327	-0.14		7.89		
	12/30/2022	12:00:00 AM	0	-0.0419	8.677	-0.14		7.89		
	12/31/2022	12:00:00 AM	0	-0.0254	8.737	-0.08		7.83		
	1/1/2023	12:00:00 AM	0	-0.0298	8.847	-0.10		7.85		
	1/2/2023	12:00:00 AM	0	-0.0388	8.979	-0.13		7.88		
	1/3/2023	12:00:00 AM	0	-0.0286	9.074	-0.09		7.84		
	1/4/2023	12:00:00 AM	0	-0.0248	9.142	-0.08		7.83		
	1/5/2023	12:00:00 AM	0	-0.0436	9.202	-0.14		7.89		
	1/6/2023	12:00:00 AM	0	-0.0268	9.229	-0.09		7.84		
	1/7/2023	12:00:00 AM	0	-0.0365	9.258	-0.12		7.87		
	1/8/2023	12:00:00 AM	0	-0.0404	9.277	-0.13		7.88		
	1/9/2023	12:00:00 AM	0	-0.0398	9.284	-0.13		7.88		
	1/10/2023	12:00:00 AM	0	-0.0302	9.283	-0.10		7.85		
	1/11/2023	12:00:00 AM	0	-0.0282	9.279	-0.09		7.84		
	1/12/2023	12:00:00 AM	0	-0.0303	9.275	-0.10		7.85		
	1/13/2023	12:00:00 AM	0	-0.0454	9.279	-0.15		7.90		
	1/14/2023	12:00:00 AM	0	-0.0382	9.26	-0.13		7.88		
	1/15/2023	12:00:00 AM	0	-0.0349	9.234	-0.11		7.86		
	1/16/2023	12:00:00 AM	0	-0.0308	9.214	-0.10		7.85		
	1/17/2023	12:00:00 AM	0	-0.0302	9.188	-0.10		7.85		
	1/18/2023	12:00:00 AM	0	-0.0392	9.184	-0.13		7.88		
	1/19/2023	12:00:00 AM	0	-0.0256	9.176	-0.08		7.83		
	1/20/2023	12:00:00 AM	0	-0.0395	9.174	-0.13		7.88		
	1/21/2023	12:00:00 AM	0	-0.036	9.176	-0.12		7.87		

1/22/2023	12:00:00 AM	0	-0.0278	9.17	-0.09	7.84
1/23/2023	12:00:00 AM	0	-0.0356	9.169	-0.12	7.87
1/24/2023	12:00:00 AM	0	-0.0379	9.158	-0.12	7.87
1/25/2023	12:00:00 AM	0	-0.056	9.151	-0.18	7.93
1/26/2023	12:00:00 AM	0	-0.0332	9.144	-0.11	7.86
1/27/2023	12:00:00 AM	0	-0.0297	9.137	-0.10	7.85
1/28/2023	12:00:00 AM		-0.0443	9.13	-0.15	7.90
1/29/2023	12:00:00 AM		-0.0244	9.106	-0.08	7.83
1/30/2023	12:00:00 AM	0	-0.033	9.089	-0.11	7.86
1/31/2023	12:00:00 AM		-0.0373	9.074	-0.12	7.87
2/1/2023	12:00:00 AM		-0.0324	9.059	-0.11	7.86
2/2/2023	12:00:00 AM		-0.0313	9.041	-0.10	7.85
2/3/2023	12:00:00 AM		-0.0466	9.028	-0.15	7.90
2/4/2023	12:00:00 AM		-0.0332	9.003	-0.11	7.86
2/5/2023	12:00:00 AM		-0.0504	8.989	-0.17	7.92
2/6/2023	12:00:00 AM		-0.0264	8.957	-0.09	7.84
2/7/2023	12:00:00 AM		-0.0399	8.934	-0.13	7.88
2/8/2023	12:00:00 AM		-0.0287	8.902	-0.09	7.84
2/9/2023	12:00:00 AM		-0.0423	8.876	-0.14	7.89
2/10/2023	12:00:00 AM	0	-0.0269	8.851	-0.09	7.84
2/11/2023	12:00:00 AM	0	-0.036	8.819	-0.12	7.87
2/12/2023	12:00:00 AM		-0.0318	8.793	-0.10	7.85
2/13/2023	12:00:00 AM	0	-0.0318	8.77	-0.08	7.83
2/14/2023	12:00:00 AM	0	-0.039	8.745	-0.13	7.88
2/15/2023	12:00:00 AM	0	-0.035	8.725	-0.10	7.85
2/15/2023	12:00:00 AM		-0.032	8.708	-0.13	7.88
2/17/2023	12:00:00 AM		-0.0313	8.689	-0.10	7.85
2/17/2023	12:00:00 AM		-0.0313	8.676	-0.10	7.86
2/18/2023	12:00:00 AM		-0.0330	8.657	-0.11	7.85
2/20/2023	12:00:00 AM		-0.0383	8.641	-0.13	7.88
2/20/2023	12:00:00 AM		-0.0383	8.622	-0.15	7.90
2/22/2023	12:00:00 AM		-0.0323	8.601	-0.15	7.86
2/22/2023			-0.0323	8.585	-0.11	7.86
	12:00:00 AM 12:00:00 AM		-0.0338		-0.09	7.84
2/24/2023 2/25/2023		0	-0.0272	8.546 8.535	-0.09	7.88
2/26/2023	12:00:00 AM 12:00:00 AM	0	-0.0393	8.521	-0.13	7.89
2/20/2023			-0.042	8.505	-0.14 -0.11	7.89
	12:00:00 AM					
2/28/2023	12:00:00 AM	0 0	-0.0346 -0.025	8.491	-0.11 -0.08	7.86 7.83
3/1/2023	12:00:00 AM			8.468		
3/2/2023	12:00:00 AM		-0.0371	8.453	-0.12	7.87
3/3/2023	12:00:00 AM		-0.0356	8.431	-0.12	7.87
3/4/2023	12:00:00 AM		-0.0408	8.405	-0.13	7.88
3/5/2023	12:00:00 AM		-0.0274	8.378	-0.09	7.84
3/6/2023	12:00:00 AM		-0.0281	8.35	-0.09	7.84
3/7/2023	12:00:00 AM		-0.0334	8.323	-0.11	7.86
3/8/2023	12:00:00 AM		-0.0411	8.298	-0.13	7.88
3/9/2023	12:00:00 AM		-0.0355	8.271	-0.12	7.87
3/10/2023	12:00:00 AM	0	-0.0415	8.254	-0.14	7.89

3/11/	2023	12:00:00 AM	0	-0.0285	8.219	-0.09	7.84
3/12/2	2023	12:00:00 AM	0	-0.0391	8.194	-0.13	7.88
3/13/		12:00:00 AM	0	-0.0384	8.172	-0.13	7.88
3/14/	2023	12:00:00 AM	0	-0.0296	8.119	-0.10	7.85
3/15/		12:00:00 AM	0	-0.0264	8.068	-0.09	7.84
3/16/		12:00:00 AM	0	-0.0348	8.048	-0.11	7.86
3/17/2		12:00:00 AM	0	-0.032	8.037	-0.10	7.85
3/18/2		12:00:00 AM		-0.0361	8.025	-0.12	7.87
3/19/2		12:00:00 AM	0	-0.0399	8.015	-0.13	7.88
3/20/2		12:00:00 AM	0	-0.034	8.004	-0.11	7.86
3/21/2		12:00:00 AM		-0.0358	7.988	-0.12	7.87
3/22/2		12:00:00 AM		-0.0338	7.981	-0.11	7.86
3/23/2		12:00:00 AM	0	-0.0307	7.971	-0.10	7.85
3/24/2		12:00:00 AM		-0.0318	7.965	-0.10	7.85
3/25/2		12:00:00 AM	0	-0.0306	7.963	-0.10	7.85
3/26/2		12:00:00 AM		-0.0335	7.963	-0.11	7.86
3/27/2		12:00:00 AM		-0.0361	7.968	-0.12	7.87
3/28/2		12:00:00 AM		-0.0422	7.975	-0.14	7.89
3/29/3		12:00:00 AM	0	-0.0347	7.982	-0.11	7.86
3/30/2		12:00:00 AM	0	-0.0359	7.99	-0.12	7.87
3/31/2		12:00:00 AM	0	-0.0348	8	-0.11	7.86
	2023	12:00:00 AM	0	-0.0263	8.014	-0.09	7.84
	2023	12:00:00 AM	0	-0.0364	8.022	-0.12	7.87
	2023	12:00:00 AM		-0.0318	8.028	-0.10	7.85
	2023	12:00:00 AM		-0.0336	8.04	-0.11	7.86
	2023	12:00:00 AM	0	-0.0326	8.046	-0.11	7.86
	2023	12:00:00 AM	0	-0.041	8.06	-0.13	7.88
	2023	12:00:00 AM	0	-0.0322	8.07	-0.11	7.86
	2023	12:00:00 AM	0	-0.036	8.08	-0.12	7.87
	2023	12:00:00 AM	0	-0.0333	8.084	-0.11	7.86
4/10/2		12:00:00 AM		-0.0321	8.063	-0.11	7.86
4/11/2		12:00:00 AM	0	0.0604	7.788	0.20	7.55
4/12/2		12:00:00 AM		-0.0326	7.876	-0.11	7.86
4/13/2		12:00:00 AM	0	-0.0368	7.945	-0.12	7.87
4/14/2		12:00:00 AM	0	-0.034	8.003	-0.11	7.86
4/15/2		12:00:00 AM	0	-0.0315	8.05	-0.10	7.85
4/16/2		12:00:00 AM	0	-0.041	8.094	-0.13	7.88
4/17/2		12:00:00 AM	0	-0.035	8.126	-0.11	7.86
4/18/2		12:00:00 AM	0	-0.0312	8.158	-0.10	7.85
4/19/2		12:00:00 AM	0	-0.0311	8.188	-0.10	7.85
4/20/2		12:00:00 AM	0	-0.031	8.216	-0.10	7.85
4/20/		12:00:00 AM		-0.0241	8.246	-0.08	7.83
4/22/2		12:00:00 AM	0	-0.039	8.275	-0.13	7.88
4/23/2		12:00:00 AM		-0.0393	8.299	-0.13	7.88
4/24/2		12:00:00 AM	0	-0.0355	8.32	-0.09	7.84
4/25/2		12:00:00 AM	0	-0.0270	8.338	-0.10	7.85
4/26/2		12:00:00 AM	0	-0.0352	8.359	-0.12	7.87
4/27/2		12:00:00 AM		-0.0332	8.377	-0.12	7.86
-1211	2025	12.00.00 AN	0	0.0042	0.377	0.11	,

4/28/2023	12:00:00 AM	0 -0.0333	8.398	-0.11	7.86
4/29/2023	12:00:00 AM	0 -0.0251	8.415	-0.08	7.83
4/30/2023	12:00:00 AM	0 -0.032	8.443	-0.10	7.85
5/1/2023	12:00:00 AM	0 -0.034	8.466	-0.11	7.86

CRITICAL AREA ASSESSMENT

CRITICAL AREAS ASSESSMENT

SUNSET POINTE RESIDENTIAL COMMUNITY PARCELS 0420353026 and 0420353027 2100 - 19th Avenue SE, City of Puyallup, Washington

This report has been revised to incorporate review comments provided by the City of Puyallup Environmental Review Team

prepared for

Ms. Jennifer Caldwell, Senior Planner @ CES NW Inc. 310 - 29th Street NE, Suite 101 Puyallup, Washington 98372

prepared by

HABITAT TECHNOLOGIES P.O. Box 1088 Puyallup, Washington 98371-1088 253-845-5119

January 19, 2018

REVISED SEPTEMBER 21, 2018

wetlands, streams, fisheries, wildlife – mitigation and permitting solutions P.O. Box 1088, Puyallup, Washington 98371 253-845-5119 contact@habitattechnologies.net

Table of Contents

INTRODUCTION	1
PROJECT SITE DESCRIPTION	1
BACKGROUND INFORMATION	2
NATIONAL WETLAND INVENTORY STATE OF WASHINGTON PRIORITY HABITATS AND SPECIES STATE OF WASHINGTON DEPARTMENT OF FISH AND WILDLIFE STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES CITY OF PUYALLUP MAPPING SOILS MAPPING	2 3 3 3
ONSITE ANALYSIS	3
CRITERIA FOR CRITICAL AREAS IDENTIFICATION	4 4 5 5 6 6 7 7 9
WETLANDS	10 10 11
INTENTIONALLY CREATED MAN-MADE FEATURES1	2
EXCAVATED PONDS	2
SELECTED DEVELOPMENT ACTION1	2
STANDARD OF CARE1	3
FIGURES1	4
REFERENCE AND BACKGROUND LIST1	15
APPENDIX A – FIELD DATA FORMS1	17
APPENDIX B – WETLAND RATING WORKSHEETS1	18

INTRODUCTION

This document details the culmination of activities and onsite evaluations undertaken to complete a critical areas (i.e. wetlands, streams, fish and wildlife habitats) assessment for the proposed **Sunset Pointe Residential Community** - **Parcels 0420353026 and 0420353027 (project site).** Initial planning for this residential community also included two independent parcel to the north of 19th Avenue SE (Parcels 0420353009 and 0420157011). However, these two northern parcels have been removed for this residential community following a series of discussions with the City of Puyallup Environmental Review Team.

The project site was located at 2100 - 19th Avenue SE within the eastern portion of the City of Puyallup, Pierce County, Washington (part of Section 35, Township 20 North, Range 04 East, W.M.) (Figure 1). The evaluation and characterization of onsite and adjacent critical areas is a vital element in land use planning. The goal of this approach is to ensure that present and future proposed planned site development, to include the establishment of protective buffers, does not result in adverse environmental impacts to identified critical areas, their associated buffer, or adversely impact local water quality.

The assessment and delineation of specific critical areas within and immediately adjacent to the project site followed the methods and procedures defined in the *Corps of Engineers Wetland Delineation Manual* (United States Army Corps of Engineers, 1987) with the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region* (United States Army Corps of Engineers, 2010); the Washington State *Wetland Rating System for Western Washington* (Hruby, 2014), the State of Washington Department of Natural Resources (WDNR) Forest Practice Rules (WAC 222-16-030), and the City of Puyallup Chapter 21. This document was designed to accommodate site planning and potential regulatory actions and is suitable for submittal to federal, state, and local authorities for potential critical areas verification and permitting actions.

PROJECT SITE DESCRIPTION

The project site was irregular in shape and approximately 9.45-acres in size. The project site was accessed along the northwestern boundary via 19th Avenue SE. The project site was surrounded by existing development to the west, east, and south. A vacant parcel was located to the north. The project site had undergone a number of land use manipulations over the past several decades. These manipulations have included forest harvest; clearing and grading; excavation, creation, and maintenance of a series of ornamental ponds; the development and management of pastures; perimeter and internal fencing; the development of internal roadways; the development and demolition of prior homesites and associated outbuildings, the development of a new single-family home; the manipulation of seasonal surface water runoff within the watershed; and the development of adjacent parcels and public roadways.

Legal Description - Parcel 0420353026: Section 35 Township 20 Range 04 Quarter 33 : PARCEL `C` 0F DBLR 95-07-17-0491 DESC AS FOLL COM AT SW COR OF SW TH N ALG W LI SD SW 1387.82 FT TO NW COR OF SW OF SW TH E ALG N LI SD SUBD 1260.60 FT TO POB TH CONT E 81.25 FT TH S 51 DEG 21 MIN 11 SEC E

Legal Description - Parcel 0420353027: Section 35 Township 20 Range 04 Quarter 34 : PARCEL `D` OF DBLR 95-05-17-0491 DESC AS FOLL COM AT SW COR OF SW TH E ALG S LI SD SW 1974.60 FT TH N 01 DEG 06 MIN 54 SEC W 615.92 FT TO POB TH N 87 DEG 01 MIN 41 SEC W 292.30 FT TH N 61 DEG 33 MIN 32 SEC W 4

Directions to Project Site: From Meridian Avenue South through the center of the City of Puyallup turn east onto 23rd Avenue SE. Continue easterly on 23rd Avenue SE to 19th Street SE. Turn north onto 19rd Street SE and continue to 21st Avenue SE. Turn east onto 21st Avenue SE and continue to 2100 - 21st Avenue SE (project site).

BACKGROUND INFORMATION

NATIONAL WETLAND INVENTORY

The *National Wetland Inventory (NWI) Mapping* completed by the U.S. Fish and Wildlife Service was reviewed as a part of this assessment. This mapping resource identified an excavated pond within the central portion of the project site. This excavated pond was identified as palustrine, unconsolidated bottom, permanently flooded, excavated (PUBHx) (Figure 2). This mapping resource also identified an excavated pond directly to the south of the southwestern corner of the project site. The adjacent excavated pond to the south was identified as palustrine, unconsolidated bottom, permanently flooded, excavated (PUBHx).

STATE OF WASHINGTON PRIORITY HABITATS AND SPECIES

The State of Washington *Priority Habitats and Species (PHS) Mapping* was reviewed as a part of this assessment (Figure 3). This mapping resource did not identify any priority habitats or species within or immediately adjacent to the project site. This mapping resource did identify an offsite wetland to the southwest of the project site separated by existing residential development.

STATE OF WASHINGTON DEPARTMENT OF FISH AND WILDLIFE

The State of Washington Department of Fish and Wildlife (WDFW) *SalmonScape Mapping* was reviewed as a part of this assessment (Figure 4). This mapping resource did not identify any drainage corridors within or immediately adjacent to the project site.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

The State of Washington Department of Natural Resources (WDNR) *Water Type Mapping* was reviewed as a part of this assessment (Figure 5). This mapping resource did not identify any wetlands or drainage corridors within or immediately adjacent to the project site.

CITY OF PUYALLUP MAPPING

The City of Puyallup *Inventory Mapping* was reviewed as a part of this assessment (Figure 6). This mapping resource identified a stream entering the southwestern portion of the project site. This stream then crossed through the project site to the east/northeast existing along the eastern boundary of the project site. This mapping resource also noted an offsite wetland to the west of 21st Avenue SE to the west of the project site.

SOILS MAPPING

The soil mapping prepared by the *Natural Resource Conservation Service* was reviewed as a part of this assessment (Figure 5). This mapping resource identified the northern portion of the project site was dominated by Kitsap silt loam (#20B and #20C). The Kitsap soil series consists of moderately well drained soil that formed in glacial lake sediments on remnant terraces along Puget Sound. This mapping resource also identified the southern portion of the project site to contain Everett gravelly sandy loam (#13C). The Everett soil series is noted as somewhat excessively drained and formed in gravelly glacial outwash. The Everett soil series is not listed as a "hydric" soil.

ONSITE ANALYSIS

CRITERIA FOR CRITICAL AREAS IDENTIFICATION

The City of Puyallup defines "critical areas" to include wetlands, fish and wildlife habitat areas, critical aquifer recharge areas, geologically hazardous areas, and frequently flooded areas. The critical areas assessment reported in this document has been limited to address wetlands and fish and wildlife habitat areas.

Wetlands: The City of Puyallup has defined "wetlands" as areas that are inundated or saturated by surface water or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas. Wetlands do not include those artificial wetlands intentionally created from nonwetland sites, including, but not limited to, irrigation and drainage ditches, grass-lined swales, canals, detention facilities, retention facilities, wastewater treatment facilities, farm ponds, and landscape amenities, or those wetlands created after July 1, 1990, that were unintentionally created as a result of the construction of a road, street, or highway.

Wetlands exhibit three essential characteristics, all of which must be present for an area to meet the established criteria (United States Army Corps of Engineers, 1987 and United States Army Corps of Engineers, 2010). These essential characteristics are:

- 1. Hydrophytic Vegetation: The assemblage of macrophytes that occurs in areas where inundation or soil saturation is either permanent or of sufficient frequency and duration to influence plan occurrence. Hydrophytic vegetation is present when the plant community is dominated by species that require or can tolerate prolonged inundation or soil saturation during the growing season.
- 2. Hydric Soil: A soil that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper parts. Most hydric soils exhibit characteristic morphologies that result from repented periods of saturation or inundation. These processes result in distinctive characteristics that persist in the soil during both wet and dry periods.
- **3. Wetland Hydrology:** Permanent or periodic inundation, or surface soil saturation, at least seasonally. Wetland hydrology indicators are used in combination with indicators of hydric soil and hydrophytic vegetation to define the area. Wetland hydrology indications provide evidence that the site has a continuing wetland hydrology regime. Where hydrology has not been altered vegetation and soils provide strong evidence that wetland hydrology is present.

Fish and Wildlife Habitat Areas: The City of Puyallup has defined "fish and wildlife habitat areas" to include those areas necessary for maintaining species in suitable habitats within their natural geographic distribution so that isolated subpopulations are not created as designated by WAC 365-190-080. These areas include:

- (a) Areas with which state or federally designated endangered, threatened, and sensitive species have a primary association;
- (b) Habitats of local importance, including but not limited to areas designated as priority habitat by the Department of Fish and Wildlife;
- (c) Streams and surface waters within the jurisdiction of the state of Washington; and

(d) Land essential for preserving connections between habitats and open spaces.

STUDY METHODS

Habitat Technologies completed a series of onsite assessments from September through early December 2017. In addition, Habitat Technologies has completed similar assessments for parcels located within the general area of the project site over the past several decades. The objective of this evaluation was to define and delineate potential critical areas (wetlands; drainage corridors; and fish and wildlife habitats) that may be present within or immediately adjacent to the project area. Onsite activities were completed in accordance with criteria and procedures established in the *Corps of Engineers Wetland Delineation Manual* (United States Army Corps of Engineers, 1987) with the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region* (United States Army Corps of Engineers, 2010); the Washington State *Wetland Rating System for Western Washington* (Hruby, 2014), the State of Washington Department of Natural Resources (WDNR) Forest Practice Rules (WAC 222-16-030), and the City of Puyallup Chapter 21.

FIELD OBSERVATION

The project site was accessed via 19th Street SE along the northwestern boundary of the project site. The project site had historically been managed as a single-family home associated with the production of livestock and for the production of hay crops. These activities appeared to have stopped around 2008. The phased demolition of the historic single-family home and associated outbuildings appeared to have begun in 2011. A new single-family home appeared to have been constructed in 2014 and was located at 2100 - 19th Avenue SE (along the western boundary of the project site).

The project site had undergone a number of land use manipulations over the past several decades. These manipulations have included forest harvest; clearing and grading; excavation, creation, and maintenance of a series of ornamental ponds; the development and management of pastures; perimeter and internal fencing; the development of internal roadways; the development and demolition of prior homesites and associated outbuildings, the development of a new single-family home; the manipulation of seasonal surface water runoff within the watershed; and the development of adjacent parcels and public roadways.

The project site was generally slightly sloped to the north/northeast. A ravine crossed through the site from the western boundary to the eastern boundary. This ravine was identified to contain a seasonal stream that originated offsite to the south. Onsite this ravine had undergone prior development actions to include the excavation and creation of three (3) ornamental ponds. These ponds appeared to have been created through the excavation of material within the ravine and through the placement of material to establish two (2) internal roadways corridors crossing the ravine generally north to south. Hydrology

control structures and culverts had been installed to intentionally control surface water ponding within these ornamental features.

Onsite Plant Communities

The plant communities throughout the entire project site had been altered by prior and ongoing land use actions. The plant community within the very southwestern portion of the project site adjacent with the drainage corridor was dominated by a mixed forest that included a number of mature trees. Observed tree species included Douglas fir (Pseudotsuga menziesii), Western red cedar (Thuja plicata), big leaf maple (Acer macrophyllum), red alder (Alnus rubra), Western hemlock (Tsuga heterophylla), Hawthorne (Crataegus monogyna), and black cottonwood (Populus trichocarpa). The understory within this forested area included hazelnut (Corylus cornuta), vine maple (Acer circinatum), Scot's broom (Cytisus scoparius), Himalayan blackberry (Rubus procera), evergreen blackberry (Rubus laciniatus), trailing blackberry (Rubus ursinus), Oregon grape (Berberis nervosa and Berberis aquifolium), snowberry (Symphoricarpus albus), salmonberry (Rubus spectabilis), wild rose (Rosa gymnocarpa), Indian plum (Oemleria cerasiformis), sword fern (Polystichum munitum), bracken fern (Pteridium aquilium), salal (Gaultheria shallon), holly (llex spp.), Pacific red elderberry (Sambucus racemosa), geranium (Geranium spp.), smooth cats ear (Hypochaeris glabra), nettle (Urtica dioica), and buttercup (Ranunculus repens). This plant community was identified as nonhydrophytic in character (i.e. typical of non-wetlands).

The plant community associated with the drainage corridor and intentionally excavated ornamental ponds within the southern portion of the project site included a mixture of mature trees, dense shrubs, grasses, herbs, and aquatic plants. Observed species included red alder, Western red cedar, black cottonwood, salmonberry, Douglas spiraea (*Spiraea douglasii*), red osier dogwood (*Cornus stolonifera*), twinberry (*Lonicera involucrata*), nettle, buttercup, skunk cabbage (*Lysichitum americanum*), softrush (*Juncus effusus*), slough sedge (*Carex obnupta*), reed canarygrass (*Phalaris arundinacea*), reed managrass (*Glyceria grandis*), common cattail (*Typha latifolia*), water parsley (*Oenanthe sarmentosa*), speedwell (*Veronica* spp.), lady fern (*Athyrium filix-femina*), small fruited bulrush (*Scirpus microcarpus*), and horsetail (Equisetum spp.). This plant community appeared to have formed following the creation of the three (3) excavated ponds within the drainage corridor. This plant community was identified as hydrophytic in character (i.e. typical of wetlands).

• Hydrology Patterns

Onsite hydrology appeared to be the result of seasonal stormwater runoff from onsite and offsite areas, concentration of surface flows within identified drainage corridor, and the series of onsite hillside seeps. The majority of the project site appeared to drain moderately well and did not exhibit field indicators associated with the movement of seasonal surface water runoff.

A surface water drainage corridor was identified entering near the southwestern corner of the project site. This drainage corridor extended through the project site generally to the east/northeast within a well-defined ravine. This ravine had undergone prior development actions to include the intentional creation of three (3) excavated ornamental ponds. These ornamental ponds appeared to have been created through the excavation of material within the ravine and through the placement of material to establish two (2) internal roadways corridors crossing the ravine generally north to south. Hydrology control structures and culverts had been installed to intentionally control surface water ponding within these ornamental features. At the property boundary the surface water within this drainage corridor was captured within a buried drainage system installed as a part of the development of the adjacent residential community. This drainage appeared to be an eventual tributary to the Deer Creek System located well offsite to the northeast. The lower reaches of Deer Creek well offsite have been identified to meet the criteria for designation as a City of Puyallup Category II Stream with salmonids.

Soils

As documented at several sample plots the project site was dominated by soil that exhibited a silty loam texture and coloration typical of the Kitsap soil series. The majority of the onsite soil appeared to drain moderately well and did not exhibit prominent redoximorphic features. In addition, prior land use actions appeared to have dramatically altered the surface soil profile. Within many areas the surface soil appeared to have been removed by prior grading. Throughout the project site the surface soil had been compacted by the historic livestock usage.

A drainage corridor was identified entering the project site near the southwestern boundary and continued through the project site through a series of intentionally excavated ornamental ponds to the eastern boundary. The surface soil within these intentionally excavated ponds was black to very dark gray (10YR 2/1 to 10YR 3/1) to a depth of 8 to 20 inches. The subsoil to a depth of 20 to 24 inches was very dark gray to gray (10YR 3/1 to 10YR 4/2) and exhibited prominent redoximorphic features and oxidized root channels. The soil within these intentionally excavated ponds exhibited a surface layer of generally soft captured alluvial sandy silty loam to silty loam with a high organic content as a result of intentionally ponded seasonal surface water.

• Wildlife

Wildlife species observed onsite, observed within the general area during prior assessments, and that would be reasonably expected to utilize the habitats provided within or adjacent to the project site would include red tailed hawk (*Buteo jamaicensis*), great blue heron (*Ardea herodias*), American crow (*Corvus brachynchos*), American robin (*Turdus migratorius*), black capped chickadee (*Parus atricapillus*), dark eyed junco (*Junco hyemalis*), rufous hummingbird (*Selasphorus rufus*), merlin (*Falco columbarius*), pileated

woodpecker (Dryocopus pileatus), rock dove (Columbia livia), evening grosbeak (Hesperiphona vespertina), black-headed grosbeak (Pheucticus melanocephalus), mourning dove (Zenaida macroura), red winged blackbird (Agelaius phoenisues), brewers blackbird (Euphagus cyanocephalus), golden crowned sparrow (Zonotrichia atricapilla), song sparrow (Melospiza melodia), white crowned sparrow (Zonotrichia leucophrys), house sparrow, house finch (Carpodacus mexicanus), starling (Sturnus vulgaris), American goldfinch (Carduelis tristis), purple finch (Carpodacus purpureus), violet green swallow (Tachycineta thallassina), tree swallow (Tachycineta bicolor), barn swallow (Hirundo rustica), song sparrow (Melospiza melodia), Steller's jay (Cyanocitta stelleri), starling (Sturnus vulgaris), black capped chickadee (Parus atricapillus), Northern flicker (Colaptes auratus), house sparrow (Passer domesticus), rufous-sided towhee (Pipilo erythrophthalmus), American goldfinch (Carduelis tristis), marsh wren (Cistothorus palustirs), killdeer (Charadrius vociferus), common mallard (Anas platyrhynchos), Canadian goose (Branta canadensis), black tailed deer (Odocoileus hemionus), coyote (Canis latrans), raccoon (Procyon lotor), striped skunk (Mephitis mephitis), opossum (Didelphis virginianus), eastern gray squirrel (Sciurus carolinensis), deer mouse (Peromyscus maniculatus), shrew (Sorex spp.), Townsend mole (Scapanus townsendii), voles (Microtus spp.), Norway rat (Rattus norvegicus), bats (Myotis spp.), common garter snake (Thamnophis sirtalis).

The project site provided suitable spawning and rearing habitats for Pacific treefrog (*Hyla regilla*), red-legged frog (*Rana aurora*), and salamander (*Ambystoma* spp). Common garter snake (*Thamnophis sirtalis*) was also present across the project site.

The project site did **not** provide direct habitats for fish species.

Wildlife Movement Corridors: The project site was within a well urbanized area. As identified by onsite wildlife trials, small and medium sized mammals appeared to be moving throughout the project site. The project site is also within the general area of the migratory movement of passerine birds.

