C.E.S. NW Inc. Civil Engineering & Surveying

PRELIMINARY STORM DRAINAGE REPORT FOR SUNSET POINTE

REVISED SEPTEMBER 2024 FEBRUARY 2018

PREPARED FOR:

PETER CHEN & BETH LIU

P.O. Box 31989

PUYALLUP, WA

PREPARED BY:

FRED BROWN, PE

C.E.S. NW, INC.
429 29TH STREET NE, SUITE D
PUYALLUP, WA 98372
(253) 848-4282

PRELIMINARY STORM DRAINAGE REPORT

FOR

Sunset Pointe Puyallup, Washington

Revised September 2024 February 2018

> Prepared for: Peter Chen & Beth Liu P.O. Box 31989 Puyallup, WA

> > Prepared by: Fred Brown, PE

Approved By: Craig Deaver, Principal

REPORT #04148.7

This analysis is based on data and records either supplied to, or obtained by, C.E.S. NW, Inc. These documents are referenced within the text of the analysis. The analysis has been prepared utilizing procedures and practices within the standard accepted practices of the industry.

TABLE OF CONTENTS

		PAGE
STORM DRA	INAGE	1
1. Projec	T OVERVIEW	1
	NG CONDITIONS SUMMARY	
	TE ANALYSIS REPORT	
4. PERMA	NENT STORMWATER CONTROL PLAN	5
5. Discus	SION OF MINIMUM REQUIREMENTS	10
Appendix A	General Exhibits	
11	Vicinity Map	A-1
	Soils Map	
	Soils Description	A-3
Appendix B	Basin Exhibits	
	Existing Overall Basins	B-1
	Existing State Highway Basin	B-2
	Existing Shaw Basin	B-3
	Developed State Highway Basin	B-4
	Developed Shaw Basin	
	FIRM Panel 53053C0342E	B-6
	Downstream Maps	B-7
Appendix C	Computer Printouts	
	WWHM Modeling Results	
Appendix D	Reports	
	Geotechnical Engineer's Report	D-1
	Groundwater Monitoring	D-2
	Critical Areas Assessment	D-3
	Habitat Letter	D-4
Appendix E	Maintenance Schedules	

STORM DRAINAGE

1. Project Overview

This preliminary report accompanies the preliminary plat plans prepared for the Sunset Pointe project which are submitted to the City of Puyallup for review and approval. This document provides site information, and the analysis used to prepare the preliminary storm drainage design. The *Washington State Department of Ecology Stormwater Management Manual for Western Washington, 2019* (Manual), as adopted by Resolution 2464 by the City of Puyallup, June 20, 2022, establishes the methodology and design criteria used for this project.

The Sunset Pointe project proposes an 18-lot plat on parcels 0420353027 and 0420357011, with an area totaling approximately 9.18 acres. An offsite parcel, 0420353009, is proposed as a natural vegetation area for full dispersion of surfaces from this project. The existing site address is 2301 23rd Street SE, Puyallup WA, and a Vicinity Map has been included in Appendix A of this report. A project summary is as follows:

Permit Applied for – Major Plat - Preliminary

Address – 2301 23rd Street SE Puyallup, WA 98372

Parcel Numbers – 0420353027 & 0420357011

Legal description – Parcel C: That portion of the southwest quarter of Section 35, Township 20 North, Range 4 East, W.M., more particularly described as follows:

Commencing at the southwest corner of the southwest quarter of said Section 35, Thence east along the south line thereof a distance of 1,974.60 feet; Thence North 01°06'54" East 615.92 feet to the northeast corner of Lot 10, Stonegate, as shown on the Plat thereof recorded under Auditor's No. 9507200366 and to the true Point of Beginning; Thence North 87°01'41" West 292.30 fee; Thence North 61°33'32" West 44.88 feet; Thence North 15°57'28" West 243.13 feet; Thence North 00°48'44" West 226.43 feet; Thence North 27°29'55" West 143.38 feet; Thence South 88°56'26" East 145.92 feet; Thence North 28°41'48" East 80.82 feet; Thence North 51°21'11" west 132.18 feet to a point on the north line of the south half of the southwest quarter of said Section 35; Thence South 89°22'06" East along said line a distance of 605.46 feet to the northwest corner of Lot 2, Short Plat No. 8105200168; Thence south along the west

line of said Short Plat 750.69 feet, more or less, to the true Point of Beginning. (also known as revised Parcel D of Boundary Line Adjustment No. 9507170491).

Parcel D: That portion of Lot 2, as shown on Short Plat No. 8105200168, in Puyallup, Pierce County Washington, Described as follows: Beginning at the northwest corner of Lot 1 of said short plat; Thence along the north line of said Lot 1, North 89°49'07" East 4.70 fee; Thence North 00°22'05" West 78 feet; Thence 00°49'54" West 128.70 feet; Thence 00°32'11" West 325.48 feet to the north line of said Lot 2; Thence along the said North line thereof North 89°29'52" West 11.33 feet to the Point of Beginning.

Situated in the County of Pierce, State of Washington.

The site is accessed from two public roadways 23rd Street Place SE from the south and 19th Avenue SE from the west. According to Figure 2.2 of Volume I in the SMMWW, the project must evaluate all minimum requirements, see Section 5 of this report for a detailed discussion of each minimum requirement. As mapped by the City of Puyallup, the project exists within two drainage basins: Shaw Road basin to the south and State Highway basin to the north. These are further delineated into sub-basins for analyzing the dispersion trench for the proposed roadway, sizing full dispersion BMPs for the State Highway Basin, and stream man-made ponds located within the central portion of the site for the hydroperiod analysis calculations.

2. Existing Conditions Summary

The existing parcels are located northeast of the Plat of Stonegate and west of Kodiak Estates Division III. The site is accessed from 19th Ave. SE from the east and 23rd St. Pl. SE from the south. The existing parcels are approximately 9.18 acres and are irregular in shape. Currently, the site is within the Single-Family Residential (RS-10) zoning district. There are three interconnected ponds which bisect the site. These ponds are connected to Tract C and E of the plat of Stonegate and they are drained by an existing 12" culvert pipe which outfalls to the closed conveyance system within Kodiak Estates Division III. The outlet for Pond 'C' will be upgraded with a new type 2 48-inch structure with a birdcage prior to being conveyed through Kodiak Estates Division III (see P2). An existing 10 feet wide gravel road crosses the site from the northwest corner to the south of the property line, which will be improved to 10 feet wide surface with two-foot gravel shoulders

in a fifteen-foot right-of-way along with this project. There were five existing structures onsite, which helped form the onsite ponds, the buildings were demolished in approximately 2017. The remaining area of the site consists of pasture areas and a mix of native second-growth conifer and deciduous trees primarily around the perimeter of the three connected stream corridor.

The site soils have been mapped as Everett gravelly sandy Loam (13B) and Kitsap silt loam (20B, 20C) as determined by the National Cooperative Soil Survey of Natural Resources Conservation Service (NRCS). These soils are classified as type A and C, respectively. Type A soils have a low runoff potential and Type C soils have a moderate to high erosion potential. A description of these soils and a copy of the soil map for this site have been included in Appendix A of this report. A geotechnical engineer's report was prepared by Earth Solutions NW, LLC. (ESNW) on January 11, 2018 and updated on April 5, 2023. They performed 25 onsite soil explorations where they encountered native soils generally consistent with Vashon Drift, classified as gravelly sands and loams. ESNW performed two small scale-PIT tests (TP-201 and 202) and the sieve analysis of the native soils, they measured an infiltration rate of zero-inches per hour. It is ESNW's opinion, infiltration is not feasible for this project. A copy of the updated geotechnical engineer's reports can be found in Appendix D.

Federal Emergency Management Agency (FEMA) has prepared flood insurance maps identifying floodplains within the City of Puyallup. The parcel and the proposed improvements are located within Zone X, which is considered out of the 100-year floodplain. A copy of the FIRM Panel 53053C0342E can be found in *Appendix "B"* of this report.

3. Off-site Analysis Report

A quarter mile downstream analysis is required by the City of Puyallup. The project site is located within two City delineated drainage basins Shaw Road which drains through Kodiak Estates Division III to the east and State Highway which flows northerly. Lots 1 through 8 and improvements to 19th Ave SE are fully dispersed to the north (State Highway Basin) onto parcel 0420353009. The driveways for Lots 9 through 18 and the improvements to 23rd Street Place SE are collected in the roadway storm conveyance system, treated prior to dispersing in the revegetated Tract 'B'. The roof area for these lots will be dispersed in the rear of the lots. The

pervious area will be amended soils and the rear of the lots revegetated to forest conditions. The following is a qualitative analysis of the existing conditions:

Upstream Areas

The State Highway Basin (Lots 1-9) does not have any upstream flows contributing to the on-site. Shaw Road Basin (Lots 9-18) have upstream flows from Lots 114 through 127 and Tract 'B' which drains through the buffer within the proposed development.

State Highway Basin Downstream Analysis

The fully dispersed runoff flows through parcel 0420353009 through a native vegetation easement for the full ¼ mile. This drainage path consists of a variety of native vegetation including conifers and deciduous trees. Please refer to the downstream map in Appendix B.

Shaw Road Basin Downstream Analysis

The runoff which drains towards the onsite buffer area ultimately discharges into Kodiak Estates Division III's closed conveyance system. This system is comprised of 12-inch, 15-inch and 18-inch circular pipes. The runoff from the project proceeds between Lots 26 and 27 in a 12-inch pipe where it proceeds into 19th Ave SE and combines with runoff from Brookmonte Dr SE approximately 480-feet downstream. The runoff then proceeds within Brookmonte Dr SE for another 150-feet where it turns east within an 18-inch pipe in 20th Ave Ct SE. The runoff proceeds downstream for another 450-feet within 18-inch pipe where it outfalls into the public stormwater facility within Tract A of Kodiak Estates Division III. The runoff concludes it's ¼ mile downstream path within this facility. The 2019 Western Washington Stormwater Manual, indicates when dispersion trenches are utilized with a flowpath of twenty-five (25) feet to fifty (50) feet, Ecology allows the roof area to be modeled as 50% landscaped/ 50% impervious. Therefore, roof area for Lots 16-19 was reduced by 50%. The results indicate the 100 year flowrate contributing to Tract 'A' and 'E' decreased by 0.03 cfs (see Appendix C for more information). The impacts to the downstream conveyance system is negligible. Please refer to the downstream map in Appendix B.

4. Permanent Stormwater Control Plan

Existing Site Hydrology

Section 2 of this report describes the existing site conditions in detail. The existing site is divided into three sub-basins: State Highway basin, Shaw Road basin and a pre-developed Recharge basin. The pre-developed State Highway basin is 1.90-acres (not including the native vegetation easement area). The overall Shaw Road basin is approximately 7.46-acres, including the Buffer Recharge basin. The Recharge basin is approximately 6.0-acres onsite which includes the buffer area. The west basin which is approximately 1.07-acres which sheet flows towards Lots 27-29 of Kodiak Estates Division III. The northwest basin is approximately 0.36-acres which sheet flows towards Lots 25-26 of Kodiak Estates Division III. The Shaw Road Basin combine within a ½ mile downstream of the site. The existing basins will be analyzed a forested conditions to determine for existing conditions, except the Recharge Basin will be modeled with existing conditions and is summarized as follows:

Sub-Basin	Description	WWHM Land-use	Area (ac)
Northside of Buffer	Pasture	C, Pasture, Mod	0.964
Gravel	Gravel Roadway	Roadway, Flat	0.272
Buildings	Buildings	Roof, Flat	0.383
Southside of Buffer	Pastures	C, Pasture, Mod	2.026
Buffer Area	Pasture	C, Pasture, Mod	2.38
	6.025		

Table 4.1- Pre-Developed Recharge Basin

The Pre-Developed Basin Maps can be found in Appendix B of this report.