State Priority Species: Several species identified by the State of Washington as "Priority Species" were observed onsite or potentially may utilize the project site. Priority species require protective measures for their survival due to their population status, sensitivity to habitat alteration, and/or recreational, commercial, or tribal importance.

Game Species: "Game species" are regulated by the State of Washington through recreational hunting bag limits, harvest seasons, and harvest area restrictions. Observed or documented "game species" within and adjacent to the project site included black tailed deer, common mallard, Canada goose, and mourning dove.

State Monitored: State Monitored species are native to Washington but require habitat that has limited availability, are indicators of environmental quality, require further assessment, have unresolved taxonomy, may be competing with other species of concern, or have significant popular appeal. One State Monitored

species – great blue heron - was observed within the excavated pond in the southern portion of the project site.

State Candidate: State Candidate species are presently under review by the State of Washington Department of Fish and Wildlife (WDFW) for possible listing as endangered, threatened, or sensitive. One State Candidate species - pileated woodpecker – was not observed to use the habitats associated with the project site but has been identified during prior assessments to use the habitats associated with Wildwood Park located offsite to the west.

State Sensitive: State Sensitive species are native to Washington and is vulnerable to declining and is likely to become endangered or threatened throughout a significant portion of its range without cooperative management or removal of threats. No State Sensitive species were observed or have been documented to use the habitats associated with the project site.

State Threatened: State Threatened species means any wildlife species native to the state of Washington that is likely to become an endangered species within the foreseeable future throughout a significant portion of its range within the state without cooperative management or removal of threats. The project site did not appear and has not been documented to provide direct critical habitats for State Listed Threatened species.

State Endangered: State endangered species means any species native to the state of Washington that is seriously threatened with extinction throughout all or a significant portion of its range within the state. The project site did not appear and has not been documented to provide direct critical habitats for State Listed Endangered species.

Federally Listed Species: The project site has not been documented to provide critical habitats for federally listed Endangered, Threatened, or Sensitive species. A single, federally listed species of concern – bald eagle – has been documented to use the offsite habitats associated with the Puyallup River Corridor and the Clarks Creek Corridor.

CRITICAL AREAS DETERMINATION

WETLANDS

Wetland determination was based on observations of hydrophytic vegetation, hydric soils, and wetland hydrology in accordance with the *Corps of Engineers Wetland Delineation Manual* (United States Army Corps of Engineers, 1987) with the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual*: Western Mountains, Valleys, and Coast Region (United States Army Corps of Engineers, 2010). Based on these methods

no area within the project site was identified within the project site to exhibit all three of the established wetland criteria. Two (2) areas within the vicinity of the project site were identified to exhibit all three of the established wetland criteria.

WETLAND	CLASSIFICATION (USFWS)	CITY OF PUYALLUP CATEGORY	WDOE RATING SCORE	WDOE HABITAT SCORE	BUFFER WIDTH (High Intensity)
D	PFOEx/PSSEx		17	6	150 feet
E	PSSE/PEME	III	16	5	150 feet

Wetland D: Wetland D was identified offsite to the north of the eastern portion of the of the project site. This wetland was within a ravine associated with hillside seeps and a seasonal surface water drainage corridor. Hydrology for this wetland appeared to be provided primarily by the hillside seeps and seasonal surface water runoff from the local area. Wetland D had undergone prior land use manipulations to include clearing, grading, the intentional excavation of small livestock ponds, the installation of culverts, and the creation of internal roadways. Wetland D was dominated by a mixed forest plant community. The understory was limited as a result of the prior livestock grazing. The movement of surface water through this wetland was intermittent and controlled in part by prior ditch excavation. However, this movement did not form a continuous defined channel or swale. Surface flow within Wetland D was captured along the eastern parcel boundary and conveyed offsite via a buried storm drainage system.

Wetland D met the U.S. Fish and Wildlife Service (USFWS) criteria for classification as palustrine, forested, seasonally flooded/saturated, excavated (PFOEx); and palustrine, scrub-shrub, seasonally flooded/saturated, excavated (PEMEx). Following a series of discussions with City of Puyallup Environmental Review Team Wetland D was best defined to meet the criteria for designation as a City of Puyallup Category III Wetland. Wetland D achieved a total functions score of 17 points utilizing the Washington State Department of Ecology (WDOE) *Wetland Rating Form for Western Washington* (Hruby 2014) (Appendix B).

Wetland E: Wetland E was identified offsite to the north of the western portion of the project site within a swale adjacent to 21st Street SE. Hydrology appeared provided primarily from hillside seeps and seasonal sheetflow from adjacent upland areas. Wetland E was dominated by blackberries and included areas of buttercup, slough sedge, soft rush, and reed canary grass. Wetland E had undergone prior land use manipulations associated with livestock usage. The development of 21st Street SE also appeared to have been completed without the placement of a culvert to allow for the movement of seasonal surface water runoff to the northwest as existing topography would suggest.

This wetland met the USFWS criteria for classification as palustrine, emergent, seasonally flooded/saturated (PEME). Following a series of discussions with City of Puyallup Environmental Review Team Wetland E appeared best defined to meet the criteria for designation as a City of Puyallup Category III Wetland. Wetland E achieved a total functions score of 16 points utilizing the WDOE *Wetland Rating Form for Western Washington* (Hruby 2014) (Appendix B).

FISH AND WILDLIFE HABITAT AREAS

This onsite assessment and discussions with the City of Puyallup Environmental Review Team identified two (2) City of Puyallup designated "fish and wildlife habitat areas." These areas were identified within and immediately adjacent to the project site and were defined as "streams" within the jurisdiction of the State of Washington. No state or federally designated endangered, threatened, and sensitive species have been documented to have a primary association within the habitats onsite; no portion of the project site has been defined as a "habitat of local importance;" and no lands essential for preserving connections between habitats and open spaces have been identified or documented within the project site.

Stream A: Stream A was identified entering near the southwestern corner of the project site. This drainage corridor extended through the project site generally to the east/northeast within a well-defined ravine. This ravine had undergone prior development actions to include the intentional creation of three (3) excavated ornamental ponds. These ornamental ponds appeared to have been created through the excavation of material within the ravine and through the placement of material to establish two (2) internal roadways corridors crossing the ravine generally north to south. Hydrology control structures and culverts had been installed to intentionally control surface water ponding within these ornamental features. At the property boundary the surface water within this drainage corridor was captured within a buried drainage system installed as a part of the development of the adjacent residential community. This drainage appeared to be an eventual tributary to the Deer Creek System located well offsite to the northeast.

As discussed with the City of Puyallup Environmental Review Team Stream A meet the criteria for designation as a City of Puyallup Type III Stream within the project site. A Type III Stream is defined to exhibit perennial or intermittent flow and as not used by anadromous fish. The standard buffer for a Type III Stream is 50 feet in width as measured perpendicular from the ordinary high water mark (OHWM).

Stream B: Stream B was identified offsite to the north of the eastern portion of project site and as associated with offsite Wetland D. This stream commenced from a series of hillside seeps then flowed generally to the north/northeast. Hydrology was collected in a drainage system along the western boundary of the adjacent housing development. Further to the north, hydrology appeared to infiltrate within the historic pasture area. Stream B had undergone prior development activities to include to creation of excavated livestock ponds, ditching, internal road crossing, and culvert installation within the project site.

Stream B appeared to meet the criteria for designation as a City of Puyallup Type III Stream. A Type III Stream is defined to exhibit perennial or intermittent flow and as not used by anadromous fish. The standard buffer for a Type III Stream is 50 feet in width as measured perpendicular from the OHWM.

INTENTIONALLY CREATED MAN-MADE FEATURES

EXCAVATED PONDS

Three intentionally excavated ponds were identified associated with Stream A in the southern portion of the project site. These excavated ponds had been created in a topographic ravine that contained Stream A which entered the site near the southwestern boundary and continued through the site generally to the east/northeast. These ponds appeared best defined as intentionally created through the excavation of material within the Stream A ravine and through the placement of material to establish two (2) internal roadways corridors crossing the ravine generally north to south. Hydrology control structures and culverts had also been installed and maintained to provide hydrology within the ponds and to control seasonal high storage levels. These excavated ponds had been historically created as a part of the site development activities associated with the use by livestock and irrigation of the project site.

These intentionally excavated ponds appeared to meet the criteria within the City of Puyallup Title 21.06.210 Definitions section:

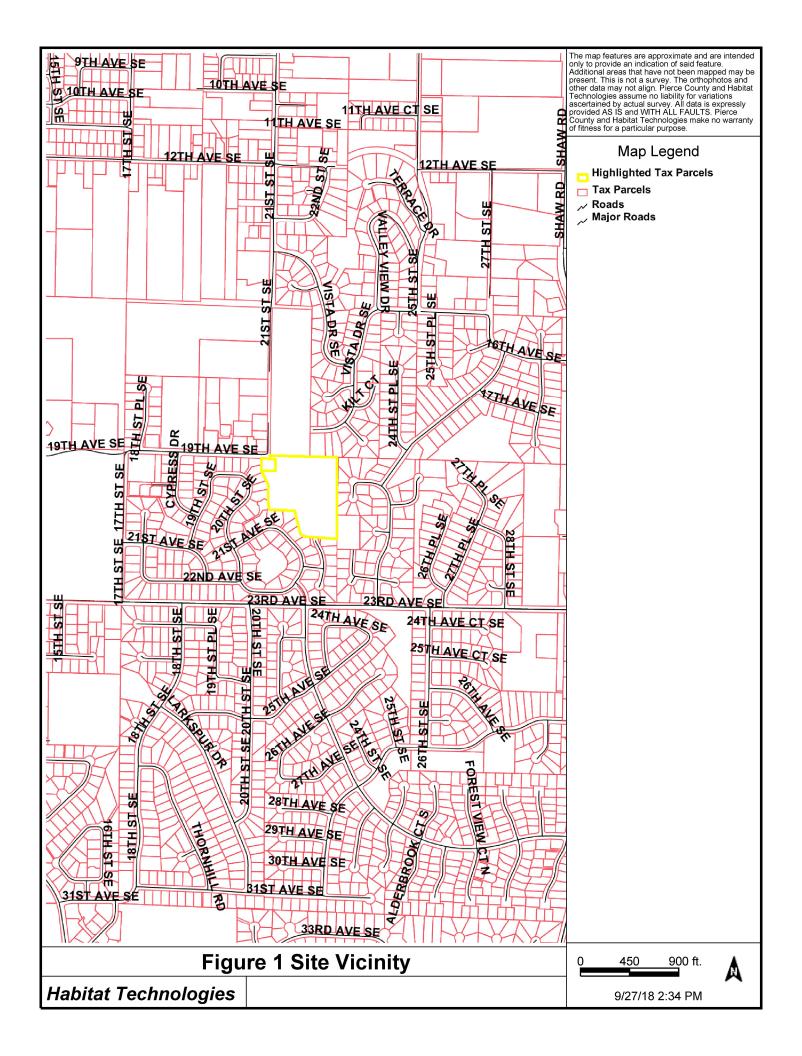
(21.06.210.75) "Intentionally created wetland or surface water systems" means wetlands or surface water systems created through purposeful human action, such as irrigation and drainage ditches, grass-lined swales, canals, farm ponds, detention/retention facilities, and landscape/ornamental amenities. Purposeful creation must be demonstrated through documentation, photographs, statements and/or other evidence. Intentionally created wetlands or surface water systems do not include areas or systems created as mitigation.

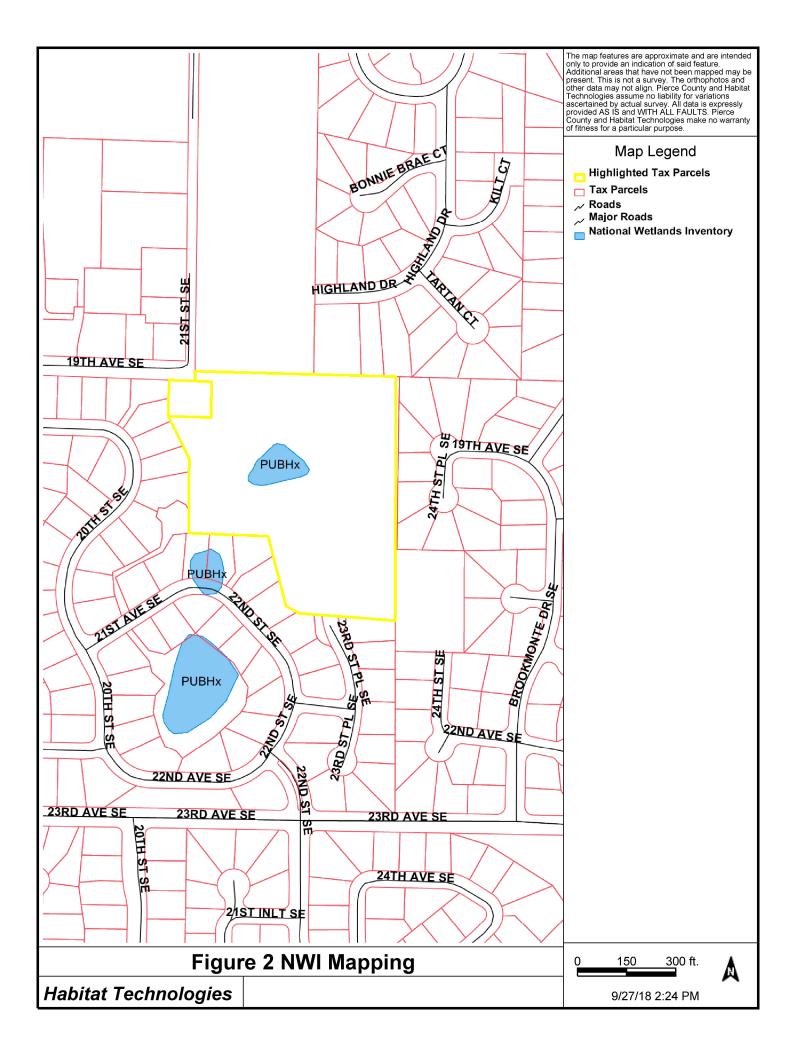
SELECTED DEVELOPMENT ACTION

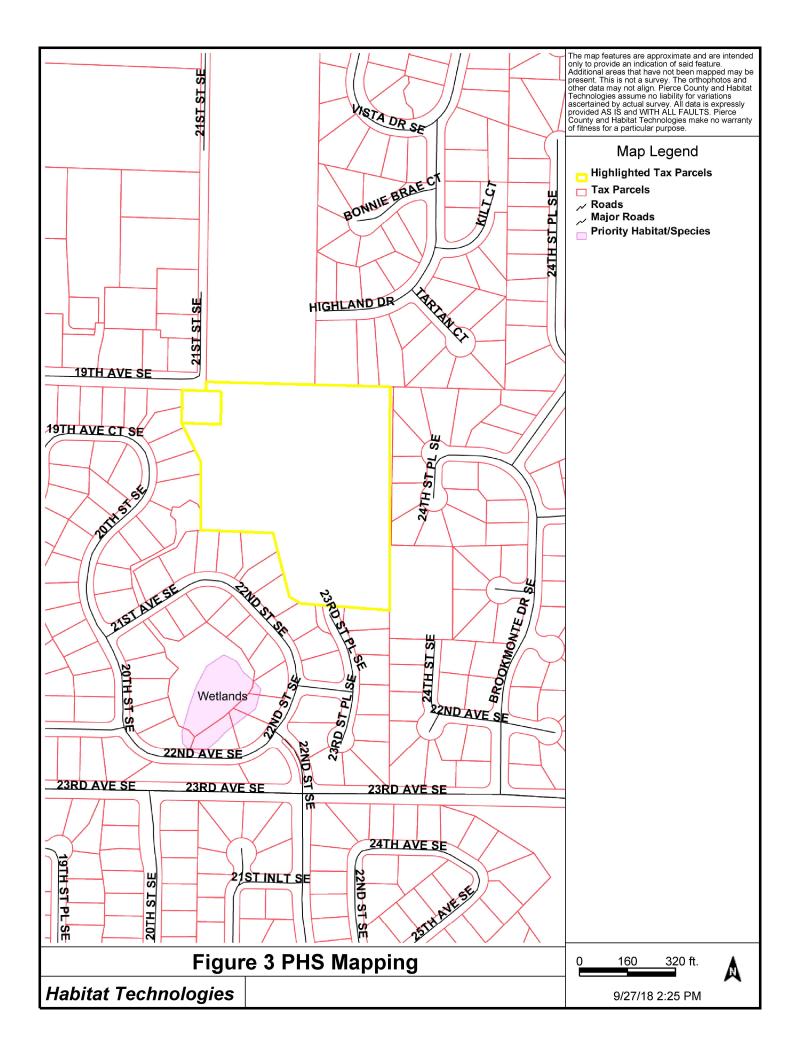
The Selected Development Action for the project site for the project site focuses on the creation of a number of new parcels suitable for single-family homesite development. The final creation of new homesite parcels would be consistent with the City of Puyallup Comprehensive Plan, local zoning, and the City's Critical Areas Ordinance. As presently identified within the initial site plan and as discussed with the City of Puyallup Environmental Review Team, the final site plan would establish a protective stream buffer as measured from the top edge of the excavated ponds associated with Stream A within the project site. Protective buffers associated with Wetlands D and E located offsite to the north would not be expected to encroach into the project site. The proposed development of this residential community would avoid potential adverse impacts to identified streams and wetlands within the project site and adjacent area.

STANDARD OF CARE

This document has been completed by Habitat Technologies for use by **CES NW Inc**. Prior to extensive site planning the findings documented in this document should be reviewed and verified by the City of Puyallup. Habitat Technologies has provided professional services that are in accordance with the degree of care and skill generally accepted in the nature of the work accomplished. No other warranties are expressed or implied. Habitat Technologies is not responsible for design costs incurred before this document is approved by the appropriate resource and permitting agencies.


Bryan W. Peck


Bryan W. Peck Wetland Biologist


Thomas D. Deming

Thomas D. Deming, PWS Habitat Technologies


FIGURES

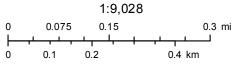
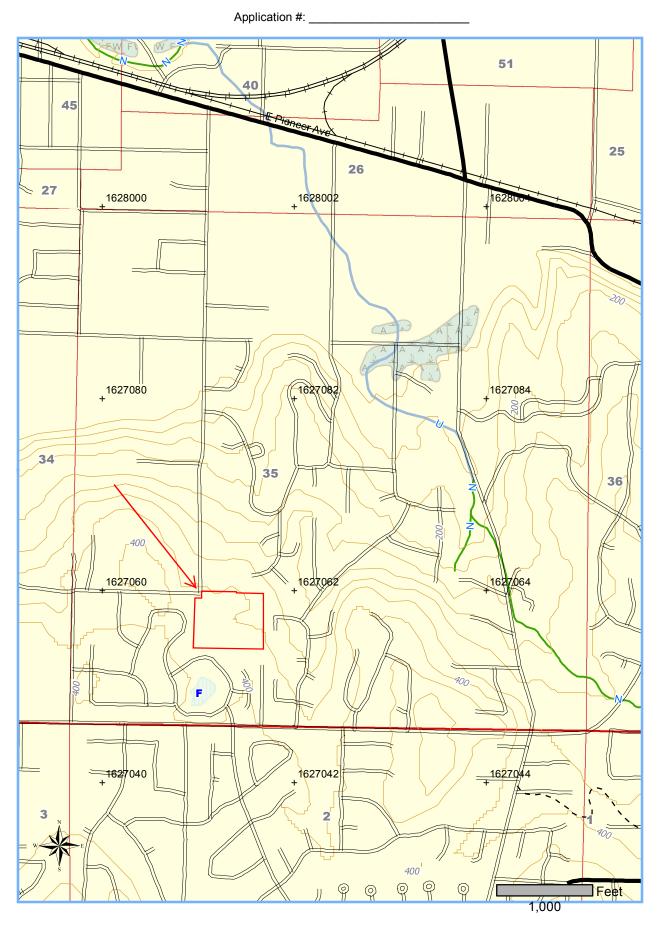


Figure 4 WDFW Mapping

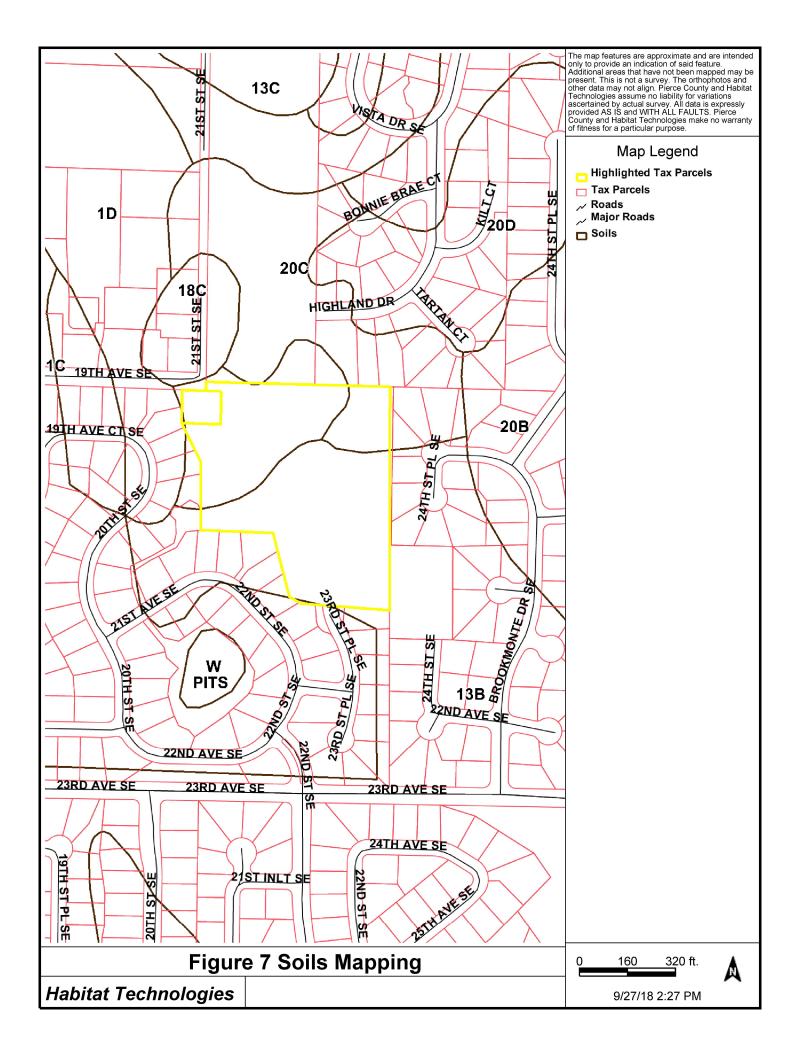
September 27, 2018

All SalmonScape Species



USGS/NHD Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS user community


community Source: Esri, Digita/Globe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community


Figure 5 FOREST PRACTICE WATER TYPE MAP

TOWNSHIP 20 NORTH HALF 0, RANGE 04 EAST (W.M.) HALF 0, SECTION 35

Date: 10/31/2017 Time: 10:43:11 AM NAD 83 Contour Interval: 40 Feet

REFERENCE AND BACKGROUND LIST

Adamus, P.R., E.J. Clairain Jr., R.D. Smith, and R.E. Young. 1987. Wetland Evaluation Technique (WET); Volume II: Methodology, Operational Draft Technical Report Y-87, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

Cowardin, Lewis M. et al, 1979. Classification of Wetlands and Deepwater Habitats of the United States. Office of Biological Services, U.S. Fish and Wildlife Service, U.S. Department of the Interior, FWS/OBS-79/31.

Hitchcock, C.L., A. Cronquist. 1977. Flora of the Pacific Northwest. University of Washington Press. Seattle, Washington.

Hruby, T. 2008. Washington State Wetland Rating System for Western Washington: 2008 Update. Publication #08-06-029. Olympia, WA: Washington Department of Ecology.

Hruby, T. 2014. Washington State Wetland Rating System for Western Washington: 2014 Update. Publication #14-06-029. Olympia, WA: Washington Department of Ecology.

Lichvar,R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The National Wetlands Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X. http://wetland-plands. Usace.army.mil/

Reppert, R.T., W. Sigleo, E. Stakhiv, L. Messman, and C. Meyers. 1979. Wetland Values - Concepts and Methods for Wetland Evaluation. Research Report 79-R1, U.S. Army Corps of Engineers, Institute for Water Resources, Fort Belvoir, Virginia.

United States Army Corps of Engineers, 1987. Wetlands Delineation Manual. Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. March 1987.

United States Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), Environmental Laboratory ERDC/EL TR-08-13.

US Climate Data, 2015 <u>http://www.usclimatedata.com/climate/tacoma/washington</u>/united-states/uswa0441/0441/2014/1

USDA Natural Resource Conservation Service Plants Database, 2015 (for hydrophytic plan classification): http://plants.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. Web Soil Survey. 2016 http://vewsoilsurvey.nrcs.usda.gov/app/newfeatures.2.3.htm.

US Fish and Wildlife Service National Wetland Inventory Mapper, 2016 (for NWI wetland mapping): http://www.fws.gov/wetlands/Data/Mapper.html.

Washington State Department of Ecology. 1997. Washington State Wetlands Identification and Delineation Manual. Publication Number 96-94.

Washington State Department of Fish and Wildlife Priority Habitats and Species Maps 2016 <u>http://wdfw.wa.gov/mapping/phs/</u>

Washington State Department of Fish and Wildlife SalmonScape Mapping System, 2016 (for fish presence): http://apps.wdfw.wa.gov/salmonscape/map.html

Washington State Department of Natural Resources FPARS Mapping System, 2016 (for stream typing): http://fortess.wa.gov/dnr/app1/fpars/viewer.htm

APPENDIX A – Field Data Forms

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

City/County:	Puyallup / Pierce	Sampling Date:03 OCT 2017	
	State: Washington	Sampling Point: SPB-1	
s	_ Section, Township, Range: <u>S35, T20, R4E</u>		
Local relief	(concave, convex, none):	Slope (%):	
Lat:	Long:	Datum:	
	NWI classifica	tion:	
nis time of year? Yes 🛛	No 🔲 (If no, explain in Remarks.)		
gnificantly disturbed?	Are "Normal Circumstances" pres	ent? Yes 🛛 No 🗌	
turally problematic?	(If needed, explain any answers in Remarks.)		
showing sampling	point locations, transects,	important features, etc.	
	Local relief Local relief Lat: his time of year? Yes gnificantly disturbed? turally problematic?	Section, Township, Range: <u>S35, T20</u> Local relief (concave, convex, none): Lat:Long: NWI classifica nis time of year? Yes ⊠ No □ (If no, explain in Remarks.) gnificantly disturbed? Are "Normal Circumstances" pres	

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ⊠ No □ Yes ⊠ No □ Yes ⊠ No □	Is the Sampled Area within a Wetland?	Yes 🛛 No 🗌
Remarks: Wetland D.			

VEGETATION – Use scientific names of plants.