Developed Site Hydrology

The project is divided into two major basins, the State Highway basin and the Shaw Road basin. The Shaw Road basin is divided into smaller basin: the Recharge Basin; Roadway Basin, West Basin and the Northwest Basin. The roof area for the proposed development was estimated to be 3,000 square feet for each lot and the driveway (patio, etc.) is 1,000 square feet for each lot.

State Highway Basin

The developed basin is approximately 2.41-acres (not including the native vegetation easement area). The following is a summary of the developed basin:

Sub-Basin	Description	WWHM Land-use	Area (ac)
Yards	Lawn	C, Pasture, Flat	1.14
Roads	Roadway	Roadway, Flat	0.531
Roof	3,000 per Lot	Roof, Flat	0.551
Driveways	1,000 per Lot	Driveway, Flat	0.184
	2.41		

Table 4.1 – Developed State Highway Basin

The improvements to the State Highway basin are fully dispersed to a 11.13-acres native vegetation easement across parcel 0420353009. The impervious area is 1.27-acres, the overall area is 13.54-acres. Therefore, the impervious area for the Shaw Road is approximately 9.4% and provides 100-foot flowpath which meets the requirements of BMP T5.30 for Full Dispersion.

Shaw Road Basin

Recharge Basin

A hydroperiod analysis was prepared due to the presence of amphibians. According to the manual in Section I-3.4.8, the project must attempt to meet both flow control (MR7) and wetland protection (MR8), however if it is unable to meet both, the wetland protection standard will be prioritized. The recharge basin consists of the following in developed conditions:

Sub-Basin	n Description WWHM Land-use		Area (ac)
Gravel	Pathway	Roadway, Mod	0.07
Rear Yards (Lots 1, 3-8	Lawn	C, Pasture, Mod	0.70
Roofs	Roofs Lots 9-18	Roof, Flat	0.69
Rear Yards	Lawn	C, Pasture, Mod	0.54
Rear Yards	Forest	C, Forest, Mod	0.84
Buffer Area Buffer C, Pasture, Mod		2.38	
Total			

Table 4.2- Developed Recharge Basin

The rear yards of Lots 9 through 12 will be collected in an interceptor trench as well as the roof area for Lots 9-13 will be tightlined via the trench and discharge to the buffer. The roof area for Lots 15-18 will be tightlined and conveyed to a dispersal trench in the rear of Lot 15 to be dispersed in a re-vegetated forested area. The roof area for Lot 14 has a separate dispersal trench for its roof area.

Roadway Basin

The roadway improvement basin consists of the right-of-way of 23rd Street Place SE, extended, and the driveways for Lots 9-18, lawn area for Lots 16-18 are contributing to the basin. The southern portion of 23rd Street Place SE, existing cul-de-sac, will be removed and the roadway will be extended to the southern portion of the site. The area of the existing cul-de-sac will be collected and conveyed to existing catch basin located near address 2112 23rd Street Place SE (See Appendix C). The flowrates between the developed roadway and existing cul-de-sac are similar. The remaining roadway improvements in 23rd Place Street SE basin will be collected, treated and discharge to a dispersal trench, which has a 100-foot vegetated flowpath to meet flow control requirements. The following is a summary:

Sub-Basin	Description	WWHM Land-use	Area (ac)
Forest	Rear of Lots 16-18	C, Forest, Flat	0.23
Lawn	Lawn	C, Pasture, Flat	0.08
Lawn	Lawn	C, Pasture, Mod	0.24
Roadway	Roads, Sidewalk	Roads, Flat	0.27
Driveways	Driveways (Lots 9-18)	Driveways, Mod	0.23
	1.05		

Table 4.3 – Developed Roadway Basin

West Basin

The west basin is the area which under pre-existing conditions, flows towards Lots 28-29 of Kodiak Estates. The following is a summary of the developed conditions:

Sub-Basin	Description	WWHM Land-use	Area (ac)
Rear of Lots 9- 13	Forest	C, Forest, Mod	0.36
Total			0.36

Table 4.4 – Developed West Basin

Northwest Basin

The northwest basin is the area, under pre-existing conditions, which sheet flows towards Lots 25-26 of Kodiak Estates. The following is a summary of the developed conditions:

Sub-Basin	Description	WWHM Land-use	Area (ac)
Rear of Lot 8	Forest	C, Forest, Mod	0.12
Total			0.12

Table 4.5 – Developed Northwest Basin

The Post Developed Basin Maps can be found in Appendix B of this report.

Facility Sizing

State Highway Basin

The State Highway basin is being fully dispersed to a 10.74-acre native vegetation easement in accordance with BMP T5.30 for roadway dispersion BMPs. The runoff from Lots 1-8, access tracts and 19th Avenue SE are collected within the roadway and dispersed with flow dispersal trenches to the native vegetation easement. A single dispersal trench is allowed to disperse 0.50-cfs of runoff. The basin's 100-year event is 1.38-cfs; therefore, three 50-foot long flow dispersal trenches are provided to fully disperse the runoff from the roadway's collection system. Using flow modeling credits the fully dispersed basin results in an increase of 0.05-cfs increase during the 100-year reoccurrence interval. Sizing and capacity calculations will be provided as part of the final engineering submittal. WWHM Modeling results is provided in Appendix C.

Shaw Road Basin

The Recharge basin is being discharged towards the buffer to maintain the hydroperiods to the buffer. According to the manual in section I-3.4.8 the project must attempt to meet both the conservation flow control standard (MR 7) and the wetland protection standard (MR 8), however if it is unable to meet both, the wetland protection standard will be prioritized. The project

proposes to naturally discharge the runoff into Tract A and E (the onsite buffer) to maintain the hydrology.

The Roadway Basin is being collected, treated and conveyed to a trench to be fully dispersed onto the 100-foot vegetated flowpath with amended soils. The amended soils will absorb the flows. The 100-year flowrate discharge through the dispersal trench is 0.42 cfs. The combined discharge from the recharge and the roadway basin is 0.57 cfs for the developed 100-year flowrate to the buffer area with a 50% reduction of the roof area for Lots 16-19. The West and Northwest Basins will sheet flow as they did in the existing conditions. Computer modeling results are provided in Appendix C.

Water Quality System

Water Quality treatment will be provided for the proposed roadway and driveways in the Shaw Road Basin via a storm cartridge system. The State Highway Basin treatment will be provided through full dispersion.

Buffer Recharge

As mentioned in the Critical Areas Assessment prepared by Habitat Technologies, the onsite ponds were created through previous development activities of Stream A which bisects the site. Since these ponds are non-depressional. Basin maps delineating the areas onsite tributary to the buffer is provided in Appendix B. These basins were analyzed with WWHM to determine the volumes which will flow through the buffer area and downstream monthly. A summary of this analysis is provided in Table 4.6 below:

Month	Pre-developed Volume Summary (ac-ft)	Post Developed Volume Summary (ac-ft)	Percent
January	1.0971	0.9664	88.1
February	0.9454	0.8322	88.0
March	0.7053	0.6271	88.9
April	0.3191	0.2925	91.7
May	0.1080	0.1047	96.9
June	0.0387	0.0422	109.0
July	0.0079	0.0096	122.6

August	0.0008	0.0015	182.5
September	0.0060	0.0093	154.3
October	0.0737	0.0875	118.7
November	0.5991	0.5492	91.7
December	1.0717	0.9470	88.4

Table 4.6 – Buffer Recharge Summary

Eight months meet the monthly standard, but the drier summer months (July through October) exceed the monthly standard. The drier summer months have minimal flow volumes and are difficult to meet the 15 percent requirement. The WWHM computer results are included in Appendix C of this report.

The following is the summary of the Buffer Recharge Basin and the Roadway Basin contributing to the onsite ponds in Tract A and E:

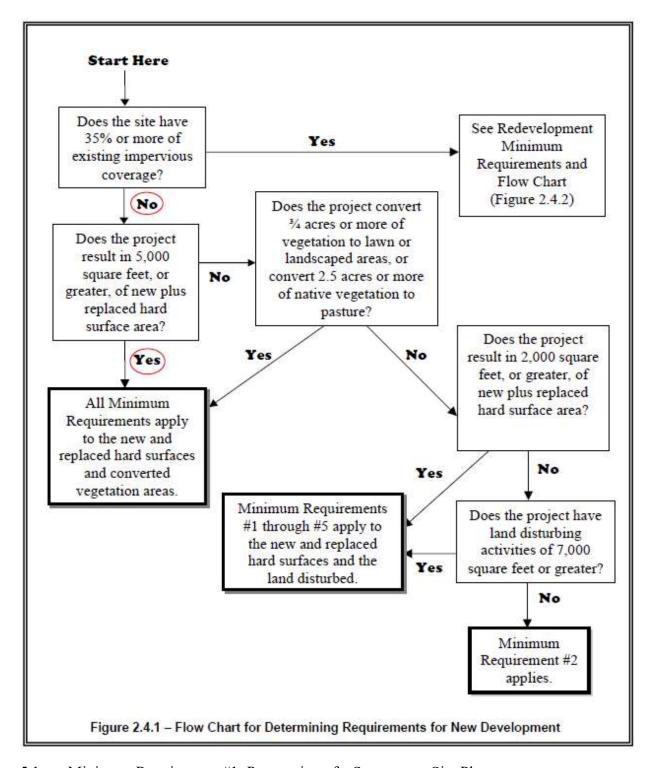

Month	Pre-developed Volume Summary (ac-ft)	Post Developed Volume Summary (ac-ft)	Percent
January	1.0971	1.1567	105.4
February	0.9454	0.9907	104.8
March	0.7053	0.7494	106.3
April	0.3191	0.3552	111.3
May	0.1080	0.1341	124.2
June	0.0387	0.0572	147.8
July	0.0079	0.0130	165.0
August	0.0008	0.0020	249.0
September	0.0060	0.0126	208.5
October	0.0737	0.1280	173.5
November	0.5991	0.7161	119.5
December	1.0717	1.1547	107.7

Table 4.7 – Combined Summary

Five months meet the monthly standard, but the drier months (May through September) exceed the monthly standard. The drier months have minimal flows and are difficult to meet the fifteen percent requirement. The WWHM computer results are included in Appendix C of this report.

5. Discussion of Minimum Requirements

The following is a summary of the minimum requirements as described in Chapter 2 of Volume I of the SMMWW. Each minimum requirement must be considered per Figure 2.4.1 flowchart.

5.1 Minimum Requirement #1: Preparation of a Stormwater Site Plan

The Stormwater Site Plan is prepared per Chapter 3, Volume I of the SMMWW 2014. Each required Section and Appendix is provided in this document.