	Absolute		Indicator	Dominance Test worksheet:	
<u>Tree Stratum</u> (Plot size: <u>15ft radius</u>)	% Cover	Species?	Status	Number of Dominant Species	
1. <u>Alnus rubra</u>	50	yes	FAC	That Are OBL, FACW, or FAC: 5	(A)
2				Total Number of Dominant	
3					(B)
4					(-)
		= Total C		Percent of Dominant Species	
Sapling/Shrub Stratum (Plot size: 15ft radius)	<u></u>			That Are OBL, FACW, or FAC: <u>100</u>	(A/B)
1. <u>Cornus stolonifera</u>	20	ves	FACW	Prevalence Index worksheet:	
2		-		Total % Cover of:Multiply by:	
				OBL species x 1 =	
3					
4				FACW species x 2 =	
5				FAC species x 3 =	
	20	= Total Cover		FACU species x 4 =	
Herb Stratum (Plot size: <u>15ft radius</u>)				UPL species x 5 =	_
1. Lysichitum americanum	<u>30</u>	yes	<u>OBL</u>	Column Totals: (A)	_ (B)
2. <u>Equisetum arvense</u>	<u>20</u>	yes	FAC		
3				Prevalence Index = B/A =	
4				Hydrophytic Vegetation Indicators:	
5				Rapid Test for Hydrophytic Vegetation	
6				☑ Dominance Test is >50%	
				□ Prevalence Index is ≤3.0 ¹	
7				 Morphological Adaptations¹ (Provide support 	ting
8				data in Remarks or on a separate sheet)	
9				Wetland Non-Vascular Plants ¹	
10				 Problematic Hydrophytic Vegetation¹ (Explain 	n)
11				¹ Indicators of hydric soil and wetland hydrology r	,
	<u>50</u>	= Total C	Cover	be present, unless disturbed or problematic.	nusi
Woody Vine Stratum (Plot size: <u>15ft radius</u>)					
1. <u>Rubus procera</u>	40	yes	FAC	Hydrophytic	
2				Vegetation	
	40	= Total C	Cover	Present? Yes 🛛 No 🗌	
% Bare Ground in Herb Stratum <u>40</u>					
Remarks:					

Sampling Point: SPB-1

Profile Des	cription: (Descri	be to the	depth n	eeded to docur	nent the i	ndicator	or confir	m the ab	sence	of indicate	ors.)	
Depth	Matrix			Redo	x Feature	<u>s</u>						
(inches)	Color (moist)	%	_ Colo	or (moist)	%	Type ¹	Loc ²	Textu	<u>e</u>		Remarks	
0-4	<u>10YR 2/1</u>	100						L				
4-20	10YR 4/2	80	10Y	′R 4/6	20	С	М	Gcl				
120	101111/1/2		_ <u>101</u>			. <u> </u>		001				
						·						
						·						
	Concentration, D=D						ed Sand G					g, M=Matrix.
Hydric Soil	Indicators: (App	licable to	all LRR	Rs, unless other	wise not	ed.)		In	dicato	rs for Pro	plematic Hy	dric Soils ³ :
Histosol	· · ·			Sandy Redox (S						Muck (A1	,	
	pipedon (A2)			Stripped Matrix							terial (TF2)	
Black H				Loamy Mucky N			MLRA 1) [-		ark Surface	
	en Sulfide (A4)			Loamy Gleyed N)] Othe	er (Explain	n Remarks)	1
•	d Below Dark Surf	. ,		Depleted Matrix				31				
	ark Surface (A12)			Redox Dark Sur	. ,	7)		31		-	phytic vege	
	/lucky Mineral (S1 Gleyed Matrix (S4)			Depleted Dark S Redox Depressi		()				•	gy must be I or problem	•
	Layer (if present			Redux Depressi	0115 (1-0)				unies			
Type:	Layer (in present	<i>.</i>										
	nches):			_				ير المراجع	a Call	Dresent?	Vaa 🕅	
Remarks:				_				пуаг	0 301	Present?	Yes 🖂	No 🗌
-	drology Indicato				,				~			
	icators (minimum o	<u>of one requ</u>	uired; ch									nore required)
Surface	()			☐ Water-Stai			xcept ML	.RA	ΟW		•	39) (MLRA 1, 2,
-	ater Table (A2)				A, and 4B)			_	4A, and		
Saturati	. ,			Salt Crust	. ,				_	0	tterns (B10)	
	larks (B1)			Aquatic Inv						•	Water Table	. ,
	nt Deposits (B2)			Hydrogen S								rial Imagery (C9)
	posits (B3)			Oxidized R		-	-	ots (C3)			Position (D2	2)
-	at or Crust (B4)			Presence of		``	,		🗌 Sł	nallow Aqu	tard (D3)	
•	posits (B5)			Recent Iron				'		AC-Neutral		
Surface	Soil Cracks (B6)			Stunted or		•	1) (LRR A	A)			lounds (D6)	
	on Visible on Aeri			Other (Exp	lain in Re	marks)			🗌 Fr	ost-Heave	Hummocks	(D7)
	y Vegetated Conc	ave Surfac	e (B8)									
Field Obse	rvations:											
Surface Wa	ter Present?	Yes 🗌	No 🛛	Depth (inches	s):							
Water Table	e Present?	Yes 🛛	No 🗌	Depth (inches	s): <u>2</u>							
Saturation F	pillary fringe)	Yes 🛛	No 🗌	Depth (inches	-			-	_	y Present?	Yes 🛛	No 🗌
Describe Re	ecorded Data (stre	am gauge,	, monito	rıng well, aerial p	ohotos, pr	evious ins	spections)	, if availa	ole:			
Remarks:												

City/County: Puyallup / Pierce	Sampling Date:03 OCT 2017
State: Washingt	ton Sampling Point: <u>SPB-2</u>
Section, Township, Range: <u>S35</u>	5, T20, R4E
Local relief (concave, convex, none):	Slope (%):
Long:	Datum:
NWI cla	ssification:
year? Yes 🛛 No 🗌 (If no, explain in Rem	arks.)
disturbed? Are "Normal Circumstances	s" present? Yes 🛛 No 🗌
blematic? (If needed, explain any answ	vers in Remarks.)
ng sampling point locations, trans	ects, important features, etc.
	State: <u>Washing</u> Section, Township, Range: <u>S3</u> Local relief (concave, convex, none): Long: Long: www.cla year? Yes I No I (If no, explain in Rem disturbed? Are "Normal Circumstances olematic? (If needed, explain any answ

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes □ No ⊠ Yes □ No ⊠ Yes □ No ⊠	Is the Sampled Area within a Wetland?	Yes 🗌 No 🛛
Remarks: Upland			

	Absolute	Dominant		Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>15ft radius</u>)	% Cover	Species?	Status	Number of Dominant Species
1. Pseudotsuga menziesii	45	yes	FACU	That Are OBL, FACW, or FAC: <u>1</u> (A)
2. Crataegus monogyna	20	yes	FACU	Total Number of Dominant
3				Species Across All Strata: 7 (B)
4				()
	65			Percent of Dominant Species That Are OBL, FACW, or FAC: 14 (A/B)
Sapling/Shrub Stratum (Plot size: <u>15ft radius</u>)				$\begin{bmatrix} \text{III at Are OBL, FACW, of FAC.} & \underline{14} \\ \end{bmatrix}$
1. <u>Oemleria cerasiformis</u>	<u>10</u>	yes	FACU	Prevalence Index worksheet:
2. <u>Sambucus racemosa</u>	10	yes	FACU	Total % Cover of: Multiply by:
3				OBL species x 1 =
4				FACW species x 2 =
5				FAC species x 3 =
	20			FACU species x 4 =
Herb Stratum (Plot size: <u>15ft radius</u>)				UPL species x 5 =
1. Polystichum munitum	<u>30</u>	yes	FACU	Column Totals: (A) (B)
2				
3				Prevalence Index = B/A =
4				Hydrophytic Vegetation Indicators:
5				Rapid Test for Hydrophytic Vegetation
6				□ Dominance Test is >50%
7				□ Prevalence Index is ≤3.0 ¹
8				☐ Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10				Wetland Non-Vascular Plants ¹
		·		Problematic Hydrophytic Vegetation ¹ (Explain)
11				¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: <u>15ft radius</u>)	30	= Total C	over	be present, unless disturbed or problematic.
1. <u>Rubus procera</u>	40	yes	FAC	
2. Rubus ursinus	50	yes	FACU	Hydrophytic Vegetation
	90	= Total C	over	Present? Yes 🗌 No 🖂
% Bare Ground in Herb Stratum <u>40</u>				
Remarks:				

Sampling Point: SPB-2

							the ab	sence of indicators.)
Depth (inchos)	<u>Matri</u> Color (moist)		Redox plor (moist)	<u>Features</u> %		Loc ²	Toytu	re Remarks
(inches)			nor (moist)	-70				
0-4	<u>10YR 3/2</u>	<u> 100 </u>					<u>L</u>	
4-20	<u>10YR 3/3</u>	100					Sgl	
	·							
¹ Tvpe: C=0	Concentration, D=I	Depletion. RM=R	educed Matrix. CS		or Coate	d Sand Gr	ains.	² Location: PL=Pore Lining, M=Matrix.
	I Indicators: (App					-		ndicators for Problematic Hydric Soils ³ :
🗌 Histoso	ol (A1)		Sandy Redox (S	5)]2 cm Muck (A10)
🗌 Histic E	Epipedon (A2)		Stripped Matrix (S6)				Red Parent Material (TF2)
Black H	listic (A3)		Loamy Mucky Mi	neral (F1)) (except	MLRA 1)		Very Shallow Dark Surface (TF12)
Hydrog	en Sulfide (A4)		Loamy Gleyed M	atrix (F2)			C	Other (Explain in Remarks)
	ed Below Dark Sur	. ,	Depleted Matrix	. ,				
	oark Surface (A12)		Redox Dark Surf	. ,			3	ndicators of hydrophytic vegetation and
	Mucky Mineral (S1		Depleted Dark S		7)			wetland hydrology must be present,
	Gleyed Matrix (S4)		Redox Depression	ons (F8)			1	unless disturbed or problematic.
Type:	e Layer (if present	.):						
	nches):							
Deptii (i	licites)						Hydr	ric Soil Present? Yes 🗌 No 🛛
Remarks:								
DROLO	GY							
Wetland H	ydrology Indicato	irs:						
Primary Inc	<u>dicators (minimum</u>	of one required; c	heck all that apply)				Secondary Indicators (2 or more required)
Surface	e Water (A1)		Water-Stain	ed Leave	s (B9) (e :	cept MLF	RA	□ Water-Stained Leaves (B9) (MLRA 1, 2
🗌 High W	ater Table (A2)		1, 2, 4A	, and 4B)				4A, and 4B)
Saturat	ion (A3)		🔲 Salt Crust (I	311)				
U Water M	Marks (B1)							Drainage Patterns (B10)
Sedime			Aquatic Inve	rtebrates	(B13)			 Drainage Patterns (B10) Dry-Season Water Table (C2)
	ent Deposits (B2)		Aquatic Inve		. ,			
			Hydrogen S	ulfide Odo	or (C1)	Living Roo	ts (C3)	 Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9)
Drift De	eposits (B3)		Hydrogen SOxidized Rh	ulfide Odo nizosphere	or (C1) es along l	-	ts (C3)	 Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2)
 □ Drift De □ Algal M 	eposits (B3) lat or Crust (B4)		 Hydrogen S Oxidized Rh Presence or 	ulfide Odo nizosphere f Reduced	or (C1) es along l I Iron (C4)		 Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3)
 Drift De Algal M Iron De 	eposits (B3) lat or Crust (B4) eposits (B5)		 Hydrogen S Oxidized RI Presence of Recent Iron 	ulfide Odo hizosphere f Reduced Reduction	or (C1) es along l I Iron (C4 n in Tilleo) I Soils (C6)	 Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
Drift De Algal M Iron De Surface	eposits (B3) lat or Crust (B4) eposits (B5) e Soil Cracks (B6)	al Imagery (B7)	 Hydrogen S Oxidized RI Presence o Recent Iron Stunted or S 	iulfide Odd nizosphere f Reduced Reduction Stressed F	or (C1) es along l I Iron (C4 n in Tilleo Plants (D) I Soils (C6)	 Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
 Drift De Algal M Iron De Surface Inundat 	eposits (B3) lat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aeri	0,(,,	 Hydrogen S Oxidized RI Presence of Recent Iron 	iulfide Odd nizosphere f Reduced Reduction Stressed F	or (C1) es along l I Iron (C4 n in Tilleo Plants (D) I Soils (C6)	 Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
 Drift De Algal M Iron De Surface Inundat Sparse 	eposits (B3) lat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aeri ly Vegetated Conc	0,(,,	 Hydrogen S Oxidized RI Presence o Recent Iron Stunted or S 	iulfide Odd nizosphere f Reduced Reduction Stressed F	or (C1) es along l I Iron (C4 n in Tilleo Plants (D) I Soils (C6)	 Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
 Drift De Algal M Iron De Surface Inundat Sparse Field Obse 	eposits (B3) lat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aeri ly Vegetated Conc ervations:	ave Surface (B8)	 Hydrogen S Oxidized Rt Presence of Recent Iron Stunted or S Other (Expland) 	ulfide Odd nizosphere f Reduced Reduction Stressed F ain in Ren	or (C1) es along l I Iron (C4 n in Tilleo Plants (D narks)) I Soils (C6)	 Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Drift De Algal M Iron De Surface Inundat Sparse Field Obse	eposits (B3) lat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aeri ly Vegetated Conc ervations: ater Present?	ave Surface (B8) Yes □ No ⊠	 Hydrogen S Oxidized Rł Presence o Recent Iron Stunted or S Other (Explanation) 	ulfide Odd nizosphere f Reduced Reduction Stressed F ain in Ren	or (C1) es along l I Iron (C4 n in Tilleo Plants (D narks)) I Soils (C6)	 Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Drift De Algal M Iron De Surface Inundat Sparse Field Obse Surface Wa Water Tabl	eposits (B3) lat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aeri ly Vegetated Conc ervations: ater Present? e Present?	ave Surface (B8) Yes D No X Yes D No X	 Hydrogen S Oxidized Rł Presence o Recent Iron Stunted or S Other (Explanation) Depth (inches) Depth (inches) 	ulfide Odd nizosphere f Reduced Reduction Stressed F ain in Ren p:	or (C1) es along l I Iron (C4 n in Tilleo Plants (D narks)) d Soils (C6 1) (LRR A))	 Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Drift De Algal M Iron De Surface Inundat Sparse Field Obse Surface Wa Water Tabl Saturation	eposits (B3) lat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aeri ly Vegetated Conc ervations: ater Present? e Present?	ave Surface (B8) Yes □ No ⊠	 Hydrogen S Oxidized Rł Presence o Recent Iron Stunted or S Other (Explanation) Depth (inches) Depth (inches) 	ulfide Odd nizosphere f Reduced Reduction Stressed F ain in Ren p:	or (C1) es along l I Iron (C4 n in Tilleo Plants (D narks)) d Soils (C6 1) (LRR A))	 Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Drift De Algal M Iron De Surface Inundat Sparse Field Obse Surface Wa Water Tabl Saturation (includes ca	eposits (B3) lat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aeri ly Vegetated Conc ervations: ater Present? e Present? Present?	ave Surface (B8) Yes □ No ⊠ Yes □ No ⊠ Yes □ No ⊠	 Hydrogen S Oxidized Rł Presence o Recent Iron Stunted or S Other (Expland) Depth (inches) Depth (inches) 	ulfide Odd nizosphere f Reduced Reduction Stressed F ain in Ren	or (C1) es along l I Iron (C4 n in Tilleo Plants (D narks)) d Soils (C6 1) (LRR A) Weth) and Hyd	 □ Dry-Season Water Table (C2) □ Saturation Visible on Aerial Imagery (C9 □ Geomorphic Position (D2) □ Shallow Aquitard (D3) □ FAC-Neutral Test (D5) □ Raised Ant Mounds (D6) (LRR A) □ Frost-Heave Hummocks (D7)
Drift De Algal M Iron De Surface Inundat Sparse Field Obse Surface Wa Water Tabl Saturation I (includes ca Describe R	eposits (B3) lat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aeri ly Vegetated Conc ervations: ater Present? e Present? Present? apillary fringe)	ave Surface (B8) Yes □ No ⊠ Yes □ No ⊠ Yes □ No ⊠	 Hydrogen S Oxidized Rł Presence o Recent Iron Stunted or S Other (Expland) Depth (inches) Depth (inches) 	ulfide Odd nizosphere f Reduced Reduction Stressed F ain in Ren	or (C1) es along l I Iron (C4 n in Tilleo Plants (D narks)) d Soils (C6 1) (LRR A) Weth) and Hyd	 □ Dry-Season Water Table (C2) □ Saturation Visible on Aerial Imagery (C9 □ Geomorphic Position (D2) □ Shallow Aquitard (D3) □ FAC-Neutral Test (D5) □ Raised Ant Mounds (D6) (LRR A) □ Frost-Heave Hummocks (D7)
Drift De Algal M Iron De Surface Inundat Sparse Field Obse Surface Wa Water Tabl Saturation I (includes ca Describe R	eposits (B3) lat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aeri ly Vegetated Conc ervations: ater Present? e Present? Present? apillary fringe)	ave Surface (B8) Yes □ No ⊠ Yes □ No ⊠ Yes □ No ⊠	 Hydrogen S Oxidized Rł Presence o Recent Iron Stunted or S Other (Expland) Depth (inches) Depth (inches) 	ulfide Odd nizosphere f Reduced Reduction Stressed F ain in Ren	or (C1) es along l I Iron (C4 n in Tilleo Plants (D narks)) d Soils (C6 1) (LRR A) Weth) and Hyd	 □ Dry-Season Water Table (C2) □ Saturation Visible on Aerial Imagery (C9 □ Geomorphic Position (D2) □ Shallow Aquitard (D3) □ FAC-Neutral Test (D5) □ Raised Ant Mounds (D6) (LRR A) □ Frost-Heave Hummocks (D7)
Drift De Algal M Iron De Surface Inundat Sparse Field Obse Surface Wa Water Tabl Saturation (includes ca	eposits (B3) lat or Crust (B4) eposits (B5) e Soil Cracks (B6) tion Visible on Aeri ly Vegetated Conc ervations: ater Present? e Present? Present? apillary fringe)	ave Surface (B8) Yes □ No ⊠ Yes □ No ⊠ Yes □ No ⊠	 Hydrogen S Oxidized Rł Presence o Recent Iron Stunted or S Other (Expland) Depth (inches) Depth (inches) 	ulfide Odd nizosphere f Reduced Reduction Stressed F ain in Ren	or (C1) es along l I Iron (C4 n in Tilleo Plants (D narks)) d Soils (C6 1) (LRR A) Weth) and Hyd	 □ Dry-Season Water Table (C2) □ Saturation Visible on Aerial Imagery (C9 □ Geomorphic Position (D2) □ Shallow Aquitard (D3) □ FAC-Neutral Test (D5) □ Raised Ant Mounds (D6) (LRR A) □ Frost-Heave Hummocks (D7)

Project/Site: Sunset Pointe	City/County: Puyallup / Pierce	<u>e </u>	npling Date:03 OCT 2017
Applicant/Owner:	St	ate: <u>Washington</u> Sam	pling Point: <u>SPB-3</u>
Investigator(s): Habitat Technologies	Section, Townshi	p, Range: <u>S35, T20, R4E</u>	
Landform (hillslope, terrace, etc.):	Local relief (concave, conve	ex, none):	Slope (%):
Subregion (LRR): A L	.at: Long	g:	Datum:
Soil Map Unit Name: <u>Kitsap silt loam</u>		NWI classification:	
Are climatic / hydrologic conditions on the site typical for this tim	ne of year? Yes 🛛 No 🗌 (If no, e	xplain in Remarks.)	
Are Vegetation, Soil, or Hydrology signific	antly disturbed? Are "Normal C	Circumstances" present?	Yes 🛛 No 🗌
Are Vegetation, Soil, or Hydrology naturally	y problematic? (If needed, exp	olain any answers in Rem	narks.)
SUMMARY OF FINDINGS – Attach site map sho	owing sampling point location	ons, transects, imp	oortant features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes □ No ⊠ Yes □ No ⊠ Yes □ No ⊠	Is the Sampled Area within a Wetland?	Yes 🗌 No 🛛
Remarks: Upland			

	Absolute	Dominant		Dominance Test worksheet:	
<u>Tree Stratum</u> (Plot size: <u>15ft radius</u>)	% Cover	Species?	Status	Number of Dominant Species	
1. Pseudotsuga menziesii	50	yes	FACU	That Are OBL, FACW, or FAC: <u>1</u> (A)	
2				Total Number of Dominant	
3				Species Across All Strata: 5 (B)	
4					
	50			Percent of Dominant Species That Are OBL, FACW, or FAC: 20 (A/B)	、
Sapling/Shrub Stratum (Plot size: <u>15ft radius</u>)	00	i otai o	0101	That Are OBL, FACW, or FAC: <u>20</u> (A/B))
1. <u>Sambucus racemosa</u>	30	yes	FACU	Prevalence Index worksheet:	
2				Total % Cover of:Multiply by:	
3				OBL species x 1 =	
4				FACW species x 2 =	
5				FAC species x 3 =	
	30			FACU species x 4 =	
Herb Stratum (Plot size: 15ft radius)				UPL species x 5 =	
1. Polystichum munitum	20	yes	FACU	Column Totals: (A) (B)
2					,
3				Prevalence Index = B/A =	
4				Hydrophytic Vegetation Indicators:	
5				Rapid Test for Hydrophytic Vegetation	
6				□ Dominance Test is >50%	
7				☐ Prevalence Index is ≤3.0 ¹	
8				Morphological Adaptations ¹ (Provide supporting	
9				data in Remarks or on a separate sheet)	
				Wetland Non-Vascular Plants ¹	
10				Problematic Hydrophytic Vegetation ¹ (Explain)	
11				¹ Indicators of hydric soil and wetland hydrology must	
Woody Vine Stratum (Plot size: 15ft radius)	<u>20</u>	= Total C	over	be present, unless disturbed or problematic.	
1. Rubus procera	100	yes	FAC		
2. Rubus ursinus	30	-	FACU	Hydrophytic	
	100			Vegetation Present? Yes □ No ⊠	
% Bare Ground in Herb Stratum <u>0</u>		i otal O	0.00		
Remarks:					

Sampling Point: SPB-3

	cription: (Descri				_							
Depth (inches)	Matrix Color (moist)	<u>%</u>		<u>Red</u> or (moist)	<u>ox Feature</u> %		Loc ²	Textur	۵		Remarks	
	· · · · · · · · · · · · · · · · · · ·					<u>- 1990 - </u>			<u> </u>		rtemanto	
)-4	<u>10YR 3/2</u>	<u>100</u>				·		<u>L</u>				
4-18	<u>10YR 3/3</u>	100						Sgl				
								-				
						·						
Type: C=C	Concentration, D=D	epletion, I	– RM=Red	duced Matrix, C	S=Covered	 d or Coate	ed Sand G	rains.	² Loc	ation: PL	=Pore Lining, N	1=Matrix.
	Indicators: (App						-				blematic Hydr	
Histosol	(A1)			Sandy Redox (S5)] 2 cm	Muck (A1	0)	
🗌 Histic Ep	pipedon (A2)			Stripped Matrix	(S6)				Red	Parent Ma	aterial (TF2)	
Black Hi				Loamy Mucky	Mineral (F1) (except	MLRA 1)] Very	Shallow D	0ark Surface (T	F12)
Hydroge	en Sulfide (A4)			Loamy Gleyed	Matrix (F2))			Othe	r (Explain	in Remarks)	
•	d Below Dark Surf	ace (A11)		Depleted Matri	. ,							
	ark Surface (A12)			Redox Dark Su	. ,			³ In		-	ophytic vegetati	
	/lucky Mineral (S1)			Depleted Dark		7)				-	gy must be pre	
	Bleyed Matrix (S4)			Redox Depres	sions (F8)				unles	s disturbe	d or problemati	C.
	Layer (if present)	:										
Type:				_								
D (1 ()												
Depth (in Remarks:	nches):							Hydri	c Soil	Present?		
Remarks:	GY							Hydri	c Soil	Present?		
Remarks: DROLOO	GY /drology Indicato	rs:										
Remarks: DROLOC Wetland Hy Primary Indi	GY /drology Indicato icators (minimum c	rs:		neck all that app	• ·				Secon	idary Indic	ators (2 or mor	<u>e required)</u>
Remarks: DROLOC Wetland Hy Primary Indi	GY rdrology Indicato icators (minimum o Water (A1)	rs:		heck all that app	ained Leave	. , .	xcept MLF		Secon	idary Indic	ators (2 or mor ed Leaves (B9)	<u>e required)</u>
Remarks: DROLOC Wetland Hy Primary Indi Surface High Wa	GY vdrology Indicato icators (minimum o Water (A1) ater Table (A2)	rs:		neck all that app ☐ Water-Sta 1, 2, 4	ained Leave A, and 4B	. , .	xcept MLF		Secon	ndary Indic ater-Staine 4A, and	e <u>ators (2 or mor</u> ed Leaves (B9) 4B)	e required)
Remarks: DROLOC Wetland Hy Primary Indi Surface High Wa Saturation	GY <u>vdrology Indicato</u> <u>icators (minimum o</u> Water (A1) ater Table (A2) on (A3)	rs:		neck all that app ☐ Water-Sta 1, 2, 4 ☐ Salt Crust	ained Leave A, and 4B (B11))	xcept MLF		Secon	ndary Indic ater-Staino 4A, and ainage Pa	eators (2 or mor ed Leaves (B9) 4B) itterns (B10)	<u>e required)</u> (MLRA 1, 2,
Remarks: DROLOC Wetland Hy Primary Indi Surface High Wa Saturation Water M	GY rdrology Indicato icators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1)	rs:		heck all that app Water-Sta 1, 2, 4 Salt Crust	ained Leave A, and 4B (B11) (vertebrates) s (B13)	xcept MLF		Secon	idary Indic ater-Staine 4A, and rainage Pa y-Season	ators (2 or mor ed Leaves (B9) 4B) itterns (B10) Water Table (C	<u>e required)</u> (MLRA 1, 2, 22)
Remarks: DROLOC Wetland Hy Primary Indi Surface High Wa Saturation Water M Sedimer	GY rdrology Indicato icators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2)	rs:		eck all that app ☐ Water-Sta 1, 2, 4 ☐ Salt Crust ☐ Aquatic Ir ☐ Hydrogen	Ained Leave A, and 4B (B11) Invertebrates Sulfide Oc) s (B13) lor (C1)		 RA	Secon	adary Indic ater-Staine 4A, and ainage Pa y-Season aturation V	ators (2 or mor ed Leaves (B9) 4B) tterns (B10) Water Table (C 'isible on Aerial	<u>e required)</u> (MLRA 1, 2, 22)
Remarks: DROLOC Wetland Hy Primary Indi Surface High Wa Saturation Water M Sedimer Drift Dep	GY vdrology Indicato icators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3)	rs:		heck all that app Water-Sta 1, 2, 4 Salt Crust Aquatic Ir Hydrogen Oxidized	ained Leave A, and 4B (B11) overtebrates Sulfide Oc Rhizospher) s (B13) lor (C1) res along	Living Roo	 RA	Secon	adary Indic ater-Staine 4A, and ainage Pa y-Season aturation V eomorphic	ators (2 or mor ed Leaves (B9) 4B) tterns (B10) Water Table (C 'isible on Aerial Position (D2)	<u>e required)</u> (MLRA 1, 2, 22)
Remarks: DROLOO Wetland Hy Primary Indi Surface High Wa Saturation Water M Sedimer Drift Deg Algal Mag	GY vdrology Indicato icators (minimum of Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)	rs:		heck all that app Water-Sta 1, 2, 4 Salt Crust Aquatic Ir Hydrogen Oxidized	Ained Leave A, and 4B (B11) Invertebrates Sulfide Oc) s (B13) lor (C1) res along	Living Roo	RA ts (C3)	Secon	adary Indic ater-Staine 4A, and ainage Pa y-Season aturation V eomorphic nallow Aqu	ators (2 or mor ed Leaves (B9) 4B) tterns (B10) Water Table (C 'isible on Aerial Position (D2) itard (D3)	<u>e required)</u> (MLRA 1, 2, 22)
Remarks: DROLOC Wetland Hy Primary Indi Surface High Wa Saturation Water M Sedimer Drift Dep	GY vdrology Indicato icators (minimum of Water (A1) ater Table (A2) on (A3) flarks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)	rs:		eck all that app ☐ Water-Sta 1, 2, 4 ☐ Salt Crust ☐ Aquatic Ir ☐ Hydrogen ☐ Oxidized ☐ Presence	ained Leave A, and 4B (B11) overtebrates Sulfide Oc Rhizospher) lor (C1) res along d Iron (C4	Living Roo	RA ts (C3)	Secon	adary Indic ater-Staine 4A, and ainage Pa y-Season aturation V eomorphic nallow Aqu	ators (2 or mor ed Leaves (B9) 4B) tterns (B10) Water Table (C 'isible on Aerial Position (D2)	<u>e required)</u> (MLRA 1, 2, 22)
Remarks: DROLOC Wetland Hy Primary Indi Surface High Wa Saturation Water M Sedimer Drift Dep Algal Ma Iron Dep	GY vdrology Indicato icators (minimum of Water (A1) ater Table (A2) on (A3) flarks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)	rs:		heck all that app Water-Sta 1, 2, 4 Salt Crust Aquatic Ir Hydrogen Oxidized Presence Recent Ir	A, and Leave A, and 4B (B11) (Vertebrate: Sulfide Oc Rhizospher of Reduce) lor (C1) res along d Iron (C4 on in Tilled	Living Roo I) d Soils (C6	RA ts (C3)	Secon W3 Dr Dr Dr Sa Ge St Ge FA	adary Indic ater-Staina 4A, and ainage Pa y-Season aturation V eomorphic nallow Aqu AC-Neutral	eators (2 or mor ed Leaves (B9) 4B) ttterns (B10) Water Table (C 'isible on Aerial Position (D2) itard (D3)	<u>e required)</u> (MLRA 1, 2, 22) Imagery (C9
Remarks: DROLOC Wetland Hy Primary Indi Surface High Wa Saturatic Water M Sedimer Drift Dep Algal Ma Iron Dep Surface	GY vdrology Indicato icators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)	's: If one requ	uired; ch	heck all that app Water-Sta 1, 2, 4 Salt Crust Aquatic Ir Hydrogen Oxidized Presence Recent Iro Stunted o	A, and Leave A, and 4B (B11) wertebrates Sulfide Oc Rhizospher of Reduce on Reductio) lor (C1) res along d Iron (C4 on in Tilled Plants (D	Living Roo I) d Soils (C6	RA ts (C3)	Secon U U U U U U U U U U U U U U U U U U U	adary Indic ater-Staine 4A, and vainage Pa y-Season aturation V eomorphic nallow Aqu AC-Neutral aised Ant N	ators (2 or mor ed Leaves (B9) 4B) atterns (B10) Water Table (C 'isible on Aerial Position (D2) attard (D3) Test (D5)	<u>e required)</u> (MLRA 1, 2, (2) Imagery (C9 RR A)
Remarks: DROLOC Wetland Hy Primary Indi Surface High Wa Saturation Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundation	GY vdrology Indicato icators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6)	r s: If one requ	uired; ch	heck all that app Water-Sta 1, 2, 4 Salt Crust Aquatic Ir Hydrogen Oxidized Presence Recent Iro Stunted o	A, and 4B A, and 4B (B11) wertebrates Sulfide Oc Rhizospher of Reduce on Reduction r Stressed) lor (C1) res along d Iron (C4 on in Tilled Plants (D	Living Roo I) d Soils (C6	RA ts (C3)	Secon U U U U U U U U U U U U U U U U U U U	adary Indic ater-Staine 4A, and vainage Pa y-Season aturation V eomorphic nallow Aqu AC-Neutral aised Ant N	ators (2 or mor ed Leaves (B9) 4B) atterns (B10) Water Table (C isible on Aerial Position (D2) itard (D3) I Test (D5) Mounds (D6) (L	<u>e required)</u> (MLRA 1, 2, (2) Imagery (C9 RR A)
Remarks: DROLOC Wetland Hy Primary Indi Surface High Wa Saturation Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundation	GY vdrology Indicato icators (minimum of Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aeria y Vegetated Conca	r s: If one requ	uired; ch	heck all that app Water-Sta 1, 2, 4 Salt Crust Aquatic Ir Hydrogen Oxidized Presence Recent Iro Stunted o	A, and 4B A, and 4B (B11) wertebrates Sulfide Oc Rhizospher of Reduce on Reduction r Stressed) lor (C1) res along d Iron (C4 on in Tilled Plants (D	Living Roo I) d Soils (C6	RA ts (C3)	Secon U U U U U U U U U U U U U U U U U U U	adary Indic ater-Staine 4A, and vainage Pa y-Season aturation V eomorphic nallow Aqu AC-Neutral aised Ant N	ators (2 or mor ed Leaves (B9) 4B) atterns (B10) Water Table (C isible on Aerial Position (D2) itard (D3) I Test (D5) Mounds (D6) (L	<u>e required)</u> (MLRA 1, 2, (2) Imagery (C9) RR A)
Remarks: DROLOC Wetland Hy Primary Indi Surface High Wa Saturation Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundati Sparsely	GY vdrology Indicato icators (minimum of Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aeria y Vegetated Conca	r s: If one requ	uired; ch	heck all that app Water-Sta 1, 2, 4 Salt Crust Aquatic Ir Hydrogen Oxidized Presence Recent Iro Stunted o	A, and Leave A, and 4B (B11) overtebrate: Sulfide Oc Rhizospher of Reduce on Reduction r Stressed plain in Re) lor (C1) res along d Iron (C4 on in Tilleo Plants (D marks)	Living Roo I) d Soils (C6	RA ts (C3)	Secon U U U U U U U U U U U U U U U U U U U	adary Indic ater-Staine 4A, and vainage Pa y-Season aturation V eomorphic nallow Aqu AC-Neutral aised Ant N	ators (2 or mor ed Leaves (B9) 4B) atterns (B10) Water Table (C isible on Aerial Position (D2) itard (D3) I Test (D5) Mounds (D6) (L	<u>e required)</u> (MLRA 1, 2, (2) Imagery (C9) RR A)
Remarks: DROLOC Wetland Hy Primary Indi Surface High Wa Saturation Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundati Sparsely	GY rdrology Indicato icators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aeria y Vegetated Conca rvations: ter Present?	r s: If one requ	uired; ch (B7) se (B8)	 beck all that app Water-Sta 1, 2, 4 Salt Crust Aquatic Ir Hydrogen Oxidized Presence Recent Iro Stunted o Other (Ex 	A, and 4B A, and 4B (B11) overtebrates Sulfide Oc Rhizospher of Reduce on Reduction r Stressed plain in Re) lor (C1) res along d Iron (C4 on in Tilled Plants (D marks)	Living Roo I) d Soils (C6	RA ts (C3)	Secon U U U U U U U U U U U U U U U U U U U	adary Indic ater-Staine 4A, and vainage Pa y-Season aturation V eomorphic nallow Aqu AC-Neutral aised Ant N	ators (2 or mor ed Leaves (B9) 4B) atterns (B10) Water Table (C isible on Aerial Position (D2) itard (D3) I Test (D5) Mounds (D6) (L	<u>e required)</u> (MLRA 1, 2, (2) Imagery (C9) RR A)
Remarks: DROLOO Wetland Hy Primary Indi Surface High Wa Saturatic Water M Sedimer Algal Ma Iron Dep Algal Ma Iron Dep Surface Inundatic Sparsely Field Obser Surface Water Surface Water Surface Water Surface Conserved Saturation P Cincludes ca	GY vdrology Indicato icators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aeria y Vegetated Conca rvations: ter Present? Present? pillary fringe)	rs: <u>of one requ</u> <u>ave Surfac</u> Yes Ye	uired; ch (B7) te (B8) No ⊠ No ⊠ No ⊠	heck all that app Water-Sta 1, 2, 4 Salt Crust Aquatic Ir Oxidized Presence Recent Ir Stunted o Other (Ex Depth (inche Depth (inche	A, and 4B A, and 4B (B11) avertebrates Sulfide Oc Rhizospher of Reduce on Reduction r Stressed plain in Re es): es): es):) lor (C1) res along d Iron (C4 on in Tilled Plants (D marks)	Living Roo) d Soils (C6 1) (LRR A)	ts (C3)	Secon Wi Dr Dr Sa St FA Ra Fr	adary Indic ater-Staine 4A, and ainage Pa y-Season aturation V eomorphic nallow Aqu AC-Neutral aised Ant I ost-Heave	ators (2 or mor ed Leaves (B9) 4B) ttterns (B10) Water Table (C isible on Aerial Position (D2) titard (D3) Position (D5) Mounds (D6) (L Hummocks (D	<u>e required)</u> (MLRA 1, 2, (2) Imagery (C9) RR A)
Remarks: DROLOO Wetland Hy Primary Indi Surface High Wa Saturatic Water M Sedimer Algal Ma Iron Dep Algal Ma Iron Dep Surface Inundatic Sparsely Field Obser Surface Water Surface Water Surface Water Surface Conserved Saturation P Cincludes ca	GY rdrology Indicato icators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aeria y Vegetated Conca rvations: ter Present? Present?	rs: <u>of one requ</u> <u>ave Surfac</u> Yes Ye	uired; ch (B7) te (B8) No ⊠ No ⊠ No ⊠	heck all that app Water-Sta 1, 2, 4 Salt Crust Aquatic Ir Oxidized Presence Recent Ir Stunted o Other (Ex Depth (inche Depth (inche	A, and 4B A, and 4B (B11) avertebrates Sulfide Oc Rhizospher of Reduce on Reduction r Stressed plain in Re es): es): es):) lor (C1) res along d Iron (C4 on in Tilled Plants (D marks)	Living Roo) d Soils (C6 1) (LRR A)	ts (C3)	Secon Wi Dr Dr Sa St FA Ra Fr	adary Indic ater-Staine 4A, and ainage Pa y-Season aturation V eomorphic nallow Aqu AC-Neutral aised Ant I ost-Heave	ators (2 or mor ed Leaves (B9) 4B) ttterns (B10) Water Table (C isible on Aerial Position (D2) itard (D3) Position (D5) Mounds (D6) (L Hummocks (D	<u>e required)</u> (MLRA 1, 2, (2) Imagery (C9) RR A) 7)
Remarks: DROLOC Wetland Hy Primary Indi Surface High Wa Saturation Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundatin Sparsely Field Obser Surface Water Surface Water Sparsely Field Obser Saturation P Surface Water Section P Saturation	GY vdrology Indicato icators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aeria y Vegetated Conca rvations: ter Present? Present? pillary fringe)	rs: <u>of one requ</u> <u>ave Surfac</u> Yes Ye	uired; ch (B7) te (B8) No ⊠ No ⊠ No ⊠	heck all that app Water-Sta 1, 2, 4 Salt Crust Aquatic Ir Oxidized Presence Recent Ir Stunted o Other (Ex Depth (inche Depth (inche	A, and 4B A, and 4B (B11) avertebrates Sulfide Oc Rhizospher of Reduce on Reduction r Stressed plain in Re es): es): es):) lor (C1) res along d Iron (C4 on in Tilled Plants (D marks)	Living Roo) d Soils (C6 1) (LRR A)	ts (C3)	Secon Wi Dr Dr Sa St FA Ra Fr	adary Indic ater-Staine 4A, and ainage Pa y-Season aturation V eomorphic nallow Aqu AC-Neutral aised Ant I ost-Heave	ators (2 or mor ed Leaves (B9) 4B) ttterns (B10) Water Table (C isible on Aerial Position (D2) itard (D3) Position (D5) Mounds (D6) (L Hummocks (D	<u>e required)</u> (MLRA 1, 2, (2) Imagery (C9) RR A) 7)
Remarks: DROLOO Wetland Hy Primary Indi Surface High Wa Saturatic Water M Sedimer Algal Ma Iron Dep Algal Ma Iron Dep Surface Inundatic Sparsely Field Obser Surface Water Surface Water Surface Water Surface Conserved Saturation P Cincludes ca	GY vdrology Indicato icators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aeria y Vegetated Conca rvations: ter Present? Present? pillary fringe)	rs: <u>of one requ</u> <u>ave Surfac</u> Yes Ye	uired; ch (B7) te (B8) No ⊠ No ⊠ No ⊠	heck all that app Water-Sta 1, 2, 4 Salt Crust Aquatic Ir Oxidized Presence Recent Ir Stunted o Other (Ex Depth (inche Depth (inche	A, and 4B A, and 4B (B11) avertebrates Sulfide Oc Rhizospher of Reduce on Reduction r Stressed plain in Re es): es): es):) lor (C1) res along d Iron (C4 on in Tilled Plants (D marks)	Living Roo) d Soils (C6 1) (LRR A)	ts (C3)	Secon Wi Dr Dr Sa St FA Ra Fr	adary Indic ater-Staine 4A, and ainage Pa y-Season aturation V eomorphic nallow Aqu AC-Neutral aised Ant I ost-Heave	ators (2 or mor ed Leaves (B9) 4B) ttterns (B10) Water Table (C isible on Aerial Position (D2) itard (D3) Position (D5) Mounds (D6) (L Hummocks (D	<u>e required)</u> (MLRA 1, 2, (2) Imagery (C9 RR A) 7)