5.2 Minimum Requirement #2: Construction Stormwater Pollution Prevention (SWPP)

A SWPP Plan will be prepared for this project at the time of final engineer plan, and all thirteen (13) elements will be addressed in the document.

5.3 Minimum Requirement #3: Source Control of Pollution

Permanent source control BMPs are required for the development's daily operations, and the stormwater facilities must be maintained as described in the Operations and Maintenance Manual will be prepared for this project during the final engineering submittal. Preliminary Maintenance Schedules can be found in Appendix E.

5.4 Minimum Requirement #4: Preservation of Natural Drainage System and Outfalls

Projects are to maintain the natural drainage patterns and locations to the maximum extent possible. The project is located within two drainage basins, Shaw Road and State Highway, as delineated by the City of Puyallup each within their own threshold discharge area. The runoff in the Shaw Road basin discharges to the onsite buffer area which flows offsite towards the east through Kodiak Estates Division III. The project proposes maintaining the hydroperiod to the buffer area and dispersing the flows of the roadway improvement basin. The runoff in the State Highway basin discharges as sheet flow north across parcel 0420353009. The project proposes to fully disperse the improvements within this basin with the use of roadway dispersion BMPs. A downstream analysis is provided for each basin in Section 3 of this report. Calculations are provided in Section 5 of this report.

5.5 Minimum Requirement #5: Onsite Stormwater Management

City requires projects to implement onsite stormwater management BMPs when feasible. This project must meet minimum requirement #1-11; therefore, it evaluates List #2 of the Manual for onsite stormwater management compliance. The site is separated into two drainage basins, the Shaw Road basin which flows through the Kodiak Estates Division III and the State Highway drainage basin which flows through parcel 0420353009. Soil amendments and perforated stubouts are provided in the Shaw Road basins, and soil amendments and full dispersion is proposed in the State Highway basin. The BMPs in List #2 is discussed for each drainage basin as follows:

State Highway

Lawn and Landscape Areas

Soil Preservation and Amendment (Ecology BMP T5.13)
 All disturbed pervious areas that are not converted to impervious surfaces will apply soil amendment per Ecology BMP T5.13.

Roof Areas

Full dispersion of BMP T5.30 is deemed feasible for this basin. Runoff will be dispersed to
parcel 0420353009 with the use of roadway dispersion BMPs. Facility sizing calculations
are provided in Section 4 of this report. Since this BMP is deemed feasible no other BMPs
are required.

Other Hard Surface

Full dispersion of BMP T5.30 is deemed feasible for this basin. Runoff will be dispersed to
parcel 0420353009 with the use of roadway dispersion BMPs. Facility sizing calculations
are provided in Section 4 of this report. Since this BMP is deemed feasible no other BMPs
are required.

Shaw Road

Lawn and Landscape Areas

Soil Preservation and Amendment (Ecology BMP T5.13)
 All disturbed pervious areas that are not converted to impervious surfaces will apply soil amendment per Ecology BMP T5.13.

Roof Areas

- Full dispersion of BMP T5.30 is deemed infeasible in this basin since there is not enough area available to accommodate the natural preservation requirements of this BMP.
- Downspout full infiltration was deemed infeasible since a zero-inches per hour infiltration rate was measured onsite and the sieve samples indicated high fines.
- Bioretention facility was deemed infeasible since a zero-inches per hour infiltration rate was measured onsite and the sieve samples indicated high fines.

- Downspout dispersion system was deemed infeasible onsite due to the lack of available dispersion flow paths due to the depth of the lots.
- Perforated Stub-out connections are deemed feasible and proposed for all lots within this basin.

Other Hard Surface

- Full dispersion of BMP T5.30 is deemed infeasible in this basin since there is not enough area available to accommodate the natural preservation requirements of this BMP.
- Permeable Pavement BMP was deemed infeasible since a 0-inch per hour infiltration rate was measured onsite.
- Bioretention BMP was deemed infeasible since a 0-inch per hour infiltration rate was measured onsite.
- Sheet Flow Dispersion was deemed infeasible for driveways since the flow path of 10-20 feet is not available to meet this requirement.

5.6 Minimum Requirement #6: Runoff Treatment

Runoff treatment is provided in the Shaw Road basin for the roadway and driveways with the use of a stormwater cartridge system prior to the flows being dispersed.

5.7 Minimum Requirement #7: Flow Control

For the Shaw Road basin, the recharge basin is maintaining the hydroperiod to the buffer area. The roadway basin is being treated and discharged to a dispersal trench with a 100-foot vegetated flow path to meet flow control prior to discharge to the existing ponds. The west and northwest basin will sheet flow towards Kodiak Estates Division as it has historically. Facility sizing calculations are provided in Section 4 of this report. Runoff is fully dispersed within the State Highway basin; therefore, this basin does not exceed flow control thresholds.

5.8 Minimum Requirement #8: Wetlands Protection

Projects that discharge to a wetland meeting this requirement in conjunction with minimum requirements #6 and #7. According to the manual in Section I-3.4.8, the project must attempt to meet both flow control (MR7) and wetland protection (MR8), however if it is unable to meet both, the wetland protection standard will be prioritized. A detailed discussion is shown in section 4 of this report. A hydrologic analysis has been prepared as discussed in Section 4 of this report.

Modeling results is provided in Appendix C. A Critical Areas Assessment Report has been prepared and can be found in Appendix D.

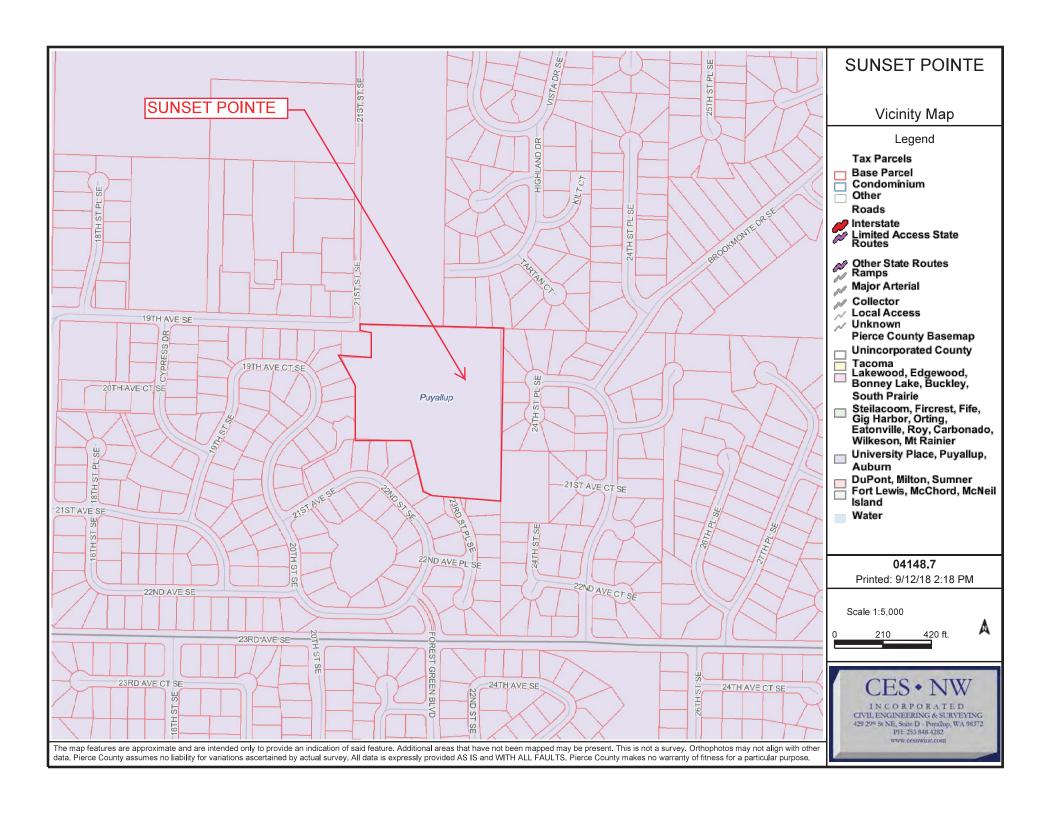
5.9 Minimum Requirement #9: Basin/Watershed Planning

The project is located within two drainage basins as delineated by the City of Puyallup: State Highway and Shaw Road basins. Due to the hydroperiod analysis, a flow control facility is not being proposed for the basins. The State Highway and Shaw Road basins are applying onsite BMPs. The project will not adversely affect these two basins.

5.10 Minimum Requirement #10: Operation and Maintenance

An Operation and Maintenance Manual will be prepared as part of the final engineering submittal. Preliminary Maintenance Schedules can be found in *Appendix "E"*.

5.11 Minimum Requirement #11: Off-Site Analysis and Mitigation


An Offsite Analysis is prepared within this document and can be found in Section 3 of this report.

APPENDIX A

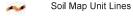
General Exhibits

Vicinity Map	A-I
Soils Map	A-2
Soil Description	A-3

VICINITY MAP

SOILS MAP

SOIL DESCRIPTION


MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

Stony Spot

Very Stony Spot

Wet Spot

Other

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes
Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 13, Feb 22, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jul 8, 2014—Jul 15, 2014

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

	_		
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
1D	Alderwood gravelly sandy loam, 15 to 30 percent slopes	0.0	0.3%
13B	Everett very gravelly sandy loam, 0 to 8 percent slopes	5.4	55.7%
20B	Kitsap silt loam, 2 to 8 percent slopes	3.3	33.5%
20C	Kitsap silt loam, 8 to 15 percent slopes	1.0	9.9%
PITS	Pits	0.1	0.6%
Totals for Area of Interest		9.8	100.0%

Pierce County Area, Washington

1D—Alderwood gravelly sandy loam, 15 to 30 percent slopes

Map Unit Setting

National map unit symbol: 2t627 Elevation: 0 to 1,000 feet

Mean annual precipitation: 25 to 60 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 160 to 240 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Alderwood and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Alderwood

Setting

Landform: Hills, ridges

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Nose slope, side slope, talf

Down-slope shape: Convex, linear Across-slope shape: Convex

Parent material: Glacial drift and/or glacial outwash over dense

glaciomarine deposits

Typical profile

A - 0 to 7 inches: gravelly sandy loam

Bw1 - 7 to 21 inches: very gravelly sandy loam Bw2 - 21 to 30 inches: very gravelly sandy loam Bg - 30 to 35 inches: very gravelly sandy loam 2Cd1 - 35 to 43 inches: very gravelly sandy loam 2Cd2 - 43 to 59 inches: very gravelly sandy loam

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: 20 to 39 inches to densic material

Natural drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Very

low to moderately low (0.00 to 0.06 in/hr) Depth to water table: About 18 to 37 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Very low (about 2.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Forage suitability group: Limited Depth Soils (G002XN302WA), Limited Depth Soils (G002XF303WA), Limited Depth Soils (G002XS301WA) Hydric soil rating: No