Project/Site: Sunset Pointe	City/County: I	Puyallup / Pierce	Sampling Date:03 OCT 2017
Applicant/Owner:		State: Washington	Sampling Point: <u>SPB-10</u>
Investigator(s): Habitat Technologies	Se	ection, Township, Range: <u>S35, T20,</u>	R4E
Landform (hillslope, terrace, etc.):	Local relief (concave, convex, none):	Slope (%):
Subregion (LRR): A	Lat:	Long:	Datum:
Soil Map Unit Name: <u>Kitsap silt loam</u>		NWI classifica	tion:
Are climatic / hydrologic conditions on the site typical for t	his time of year? Yes 🛛	No 🗌 (If no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrology s	ignificantly disturbed?	Are "Normal Circumstances" pres	ent? Yes 🛛 No 🗌
Are Vegetation, Soil, or Hydrology na	aturally problematic?	(If needed, explain any answers in	Remarks.)
SUMMARY OF FINDINGS – Attach site ma	p showing sampling	point locations, transects,	important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ⊠ No □ Yes ⊠ No □ Yes ⊠ No □	Is the Sampled Area within a Wetland? Yes ⊠ No □
Remarks: Wetland		

	Absolute		Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>15ft radius</u>)		Species?		Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
1				(A)
2				Total Number of Dominant
3				Species Across All Strata: <u>3</u> (B)
4				Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15ft radius)	0	= Total C	Cover	That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of:Multiply by:
3				OBL species x 1 =
4				FACW species x 2 =
5				FAC species x 3 =
·		= Total C		FACU species x 4 =
Herb Stratum (Plot size: <u>15ft radius</u>)	<u> </u>	rotar e		UPL species x 5 =
1. Ranunculus repens	100	yes	FAC	Column Totals: (A) (B)
2. Juncus effusus	20	yes	FAC	
3		-		Prevalence Index = B/A =
4				Hydrophytic Vegetation Indicators:
5				Rapid Test for Hydrophytic Vegetation
6				☑ Dominance Test is >50%
7				□ Prevalence Index is ≤3.0 ¹
8				Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
				Wetland Non-Vascular Plants ¹
10				Problematic Hydrophytic Vegetation ¹ (Explain)
····	100	= Total C		¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 15ft radius)	100	- 101810		be present, unless disturbed or problematic.
1. Rubus procera	60	yes	FAC	
2				Hydrophytic Vegetation
	60	= Total C	over	Present? Yes 🛛 No 🗌
% Bare Ground in Herb Stratum <u>0</u>				
Remarks:				

Depth (inches) Color	<u>Matrix</u> r (moist)	%	Color (moist)	dox Feature %		Loc ²	Textu	re	Remarks
)-8 10YF		100					~		
<u>3-18 10YF</u>	X 4/1	80	<u>10YR 4/6</u>	20		<u>M</u>	51		
Type: C=Concen	tration, D=Dep	oletion, RM=	Reduced Matrix,	CS=Covere	ed or Coat	ed Sand G	rains.	² Locat	tion: PL=Pore Lining, M=Matrix.
ydric Soil Indica	tors: (Applic	able to all	LRRs, unless oth	nerwise no	ted.)		Ir	ndicators	for Problematic Hydric Soils ³ :
Histosol (A1)			Sandy Redox] 2 cm M	1uck (A10)
] Histic Epipedor			Stripped Matr						arent Material (TF2)
Black Histic (A			Loamy Mucky		, .	t MLRA 1)	_	-	hallow Dark Surface (TF12)
] Hydrogen Sulfi			Loamy Gleye		2)			Other ((Explain in Remarks)
Depleted Below		e (A11)	Depleted Mat				31		
] Thick Dark Sur	. ,		Redox Dark S	•			3		of hydrophytic vegetation and
Sandy Mucky N			 Depleted Dar Redox Depres 	•	-7)				l hydrology must be present, disturbed or problematic.
				3310113 (1 0)				unic33 c	alotarboa or problomato.
Sandy Gleyed				3310113 (1 0)				unicos c	
Restrictive Layer	(if present):		· ·	3310113 (1 0)				unicasic	
Restrictive Layer	(if present):		`				Hydr		· · · · · · · · · · · · · · · · · · ·
Restrictive Layer Type: Depth (inches):	(if present):		`				Hydr		resent? Yes 🛛 No 🖂
Restrictive Layer Type: Depth (inches):	(if present):		`				Hydr		· · · · · · · · · · · · · · · · · · ·
Restrictive Layer Type: Depth (inches):	(if present):		`				Hydr		· · · · · · · · · · · · · · · · · · ·
Restrictive Layer Type: Depth (inches):	(if present):		`				Hydr		· · · · · ·
Restrictive Layer Type: Depth (inches):	(if present):		`				Hydr		· · · · · ·
Restrictive Layer Type: Depth (inches): Remarks: DROLOGY	(if present):		`				Hydr		· · · · · ·
Restrictive Layer Type: Depth (inches): Remarks: DROLOGY Vetland Hydrolog	(if present):						Hydr	ic Soil Pr	resent? Yes 🛛 No 🖂
Restrictive Layer Type: Depth (inches): Remarks: DROLOGY Vetland Hydrolog Primary Indicators	(if present): gy Indicators: (minimum of c		d; check all that ap	ррју)				ic Soil Pr	resent? Yes ⊠ No ⊠ ary Indicators (2 or more required
Restrictive Layer Type: Depth (inches): Remarks: Remarks: DROLOGY Vetland Hydrolog Primary Indicators Surface Water	(if present): gy Indicators: (minimum of c (A1)		d; check all that ap	pply) tained Leav	• • •	except ML		ic Soil Pr Seconda	resent? Yes 🛛 No 🖂 ary Indicators (2 or more required er-Stained Leaves (B9) (MLRA 1
Restrictive Layer Type: Depth (inches): Remarks: DROLOGY Vetland Hydrolog Primary Indicators Surface Water High Water Tal	(if present): gy Indicators: (minimum of c (A1) ble (A2)		d; check all that ap □ Water-S 1, 2,	oply) tained Leav	• • •	xcept ML		ic Soil Pr Seconda	resent? Yes X No X ary Indicators (2 or more required er-Stained Leaves (B9) (MLRA 1 14, and 4B)
Restrictive Layer Type: Depth (inches): Remarks: DROLOGY Vetland Hydrolog Primary Indicators Surface Water High Water Tal Saturation (A3)	(if present): gy Indicators: (minimum of c (A1) ble (A2))		d <u>; check all that ap</u> □ Water-S 1, 2, □ Salt Crus	pply) tained Leav 4A, and 4E st (B11)	3)	except ML		ic Soil Pr Seconda Wate 4 Drain	resent? Yes No X ary Indicators (2 or more required er-Stained Leaves (B9) (MLRA 1 4A, and 4B) nage Patterns (B10)
Restrictive Layer Type: Depth (inches): Remarks: Remarks: DROLOGY Vetland Hydrolog Primary Indicators Surface Water High Water Tal Saturation (A3) Water Marks (E	(if present): gy Indicators: (minimum of c (A1) ble (A2)) 31)		d; check all that ap ☐ Water-S 1, 2, ☐ Salt Crus ☐ Aquatic	pply) tained Leav 4A, and 4E st (B11) Invertebrate	3) es (B13)	except ML		ic Soil Pr Seconda	resent? Yes No X ary Indicators (2 or more required er-Stained Leaves (B9) (MLRA 1 4A, and 4B) nage Patterns (B10) Season Water Table (C2)
Restrictive Layer Type: Depth (inches): Remarks: DROLOGY Vetland Hydrolog Primary Indicators Surface Water High Water Tal Saturation (A3) Water Marks (E Sediment Depo	(if present): gy Indicators: (minimum of c (A1) ble (A2)) 31) posits (B2)		d: check all that ap Water-S 1, 2, Salt Crus Aquatic Hydroge	pply) tained Leav 4A, and 4E st (B11) Invertebrate n Sulfide O	3) es (B13) dor (C1)		RA	ic Soil Pr Seconda	resent? Yes ⊠ No ⊠ ary Indicators (2 or more required er-Stained Leaves (B9) (MLRA 1 4A, and 4B) nage Patterns (B10) Season Water Table (C2) iration Visible on Aerial Imagery (
Restrictive Layer Type: Depth (inches): Remarks: Remarks: DROLOGY Vetland Hydrolog Primary Indicators Surface Water High Water Tal Saturation (A3) Water Marks (E Sediment Depo Drift Deposits ((if present): gy Indicators: (minimum of c (A1) ble (A2)) 31) posits (B2) B3)		d; check all that ap Water-S 1, 2, Salt Crus Aquatic Hydroge	oply) tained Leav 4A, and 4E st (B11) nvertebrate n Sulfide O I Rhizosphe	3) es (B13) dor (C1) eres along	Living Roc	RA	ic Soil Pr Seconda Wate Drain Dry-3 Satu Geou	resent? Yes ⊠ No ⊠ ary Indicators (2 or more required er-Stained Leaves (B9) (MLRA 1 4A, and 4B) nage Patterns (B10) Season Water Table (C2) uration Visible on Aerial Imagery (morphic Position (D2)
Restrictive Layer Type: Depth (inches): Depth (inches): Remarks: DROLOGY Vetland Hydrolog Primary Indicators Surface Water High Water Tal Saturation (A3) Water Marks (E Sediment Depo Drift Deposits (Algal Mat or Cr	(if present): gy Indicators: (minimum of c (A1) ble (A2)) 31) posits (B2) B3) rust (B4)		d: check all that ap Water-S 1, 2, Salt Crus Aquatic Hydroge Oxidized Presenc	pply) tained Leav 4A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe e of Reduce	3) dor (C1) eres along ed Iron (C4	Living Roc 4)	RA ots (C3)	ic Soil Pr Seconda Wate Drain Dry-3 Satu Geou Shal	resent? Yes ⊠ No ⊠ ary Indicators (2 or more required er-Stained Leaves (B9) (MLRA 1 4A, and 4B) nage Patterns (B10) Season Water Table (C2) uration Visible on Aerial Imagery (morphic Position (D2) llow Aquitard (D3)
Restrictive Layer Type: Depth (inches): Depth (inches): Remarks: DROLOGY Vetland Hydrolog Primary Indicators Surface Water High Water Tal Saturation (A3) Water Marks (E Sediment Depo Drift Deposits (Algal Mat or Cr Iron Deposits ((if present): gy Indicators: (minimum of c (A1) ble (A2)) 31) osits (B2) B3) rust (B4) B5)		d: check all that ap Water-S 1, 2, Salt Crus Aquatic Hydroge Oxidized Presenc Recent I	pply) tained Leav 4A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe e of Reduce ron Reduct	3) dor (C1) eres along ed Iron (C4 ion in Tille	Living Roc 4) d Soils (C6	RA 0ts (C3)	ic Soil Pr Seconda Wate Drain Dry Satu Satu Satu Shal FAC	resent? Yes ⊠ No ⊠ ary Indicators (2 or more required er-Stained Leaves (B9) (MLRA 1 4A, and 4B) nage Patterns (B10) Season Water Table (C2) uration Visible on Aerial Imagery (morphic Position (D2) Ilow Aquitard (D3) c-Neutral Test (D5)
Restrictive Layer Type: Depth (inches): Remarks: Remarks: DROLOGY Vetland Hydrolog Primary Indicators Surface Water High Water Tal Saturation (A3) Water Marks (E Sediment Depo Drift Deposits (Iron Deposits (Surface Soil Cu	(if present): gy Indicators: (minimum of c (A1) ble (A2)) 31) bsits (B2) B3) ust (B4) B5) racks (B6)	: one required	d: check all that ap Water-S 1, 2, Salt Crue Aquatic Hydroge Oxidized Presenc Recent I Stunted	pply) tained Leav 4A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe e of Reduct ron Reduct or Stressec	3) dor (C1) eres along ed Iron (C- ion in Tille I Plants (D	Living Roc 4) d Soils (C6	RA 0ts (C3)	ic Soil Pr Seconda Wate Drain Dry-1 Satu Satu Satu Shal FAC Rais	resent? Yes ⊠ No ⊠ ary Indicators (2 or more required er-Stained Leaves (B9) (MLRA 1 4A, and 4B) nage Patterns (B10) Season Water Table (C2) uration Visible on Aerial Imagery (morphic Position (D2) llow Aquitard (D3) c-Neutral Test (D5) sed Ant Mounds (D6) (LRR A)
Restrictive Layer Type: Depth (inches): Remarks: Dremarks: Dremarks: <	(if present): gy Indicators: (minimum of c (A1) ble (A2)) 31) osits (B2) B3) rust (B4) B5) racks (B6) ble on Aerial I	one required	d: check all that ap Water-S 1, 2, Salt Crus Aquatic Hydroge Oxidized Presenc Recent I Stunted 7) Other (E	pply) tained Leav 4A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe e of Reduce ron Reduct	3) dor (C1) eres along ed Iron (C- ion in Tille I Plants (D	Living Roc 4) d Soils (C6	RA 0ts (C3)	ic Soil Pr Seconda Wate Drain Dry-1 Satu Satu Satu Shal FAC Rais	resent? Yes ⊠ No ⊠ ary Indicators (2 or more required er-Stained Leaves (B9) (MLRA 1 4A, and 4B) nage Patterns (B10) Season Water Table (C2) uration Visible on Aerial Imagery (morphic Position (D2) Ilow Aquitard (D3) c-Neutral Test (D5)

Surface Water Present?

(includes capillary fringe)

Water Table Present?

Saturation Present?

Remarks:

Yes 🗌

Yes 🛛

Yes 🛛 No 🗌

No 🖂

No 🗌

Depth (inches):

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Depth (inches): 3

Depth (inches): 0

Wetland Hydrology Present? Yes 🛛 No 🗌

Project/Site: Sunset Pointe	City/County:	Puyallup / Pierce	Sampling Date:03 OCT 2017
Applicant/Owner:		State: Washington	Sampling Point: <u>SPB-11</u>
Investigator(s): Habitat Technologies	s	Section, Township, Range: <u>S35, T20</u> ,	, R4E
Landform (hillslope, terrace, etc.):	Local relief	(concave, convex, none):	Slope (%):
Subregion (LRR): A	Lat:	Long:	Datum:
Soil Map Unit Name: <u>Kitsap silt loam</u>		NWI classifica	tion:
Are climatic / hydrologic conditions on the site typical for	this time of year? Yes \boxtimes	No 🗌 (If no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrology	significantly disturbed?	Are "Normal Circumstances" pres	ent? Yes 🛛 No 🗌
Are Vegetation, Soil, or Hydrology r	naturally problematic?	(If needed, explain any answers in	Remarks.)
SUMMARY OF FINDINGS – Attach site ma	ap showing sampling	point locations, transects,	important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ⊠ No □ Yes ⊠ No □ Yes ⊠ No □	Is the Sampled Area within a Wetland? Yes ⊠ No □
Remarks: Wetland		

	Absolute	Dominant Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: <u>15ft radius</u>)	<u>% Cover</u>	Species? Status	Number of Dominant Species
1		· ·	That Are OBL, FACW, or FAC: <u>1</u> (A)
2			Total Number of Dominant
3		· ·	Species Across All Strata: <u>1</u> (B)
4		· ·	Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15ft radius)	0	= Total Cover	That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1		·	Prevalence Index worksheet:
2			Total % Cover of:Multiply by:
3			OBL species x 1 =
4			FACW species x 2 =
5			FAC species x 3 =
		= Total Cover	FACU species x 4 =
Herb Stratum (Plot size: 15ft radius)	-		UPL species x 5 =
1			Column Totals: (A) (B)
2			
3			Prevalence Index = B/A =
4			Hydrophytic Vegetation Indicators:
5			Rapid Test for Hydrophytic Vegetation
6			☑ Dominance Test is >50%
7			☐ Prevalence Index is ≤3.0 ¹
8			Morphological Adaptations ¹ (Provide supporting
9			data in Remarks or on a separate sheet)
10			☐ Wetland Non-Vascular Plants ¹
11			Problematic Hydrophytic Vegetation ¹ (Explain)
····	0	= Total Cover	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 15ft radius)	<u>.</u>		be present, unless disturbed or problematic.
1. Rubus procera	100	yes FAC	
2			Hydrophytic Vegetation
	100	= Total Cover	Present? Yes 🛛 No 🗌
% Bare Ground in Herb Stratum <u>0</u>			
Remarks:			

	Matrix			dox Feature				
(inches)	Color (moist)		Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-6	<u>10YR 4/2</u>	100					SI	
6-18	<u>10YR 4/1</u>	70	10YR 4/6	30	<u> </u>	<u>M</u>	SI	
			·					
	·					·		
			·					_
	Concentration, D=De					ed Sand Gra		ocation: PL=Pore Lining, M=Matrix. tors for Problematic Hydric Soils ³ :
Histosol			Sandy Redox		ieu.)			cm Muck (A10)
	Epipedon (A2)		Stripped Matr	. ,				ed Parent Material (TF2)
Black H			Loamy Mucky		1) (excep	t MLRA 1)	—	ery Shallow Dark Surface (TF12)
	en Sulfide (A4)		Loamy Gleyed		<i>,</i>			ther (Explain in Remarks)
	ed Below Dark Surfac	ce (A11)	Depleted Mat		,		_	
	ark Surface (A12)	. ,	Redox Dark S)		³ Indica	ators of hydrophytic vegetation and
Sandy I	Mucky Mineral (S1)		Depleted Dark	< Surface (I	, F7)		we	tland hydrology must be present,
☐ Sandy (Gleyed Matrix (S4)		Redox Depres	sions (F8)			unl	ess disturbed or problematic.
Restrictive	e Layer (if present):							
Type:								
Depth (ir	nches):						Hydric So	oil Present? Yes 🛛 No 🖂
Remarks:								
	GY							
DROLO	GY ydrology Indicators	:						
Wetland Hy			ed; check all that ap	ply)			<u>Sec</u>	condary Indicators (2 or more required)
Wetland Hy Primary Ind	ydrology Indicators		red; check all that ap □ Water-St	• • •	ves (B9) (e	except MLR4		• • • • •
Wetland Hy Primary Ind	ydrology Indicators dicators (minimum of e Water (A1)		☐ Water-St	• • •	. , .	except MLRA		condary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B)
Wetland Hy Primary Ind Surface	ydrology Indicators dicators (minimum of Water (A1) later Table (A2)		☐ Water-St 1, 2,	tained Leav 4A, and 4E	. , .	xcept MLRA		Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B)
Wetland Hy Primary Ind ☐ Surface ☐ High Wa ⊠ Saturati	ydrology Indicators dicators (minimum of Water (A1) (ater Table (A2) ion (A3)		☐ Water-Si 1, 2, ☐ Salt Crus	tained Leav 4A, and 4E st (B11)	3)	except MLRA		Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10)
Wetland Hy Primary Ind Surface High Wa Saturati	ydrology Indicators dicators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1)		☐ Water-Si 1, 2, ☐ Salt Crus ☐ Aquatic I	tained Leav 4A, and 4E st (B11) Invertebrate	3) es (B13)	except MLRA		Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Wetland Hy Primary Ind Surface High Wa Saturati Water M Sedime	ydrology Indicators dicators (minimum of e Water (A1) l'ater Table (A2) tion (A3) Marks (B1) ent Deposits (B2)		☐ Water-Si 1, 2, ☐ Salt Crus ☐ Aquatic I ☐ Hydroge	tained Leav 4A, and 4E st (B11) Invertebrate n Sulfide O	3) es (B13) edor (C1)	·		Water-Stained Leaves (B9) (MLRA 1 , 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C
Wetland Hy Primary Ind Surface High Water Saturati Water N Sedime Drift De	ydrology Indicators dicators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1)		☐ Water-Si 1, 2, ☐ Salt Crus ☐ Aquatic I	tained Leav 4 A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe	3) es (B13) edor (C1) eres along	Living Roots	(C3)	Water-Stained Leaves (B9) (MLRA 1 , 4 4A , and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)

Sparsely Vegetated Concar	ve Surface	(B8)		1			
Field Observations:							
Surface Water Present?	Yes 🗌 🛛 N	lo 🛛	Depth (inches):				
Water Table Present?	Yes 🛛 🛛 N	lo 🗌	Depth (inches): <u>3</u>				
Saturation Present? (includes capillary fringe)	Yes 🛛 🛛 N	lo 🗌	Depth (inches): <u>0</u>	Wetland Hy	drology Present?	Yes 🛛	No 🗌

Project/Site: Sunset Pointe	City/County: <u>Puyallu</u>	up / Pierce	Sampling Date:03 OCT 2017
Applicant/Owner:		State: Washington	Sampling Point: <u>SPB-12</u>
Investigator(s): Habitat Technologies	Section,	Township, Range: <u>S35, T20,</u>	, R4E
Landform (hillslope, terrace, etc.):	Local relief (conca	ve, convex, none):	Slope (%):
Subregion (LRR): A	Lat:	Long:	Datum:
Soil Map Unit Name: <u>Kitsap silt loam</u>		NWI classifica	tion:
Are climatic / hydrologic conditions on the site typical for the	is time of year? Yes 🛛 No 🗌	I (If no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrology sig	inificantly disturbed? Are	"Normal Circumstances" pres	ent? Yes 🛛 No 🗌
Are Vegetation, Soil, or Hydrology nat	urally problematic? (If ne	eded, explain any answers in	Remarks.)
SUMMARY OF FINDINGS – Attach site map	showing sampling point	t locations, transects,	important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ⊠ No □ Yes □ No ⊠ Yes □ No ⊠	Is the Sampled Area within a Wetland? Yes ☐ No ⊠	
Remarks: Upland			

	Absolute	Dominant Indicator	Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>15ft radius</u>) 1		<u>Species?</u> <u>Status</u>	Number of Dominant Species That Are OBL, FACW, or FAC: <u>1</u> (A)
2			Total Number of Dominant
3			Species Across All Strata: <u>1</u> (B)
4			Demonst of Deminant Creation
Sapling/Shrub Stratum (Plot size: 15ft radius)	0		Percent of Dominant Species That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1			Prevalence Index worksheet:
2			Total % Cover of:Multiply by:
3			OBL species x 1 =
4			FACW species x 2 =
5			FAC species x 3 =
		= Total Cover	FACU species x 4 =
Herb Stratum (Plot size: 15ft radius)	-		UPL species x 5 =
1			Column Totals: (A) (B)
2			
3			Prevalence Index = B/A =
4			Hydrophytic Vegetation Indicators:
5			Rapid Test for Hydrophytic Vegetation
6			☑ Dominance Test is >50%
7			☐ Prevalence Index is ≤3.0 ¹
8			Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
9			☐ Wetland Non-Vascular Plants ¹
10			Problematic Hydrophytic Vegetation ¹ (Explain)
11			¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 15ft radius)	0	= Total Cover	be present, unless disturbed or problematic.
1. <u>Rubus procera</u>	100	yes FAC	Hydrophytic
2			Vegetation
% Bare Ground in Herb Stratum <u>0</u>	<u>100</u>	= Total Cover	Present? Yes 🛛 No 🗌
Remarks:			