Minor Components

Everett

Percent of map unit: 5 percent Landform: Kames, moraines, eskers

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Indianola

Percent of map unit: 5 percent Landform: Eskers, kames, terraces

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Shalcar

Percent of map unit: 3 percent

Landform: Depressions

Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Norma

Percent of map unit: 2 percent Landform: Depressions, drainageways Landform position (three-dimensional): Dip Down-slope shape: Concave, linear Across-slope shape: Concave Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 13, Feb 22, 2018

Pierce County Area, Washington

13B—Everett very gravelly sandy loam, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2t629

Elevation: 30 to 900 feet

Mean annual precipitation: 35 to 91 inches Mean annual air temperature: 48 to 52 degrees F

Frost-free period: 180 to 240 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Everett and similar soils: 80 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Everett

Setting

Landform: Kames, moraines, eskers

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Crest, interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Sandy and gravelly glacial outwash

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material

A - 1 to 3 inches: very gravelly sandy loam
Bw - 3 to 24 inches: very gravelly sandy loam
C1 - 24 to 35 inches: very gravelly loamy sand
C2 - 35 to 60 inches: extremely cobbly coarse sand

Properties and qualities

Slope: 0 to 8 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): High

(1.98 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 3.2 inches)

Interpretive groups

Land capability classification (irrigated). None specified

Land capability classification (nonirrigated): 4s

Hydrologic Soil Group: A

Forage suitability group: Droughty Soils (G002XN402WA), Droughty Soils (G002XF403WA), Droughty Soils (G002XS401WA)

Hydric soil rating: No

Minor Components

Alderwood

Percent of map unit: 10 percent

Landform: Hills, ridges

Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest, talf

Down-slope shape: Convex, linear Across-slope shape: Convex

Hydric soil rating: No

Indianola

Percent of map unit: 10 percent Landform: Terraces, eskers, kames

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Data Source Information

Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 13, Feb 22, 2018

Pierce County Area, Washington

20B—Kitsap silt loam, 2 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2hpt

Elevation: 0 to 590 feet

Mean annual precipitation: 37 inches Mean annual air temperature: 50 degrees F

Frost-free period: 160 to 200 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Kitsap and similar soils: 85 percent Minor components: 3 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Kitsap

Setting

Landform: Terraces

Parent material: Glaciolacustrine deposits

Typical profile

H1 - 0 to 10 inches: ashy silt loam H2 - 10 to 32 inches: silty clay loam

H3 - 32 to 60 inches: stratified silt to silty clay loam

Properties and qualities

Slope: 2 to 8 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 16 to 23 inches

Frequency of flooding: None Frequency of ponding: None

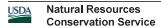
Available water storage in profile: High (about 11.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: C/D


Forage suitability group: Soils with Few Limitations

(G002XS501WA) Hydric soil rating: No

Minor Components

Bellingham

Percent of map unit: 3 percent Landform: Depressions

Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 13, Feb 22, 2018

Pierce County Area, Washington

20C—Kitsap silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2hpv

Elevation: 0 to 590 feet

Mean annual precipitation: 37 inches Mean annual air temperature: 50 degrees F

Frost-free period: 160 to 200 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Kitsap and similar soils: 85 percent Minor components: 2 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Kitsap

Setting

Landform: Terraces

Parent material: Glaciolacustrine deposits

Typical profile

H1 - 0 to 10 inches: ashy silt loam H2 - 10 to 32 inches: silty clay loam

H3 - 32 to 60 inches: stratified silt to silty clay loam

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 16 to 23 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: High (about 11.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: C/D