(inches)	<u>Matrix</u> <u>Color (moist)</u>	%	Color (moist)	dox Feature %		Loc ²	Texture	Remarks
)-12	10YR 3/3	100					SI	
2-18			10YR 4/6	5				
2-10	1011(4/2	_ <u>95</u>	1011(4/0				0	
ype: C=0	Concentration, D=De	pletion, RM	=Reduced Matrix,	CS=Covere	d or Coate	ed Sand Gr	ains.	² Location: PL=Pore Lining, M=Matrix.
ydric Soi	I Indicators: (Appli	cable to all	LRRs, unless oth	nerwise no	ted.)		Ind	icators for Problematic Hydric Soils ³ :
] Histoso			Sandy Redox					2 cm Muck (A10)
	pipedon (A2)		Stripped Matr	. ,				Red Parent Material (TF2)
Black H			Loamy Mucky			(MLRA 1)		Very Shallow Dark Surface (TF12)
	en Sulfide (A4) ed Below Dark Surfac	00 (111)	Loamy Gleyed Depleted Mate		()			Other (Explain in Remarks)
•	ark Surface (A12)	e (ATT)	Redox Dark S	· · ·			³ Inc	licators of hydrophytic vegetation and
	. ,			· · ·				wetland hydrology must be present,
				unless disturbed or problematic.				
				(
	Laver (if present):							
	Layer (if present):							
Restrictive Type:	Layer (if present):						Hydric	Soil Present? Yes 🗌 No 🖂
Restrictive Type:							Hydric	Soil Present? Yes 🗌 No 🖂
Restrictive Type: Depth (in							Hydric	Soil Present? Yes 🗌 No 🛛
Restrictive Type: Depth (in							Hydric	Soil Present? Yes 🗌 No 🛛
Restrictive Type: Depth (in							Hydric	Soil Present? Yes 🗌 No 🛛
Restrictive Type: Depth (in Remarks:	nches):						Hydric	Soil Present? Yes 🗌 No 🛛
Restrictive Type: Depth (ir Remarks:	nches):						Hydric	Soil Present? Yes 🗌 No 🛛
Restrictive Type: Depth (in Remarks: DROLOO	nches): GY ydrology Indicators							
Restrictive Type: Depth (in Remarks: DROLO(Vetland Hy Primary Ind	nches): GY ydrology Indicators		d; check all that ap	,	oo (P0) (o		§	Secondary Indicators (2 or more required
Restrictive Type: Depth (ii Remarks: DROLOO Vetland Hy Primary Ind Surface	GY gydrology Indicators licators (minimum of water (A1)		d; check all that ap	tained Leav		xcept MLF	§	Secondary Indicators (2 or more required
Restrictive Type: Depth (ii Remarks: DROLOO Vetland Hy Primary Ind Surface High W:	GY gyrology Indicators licators (minimum of e Water (A1) ater Table (A2)		<u>d; check all that ap</u> ☐ Water-Si 1, 2,	tained Leav 4A, and 4E		xcept MLF	<u><u> </u></u>	Secondary Indicators (2 or more required Water-Stained Leaves (B9) (MLRA 1 4A, and 4B)
Restrictive Type: Depth (in Remarks: DROLOO Vetland Hy Primary Ind Surface High Wa Saturati	GY ydrology Indicators licators (minimum of water (A1) ater Table (A2) ion (A3)		d; check all that ap ☐ Water-St 1, 2, ☐ Salt Crus	tained Leav 4A, and 4E st (B11)	3)	xcept MLF	<u> </u>	Secondary Indicators (2 or more required Water-Stained Leaves (B9) (MLRA 1 , 4A, and 4B) Drainage Patterns (B10)
Restrictive Type: Depth (in Remarks: DROLOO Vetland Hy Primary Ind Surface High Wi Saturati Saturati Water N	GY ydrology Indicators licators (minimum of water (A1) ater Table (A2) ion (A3) Marks (B1)		d <u>; check all that ap</u> ☐ Water-St 1, 2, ☐ Salt Crus ☐ Aquatic I	tained Leav 4A, and 4E st (B11) Invertebrate	3) es (B13)	xcept MLF	2 2	Secondary Indicators (2 or more required Water-Stained Leaves (B9) (MLRA 1 ; 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Restrictive Type: Depth (ii Remarks: DROLOO Vetland Hy Primary Ind Surface High Wa Saturati Water N Sedime	GY ydrology Indicators licators (minimum of e Water (A1) ater Table (A2) ion (A3) Marks (B1) ent Deposits (B2)		d; check all that ap ☐ Water-St 1, 2, ☐ Salt Crus ☐ Aquatic I ☐ Hydroge	tained Leav 4A, and 4E st (B11) Invertebrate n Sulfide O	3) es (B13) dor (C1)		2 2	Secondary Indicators (2 or more required Water-Stained Leaves (B9) (MLRA 1) 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (
Restrictive Type: Depth (ii Remarks: DROLOO Vetland Hy Primary Ind Surface High Wa Saturati Water N Sedime Drift De	GY ydrology Indicators licators (minimum of e Water (A1) ater Table (A2) ion (A3) Marks (B1) ont Deposits (B2) posits (B3)		d; check all that ap Water-St 1, 2, Salt Crus Aquatic I Hydroge Oxidized	tained Leav 4 A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe	s) es (B13) dor (C1) eres along	Living Roo	2 2	Secondary Indicators (2 or more required Water-Stained Leaves (B9) (MLRA 1 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2)
Restrictive Type: Depth (ii Remarks: DROLOO Vetland Hy Primary Ind Surface High Wa Saturati Water M Saturati Drift De Algal M	GY ydrology Indicators licators (minimum of e Water (A1) ater Table (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3) at or Crust (B4)		d: check all that ap Water-Si 1, 2, Salt Crus Aquatic I Hydroge Oxidized Presence	tained Leav 4 A, and 4E st (B11) Invertebrate n Sulfide O Rhizosphe e of Reduce	s) es (B13) dor (C1) eres along ed Iron (C4	Living Roo 1)	RA [I I I I I I I I I I I I	Secondary Indicators (2 or more required Water-Stained Leaves (B9) (MLRA 1 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3)
Restrictive Type: Depth (ii Remarks: DROLOO Vetland Hy Primary Ind Surface High W: Saturati Water M Saturati Water M Sedime Drift De Algal M Iron De	GY ydrology Indicators licators (minimum of e Water (A1) ater Table (A2) ion (A3) Marks (B1) ent Deposits (B2) iposits (B3) at or Crust (B4) posits (B5)		d; check all that ap Water-St 1, 2, Salt Crus Aquatic I Hydroge Oxidized Presence	tained Leav 4 A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe e of Reduce ron Reducti	B) dor (C1) res along ed Iron (C4 on in Tille	Living Roo 1) d Soils (C6	RA [ts (C3) [) [Secondary Indicators (2 or more required Water-Stained Leaves (B9) (MLRA 1 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
Restrictive Type: Depth (in Remarks: DROLOO Vetland Hy Primary Ind Surface High Wi Saturati Saturati Saturati Saturati Sedime Drift De Algal M Iron De Surface	GY ydrology Indicators icators (minimum of Water (A1) ater Table (A2) ion (A3) Marks (B1) ont Deposits (B2) posits (B3) at or Crust (B4) posits (B5) e Soil Cracks (B6)	: one require	d; check all that ap Water-St 1, 2, Salt Crus Aquatic I Hydroge Oxidized Presence Stunted	tained Leav 4A, and 4E at (B11) Invertebrate In Sulfide O Rhizosphe e of Reduce ron Reduction Stressed	s) dor (C1) res along ed Iron (C4 on in Tille Plants (D	Living Roo 1) d Soils (C6	RA [ts (C3) [) [Secondary Indicators (2 or more required Water-Stained Leaves (B9) (MLRA 1 ; 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Restrictive Type: Depth (ii Remarks: DROLOO Vetland Hy Primary Ind Surface High W: Saturati Water N Sedime Drift De Drift De Algal M Iron De Surface Inundat	GY ydrology Indicators licators (minimum of e Water (A1) ater Table (A2) ion (A3) Marks (B1) ent Deposits (B2) iposits (B3) at or Crust (B4) posits (B5)	: one require	d; check all that ap Water-St 1, 2, Salt Crus Aquatic I Hydroge Oxidized Presence Recent It Stunted 7) Other (E	tained Leav 4 A, and 4E st (B11) Invertebrate n Sulfide O I Rhizosphe e of Reduce ron Reducti	s) dor (C1) res along ed Iron (C4 on in Tille Plants (D	Living Roo 1) d Soils (C6	RA [ts (C3) [) [Secondary Indicators (2 or more required Water-Stained Leaves (B9) (MLRA 1 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)

Field Observations:					
Surface Water Present?	Yes 🗌	No 🖂	Depth (inches):		
Water Table Present?	Yes 🗌	No 🖂	Depth (inches):		
Saturation Present? (includes capillary fringe)	Yes 🗌	No 🛛	Depth (inches):	Wetland Hydrology Present?	Yes 🗌 No 🛛
Describe Recorded Data (stre	eam gauge	, monitori	ng well, aerial photos, previous inspec	tions), if available:	
Remarks:					

Project/Site: Sunset Pointe	City/County:	Puyallup / Pierce	Sampling Date:03 OCT 2017		
Applicant/Owner:		State: Washington	Sampling Point: SPB-16		
Investigator(s): Habitat Technologies	S	Section, Township, Range: <u>S35, T20, R4E</u>			
Landform (hillslope, terrace, etc.):	Local relief	(concave, convex, none):	Slope (%):		
Subregion (LRR): A	Lat:	Long:	Datum:		
Soil Map Unit Name: <u>Kitsap silt loam</u>		NWI classificat	lion:		
Are climatic / hydrologic conditions on the site typical for the	nis time of year? Yes 🛛	No 🗌 (If no, explain in Remarks.)			
Are Vegetation, Soil, or Hydrology sig	gnificantly disturbed?	Are "Normal Circumstances" pres	ent? Yes 🛛 No 🗌		
Are Vegetation, Soil, or Hydrology na	turally problematic?	(If needed, explain any answers in	Remarks.)		
SUMMARY OF FINDINGS – Attach site map	showing sampling	point locations, transects,	important features, etc.		

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ⊠ No □ Yes □ No ⊠ Yes □ No ⊠	Is the Sampled Area within a Wetland?	Yes 🔲 No 🖾
Remarks: Upland			

	Absolute	Dominant		Dominance Test worksheet:
<u>Tree Stratum</u> (Plot size: <u>15ft radius</u>)	<u>% Cover</u>	Species?	<u>Status</u>	Number of Dominant Species
1. <u>Alnus rubra</u>	20	yes	FAC	That Are OBL, FACW, or FAC: <u>3</u> (A)
2				Total Number of Dominant
3				Species Across All Strata: 3 (B)
4				· · · · · · · · · · · · · · · · · · ·
		= Total C		Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15ft radius)	<u></u>	rotar e		That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of:Multiply by:
3.				OBL species x 1 =
4				FACW species x 2 =
				FAC species x 3 =
5		= Total C		FACU species x 4 =
Herb Stratum (Plot size: 15ft radius)	0	- 10(a) C	00001	UPL species x 5 =
1. <u>Equisetum arvense</u>	30	yes	FAC	
2	-			Column Totals: (A) (B)
3				Prevalence Index = B/A =
4				Hydrophytic Vegetation Indicators:
5				Rapid Test for Hydrophytic Vegetation
6				Dominance Test is >50%
				Prevalence Index is ≤3.0 ¹
7				Morphological Adaptations ¹ (Provide supporting
8				data in Remarks or on a separate sheet)
9				Wetland Non-Vascular Plants ¹
10				Problematic Hydrophytic Vegetation ¹ (Explain)
11				¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 15ft radius)	<u>30</u>	= Total C	over	be present, unless disturbed or problematic.
/	100		EAC	
1. <u>Rubus procera</u>	100	yes		Hydrophytic
2	400			Vegetation
% Bare Ground in Herb Stratum <u>0</u>	<u>100</u>	= Total C	over	Present? Yes 🛛 No 🗌
Remarks:				

(inches)	Color (moist)	%	Color (moist)	Redox Features	Type ¹	Loc ²	Texture	e Remarks
0-18	10YR 3/3	100					.	
					·			
	Concentration, D=De Indicators: (Appl					ed Sand Gra		² Location: PL=Pore Lining, M=Matrix. dicators for Problematic Hydric Soils ³ :
] Histosol			Sandy Rec		54.)			2 cm Muck (A10)
	pipedon (A2)		Stripped M					Red Parent Material (TF2)
Black H				cky Mineral (F1) (except	MLRA 1)		Very Shallow Dark Surface (TF12)
	en Sulfide (A4)			yed Matrix (F2)		,		
Deplete	d Below Dark Surfa	ce (A11)	Depleted N					
Thick Da	ark Surface (A12)		Redox Dar	k Surface (F6)			³ In	dicators of hydrophytic vegetation and
	/lucky Mineral (S1)		Depleted E	Dark Surface (F	7)			wetland hydrology must be present,
	Gleyed Matrix (S4)		🗌 Redox Dep	pressions (F8)				unless disturbed or problematic.
	Layer (if present):							
Type:								
Depth (ir	nches):						Hydri	c Soil Present? 🛛 Yes 🗌 No 🛛
Remarks:								
Netland Hy	drology Indicators		red: check all that	apply)				Secondary Indicators (2 or more required)
Vetland Hy Primary Indi	drology Indicators					voont MI D		Secondary Indicators (2 or more required)
Vetland Hy Primary Indi	vdrology Indicators icators (minimum of Water (A1)		🗌 Wate	r-Stained Leave		cept MLR		Water-Stained Leaves (B9) (MLRA 1,
Vetland Hy Primary Indi Surface High Wa	rdrology Indicators icators (minimum of Water (A1) ater Table (A2)		☐ Water 1,	r-Stained Leave 2, 4A, and 4B)		kcept MLR	A	Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B)
Vetland Hy Primary Indi Surface High Wa Saturati	rdrology Indicators icators (minimum of Water (A1) ater Table (A2) on (A3)		☐ Wate 1, ☐ Salt C	r-Stained Leave 2, 4A, and 4B) Crust (B11))	cept MLR	A	 Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10)
Wetland Hy Primary Indi Surface High Wa Saturati Water M	rdrology Indicators icators (minimum of Water (A1) ater Table (A2) on (A3) farks (B1)		☐ Wate 1, ☐ Salt 0 ☐ Aquat	r-Stained Leave 2, 4A, and 4B) Crust (B11) tic Invertebrates) s (B13)	kcept MLR	A	 Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Wetland Hy Primary Indi Surface High Wa Saturati Water M Sedime	ydrology Indicators icators (minimum of Water (A1) ater Table (A2) on (A3) 1arks (B1) nt Deposits (B2)		UWate 1, Salt C Aquat Hydro	r-Stained Leave 2, 4A, and 4B) Crust (B11) tic Invertebrates ogen Sulfide Od	s (B13) lor (C1)		A	 Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C
Vetland Hy Primary Indi Surface High Wa Saturati Water M Sedimei Drift Dej	rdrology Indicators icators (minimum of Water (A1) ater Table (A2) on (A3) flarks (B1) nt Deposits (B2) posits (B3)		UWater 1, Salt C Aquat Hydro Oxidiz	r-Stained Leave 2, 4A, and 4B) Crust (B11) tic Invertebrates ogen Sulfide Od zed Rhizospher	s (B13) lor (C1) res along	Living Root	A s (C3)	 Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2)
Perimary Indi Primary Indi Surface High Wa Saturati Water M Sedimei Drift Dej Algal Ma	rdrology Indicators icators (minimum of Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)		☐ Water 1, ☐ Salt C ☐ Aquat ☐ Hydro ☐ Oxidiz ☐ Prese	r-Stained Leave 2, 4A, and 4B) Crust (B11) tic Invertebrates ogen Sulfide Od zed Rhizospher ence of Reduced) lor (C1) es along d Iron (C4	Living Root	A s (C3)	 Water-Stained Leaves (B9) (MLRA 1, 24, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3)
Wetland Hy Primary Indi Surface High Wa Saturati Water N Sedimel Drift Dep Algal Ma Iron Dep	vdrology Indicators icators (minimum of Water (A1) ater Table (A2) on (A3) flarks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)		☐ Water 1, ☐ Salt C ☐ Aquat ☐ Hydro ☐ Oxidi; ☐ Prese ☐ Rece	r-Stained Leave 2, 4A, and 4B) Crust (B11) tic Invertebrates ogen Sulfide Od zed Rhizospher ence of Reduced nt Iron Reduction	s (B13) lor (C1) es along d Iron (C4 on in Tilleo	Living Root) I Soils (C6)	A s (C3)	 Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
Wetland Hy Primary Indi Surface High Wa Saturati Water M Sedimen Drift Dej Algal Ma Iron Deg Surface	vdrology Indicators icators (minimum of Water (A1) ater Table (A2) on (A3) flarks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6)	one requi	☐ Water 1, ☐ Salt C ☐ Aquat ☐ Hydro ☐ Oxidiz ☐ Prese ☐ Recer ☐ Stunt	r-Stained Leave 2, 4A, and 4B) Crust (B11) tic Invertebrates ogen Sulfide Od zed Rhizospherence of Reduced nt Iron Reduction red or Stressed I	s (B13) lor (C1) les along d Iron (C4 on in Tilleo Plants (D	Living Root) I Soils (C6)	A s (C3)	 Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Wetland Hy Primary Indi Surface High Wa Saturati Water M Sediment Drift Dep Algal Ma Iron Dep Surface Inundati	ydrology Indicators icators (minimum of Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aerial	<u>one requi</u>	B7) Water Water 1, Salt C Aquat Aquat Oxidiz Prese Stunt Stunt OXidiz Oxidi Oxidiz Oxidi O	r-Stained Leave 2, 4A, and 4B) Crust (B11) tic Invertebrates ogen Sulfide Od zed Rhizospher ence of Reduced nt Iron Reduction	s (B13) lor (C1) les along d Iron (C4 on in Tilleo Plants (D	Living Root) I Soils (C6)	A s (C3)	 Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
Wetland Hy Primary Indi Surface High Wa Saturati Water M Sedimei Drift Dej Algal Ma Iron Deg Surface Inundati Sparsel;	ydrology Indicators icators (minimum of Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aerial y Vegetated Concar	<u>one requi</u>	B7) Water Water 1, Salt C Aquat Aquat Oxidiz Prese Stunt Stunt OXidiz Oxidi Oxidiz Oxidi O	r-Stained Leave 2, 4A, and 4B) Crust (B11) tic Invertebrates ogen Sulfide Od zed Rhizospherence of Reduced nt Iron Reduction red or Stressed I	s (B13) lor (C1) les along d Iron (C4 on in Tilleo Plants (D	Living Root) I Soils (C6)	A s (C3)	 Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Wetland Hy Primary Indi Surface High Wa Saturati Water M Sedimei Drift Dej Algal Ma Iron Deg Surface Inundati Sparsel;	ydrology Indicators icators (minimum of Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aerial y Vegetated Concar	<u>one requi</u>	B7) Water Water 1, Salt C Aquat Aquat Oxidiz Prese Stunt Stunt OXidiz Oxidi Oxidiz Oxidi O	r-Stained Leave 2, 4A, and 4B) Crust (B11) tic Invertebrates ogen Sulfide Od zed Rhizospherence of Reduced nt Iron Reduction red or Stressed I	s (B13) lor (C1) les along d Iron (C4 on in Tilleo Plants (D	Living Root) I Soils (C6)	A s (C3)	 Water-Stained Leaves (B9) (MLRA 1, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Primary Indi Surface High Wa Saturati Water M Sedimer Drift De Algal Ma Iron Dep Surface Surface Sparsel Field Obse	ydrology Indicators icators (minimum of Water (A1) ater Table (A2) on (A3) farks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aerial y Vegetated Concar	one requi	B7) Water Water 1, Salt C Aquat Aquat Oxidiz Prese Stunt Stunt OXidiz Oxidi Oxidiz Oxidi O	r-Stained Leave 2, 4A, and 4B) Crust (B11) tic Invertebrates ogen Sulfide Od zed Rhizospher ence of Reduced nt Iron Reduction ed or Stressed I r (Explain in Rer	s (B13) lor (C1) les along d Iron (C4 on in Tilleo Plants (D	Living Root) I Soils (C6)	A s (C3)	 Water-Stained Leaves (B9) (MLRA 1, 44, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)

Saturation Present?

Remarks:

Yes 🗌 No 🛛 Depth (inches):

(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Wetland Hydrology Present? Yes 🗌 No 🖂

Project/Site: Sunset Pointe	City/County: Puyallup / Pier	<u>rce</u> Sa	ampling Date:03 OCT 2017
Applicant/Owner:	:	State: <u>Washington</u> Sa	ampling Point: <u>SPB-18</u>
Investigator(s): Habitat Technologies	Section, Towns	hip, Range: <u>S35, T20, R4</u>	<u>IE</u>
Landform (hillslope, terrace, etc.):	Local relief (concave, con	vex, none):	Slope (%):
Subregion (LRR): A	_ Lat: Lo	ong:	Datum:
Soil Map Unit Name: <u>Kitsap silt loam</u>		NWI classification	1:
Are climatic / hydrologic conditions on the site typical for this	time of year? Yes 🛛 No 🗌 (If no,	explain in Remarks.)	
Are Vegetation, Soil, or Hydrology sign	ificantly disturbed? Are "Norma	I Circumstances" present	.? Yes 🛛 No 🗌
Are Vegetation, Soil, or Hydrology nature	rally problematic? (If needed, e	explain any answers in Re	emarks.)
SUMMARY OF FINDINGS – Attach site map s	showing sampling point loca	tions, transects, im	portant features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ⊠ No □ Yes ⊠ No □ Yes ⊠ No □	Is the Sampled Area within a Wetland?	Yes 🛛 No 🗌
Remarks: Wetland			

	Absolute		Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: <u>15ft radius</u>)	% Cover	Species?	Status	Number of Dominant Species
1. <u>Alnus rubra</u>	40	yes	FAC	That Are OBL, FACW, or FAC: 6 (A)
2				Total Number of Dominant
3				Species Across All Strata: 6 (B)
4				\ \
	40			Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15ft radius)		rotar e		That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1				Prevalence Index worksheet:
2				Total % Cover of:Multiply by:
3				OBL species x 1 =
				FACW species x 2 =
4				FAC species x 2 =
5				
Herb Stratum (Plot size: <u>15ft radius</u>)	0	= Total C	over	FACU species x 4 =
	20		FACW	UPL species x 5 =
		·		Column Totals: (A) (B)
2. Equisetum arvense		yes		Prevalence Index = B/A =
3. <u>Athyrium filix-femina</u>		-		
4. Ranunculus repens		yes		Hydrophytic Vegetation Indicators:
5				Rapid Test for Hydrophytic Vegetation
6				☑ Dominance Test is >50%
7				□ Prevalence Index is ≤3.0 ¹
8				Morphological Adaptations ¹ (Provide supporting
9				data in Remarks or on a separate sheet)
10				Wetland Non-Vascular Plants ¹
11				Problematic Hydrophytic Vegetation ¹ (Explain)
···	100	= Total C		¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 15ft radius)	100	- 10tai C	over	be present, unless disturbed or problematic.
1. <u>Rubus procera</u>	30	yes	FAC	
		-		Hydrophytic
2		= Total C		Vegetation Present? Yes ⊠ No □
% Bare Ground in Herb Stratum <u>0</u>	<u>30</u>	- Total C	over	
Remarks:				1

(inches) Color (moist)	<u>rix %</u>	Color (moist)	dox Feature %		Loc ²	Texture		Remarks
				<u></u>				
<u>-4 10YR 4/2</u>	<u> </u>							
-20 <u>10YR 4/1</u>	80	<u>10YR 4/6</u>	20	<u> </u>	<u>M</u>	SI		
ype: C=Concentration, D=		=Reduced Matrix	CS=Covere	ed or Coat	ed Sand Gra	ains	² l ocation [·] Pl =	Pore Lining, M=Matrix.
ydric Soil Indicators: (Ap								lematic Hydric Soils ³ :
Histosol (A1)		Sandy Redox					2 cm Muck (A10	,
] Histic Epipedon (A2)		Stripped Matr					Red Parent Mat	
Black Histic (A3)					(MLRA 1)			ark Surface (TF12)
] Hydrogen Sulfide (A4)	r_{1}	Loamy Gleye	•	<u>2)</u>			Other (Explain i	n Remarks)
Depleted Below Dark Sur Thick Dark Surface (A12	. ,	Depleted Mat	. ,			³ Ind	lipptors of hydro	ohytic vegetation and
Sandy Mucky Mineral (S	,	Depleted Dark	. ,					ly must be present,
Sandy Gleyed Matrix (S4		Redox Depre		7)			unless disturbed	-
estrictive Layer (if presen		<u> </u>						F
-	· ·							
Depth (inches):						Uvdria	Soil Procent?	Yes 🖂 No 🗌
						пуштс	Soli Flesent:	
emarks:								
DROLOGY	ors:							
DROLOGY /etland Hydrology Indicat		<u>1; check all that a</u>				<u>S</u>	Secondary Indica	tors (2 or more required)
DROLOGY Vetland Hydrology Indicat rimary Indicators (minimum		<u>d; check all that a</u> r □ Water-S		res (B9) (e	xcept MLR			
DROLOGY /etland Hydrology Indicat rimary Indicators (minimum] Surface Water (A1)		☐ Water-S			xcept MLR.			d Leaves (B9) (MLRA 1 ,
DROLOGY /etland Hydrology Indicators rimary Indicators (minimum) Surface Water (A1) High Water Table (A2)		☐ Water-S	itained Leav 4A, and 4E		xcept MLR.	A [] Water-Staine	d Leaves (B9) (MLRA 1, B)
DROLOGY /etland Hydrology Indicat rimary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3)		☐ Water-S 1, 2 ,	tained Leav 4A, and 4E st (B11)	3)	xcept MLR.	A [Water-Staine 4A, and 4 Drainage Pat	d Leaves (B9) (MLRA 1, B)
DROLOGY Vetland Hydrology Indicat Irimary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)		☐ Water-S 1, 2, ☐ Salt Cru ☐ Aquatic	tained Leav 4A, and 4E st (B11)	3) es (B13)	xcept MLR.	A [Water-Staine 4A, and 4 Drainage Pat Dry-Season V	d Leaves (B9) (MLRA 1, B) terns (B10) Vater Table (C2)
DROLOGY Vetland Hydrology Indicat rimary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2)		☐ Water-S 1, 2, ☐ Salt Cru ☐ Aquatic ☐ Hydroge	tained Leav 4A, and 4E st (B11) Invertebrate en Sulfide O	3) es (B13) dor (C1)	xcept MLR.		Water-Staine 4A, and 4 Drainage Pat Dry-Season V Saturation Vis	d Leaves (B9) (MLRA 1, B) terns (B10) Vater Table (C2) sible on Aerial Imagery (C
DROLOGY Vetland Hydrology Indicat 'rimary Indicators (minimum] Surface Water (A1)] High Water Table (A2)] Saturation (A3)] Water Marks (B1)] Sediment Deposits (B2)] Drift Deposits (B3)		☐ Water-S 1, 2, ☐ Salt Cru ☐ Aquatic ☐ Hydroge ☐ Oxidized	itained Leav 4A, and 4E st (B11) Invertebrate on Sulfide O d Rhizosphe	3) es (B13) dor (C1) eres along	Living Roots		Water-Staine 4A, and 4 Drainage Pat Dry-Season V Saturation Vis Geomorphic	d Leaves (B9) (MLRA 1, B) terns (B10) Vater Table (C2) sible on Aerial Imagery (C Position (D2)
DROLOGY Vetland Hydrology Indicat 'rimary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)		☐ Water-S 1, 2, ☐ Salt Cru ☐ Aquatic ☐ Hydroge ☐ Oxidized ☐ Presenc	tained Leav 4A, and 4E st (B11) Invertebrate on Sulfide O d Rhizosphe se of Reduce	3) dor (C1) eres along ed Iron (C4	Living Roots	A [[[[[[] [] [] []	Water-Staine 4A, and 4 Drainage Pat Dry-Season V Saturation Vis Geomorphic I Shallow Aqui	d Leaves (B9) (MLRA 1, B) terns (B10) Vater Table (C2) sible on Aerial Imagery (C Position (D2) tard (D3)
DROLOGY Vetland Hydrology Indicat Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	<u>n of one required</u>	☐ Water-S 1, 2, ☐ Salt Cru ☐ Aquatic ☐ Hydroge ☐ Oxidized ☐ Presenc ☐ Recent I	4A, and 4E 4A, and 4E st (B11) Invertebrate en Sulfide O d Rhizosphe ee of Reduce Iron Reducti	3) dor (C1) eres along ed Iron (C4 ion in Tille	Living Roots 4) d Soils (C6)	A [[[[[[] [] [] []	Water-Staine 4A, and 4 Drainage Pat Dry-Season V Saturation Vis Geomorphic I Shallow Aqui FAC-Neutral	terns (B10) Vater Table (C2) sible on Aerial Imagery (C Position (D2) ard (D3) Test (D5)
DROLOGY Vetland Hydrology Indicat Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)	<u>n of one required</u>	Water-S 1, 2, Salt Cru Aquatic Hydroge Oxidized Presenc Recent I Stunted	tained Leav 4A, and 4E st (B11) Invertebrate on Sulfide O d Rhizosphe se of Reduce	B) dor (C1) eres along ed Iron (C4 ion in Tille I Plants (D	Living Roots 4) d Soils (C6)	A [[[[[[] [] [] []	Water-Staine 4A, and 4 Drainage Pat Dry-Season V Saturation Vis Geomorphic I Shallow Aquir FAC-Neutral Raised Ant M	d Leaves (B9) (MLRA 1, B) terns (B10) Vater Table (C2) sible on Aerial Imagery (Position (D2) tard (D3)

Field Observations: Surface Water Present?

Water Table Present?

(includes capillary fringe)

Saturation Present?

Remarks:

Yes 🗌

Yes 🛛

Yes 🛛 No 🗌

No 🖂

No 🗌

Depth (inches):

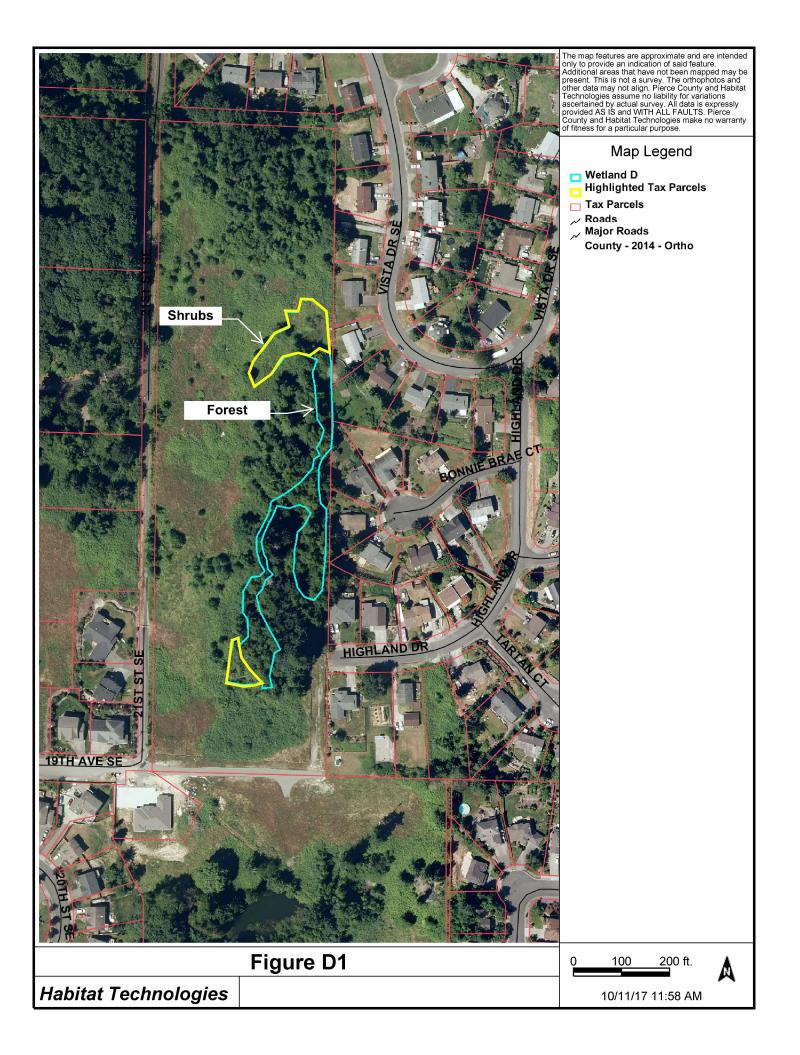
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

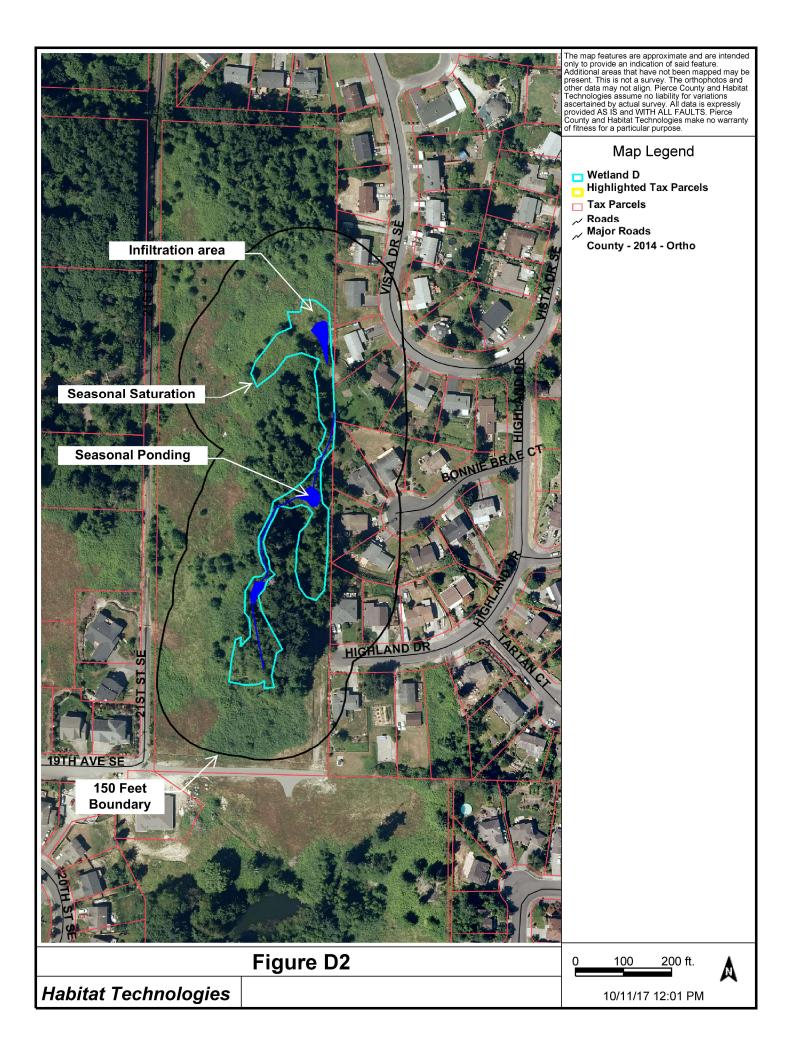
Depth (inches): 4

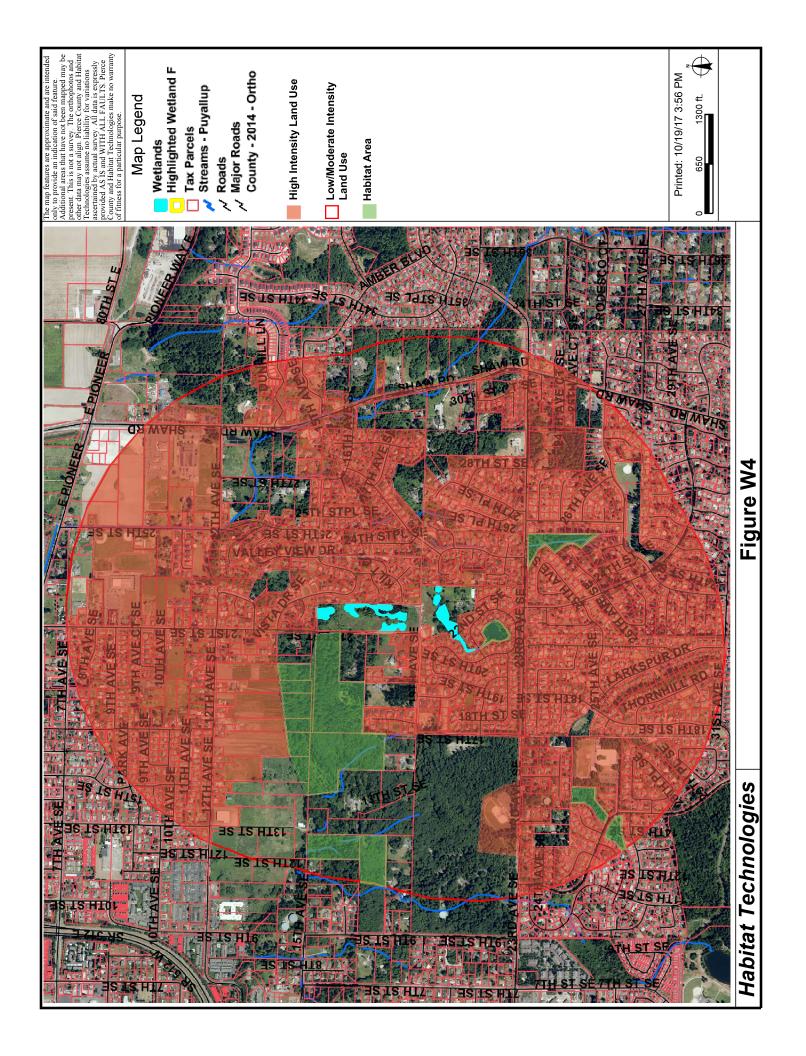
Depth (inches): 0

Wetland Hydrology Present? Yes 🛛 No 🗌

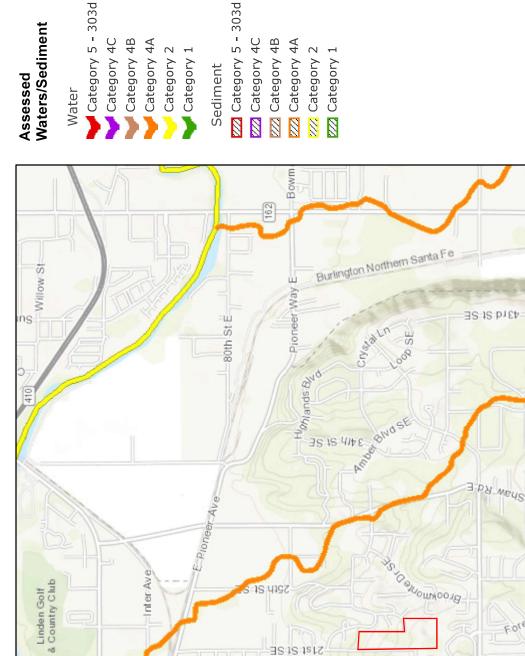
ty/County: Puyallup / Pierce	_ Sampling Date:03 OCT 2017
State: Washington	_ Sampling Point: <u>SPB-24</u>
Section, Township, Range: <u>S35, T2</u>	0, R4E
ocal relief (concave, convex, none):	Slope (%):
Long:	Datum:
NWI classific	cation:
? Yes 🛛 🛛 No 🗌 (If no, explain in Remarks	.)
rbed? Are "Normal Circumstances" pre	esent? Yes 🛛 No 🗌
atic? (If needed, explain any answers	in Remarks.)
ampling point locations, transects	s, important features, etc.
	State: <u>Washington</u> Section, Township, Range: <u>S35, T2</u> Socal relief (concave, convex, none): Long: NWI classifie Yes ⊠ No □ (If no, explain in Remarks rbed? Are "Normal Circumstances" pre atic? (If needed, explain any answers


Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes ⊠ No □ Yes ⊠ No □ Yes ⊠ No □	Is the Sampled Area within a Wetland?	Yes 🖾 No 🗌
Remarks: Wetland.			


	Absolute	Dominant		Dominance Test worksheet:
Tree Stratum (Plot size: <u>15ft radius</u>)	% Cover	Species?	Status	Number of Dominant Species
1. <u>Alnus rubra</u>	30	yes	FAC	That Are OBL, FACW, or FAC: 5 (A)
2				Total Number of Dominant
3				Species Across All Strata: 5 (B)
4				\ \
		= Total C		Percent of Dominant Species
Sapling/Shrub Stratum (Plot size: 15ft radius)	00	- Total O	0001	That Are OBL, FACW, or FAC: <u>100</u> (A/B)
1. Rubus spectabilis	20	yes	FAC	Prevalence Index worksheet:
2				Total % Cover of: Multiply by:
				OBL species x 1 =
3				
4				FACW species x 2 =
5				FAC species x 3 =
Light Stratum (Distainer 15ft redius)	20	= Total C	over	FACU species x 4 =
Herb Stratum (Plot size: <u>15ft radius</u>)				UPL species x 5 =
1. <u>Lysichitum americanum</u>		yes		Column Totals: (A) (B)
2. <u>Equisetum arvense</u>		yes		
3. Athyrium filix-femina	20	yes	FAC	Prevalence Index = B/A =
4				Hydrophytic Vegetation Indicators:
5				Rapid Test for Hydrophytic Vegetation
6				☑ Dominance Test is >50%
7				□ Prevalence Index is ≤3.0 ¹
8				Morphological Adaptations ¹ (Provide supporting
				data in Remarks or on a separate sheet)
9				Wetland Non-Vascular Plants ¹
10		·		Problematic Hydrophytic Vegetation ¹ (Explain)
11				¹ Indicators of hydric soil and wetland hydrology must
Weeder Vine Charterne (Diet sizes 45ft rediue)	100	= Total C	over	be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size: <u>15ft radius</u>)				
1		·		Hydrophytic
2		·		Vegetation
	0	= Total C	over	Present? Yes 🛛 No 🗌
% Bare Ground in Herb Stratum <u>0</u>				
Remarks:				


Sampling Point: SPB-24

Q-18 10YR 3/1 100	Texture Remarks
0-18 10YR 3/1 100	
'Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grair 'Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grair 'Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grair 'Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grair 'Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Dstripped Matrix (S6) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Depleted Below Dark Surface (A11) Depleted Dark Surface (F6) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (if present): Type: Type: Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (if present): Type: Type: Depletied Dark Surface (F7) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation Visible on Aerial Imagery (B7) Other (A) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Saturation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Inu	
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) □ Histosol (A1) □ Sandy Redox (S5) □ Histic Epipedon (A2) □ Stripped Matrix (S6) □ Black Histic (A3) □ Loamy Mucky Mineral (F1) (except MLRA 1) □ Hydrogen Sulfide (A4) □ Loamy Mucky Mineral (F1) (except MLRA 1) □ Depleted Below Dark Surface (A11) □ Depleted Matrix (F2) □ Depleted Below Dark Surface (A12) □ Redox Dark Surface (F6) □ Sandy Gleyed Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type:	<u>il</u>
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) □ Histosol (A1) □ Sandy Redox (S5) □ Histic Epipedon (A2) □ Stripped Matrix (S6) □ Black Histic (A3) □ Loamy Gleyed Matrix (F2) □ Depleted Below Dark Surface (A11) □ Depleted Matrix (F3) □ Thick Dark Surface (A12) □ Redox Dark Surface (F6) □ Sandy Gleyed Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type: Type:	
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) □ Histosol (A1) □ Sandy Redox (S5) □ Histic Epipedon (A2) □ Stripped Matrix (S6) □ Black Histic (A3) □ Loamy Gleyed Matrix (F2) □ Depleted Below Dark Surface (A11) □ Depleted Matrix (F3) □ Thick Dark Surface (A12) □ Redox Dark Surface (F6) □ Sandy Gleyed Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type: Type:	
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) □ Histosoi (A1) □ Sandy Redox (S5) □ Histic Epipedon (A2) □ Stripped Matrix (S6) □ Black Histic (A3) □ Loamy Mucky Mineral (F1) (except MLRA 1) □ Hydrogen Sulfide (A4) □ Loamy Mucky Mineral (F1) (except MLRA 1) □ Depleted Below Dark Surface (A11) □ Depleted Matrix (F2) □ Depleted Matrix (F3) □ Depleted Dark Surface (F6) □ Sandy Gleyed Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type:	
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) □ Histosoi (A1) □ Sandy Redox (S5) □ Histic Epipedon (A2) □ Stripped Matrix (S6) □ Black Histic (A3) □ Loamy Mucky Mineral (F1) (except MLRA 1) □ Hydrogen Sulfide (A4) □ Loamy Mucky Mineral (F1) (except MLRA 1) □ Depleted Below Dark Surface (A11) □ Depleted Matrix (F2) □ Depleted Matrix (F3) □ Depleted Dark Surface (F6) □ Sandy Gleyed Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type:	
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) □ Histosoi (A1) □ Sandy Redox (S5) □ Histic Epipedon (A2) □ Stripped Matrix (S6) □ Black Histic (A3) □ Loamy Mucky Mineral (F1) (except MLRA 1) □ Hydrogen Sulfide (A4) □ Loamy Mucky Mineral (F1) (except MLRA 1) □ Depleted Below Dark Surface (A11) □ Depleted Matrix (F2) □ Depleted Matrix (F3) □ Depleted Dark Surface (F6) □ Sandy Gleyed Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type:	
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) □ Histosoi (A1) □ Sandy Redox (S5) □ Histic Epipedon (A2) □ Stripped Matrix (S6) □ Black Histic (A3) □ Loamy Mucky Mineral (F1) (except MLRA 1) □ Hydrogen Sulfide (A4) □ Loamy Gleyed Matrix (F2) □ Depleted Below Dark Surface (A11) □ Depleted Matrix (F3) □ Thick Dark Surface (A12) □ Redox Dark Surface (F6) □ Sandy Gleyed Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type:	
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) □ Histosoi (A1) □ Sandy Redox (S5) □ Histic Epipedon (A2) □ Stripped Matrix (S6) □ Black Histic (A3) □ Loamy Mucky Mineral (F1) (except MLRA 1) □ Hydrogen Sulfide (A4) □ Loamy Gleyed Matrix (F2) □ Depleted Below Dark Surface (A11) □ Depleted Matrix (F3) □ Thick Dark Surface (A12) □ Redox Dark Surface (F6) □ Sandy Gleyed Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type:	
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) □ Histosoi (A1) □ Sandy Redox (S5) □ Histic Epipedon (A2) □ Stripped Matrix (S6) □ Black Histic (A3) □ Loamy Mucky Mineral (F1) (except MLRA 1) □ Hydrogen Sulfide (A4) □ Loamy Mucky Mineral (F1) (except MLRA 1) □ Depleted Below Dark Surface (A11) □ Depleted Matrix (F2) □ Depleted Matrix (F3) □ Depleted Dark Surface (F6) □ Sandy Gleyed Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type:	
Histosol (A1) □ Sandy Redox (S5) Histic Epipedon (A2) □ Stripped Matrix (S6) □ Black Histic (A3) □ Loamy Mucky Mineral (F1) (except MLRA 1) □ Hydrogen Sulfide (A4) □ Loamy Gleyed Matrix (F2) □ Depleted Below Dark Surface (A11) □ Depleted Matrix (F3) □ Thick Dark Surface (A12) □ Redox Dark Surface (F6) □ Sandy Gleyed Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type: Type:	ns. ² Location: PL=Pore Lining, M=Matrix.
□ Histic Epipedon (A2) □ Stripped Matrix (S6) □ Black Histic (A3) □ Loamy Mucky Mineral (F1) (except MLRA 1) □ Hydrogen Sulfide (A4) □ Loamy Gleyed Matrix (F2) □ Depleted Below Dark Surface (A12) □ Redox Dark Surface (F6) □ Sandy Mucky Mineral (S1) □ Depleted Dark Surface (F7) □ Sandy Gleyed Matrix (S4) □ Redox Dark Surface (F7) □ Sandy Gleyed Matrix (S4) □ Depleted Dark Surface (F7) □ Sandy Gleyed Matrix (S4) □ Depleted Dark Surface (F7) □ Sandy Gleyed Matrix (S4) □ Depleted Dark Surface (F7) □ Sandy Gleyed Matrix (S4) □ Redox Dark Surface (F7) □ Sandy Gleyed Matrix (S4) □ Depleted Dark Surface (F7) □ Sandy Gleyed Matrix (S4) □ Redox Dark Surface (F7) □ Sandy Gleyed Matrix (S4) □ Redox Dark Surface (F7) □ Saturation Gleyen Matker (F7) □ Matker Saturation (F6) □ Saturation A3 □ Indation Caste (F1) □ □ </td <td>Indicators for Problematic Hydric Soils³:</td>	Indicators for Problematic Hydric Soils ³ :
Black Histic (A3) □ Loamy Mucky Mineral (F1) (except MLRA 1) Hydrogen Sulfide (A4) □ Loamy Gleyed Matrix (F2) Depleted Below Dark Surface (A11) □ Depleted Matrix (F3) Thick Dark Surface (A12) □ Redox Dark Surface (F6) Sandy Mucky Mineral (S1) □ Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type: Type:	2 cm Muck (A10)
□ Hydrogen Sulfide (A4) □ Loamy Gleyed Matrix (F2) □ Depleted Below Dark Surface (A11) □ Depleted Matrix (F3) □ Thick Dark Surface (A12) □ Redox Dark Surface (F6) □ Sandy Mucky Mineral (S1) □ Depleted Dark Surface (F7) □ Sandy Gleyed Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type:	Red Parent Material (TF2)
□ Depleted Below Dark Surface (A11) □ Depleted Matrix (F3) □ Thick Dark Surface (A12) □ Redox Dark Surface (F6) □ Sandy Mucky Mineral (S1) □ Depleted Dark Surface (F7) □ Sandy Gleyed Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type: Type:	Very Shallow Dark Surface (TF12)
☑ Thick Dark Surface (A12) □ Redox Dark Surface (F6) □ Sandy Mucky Mineral (S1) □ Depleted Dark Surface (F7) □ Sandy Gleyed Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type:	Other (Explain in Remarks)
□ Sandy Mucky Mineral (S1) □ Depleted Dark Surface (F7) □ Sandy Gleyed Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type:	21
□ Sandy Gleved Matrix (S4) □ Redox Depressions (F8) Restrictive Layer (if present): Type:	³ Indicators of hydrophytic vegetation and
Restrictive Layer (if present): Type: Depth (inches): Remarks: /DROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water-Stained Leaves (B9) (except MLRA High Water Table (A2) Saturation (A3) Saturation (A3) Sediment Deposits (B1) Aquatic Invertebrates (B13) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (Algal Mat or Crust (B4) Iron Deposits (B5) Iron Deposits (B5) Sturface Soil Cracks (B6) Sturface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No Surface Water Present? Yes No Sturation Present? Yes No	wetland hydrology must be present, unless disturbed or problematic.
Type:	uniess disturbed of problematic.
Depth (inches):	
Remarks: /DROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water-Stained Leaves (B9) (except MLRA High Water Table (A2) 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Water Marks (B1) Aquatic Invertebrates (B13) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Iron Deposits (B5) Recent Iron Reduction in Tilled Soils (C6) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No Depth (inches): Water Table Present? Yes No Depth (inches): 3 Saturation Present? Yes No Depth (inches): 0	Uvdria Sail Brazant? Vaz 🛛 Na 🗆
/DROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water-Stained Leaves (B9) (except MLRA \Implies High Water Table (A2) 1, 2, 4A, and 4B) \Implies Saturation (A3) Salt Crust (B11) \Umplies Water Marks (B1) Aquatic Invertebrates (B13) \Umplies Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (\Umplies Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Iron Deposits (B5) Recent Iron Reduction in Tilled Soils (C6) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No Depth (inches): 3 Water Table Present? Yes No Depth (inches): 3 Saturation Present? Yes No Depth (inches): 0	Hydric Soil Present? Yes 🛛 No 🗌
Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water-Stained Leaves (B9) (except MLRA High Water Table (A2) 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Water Marks (B1) Aquatic Invertebrates (B13) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Iron Deposits (B5) Recent Iron Reduction in Tilled Soils (C6) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) Surface Water Present? Field Observations: Surface Water Present? Yes No Water Table Present? Yes No Depth (inches): 3 Saturation Present? Yes No Depth (inches): 0	
Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water-Stained Leaves (B9) (except MLRA High Water Table (A2) 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Water Marks (B1) Aquatic Invertebrates (B13) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Iron Deposits (B5) Recent Iron Reduction in Tilled Soils (C6) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) Surface Water Present? Field Observations: Surface Water Present? Yes No Saturation Present? Yes No Depth (inches): 3 Saturation Present? Yes No Depth (inches): 0	
□ Surface Water (A1) □ Water-Stained Leaves (B9) (except MLRA □ High Water Table (A2) 1, 2, 4A, and 4B) □ Saturation (A3) □ Salt Crust (B11) □ Water Marks (B1) □ Aquatic Invertebrates (B13) □ Sediment Deposits (B2) □ Hydrogen Sulfide Odor (C1) □ Drift Deposits (B3) □ Oxidized Rhizospheres along Living Roots (C1) □ Drift Deposits (B3) □ Oxidized Rhizospheres along Living Roots (C6) □ Algal Mat or Crust (B4) □ Presence of Reduced Iron (C4) □ Iron Deposits (B5) □ Recent Iron Reduction in Tilled Soils (C6) □ Surface Soil Cracks (B6) □ Stunted or Stressed Plants (D1) (LRR A) □ Inundation Visible on Aerial Imagery (B7) □ Other (Explain in Remarks) □ Sparsely Vegetated Concave Surface (B8) ■ ■ Field Observations:	Secondary Indicators (2 or more required)
☑ High Water Table (A2) 1, 2, 4A, and 4B) ☑ Saturation (A3) □ Salt Crust (B11) □ Water Marks (B1) □ Aquatic Invertebrates (B13) □ Sediment Deposits (B2) □ Hydrogen Sulfide Odor (C1) □ Drift Deposits (B3) □ Oxidized Rhizospheres along Living Roots (□ Algal Mat or Crust (B4) □ Presence of Reduced Iron (C4) □ Iron Deposits (B5) □ Recent Iron Reduction in Tilled Soils (C6) □ Surface Soil Cracks (B6) □ Other (Explain in Remarks) □ Sparsely Vegetated Concave Surface (B8) ■ Field Observations: Surface Water Present? Yes □ No □ Depth (inches): <u>3</u> Saturation Present? Yes □ No □ Depth (inches): <u>3</u> Wetland	Water-Stained Leaves (B9) (MLRA 1, 2,
Saturation (A3) □ Salt Crust (B11) Water Marks (B1) □ Aquatic Invertebrates (B13) Sediment Deposits (B2) □ Hydrogen Sulfide Odor (C1) Drift Deposits (B3) □ Oxidized Rhizospheres along Living Roots (Algal Mat or Crust (B4) □ Presence of Reduced Iron (C4) Iron Deposits (B5) □ Recent Iron Reduction in Tilled Soils (C6) Surface Soil Cracks (B6) □ Stunted or Stressed Plants (D1) (LRR A) Inundation Visible on Aerial Imagery (B7) □ Other (Explain in Remarks) Sparsely Vegetated Concave Surface (B8) Pepth (inches): Field Observations: Surface Water Present? Yes □ No □ Depth (inches): 3 Water Table Present? Yes □ No □ Depth (inches): 0 Wetland	4A, and 4B)
□ Water Marks (B1) □ Aquatic Invertebrates (B13) □ Sediment Deposits (B2) □ Hydrogen Sulfide Odor (C1) □ Drift Deposits (B3) □ Oxidized Rhizospheres along Living Roots (□ Algal Mat or Crust (B4) □ Presence of Reduced Iron (C4) □ Iron Deposits (B5) □ Recent Iron Reduction in Tilled Soils (C6) □ Surface Soil Cracks (B6) □ Stunted or Stressed Plants (D1) (LRR A) □ Inundation Visible on Aerial Imagery (B7) □ Other (Explain in Remarks) □ Sparsely Vegetated Concave Surface (B8) Field Observations:	Drainage Patterns (B10)
□ Sediment Deposits (B2) □ Hydrogen Sulfide Odor (C1) □ Drift Deposits (B3) □ Oxidized Rhizospheres along Living Roots (□ Algal Mat or Crust (B4) □ Presence of Reduced Iron (C4) □ Iron Deposits (B5) □ Recent Iron Reduction in Tilled Soils (C6) □ Surface Soil Cracks (B6) □ Stunted or Stressed Plants (D1) (LRR A) □ Inundation Visible on Aerial Imagery (B7) □ Other (Explain in Remarks) □ Sparsely Vegetated Concave Surface (B8) ■ Pertian in Remarks) Field Observations:	Dry-Season Water Table (C2)
□ Drift Deposits (B3) □ Oxidized Rhizospheres along Living Roots (□ Algal Mat or Crust (B4) □ Presence of Reduced Iron (C4) □ Iron Deposits (B5) □ Recent Iron Reduction in Tilled Soils (C6) □ Surface Soil Cracks (B6) □ Stunted or Stressed Plants (D1) (LRR A) □ Inundation Visible on Aerial Imagery (B7) □ Other (Explain in Remarks) □ Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes □ No □ Depth (inches): Water Table Present? Yes □ No □ Depth (inches): 3 Saturation Present? Yes □ No □ Depth (inches): 0	Saturation Visible on Aerial Imagery (C9
□ Algal Mat or Crust (B4) □ Presence of Reduced Iron (C4) □ Iron Deposits (B5) □ Recent Iron Reduction in Tilled Soils (C6) □ Surface Soil Cracks (B6) □ Stunted or Stressed Plants (D1) (LRR A) □ Inundation Visible on Aerial Imagery (B7) □ Other (Explain in Remarks) □ Sparsely Vegetated Concave Surface (B8) □ Field Observations: Surface Water Present? Yes □ No □ Depth (inches): □ Water Table Present? Yes □ No □ Depth (inches): 3 Saturation Present? Yes □ No □ Depth (inches): 0	
□ Iron Deposits (B5) □ Recent Iron Reduction in Tilled Soils (C6) □ Surface Soil Cracks (B6) □ Stunted or Stressed Plants (D1) (LRR A) □ Inundation Visible on Aerial Imagery (B7) □ Other (Explain in Remarks) □ Sparsely Vegetated Concave Surface (B8) □ Other (Explain in Remarks) Field Observations: Surface Water Present? Yes □ No □ Depth (inches): Water Table Present? Yes □ No □ Depth (inches): 3 Wetland Saturation Present? Yes □ No □ Depth (inches): 0 Wetland	Shallow Aquitard (D3)
□ Surface Soil Cracks (B6) □ Stunted or Stressed Plants (D1) (LRR A) □ Inundation Visible on Aerial Imagery (B7) □ Other (Explain in Remarks) □ Sparsely Vegetated Concave Surface (B8) □ Other (Explain in Remarks) Field Observations: Surface Water Present? Yes □ No □ Depth (inches): Water Table Present? Yes □ No □ Depth (inches): 3 Wetland Saturation Present? Yes □ No □ Depth (inches): 0 Wetland	☐ FAC-Neutral Test (D5)
□ Inundation Visible on Aerial Imagery (B7) □ Other (Explain in Remarks) □ Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes □ No □ Depth (inches): Water Table Present? Yes □ No □ Depth (inches): 3 Saturation Present? Yes □ No □ Depth (inches): 0	Raised Ant Mounds (D6) (LRR A)
□ Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes □ No □ Depth (inches): Water Table Present? Yes □ No □ Depth (inches): 3 Saturation Present? Yes □ No □ Depth (inches): 0	Frost-Heave Hummocks (D7)
Field Observations: Surface Water Present? Yes No Depth (inches): Water Table Present? Yes No Depth (inches): 3 Saturation Present? Yes No Depth (inches): 0 Wetland	
Surface Water Present? Yes □ No ⊠ Depth (inches): Water Table Present? Yes ⊠ No □ Depth (inches): 3 Saturation Present? Yes ⊠ No □ Depth (inches): 0 Wetland	
Water Table Present? Yes X No Depth (inches): 3 Saturation Present? Yes X No Depth (inches): 0	
Saturation Present? Yes 🛛 No 🗌 Depth (inches): 0 Wetland	
(includes capillary fringe) [Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if a	d Hydrology Present? Yes ⊠ No □
	d Hydrology Present? Yes 🛛 No 🗌
Remarks:	d Hydrology Present? Yes 🛛 No 🗌
	d Hydrology Present? Yes 🛛 No 🗌


APPENDIX B – Wetland Rating Worksheets

LC L
>
(1)
<u>v</u>
<u> </u>
_
\mathbf{O}

3S IS 4121

ISIN SI SE

JS IS HIEL

7th Ave SE

35 15 410L

512

3S1S412

Santa Fe

E-Main-Ave

EN IS HIS

3rd St

E-Pioneer-Ave-

314 SEE

Butington Nottner

2th Ave SE

9th St

Good Samaritan Hosp

Multicare

27th Ave SE

3 eth-St SE

3 18 VSLE

Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, ©

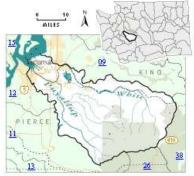
Miles 0.25 0

0.5

TMDL Project Information for WRIA 10 | WA State Department of Ecology

Figure W6

Water Quality Improvement Projects (TMDLs)


<u>Water Quality Improvement</u> > <u>Water Quality Improvement Projects by WRIA</u> > WRIA 10: Puyallup-White

WRIA 10: Puyallup-White

The following table lists overview information for water quality improvement projects (also known as total maximum daily loads, or TMDLs) for this water resource inventory area (<u>WRIA</u>). Please use links (where available) for more information on a project.

Counties

- King County
- <u>Pierce County</u>

Waterbody Name	Pollutant	Status**	TMDL Leads
Clarks Creek Meeker Creek	<u>Dissolved Oxygen</u> Sediment	Approved by EPA Has an implementation plan	<u>Donovan Gray</u> 360-407-6407
	Fecal Coliform	Approved by EPA Has an implementation plan	
Commencement Bay	Dioxin	Approved by EPA	<u>Donovan Gray</u> 360-407-6407
Puyallup River Watershed	Fecal Coliform	Approved by EPA	Donovan Gray
	<u>Multi-parameter</u> Ammonia-N BOD (5-day)	Approved by EPA	360-407-6407
	White River Watershed Upper White:	Approved by EPA	
	 Sediment Temperature Lower White pH 	Under Development	
<u>South Prairie Creek</u> Tributary: Wilkeson/Gale Creek	Fecal Coliform Temperature	Approved by EPA Has an implementation plan	<u>Donovan Gray</u> 360-407-6407

** Status will be listed as one of the following: Approved by EPA, Under Development or Implementation

For more information about WRIA 10:

- <u>Waterbodies in WRIA 10</u> using the Water Quality Assessment Query Tool
- Watershed Information for WRIA 10

* The Department of Ecology and other state resource agencies frequently use a system of 62 "Water Resource Inventory Areas" or "WRIAs" to refer to the state's major watershed basins.

Back to top of page

Last updated October 2016

Feedback?

RATING SUMMARY – Western Washington

Name of wetland (or ID #):Sunset PointeDate of site visit:11 OCT 2017Rated byHabitat TechnologiesTrained by Ecology? x YesNo Date of training 2014HGM Class used for ratingSlopeWetland has multiple HGM classes? Y x N

NOTE: Form is not complete without the figures requested (figures can be combined). Source of base aerial photo/map Pierce County GIS

OVERALL WETLAND CATEGORY _ 4 (based on functions ____ or special characteristics ____)

1. Category of wetland based on FUNCTIONS

Category I – Total score = 23 - 27

Category II – Total score = 20 - 22

____Category III – Total score = 16 - 19

X Category IV – Total score = 9 - 15

FUNCTION	Improving Water Quality		H	ydrolo	ogic	Habitat				
Circle the appropriate ratings										
Site Potential	Н	М	L	Н	М	L	Н	М	L	
Landscape Potential	Н	М	L	Н	М	L	Н	М	L	
Value	Н	Μ	L	Н	Μ	L	н	Μ	L	TOTAL
Score Based on Ratings		5			5			4		14

Score for each function based on three ratings (order of ratings is not important)

9 = H,H,H 8 = H,H,M 7 = H,H,L 7 = H,M,M 6 = H,M,L 6 = M,M,M 5 = H,L,L 5 = M,M,L 4 = M,L,L

3 = L,L,L

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CATEGORY		
Estuarine	I II		
Wetland of High Conservation Value	I		
Bog	Ι		
Mature Forest	I		
Old Growth Forest	I		
Coastal Lagoon	I II		
Interdunal	I II III IV		
None of the above	Х		

Maps and figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	N/A
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including polygons for accessible habitat and undisturbed habitat	H 2.1, H 2.2, H 2.3	
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	V

Riverine Wetlands

Map of:	To answer questions:	Figure #	
Cowardin plant classes	H 1.1, H 1.4	N/A	
Hydroperiods	H 1.2		
Ponded depressions	R 1.1		
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4		
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2		
Width of unit vs. width of stream (can be added to another figure)	R 4.1		
Map of the contributing basin	R 2.2, R 2.3, R 5.2		
1 km Polygon: Area that extends 1 km from entire wetland edge - including polygons for accessible habitat and undisturbed habitat	H 2.1, H 2.2, H 2.3		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1		
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	¥	

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	N/A
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	\vee

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	D1
Hydroperiods	H 1.2	D2
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	D1
Plant cover of dense, rigid trees, shrubs, and herbaceous plants	S 4.1	
(can be added to figure above)		D1
Boundary of 150 ft buffer (can be added to another figure)	S 2.1, S 5.1	D2
1 km Polygon: Area that extends 1 km from entire wetland edge - including polygons for accessible habitat and undisturbed habitat	H 2.1, H 2.2, H 2.3	W4
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	W5
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	W6

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides except during floods?

NO – go to 2

YES – the wetland class is **Tidal Fringe** – go to 1.1

1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?

NO – Saltwater Tidal Fringe (Estuarine) If your wetland can be classified as a Freshwater Tidal Fringe use the forms for **Riverine** wetlands. If it is Saltwater Tidal Fringe it is an **Estuarine** wetland and is not scored. This method **cannot** be used to score functions for estuarine wetlands.

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

YES – The wetland class is **Flats** NO – go to 3 *If your wetland can be classified as a Flats wetland, use the form for Depressional wetlands.*

3. Does the entire wetland unit **meet all** of the following criteria? ____The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size; ____At least 30% of the open water area is deeper than 6.6 ft (2 m).

NO – go to 4

YES – The wetland class is **Lake Fringe** (Lacustrine Fringe)

- 4. Does the entire wetland unit **meet all** of the following criteria?
 - X The wetland is on a slope (*slope can be very gradual*),
 - **x** The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks,
 - **X** The water leaves the wetland **without being impounded**.

NO - go to 5

YES – The wetland class is **Slope**

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

- 5. Does the entire wetland unit **meet all** of the following criteria?
 - The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river.
 - ____The overbank flooding occurs at least once every 2 years.

YES – Freshwater Tidal Fringe

Wetland name or number _____

NO - go to 6YES - The wetland class is RiverineNOTE: The Riverine unit can contain depressions that are filled with water when the river is notflooding

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.*

NO – go to 7

YES – The wetland class is Depressional

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

NO – go to 8

YES – The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit	HGM class to
being rated	use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

SLOPE WETLANDS Water Quality Functions - Indicators that the site functions to improve water quality				
S 1.0. Does the site have the potential to improve water quality?				
S 1.1. Characteristics of the average slope of the wetland: (a 1% slope has a 1 ft vertical drop in elevation for every 100 ft of horizontal distance)	,			
Slope is 1% or less points =	³ 0			
Slope is > 1%-2% points =	2			
Slope is > 2%-5% points =	1			
Slope is greater than 5% points =	0			
S 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic (use NRCS definitions): Yes = 3 No =	= 0 0			
 S 1.3. Characteristics of the plants in the wetland that trap sediments and pollutants: Choose the points appropriate for the description that best fits the plants in the wetland. Dense means you have trouble seeing the soil surface (>75% cover), and uncut means not grazed or mowed and plants are high than 6 in. Dense, uncut, herbaceous plants > 90% of the wetland area points = Dense, uncut, herbaceous plants > ½ of area points = Dense, woody, plants > ½ of area points = Dense, uncut, herbaceous plants > ¼ of area points = Dense, uncut, herbaceous plants > ¼ of area points = Dense, uncut, herbaceous plants > ¼ of area points = Dense, uncut, herbaceous plants > ¼ of area points = Dense, uncut, herbaceous plants > ¼ of area points = Dense, uncut, herbaceous plants > ¼ of area points = Dense, uncut, herbaceous plants > ¼ of area points = Dense, uncut, herbaceous plants > ¼ of area points = Dense, uncut, herbaceous plants > ¼ of area points = Dense, uncut, herbaceous plants > ¼ of area points = Dense, uncut, herbaceous plants > ¼ of area points = Dense, uncut, herbaceous plants > ¼ of area points = Dense, uncut, herbaceous plants > ¼ of area points = Dense, uncut, herbaceous plants > ¼ of area points = Does not meet any of the criteria above for plants 	her 6 3 2 2 1 2 0			
Total for S 1Add the points in the boxes above	ve 3			
Rating of Site Potential If score is: $12 = H$ $6-11 = M$ X $0-5 = L$ Record the ratin S 2.0. Does the landscape have the potential to support the water quality function of the site? S 2.1. Is > 10% of the area within 150 ft on the uphill side of the wetland in land uses that generate pollutants?				
Yes = 1 No = S 2.2. Are there other sources of pollutants coming into the wetland that are not listed in question S 2.1?	0 1			

S 2.2. Are there other sources of pollutants coming into the wetland that are not listed in question S 2.1?		0	
Other sources		Yes = 1 No = 0	-
Total for S 2		Add the points in the boxes above	1
Rating of Landscape Potential If score is: X 1-2 = M	0 = 1	Record the rating on	the first nane

Rating of Landscape Potential If score is: X 1-2 = M0

Record the rating on the first page

S 3.0. Is the water quality improvement provided by the site valuable to society?	
S 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the 303(d) list? Yes = 1 No = 0	0
S 3.2. Is the wetland in a basin or sub-basin where water quality is an issue? At least one aquatic resource in the basin is on the 303(d) list. Yes = 1 No = 0	^{is} 0
S 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality? Answer YES if there is a TMDL for the basin in which unit is found. Yes = 2 No = 0	1
Total for S 3Add the points in the boxes above	1

Rating of Value If score is: 2-4 = H X 1 = M 0 = L

Record the rating on the first page

SLOPE WETLANDS	
Hydrologic Functions - Indicators that the site functions to reduce flooding and stream erosion	
S 4.0. Does the site have the potential to reduce flooding and stream erosion?	
S 4.1. Characteristics of plants that reduce the velocity of surface flows during storms: Choose the points appropriate for the description that best fits conditions in the wetland. <i>Stems of plants should be thick enough (usually > ¹/₈</i> <i>in), or dense enough, to remain erect during surface flows.</i> Dense, uncut, rigid plants cover > 90% of the area of the wetland All other conditions points = 0	1
Rating of Site Potential If score is: x_1 = M0 = LRecord the rating on	the first page

S 5.0. Does the landscape have the potential to support the hydrologic function	s of the site?	-
S 5.1. Is more than 25% of the area within 150 ft upslope of wetland in land uses or cov surface runoff?	er that generate excess Yes = 1 No = 0	0
Rating of Landscape Potential If score is: 1 = M x 0 = L	Record the rating on	the first page

S 6.0. Are the hydrologic functions provided by the site valuable to society?	
S 6.1. Distance to the nearest areas downstream that have flooding problems: The sub-basin immediately down-gradient of site has flooding problems that result in damage to human or natural resources (e.g., houses or salmon redds) points = 2 Surface flooding problems are in a sub-basin farther down-gradient points = 1 No flooding problems anywhere downstream points = 0	0
S 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan? Yes = 2 No = 0	0
Total for S 6Add the points in the boxes above	0

Rating of Value If score is: 2-4 = H 1 = M X 0 = L

Record the rating on the first page

NOTES and FIELD OBSERVATIONS:

These guestions apply to wetlands	of all HGM classes.	
HABITAT FUNCTIONS - Indicators that site functions to provide		
H 1.0. Does the site have the potential to provide habitat?		
 H 1.1. Structure of plant community: Indicators are Cowardin classes and str Cowardin plant classes in the wetland. Up to 10 patches may be comb of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add th Aquatic bed Emergent XScrub-shrub (areas where shrubs have > 30% cover) XForested (areas where trees have > 30% cover) If the unit has a Forested class, check if: XThe Forested class has 3 out of 5 strata (canopy, sub-canopy, shrut that each cover 20% within the Forested polygon 	nined for each class to meet the threshold e number of structures checked. 4 structures or more: points = 4 3 structures: points = 2 2 structures: points = 1 1 structure: points = 0	2
H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the w more than 10% of the wetland or ¼ ac to count (<i>see text for descriptio</i> Permanently flooded or inundated XSeasonally flooded or inundated XSaturated only Permanently flowing stream or river in, or adjacent to, the wetlant XSeasonally flowing stream in, or adjacent to, the wetlant Lake Fringe wetland Freshwater tidal wetland	ons of hydroperiods). 4 or more types present: points = 3 3 types present: points = 2 2 types present: points = 1 1 type present: points = 0	2
H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 1 Different patches of the same species can be combined to meet the siz the species. Do not include Eurasian milfoil, reed canarygrass, purp If you counted: > 19 species 5 - 19 species < 5 species	e threshold and you do not have to name	1
H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowar the classes and unvegetated areas (can include open water or mudflat have four or more plant classes or three classes and open water, the re None = 0 points All three diagrams in this row are HIGH = 3points	din plants classes (described in H 1.1), or ts) is high, moderate, low, or none. <i>If you</i>	1

H 1.5. Special habitat features:	
 Check the habitat features that are present in the wetland. The number of checks is the number of points. X Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long). X Standing snags (dbh > 4 in) within the wetland X Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends at least 3.3 ft (1 m) over a stream (or ditch) in, or contiguous with the wetland, for at least 33 ft (10 m) Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet weathered where wood is exposed) 	3
 At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas that are permanently or seasonally inundated <i>(structures for egg-laying by amphibians)</i> Invasive plants cover less than 25% of the wetland area in every stratum of plants (<i>see H 1.1 for list of strata</i>) 	
Total for H 1 Add the points in the boxes above	9

Rating of Site Potential If score is: ____**15-18 = H** ____**7-14 = M** ____**0-6 = L**

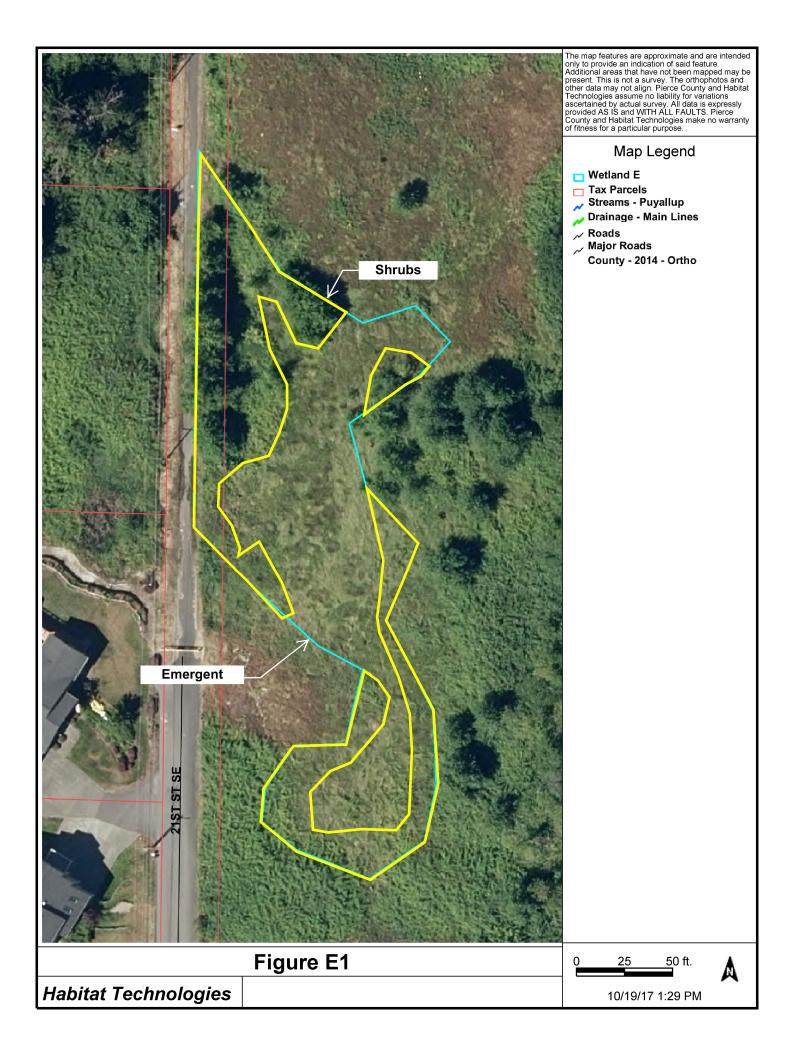
Record the rating on the first page

H 2.1. Accessible habitat (include only habitat that directly abuts wetland unit).		
<i>Calculate:</i> % undisturbed habitat <u>5</u> + [(% moderate and low intensity la	nd uses)/2] <u>3</u> = <u>8</u> %	
If total accessible habitat is:		
> ¹ / ₃ (33.3%) of 1 km Polygon	points = 3	0
20-33% of 1 km Polygon	points = 2	U
10-19% of 1 km Polygon	points = 1	
< 10% of 1 km Polygon	points = 0	
H 2.2. Undisturbed habitat in 1 km Polygon around the wetland.		
Calculate: % undisturbed habitat <u>12</u> + [(% moderate and low intensity la	nd uses)/2] <u>20</u> = <u>32</u> %	
Undisturbed habitat > 50% of Polygon	points = 3	
Undisturbed habitat 10-50% and in 1-3 patches	points = 2	2
Undisturbed habitat 10-50% and > 3 patches	points = 1	-
Undisturbed habitat < 10% of 1 km Polygon	points = 0	
H 2.3. Land use intensity in 1 km Polygon: If		
> 50% of 1 km Polygon is high intensity land use	points = (- 2)	(-2)
≤ 50% of 1 km Polygon is high intensity	points = 0	
Total for H 2 Add th	ne points in the boxes above	0

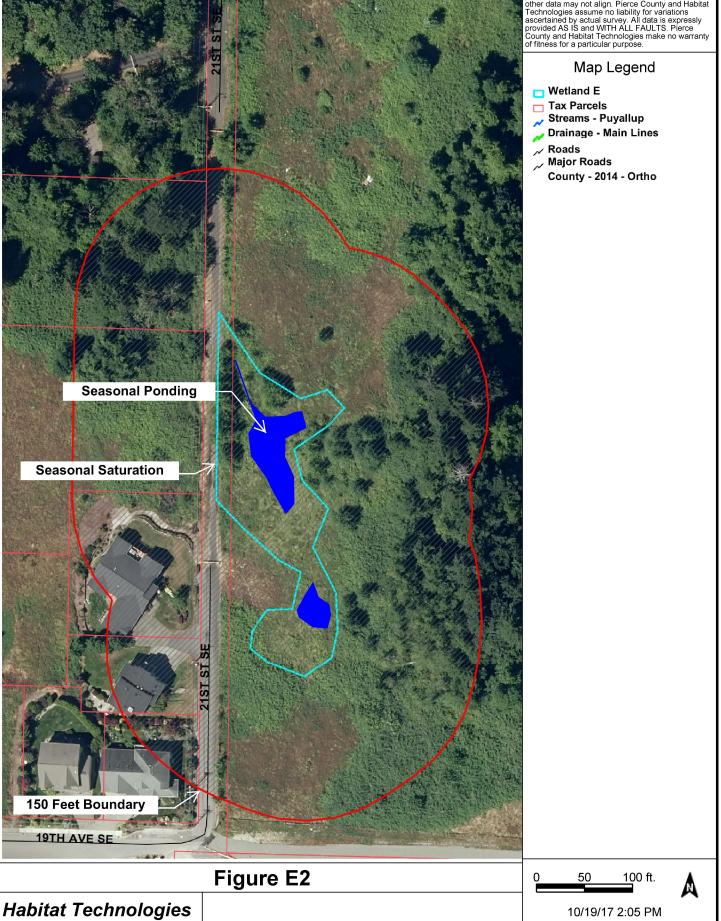
H 3.0. Is the habitat provided by the site valuable to society?	
H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies? Choose only the highest	t score
that applies to the wetland being rated.	
Site meets ANY of the following criteria: poir	nts = 2
 It has 3 or more priority habitats within 100 m (see next page) 	
— It provides habitat for Threatened or Endangered species (any plant or animal on the state or federa	al lists) O
 It is mapped as a location for an individual WDFW priority species 	-
— It is a Wetland of High Conservation Value as determined by the Department of Natural Resources	
— It has been categorized as an important habitat site in a local or regional comprehensive plan, in a	
Shoreline Master Plan, or in a watershed plan	
Site has 1 or 2 priority habitats (listed on next page) within 100 m poir	nts = 1
Site does not meet any of the criteria above poir	nts = 0
Rating of Value If score is: 2 = H 1 = M x_0 = L Record the left score is:	rating on the first page

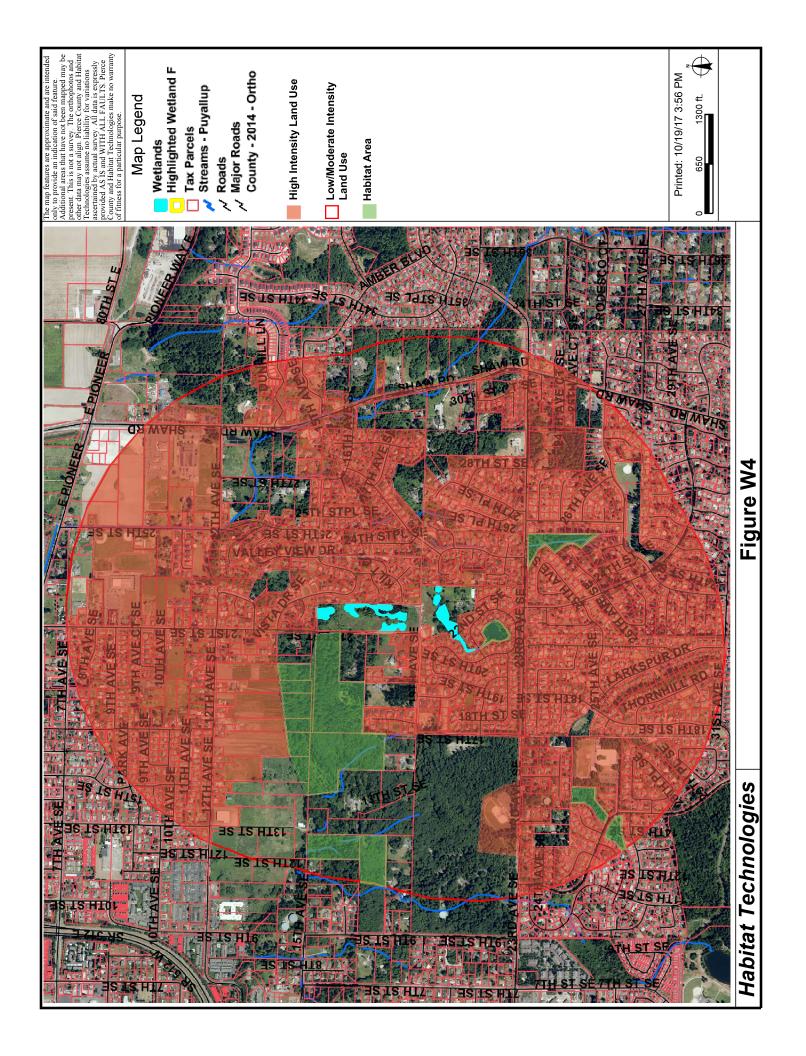
Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

WDFW Priority Habitats

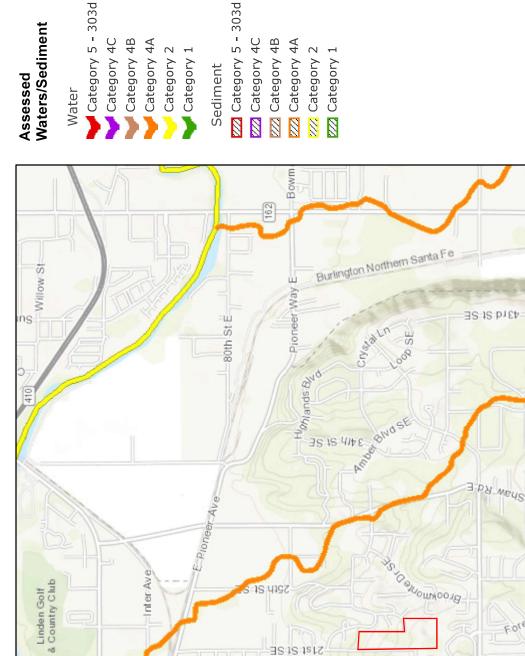

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. <u>http://wdfw.wa.gov/publications/00165/wdfw00165.pdf</u> or access the list from here: <u>http://wdfw.wa.gov/conservation/phs/list/</u>)

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: **NOTE:** This question is independent of the land use between the wetland unit and the priority habitat.


- Aspen Stands: Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
- Old-growth/Mature forests: <u>Old-growth west of Cascade crest</u> Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. <u>Mature forests</u> Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- **Oregon White Oak:** Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- **Instream:** The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- Nearshore: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and
 Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report –
 see web link on previous page*).
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- **Talus:** Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.


Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015



The map features are approximate and are intended only to provide an indication of said feature. Additional areas that have not been mapped may be present. This is not a survey. The orthophotos and other data may not align. Pierce County and Habitat Technologies assume no liability for variations ascertained by actual survey. All data is expressly provided AS 15 and WITH ALL FAULTS. Pierce County and Habitat Technologies make no warranty of fitness for a particular purpose.

LC L
>
(1)
<u>v</u>
<u> </u>
_
0,

3S IS 4121

ISIN SI SE

JS IS HIEL

7th Ave SE

35 15 410L

512

3S1S412

Santa Fe

E-Main-Ave

EN IS HIS

3rd St

E-Pioneer-Ave-

314 SEE

Butington Nottner

2th Ave SE

9th St

Good Samaritan Hosp

Multicare

27th Ave SE

3 eth-St SE

3 18 VSLE

Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, ©

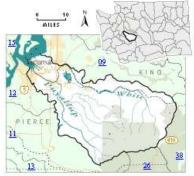
Miles 0.25 0

0.5

TMDL Project Information for WRIA 10 | WA State Department of Ecology

Figure W6

Water Quality Improvement Projects (TMDLs)


<u>Water Quality Improvement</u> > <u>Water Quality Improvement Projects by WRIA</u> > WRIA 10: Puyallup-White

WRIA 10: Puyallup-White

The following table lists overview information for water quality improvement projects (also known as total maximum daily loads, or TMDLs) for this water resource inventory area (<u>WRIA</u>). Please use links (where available) for more information on a project.

Counties

- King County
- <u>Pierce County</u>

Waterbody Name	Pollutant	Status**	TMDL Leads
Clarks Creek Meeker Creek	<u>Dissolved Oxygen</u> Sediment	Approved by EPA Has an implementation plan	<u>Donovan Gray</u> 360-407-6407
	Fecal Coliform	Approved by EPA Has an implementation plan	
Commencement Bay	Dioxin	Approved by EPA	<u>Donovan Gray</u> 360-407-6407
Puyallup River Watershed	Fecal Coliform	Approved by EPA	Donovan Gray
	<u>Multi-parameter</u> Ammonia-N BOD (5-day)	Approved by EPA	360-407-6407
	White River Watershed Upper White:	Approved by EPA	
	 Sediment Temperature Lower White pH 	Under Development	
<u>South Prairie Creek</u> Tributary: Wilkeson/Gale Creek	Fecal Coliform Temperature	Approved by EPA Has an implementation plan	<u>Donovan Gray</u> 360-407-6407

** Status will be listed as one of the following: Approved by EPA, Under Development or Implementation

For more information about WRIA 10:

- <u>Waterbodies in WRIA 10</u> using the Water Quality Assessment Query Tool
- Watershed Information for WRIA 10

* The Department of Ecology and other state resource agencies frequently use a system of 62 "Water Resource Inventory Areas" or "WRIAs" to refer to the state's major watershed basins.

Back to top of page

Last updated October 2016

Feedback?

RATING SUMMARY – Western Washington

 Name of wetland (or ID #): Sunset Pointe
 Date of site visit: 11 OCT 2017

 Rated by
 Habitat Technologies
 Trained by Ecology? x Yes No Date of training 2014

 HGM Class used for rating
 Slope
 Wetland has multiple HGM classes? Y x N

NOTE: Form is not complete without the figures requested (figures can be combined). Source of base aerial photo/map Pierce County GIS

OVERALL WETLAND CATEGORY _ 4 (based on functions ____ or special characteristics ____)

1. Category of wetland based on FUNCTIONS

Category I – Total score = 23 - 27

Category II – Total score = 20 - 22

____Category III – Total score = 16 - 19

X Category IV – Total score = 9 - 15

FUNCTION		mprov Iter Q	-	Н	ydrolo	gic		Habit	at	
					Circle t	he ap	oropr	iate ra	atings	
Site Potential	Н	Μ	L	Н	М	L	Н	Μ	L	
Landscape Potential	н	Μ	L	Н	Μ	Г	Н	Μ	L	
Value	н	Μ	L	н	Μ	L	н	М	L	тоти
Score Based on Ratings		5			5			3		13

Score for each function based on three ratings (order of ratings is not important) 9 = H,H,H 8 = H,H,M

7 = H,H,L 7 = H,M,M 6 = H,M,L 6 = M,M,M 5 = H,L,L 5 = M,M,L4 = M,L,L

3 = L,L,L

AL

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CATEGORY	
Estuarine	I II	
Wetland of High Conservation Value	I	
Bog	I	
Mature Forest	I	
Old Growth Forest	I	
Coastal Lagoon	Ι	II
Interdunal	I II	III IV
None of the above	x	

Maps and figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	N/A
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	V

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	N/A
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including polygons for accessible habitat and undisturbed habitat	H 2.1, H 2.2, H 2.3	
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	v

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	N/A
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	Н 2.1, Н 2.2, Н 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	V

Slope Wetlands

To answer questions:	Figure #
H 1.1, H 1.4	E1
H 1.2	E2
S 1.3	E1
S 4.1	
	E1
S 2.1, S 5.1	E2
H 2.1, H 2.2, H 2.3	
	W4
S 3.1, S 3.2	W5
S 3.3	W6
	H 1.1, H 1.4 H 1.2 S 1.3 S 4.1 S 2.1, S 5.1 H 2.1, H 2.2, H 2.3 S 3.1, S 3.2

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides except during floods?

NO – go to 2

YES – the wetland class is **Tidal Fringe** – go to 1.1

1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?

NO – Saltwater Tidal Fringe (Estuarine) If your wetland can be classified as a Freshwater Tidal Fringe use the forms for **Riverine** wetlands. If it is Saltwater Tidal Fringe it is an **Estuarine** wetland and is not scored. This method **cannot** be used to score functions for estuarine wetlands.

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

YES – The wetland class is **Flats** NO – go to 3 *If your wetland can be classified as a Flats wetland, use the form for Depressional wetlands.*

3. Does the entire wetland unit **meet all** of the following criteria? ____The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size; ____At least 30% of the open water area is deeper than 6.6 ft (2 m).

NO – go to 4

YES – The wetland class is **Lake Fringe** (Lacustrine Fringe)

- 4. Does the entire wetland unit **meet all** of the following criteria?
 - X The wetland is on a slope (*slope can be very gradual*),
 - **x** The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks,
 - **X** The water leaves the wetland **without being impounded**.

NO - go to 5

YES – The wetland class is **Slope**

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

- 5. Does the entire wetland unit **meet all** of the following criteria?
 - The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river.
 - ____The overbank flooding occurs at least once every 2 years.

YES – Freshwater Tidal Fringe

Wetland name or number <u>E</u>

NO - go to 6YES - The wetland class is RiverineNOTE: The Riverine unit can contain depressions that are filled with water when the river is notflooding

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.*

NO – go to 7

YES – The wetland class is Depressional

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

NO – go to 8

YES – The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit	HGM class to
being rated	use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

S 1.0. Does the site have the potential to improve water quality?		
S 1.1. Characteristics of the average slope of the wetland: (a 1% slope has a 1 ft v 100 ft of horizontal distance)	vertical drop in elevation for every	
Slope is 1% or less	points = 3	0
Slope is > 1%-2%	points = 2	0
Slope is > 2%-5%	points = 1	
Slope is greater than 5%	points = 0	
S 1.2. <u>The soil 2 in below the surface (or duff layer)</u> is true clay or true organic <i>(us</i>	e NRCS definitions): Yes = 3 No = 0	0
 S 1.3. Characteristics of the plants in the wetland that trap sediments and polluta Choose the points appropriate for the description that best fits the plants i have trouble seeing the soil surface (>75% cover), and uncut means not gra than 6 in. Dense, uncut, herbaceous plants > 90% of the wetland area Dense, uncut, herbaceous plants > ½ of area Dense, woody, plants > ½ of area Dense, uncut, herbaceous plants > ¼ of area Does not meet any of the criteria above for plants 	n the wetland. Dense means you	3
Total for S 1	Add the points in the boxes above	3
Rating of Site Potential If score is: $12 = H$ 6-11 = M _X0-5 = L S 2.0. Does the landscape have the potential to support the water quality	Record the rating on t function of the site?	he first p
S 2.1. Is > 10% of the area within 150 ft on the uphill side of the wetland in land u	ses that generate pollutants? Yes = 1 No = 0	1
	listed in question S 2.1?	0

Rating of Landscape Potential If score is: <u>X</u>1-2 = M ____0 = L

Other sources

Total for S 2

Add the points in the boxes above 1 Record the rating on the first page

Yes = 1 No = 0

S 3.0. Is the water quality improvement provided by the site valuable to society?	
S 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the 303(d) list? Yes = 1 No = 0	0
S 3.2. Is the wetland in a basin or sub-basin where water quality is an issue? At least one aquatic resource in the basin is on the 303(d) list. Yes = 1 No = 0	0
S 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality? Answer YES if there is a TMDL for the basin in which unit is found. Yes = 2 No = 0	1
Total for S 3Add the points in the boxes above	1

Rating of Value If score is: 2-4 = H X 1 = M 0 = L

Record the rating on the first page

SLOPE WETLANDS	
Hydrologic Functions - Indicators that the site functions to reduce flooding and stream eros	ion
S 4.0. Does the site have the potential to reduce flooding and stream erosion?	
S 4.1. Characteristics of plants that reduce the velocity of surface flows during storms: Choose the points appropriate for the description that best fits conditions in the wetland. <i>Stems of plants should be thick enough (usually > ¹/₈</i> <i>in), or dense enough, to remain erect during surface flows.</i> Dense, uncut, rigid plants cover > 90% of the area of the wetland All other conditions points = 0	1
Rating of Site PotentialIf score is: $\underline{X} = M = 0 = L$ Record the rating on	the first page

S 5.0. Does the landscape have the potential to support the hydrologic functions	of the site?	
S 5.1. Is more than 25% of the area within 150 ft upslope of wetland in land uses or cove surface runoff?	r that generate excess Yes = 1 No = 0	0
Rating of Landscape Potential If score is: <u>1</u> = M <u>X</u> 0 = L	Record the rating on t	the first page

S 6.0. Are the hydrologic functions provided by the site valuable to society?	
S 6.1. Distance to the nearest areas downstream that have flooding problems: The sub-basin immediately down-gradient of site has flooding problems that result in damage to human or natural resources (e.g., houses or salmon redds) points = 2 Surface flooding problems are in a sub-basin farther down-gradient points = 1 No flooding problems anywhere downstream points = 0	1
S 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan? Yes = 2 No = 0	0
Total for S 6Add the points in the boxes above	1

Rating of Value If score is: ___2-4 = H ___1 = M ___0 = L

Record the rating on the first page

NOTES and FIELD OBSERVATIONS:

These questions apply to wetlands	of all HGM classes.	
HABITAT FUNCTIONS - Indicators that site functions to provide H 1.0. Does the site have the potential to provide habitat?	e important habitat	
· · ·		
 H 1.1. Structure of plant community: Indicators are Cowardin classes and str Cowardin plant classes in the wetland. Up to 10 patches may be comb of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add th Aquatic bed X Emergent X Scrub-shrub (areas where shrubs have > 30% cover) Forested (areas where trees have > 30% cover) If the unit has a Forested class, check if: The Forested class has 3 out of 5 strata (canopy, sub-canopy, shr 	bined for each class to meet the threshold be number of structures checked. 4 structures or more: points = 4 3 structures: points = 2 2 structures: points = 1 1 structure: points = 0	1
that each cover 20% within the Forested polygon		
H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the w more than 10% of the wetland or ¼ ac to count (<i>see text for description</i> Permanently flooded or inundated X Seasonally flooded or inundated X Saturated only Permanently flowing stream or river in, or adjacent to, the wetlan Seasonally flowing stream in, or adjacent to, the wetland Lake Fringe wetland Freshwater tidal wetland	ons of hydroperiods). 4 or more types present: points = 3 3 types present: points = 2 2 types present: points = 1 1 type present: points = 0	1
H 1.3. Richness of plant species		
Count the number of plant species in the wetland that cover at least 1 Different patches of the same species can be combined to meet the siz the species. Do not include Eurasian milfoil, reed canarygrass, purp If you counted: > 19 species 5 - 19 species < 5 species	e threshold and you do not have to name	1
H 1.4. Interspersion of habitats	points - 0	
All three diagrams All three diagrams in this row are HIGH = 3points	ts) is high, moderate, low, or none. <i>If you</i>	1

1

Rating of Site Potential If score is: ___15-18 = H ___7-14 = M __X 0-6 = L

Record the rating on the first page

H 2.0. Does the landscape have the potential to support the habitat functions of the site?	-	
H 2.1. Accessible habitat (include only habitat that directly abuts wetland unit).	_	
<i>Calculate:</i> % undisturbed habitat <u>2</u> + [(% moderate and low intensity land uses)/2] <u>3</u> = <u>5</u> %	
If total accessible habitat is:		
> ¹ / ₃ (33.3%) of 1 km Polygon	points = 3	0
20-33% of 1 km Polygon	points = 2	Ũ
10-19% of 1 km Polygon	points = 1	
< 10% of 1 km Polygon	points = 0	
1 2.2. Undisturbed habitat in 1 km Polygon around the wetland.		
Calculate: % undisturbed habitat <u>12</u> + [(% moderate and low intensity land uses)/2] <u>20</u> = <u>32</u> %	
Undisturbed habitat > 50% of Polygon	points = 3	
Undisturbed habitat 10-50% and in 1-3 patches	points = 2	2
Undisturbed habitat 10-50% and > 3 patches	points = 1	2
Undisturbed habitat < 10% of 1 km Polygon	points = 0	
H 2.3. Land use intensity in 1 km Polygon: If		
> 50% of 1 km Polygon is high intensity land use	points = (- 2)	(-2)
≤ 50% of 1 km Polygon is high intensity	points = 0	
Total for H 2 Add the points in	n the boxes above	0
Rating of Landscape Potential If score is:4-6 = H1-3 = MX < 1 = LR	ecord the rating on th	ne first pag

H 3.0. Is the habitat provided by the site valuable to society?	
H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies? <i>Choose only the highest score</i>	
that applies to the wetland being rated.	
Site meets ANY of the following criteria: points = 2	
 It has 3 or more priority habitats within 100 m (see next page) 	
— It provides habitat for Threatened or Endangered species (any plant or animal on the state or federal lists)	0
 It is mapped as a location for an individual WDFW priority species 	
 It is a Wetland of High Conservation Value as determined by the Department of Natural Resources 	
— It has been categorized as an important habitat site in a local or regional comprehensive plan, in a	
Shoreline Master Plan, or in a watershed plan	
Site has 1 or 2 priority habitats (listed on next page) within 100 m points = 1	
Site does not meet any of the criteria above points = 0	
Rating of Value If score is: 2 = H 1 = M X 0 = L Record the rating on	the first page

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

WDFW Priority Habitats

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. <u>http://wdfw.wa.gov/publications/00165/wdfw00165.pdf</u> or access the list from here: <u>http://wdfw.wa.gov/conservation/phs/list/</u>)

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: **NOTE:** This question is independent of the land use between the wetland unit and the priority habitat.

- Aspen Stands: Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
- Old-growth/Mature forests: <u>Old-growth west of Cascade crest</u> Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. <u>Mature forests</u> Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- **Oregon White Oak:** Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- **Instream:** The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- Nearshore: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and
 Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report –
 see web link on previous page*).
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- **Talus:** Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

HABITAT TECHNOLOGIES

May 17, 2023

CES NW Inc. Mr. Craig Deaver 429 29th Street NE, Suite D Puyallup, Washington 98372 e-mail cdeaver@cesnwinc.com

RE: Sunset Pointe Residential Community (P-18-0040) City of Puyallup, Pierce County, Washington

Dear Mr. Deaver,

As outlined in the revised report by Habitat Technologies dated September 21, 2018, the excavated ponds within the southern portion of the project site were defined as intentionally created features. As viewed in the 1970 historical aerial photo, no ponds or drainage corridor were evident in the southern portion of the project site (See Photos). The easternmost pond (Pond C) only become evident in and after the 1985 aerial photo. In the 1995 aerial photo along with subsequent photos, two (2) additional excavated ponds are present (Ponds A and B) southwesterly of Pond C. The 1998 aerial color photo has the best resolution and clearly shows all three ponds.

As such, it is the opinion of Habitat Technologies that all three ponds in the southern portion of the project site were created within an area that did <u>not</u> exhibit wetland or drainage corridor characteristics prior to excavation and that these areas meet the City of Puyallup definition of an "intentionally created wetland or surface water systems."

(21.06.210.75) "Intentionally created wetland or surface water systems" means wetlands or surface water systems created through purposeful human action, such as irrigation and drainage ditches, grass-lined swales, canals, farm ponds, detention/retention facilities, and landscape/ornamental amenities. Purposeful creation must be demonstrated through documentation, photographs, statements and/or other evidence. Intentionally created wetlands or surface water systems do not include areas or systems created as mitigation.

Sincerely, Bryan W Peck

Bryan W. Peck Senior Wetland Biologist Thomas D D emingThomas D. Deming, SPWS Habitat Technologies

wetlands, streams, fisheries, wildlife – mitigation and permitting solutions P.O. Box 1088, Puyallup, Washington 98371 253-845-5119 contact@habitattechnologies.net

A VETERAN OWNED SMALL BUSINESS COOPERATIVE

PHOTOS

Photo 1: 1970 Aerial photo with no excavated ponds present.

Photo 2: 1985 Aerial photo with eastern most pond no excavated ponds present.

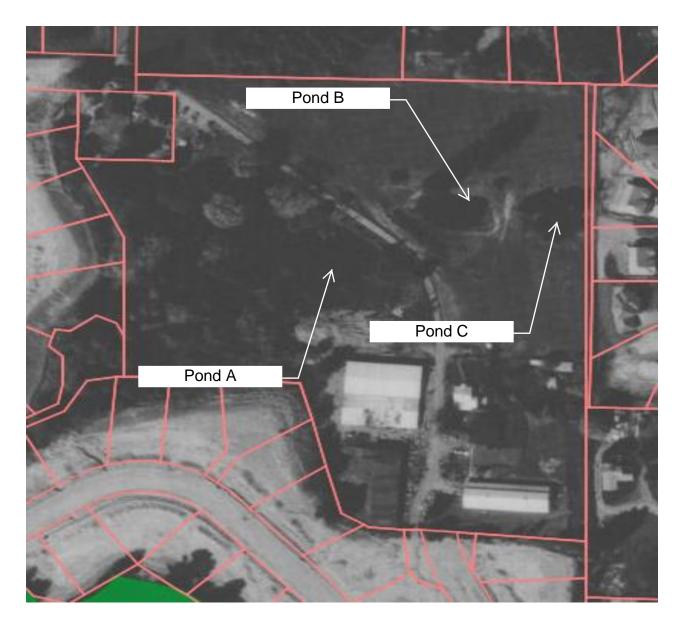


Photo 3: 1995 Aerial photo with three (3) excavated ponds present.

Photo 4: 1998 Aerial photo (color) with three (3) excavated ponds present.

APPENDIX E

Maintenance Schedules

Catch Basins Checklist

			Da	ate				
Frequency	Drainage System Feature	~	~	~	~	Problem	Conditions to Check For	Conditions That Should Exist
A	General					"Dump no pollutants " Stencil or stamp not visible	Stencil or stamp should be visible and easily read	Warning signs (e.g., "Dump No Waste- Drains to Stream") shall be painted or embossed on or adjacent to all storm drain inlets.
M,S	General					Trash & Debris	Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the basin by more than 10%.	No trash or debris located immediately in front of catch basin or on grate opening.
м	General					Trash & Debris	Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the catch basin.
м	General					Trash & Debris	Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.
м	General					Trash & Debris	Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within the catch basin.
М	General					Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin
A	General					Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch (Intent is to make sure no material is running into basin).	Top slab is free of holes and cracks.

Catch Basins Checklist (Continued)

			Da	ate				
Frequency	Drainage System Feature	~	~	~	~	Problem	Conditions to Check For	Conditions That Should Exist
A	General					Structure Damage to Frame and/or Top Slab	Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached.	Frame is sitting flush on the riser rings or top slab and firmly attached.
А	General					Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.
A	General					Fractures or Cracks in Basin Walls/ Bottom	Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	Pipe is re-grouted and secure at basin wall.
A	General					Settlement / Misalignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.
М	General					Vegetation	Vegetation growing across and blocking more than 10% of the basin opening.	No vegetation blocking opening to basin.
м	General					Vegetation	Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.	No vegetation or root growth present.
м	General					Contamination and Pollution	Any evidence of oil, gasoline, contaminants, or other pollutants (Coordinate removal/cleanup with local water quality response agency).	No contaminants or pollutants present.
A	Catch Basin Cover					Cover Not in Place	Cover is missing or only partially in place.	Any open catch basin requires maintenance. Catch basin cover is closed
A	Catch Basin Cover					Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.
A	Catch Basin Cover					Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. (Intent is to keep cover from sealing off access to maintenance.)	Cover can be removed by one maintenance person.

Catch Basins Checklist (Continued)

			Da	ate				
Frequency	Drainage System Feature	~	~	~	~	Problem	Conditions to Check For	Conditions That Should Exist
A	Ladder					Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, not securely attached to basin wall, misalignment, rust, cracks, or sharp edges.	Ladder meets design standards and allows maintenance person safe access.
	Grates					Grate opening Unsafe	Grate with opening wider than 7/8 inch.	Grate opening meets design standards.
M,S	Grates					Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
А	Grates					Damaged or Missing.	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

<u>Key</u>:

- (M) Monthly from November through April.(A) Once in late summer (preferable September)(S) After any major storm (use 1-inch in 24 hours as a guideline).

Debris Barriers (e.g. Trash Racks) Checklist

			Da	ate				
Frequency	Drainage System Feature	~	~	~	~	Problem	Conditions to Check For	Conditions That Should Exist
M,S	General					Trash and Debris	Trash or debris that is plugging more than 20% of the openings in the barrier.	Barrier cleared to design flow capacity.
A	General					Damaged/Missing Bars.	Bars are bent out of shape more than 3 inches.	Bars in place with no bends more than 3/4 inch.
A	General					Damaged/Missing Bars.	Bars are missing or entire barrier missing.	Bars in place according to design.
A	General					Damaged/Missing Bars.	Bars are loose and rust is causing 50% deterioration to any part of barrier.	Barrier replaced or repaired to design standards.
A	General					Inlet/Outlet Pipe	Debris barrier missing or not attached to pipe.	Barrier firmly attached to pipe.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

<u>Key</u>:

- (M) Monthly from November through April.
- (A) Once in late summer (preferable September)(S) After any major storm (use 1-inch in 24 hours as a guideline).

Energy Dissipaters Checklist

			Da	ite									
Frequency	Drainage System Feature	~	~	✓ ✓	Problem	Conditions to Check For	Conditions That Should Exist						
External:	External:												
м	Rock Pad				Missing or Moved Rock	Only one layer of rock exists above native soil in area five square feet or larger, or any exposure of native soil.	Rock pad replaced to design standards.						
м	Rock Pad				Erosion	Soil erosion in or adjacent to rock pad.	Rock pad replaced to design standards.						
м	Dispersion Trench				Pipe Plugged with Sediment	Accumulated sediment that exceeds 20% of the design depth.	Pipe cleaned/flushed so that it matches design.						
м	Dispersion Trench				Not Discharging Water Properly	Visual evidence of water discharging at concentrated points along trench (normal condition is a "sheet flow" of water along trench). Intent is to prevent erosion damage.	Trench redesigned or rebuilt to standards.						
М	Dispersion Trench				Perforations Plugged.	Over 1/2 of perforations in pipe are plugged with debris and sediment.	Perforated pipe cleaned or replaced.						
м	Dispersion Trench				Water Flows Out Top of "Distributor" Catch Basin.	Maintenance person observes or receives credible report of water flowing out during any storm less than the design storm or its causing or appears likely to cause damage.	Facility rebuilt or redesigned to standards.						
м	Dispersion Trench				Receiving Area Over-Saturated	Water in receiving area is causing or has potential of causing landslide problems.	No danger of landslides.						
Internal:													
м	Manhole/ Chamber				Worn or Damaged Post, Baffles, Side of Chamber	Structure dissipating flow deteriorates to 1/2 of original size or any concentrated worn spot exceeding one square foot which would make structure unsound.	Structure replaced to design standards.						
М	Manhole/ Chamber				Trash& Debris	Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the catch basin.						
М	Manhole/ Chamber				Trash& Debris	Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.						
М	Manhole/ Chamber				Trash& Debris	Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within the catch basin.						

Energy Dissipaters Checklist (Continued)

			Da	ate										
Frequency	Drainage System Feature	~	~	~	~	Problem	Conditions to Check For	Conditions That Should Exist						
Internal (Co	nternal (Continued):													
м	Manhole/ Chamber					Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe. There shall be a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin						
A	Manhole/ Chamber					Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch (Intent is to make sure no material is running into basin).	Top slab is free of holes and cracks.						
A	Manhole/ Chamber					Structure Damage to Frame and/or Top Slab	Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached	Frame is sitting flush on the riser rings or top slab and firmly attached.						
A	Manhole/ Chamber					Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.						
A	Manhole/ Chamber					Fractures or Cracks in Basin Walls/ Bottom	Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	Pipe is re-grouted and secure at basin wall.						
A	Manhole/ Chamber					Settlement / Misalignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.						
м	Manhole/ Chamber					Contamination and Pollution	Any evidence of oil, gasoline, contaminants, or other pollutants (Coordinate removal/cleanup with local water quality response agency).	No contaminants or pollutants present.						
A	Catch Basin Cover					Cover Not in Place	Cover is missing or only partially in place.	Any open catch basin requires maintenance. Catch basin cover is closed						

Energy Dissipaters Checklist (Continued)

			Da	ate								
Frequency	Drainage System Feature	~	~	~	~	Problem	Conditions to Check For	Conditions That Should Exist				
Internal (Co	Internal (Continued):											
A	Catch Basin Cover					Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.				
A	Catch Basin Cover					Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. (Intent is to keep cover from sealing off access to maintenance.)	Cover can be removed by one maintenance person.				

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

<u>Key</u>:

- (M) Monthly from November through April.
 (A) Once in late summer (preferable September)
 (S) After any major storm (use 1-inch in 24 hours as a guideline).

Stormfilter[®] Cast-In-Place, Precast, Linear Stormfilter Units and Catch Basin Units Checklist

			Da	ate				
Frequency	Drainage System Feature	✓	~	✓	~	Problem	Conditions to Check For	Conditions That Should Exist
м	Media filter vault					Sediment accumulation on top of filter cartridges	Sediment accumulation exceeds 0.25 inches on top of cartridges.	No sediment deposits on top of cartridges. Sediment on cartridges likely indicates that cartridges are plugged and require maintenance.
м	Media filter vault					Sediment accumulation in vault	Sediment accumulation in vault exceeds 2 inches. Look for other indicators of clogged cartridges or overflow.	Sediment in vault should be removed. Cartridges should be checked and replaced or serviced as needed.
м	Media filter vault					Trash and floatable debris accumulation	Trash and floatable debris accumulation in vault.	No trash or other floatable debris in filter vault.
s	Media filter vault					Filter cartridges submerged	Filter vault does not drain within 24 hours following storm. Look for evidence of submergence due to backwater or excessive hydrocarbon loading.	Filter media checked and replaced if needed. If cartridges are plugged with oil additional treatment or source control BMP may be needed.
м	Forebay					Sediment accumulation	Sediment accumulation exceeds 6 inches or 1/3 of available sump.	Sediment accumulation less than 6 inches.
М	Forebay					Trash and floatable debris accumulation	Trash and/or floatable debris accumulation.	Trash and/or floatable debris should be removed during monthly inspections. Significant oil accumulation may indicate the need for additional treatment or source control.
A	Below ground vault					Access cover Damaged/ Not working	One maintenance person cannot remove lid after applying 80 pounds of lift, corrosion of deformation of cover.	Cover repaired to proper working specifications or replaced.
A	Below ground vault					Damaged Pipes	Any part of the pipes are crushed or damaged due to corrosion and/or settlement.	Pipe repaired or replaced.
A	Below ground vault					Vault structure has cracks in wall, bottom, and damage to frame and/or top slab.	Cracks wider than ½ inch or evidence of soil particles entering the structure through the cracks, or maintenance/inspection personnel determine that the vault is not structurally sound.	Vault repaired or replaced so that vaults meets design specifications and is structurally sound.
A	Below ground vault					Vault structure has cracks in wall, bottom, and damage to frame and/or top slab.	Cracks wider than 0.5 inch at the joint of any inlet/outlet pipe or evidence of soil particles entering through the cracks	Vault repaired so that no cracks exist wider than 0.25 inch at the joint of inlet/outlet pipe.

Stormfilter[®] Cast-In-Place, Precast, Linear Stormfilter Units and Catch Basin Units Checklist (Continued)

			Da	ate				
Frequency	Drainage System Feature	~	~	✓	✓	Problem	Conditions to Check For	Conditions That Should Exist
A	Below ground vault					Baffles	Baffles corroding, cracking, warping, and/or showing signs of failure as determined by maintenance/inspection person.	Baffles repaired or replaced to design specifications.
A	Below ground vault					Ladder rungs unsafe	Maintenance person judges that ladder is unsafe due to missing rungs, misalignment, rust, or cracks. Ladder must be fixed or secured immediately.	Ladder meets design standards and allows maintenance persons safe access.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

<u>Key</u>:

- (M) Monthly from November through April.
- (A) Once in late summer (preferable September)
- (S) After any major storm (use 1-inch in 24 hours as a guideline).

3.19 Fencing/Shrubbery Screen/Other Landscaping

Fencing and shrubbery screen are provided around open stormwater management facilities to limit unauthorized access for safety purposes and to minimize the visual impact of the facility.

Fencing/Shrubbery Screen/Other Landscaping Checklist

			Da	te				
Frequency	Drainage System Feature	✓	✓	✓	✓	Problem	Conditions to Check For	Conditions That Should Exist
м	General					Missing or broken parts/dead shrubbery	Any defect in the fence or screen that permits easy entry to a facility.	Fence is mended or shrubs replaced to form a solid barrier to entry.
M,S	General					Erosion	Erosion has resulted in an opening under a fence that allows entry by people or pets.	Replace soil under fence so that no opening exceeds 4 inches in height.
М	General					Unruly vegetation	Shrubbery is growing out of control or is infested with weeds.	Shrubbery is trimmed and weeded to provide appealing aesthetics. Do not use chemicals to control weeds.
A	Fences					Damaged parts	Posts out of plumb more than 6 inches.	Posts plumb to within 1-1/2 inches of plumb.
A	Fences					Damaged parts	Top rails bent more than 6 inches.	Top rail free of bends greater than 1 inch.
A	Fences					Damaged parts	Any part of fence (including posts, top rails, and fabric) more than 1 foot out of design alignment.	Fence is aligned and meets design standards.
A	Fences					Damaged parts	Missing or loose tension wire.	Tension wire in place and holding fabric.
A	Fences					Damaged parts	Missing or loose barbed wire that is sagging more than 2-1/2 inches between posts.	Barbed wire in place with less than 3/4-inch sag between posts.
A	Fences					Damaged parts	Extension arm missing, broken, or bent out of shape more than 1-1/2 inches.	Extension arm in place with no bends larger than 3/4 inch.
A	Fences					Deteriorated paint or protective coating	Part or parts that have a rusting or scaling condition that has affected structural adequacy.	Structurally adequate posts or parts with a uniform protective coating.
М	Fences					Openings in fabric	Openings in fabric are such that an 8-inch diameter ball could fit through.	No openings in fabric.

If you are unsure whether a problem exists, please contact a Professional Engineer.

<u>Key</u>:

(M) Monthly from November through April.

(A) Once in late summer (preferable September)

(S) After any major storm (use 1-inch in 24 hours as a guideline).

3.21 Grounds (Landscaping)

Landscaping is an essential component of stormwater management. Bare soil areas generate higher levels of stormwater runoff and sedimentation in stormwater facilities. The following check list gives some general guidance for landscape management.

Grounds (Landscaping) Checklist

			D	ate				
Frequency	Drainage System Feature	✓	~	✓	✓	Problem	Conditions to Check For	Conditions That Should Exist
М	General					Weeds (nonpoisonous)	Weeds growing in more than 20% of the landscaped area (trees and shrubs only).	Weeds present in less than 5% of the landscaped area.
М	General					Insect hazard	Any presence of poison ivy or other poisonous vegetation or insect nests.	No poisonous vegetation or insect nests present in landscaped area.
M,S	General					Trash or litter	See Ponds Checklist.	See Ponds Checklist.
M,S	General					Erosion of Ground Surface	Noticeable rills are seen in landscaped areas.	Causes of erosion are identified and steps taken to slow down/spread out the water. Eroded areas are filled, contoured, and seeded.
A	Trees and shrubs					Damage	Limbs or parts of trees or shrubs that are split or broken which affect more than 25% of the total foliage of the tree or shrub.	Trim trees/shrubs to restore shape. Replace trees/shrubs with severe damage.
М	Trees and shrubs					Damage	Trees or shrubs that have been blown down or knocked over.	Replant tree, inspecting for injury to stem or roots. Replace if severely damaged.
A	Trees and shrubs					Damage	Trees or shrubs which are not adequately supported or are leaning over, causing exposure of the roots.	Place stakes and rubber- coated ties around young trees/shrubs for support.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

Key:

- (M) Monthly from November through April.
- (A) Once in late summer (preferable September)
- (S) After any major storm (use 1-inch in 24 hours as a guideline).

Field Inlet Checklist

			Da	ate				
Frequency	Drainage System Feature	✓	✓	✓	✓	Problem	Conditions to Check For	Conditions That Should Exist
M,S	General					Trash & Debris	Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the basin by more than 10%.	No Trash or debris located immediately in front of catch basin or on grate opening.
M,S	General					Trash & Debris	Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the catch basin.
M,S	General					Trash & Debris	Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.
M,S	General					Trash & Debris	Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within the catch basin.
М	General					Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin.
м	General					Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch. (Intent is to make sure no material is running into basin).	Top slab is free of holes and cracks.
М	General	c				Structure Damage to Frame and/or Top Slab	Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached.	Frame is sitting flush on the riser rings or top slab and firmly attached.
А	General					Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.
A	General					Fractures or Cracks in Basin Walls/ Bottom	Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	Pipe is regrouted and secure at basin wall.
М	General					Settlement/ Misalignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.

Field Inlet Checklist (Continued)

			Da	ate				
Frequency	Drainage System Feature	~	~	~	~	Problem	Conditions to Check For	Conditions That Should Exist
М	General					Vegetation	Vegetation growing across and blocking more than 10% of the basin opening.	No vegetation blocking opening to basin.
М	General					Vegetation	Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.	No vegetation or root growth present.
М	General					Contaminants and Pollution	Any evidence of oil, gasoline, contaminants or other pollutants. (Coordinate removal/cleanup with local water quality response agency).	No contaminants or pollutants present.
М	Field Inlet Cover					Cover Not in Place	Cover is missing or only partially in place. Any open catch basin requires maintenance.	Catch basin cover is closed.
М	Field Inlet Cover					Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.
М	Field Inlet Cover					Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure (Intent is to keep cover from sealing off access to maintenance).	Cover can be removed by one maintenance person.
A	Ladder					Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, not securely attached to basin wall, misalignment, rust, cracks, or sharp edges.	Ladder meets design standards and allows maintenance person safe access.
М	Metal Grates (If Applicable)					Grate opening Unsafe	Grate with opening wider than 7/8 inch.	Grate opening meets design standards.
M,S	Metal Grates (If Applicable)					Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
М	Metal Grates (If Applicable)					Damaged or Missing.	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

Key:

(A) Annual (March or April preferred)
(M) Monthly (see schedule)
(S) After major storms (use 1-inch in 24 hours as a guideline).