Forage suitability group: Soils with Moderate Limitations

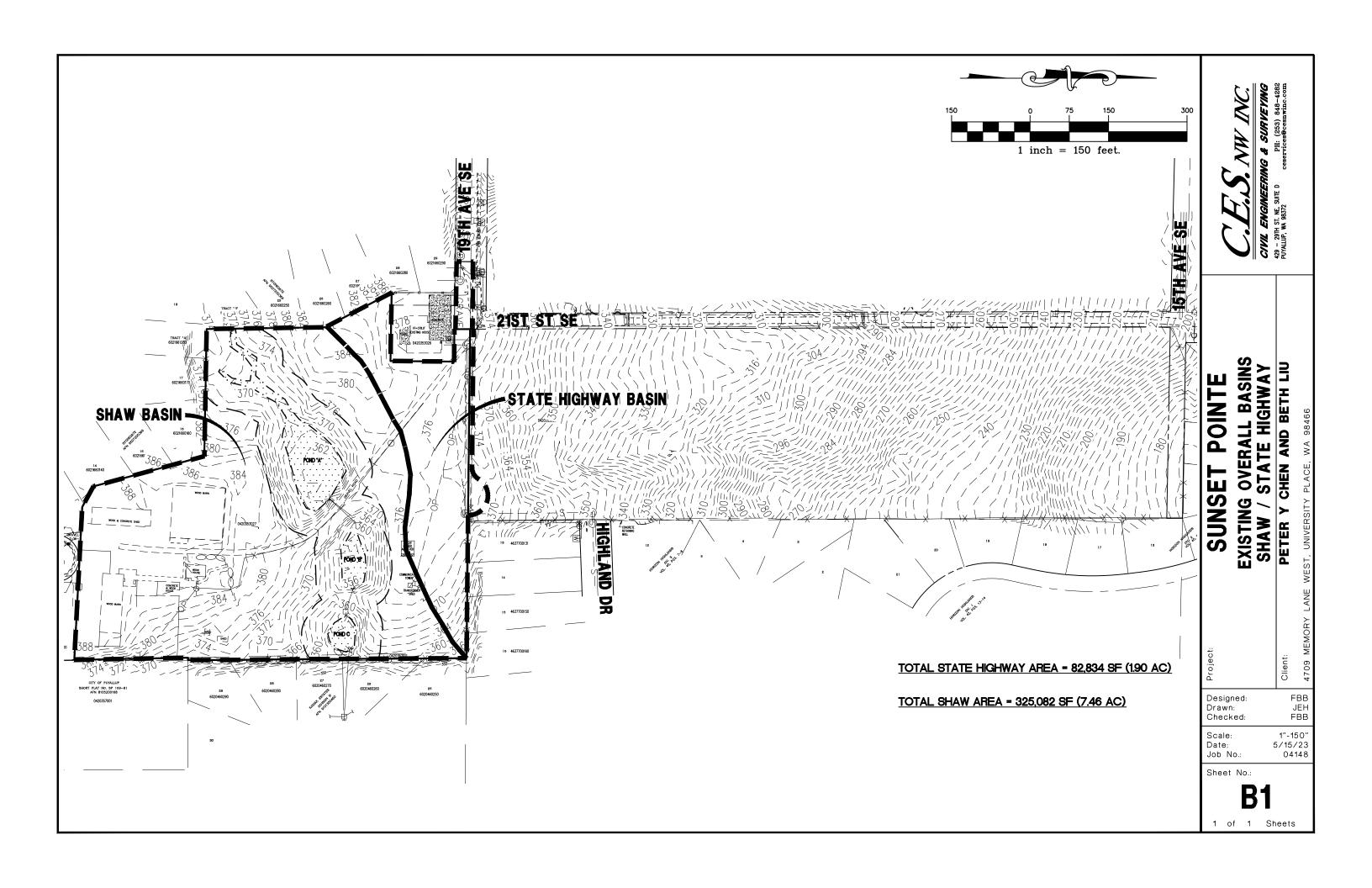
(G002XS601WA) Hydric soil rating: No

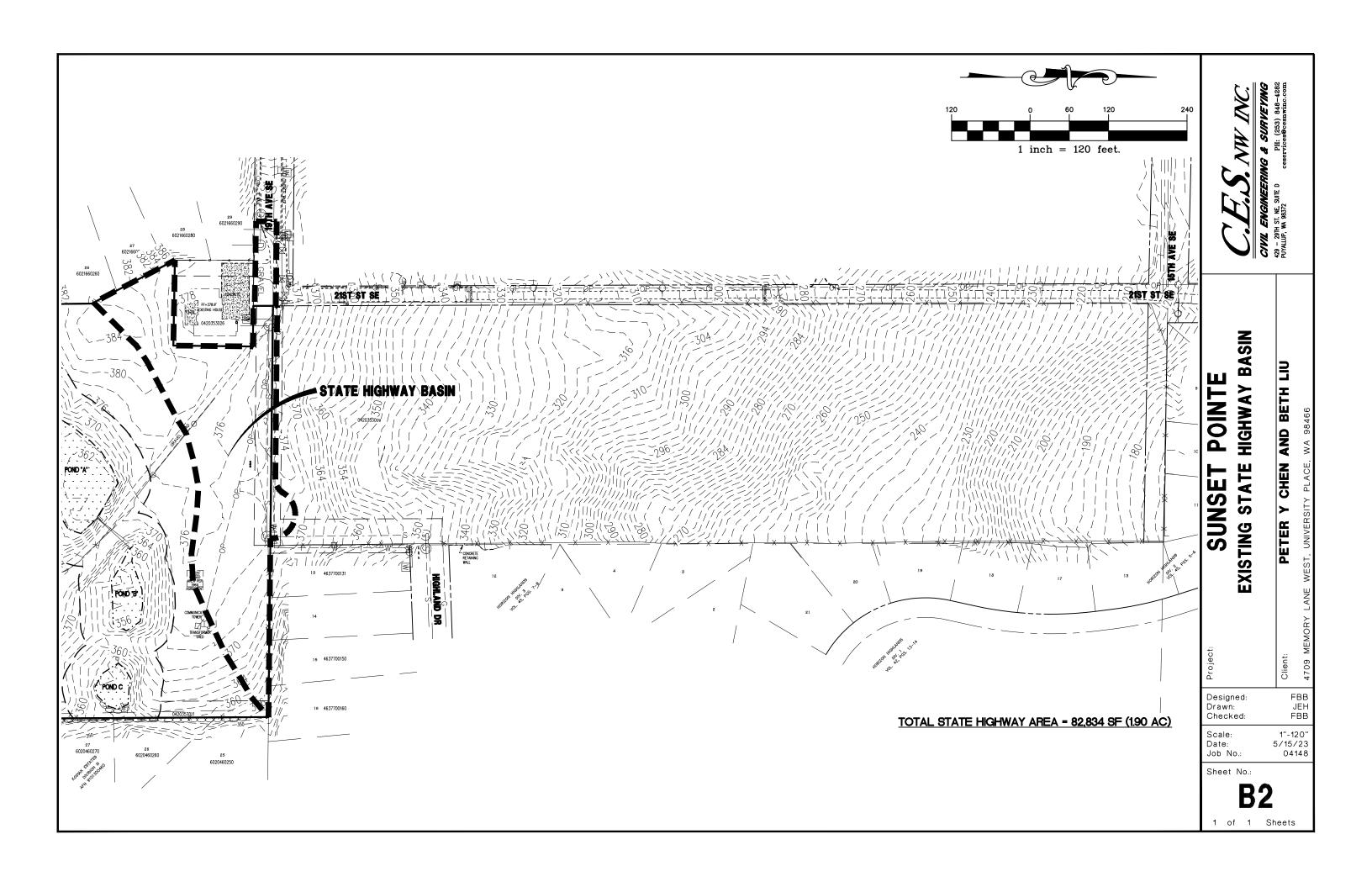
Minor Components

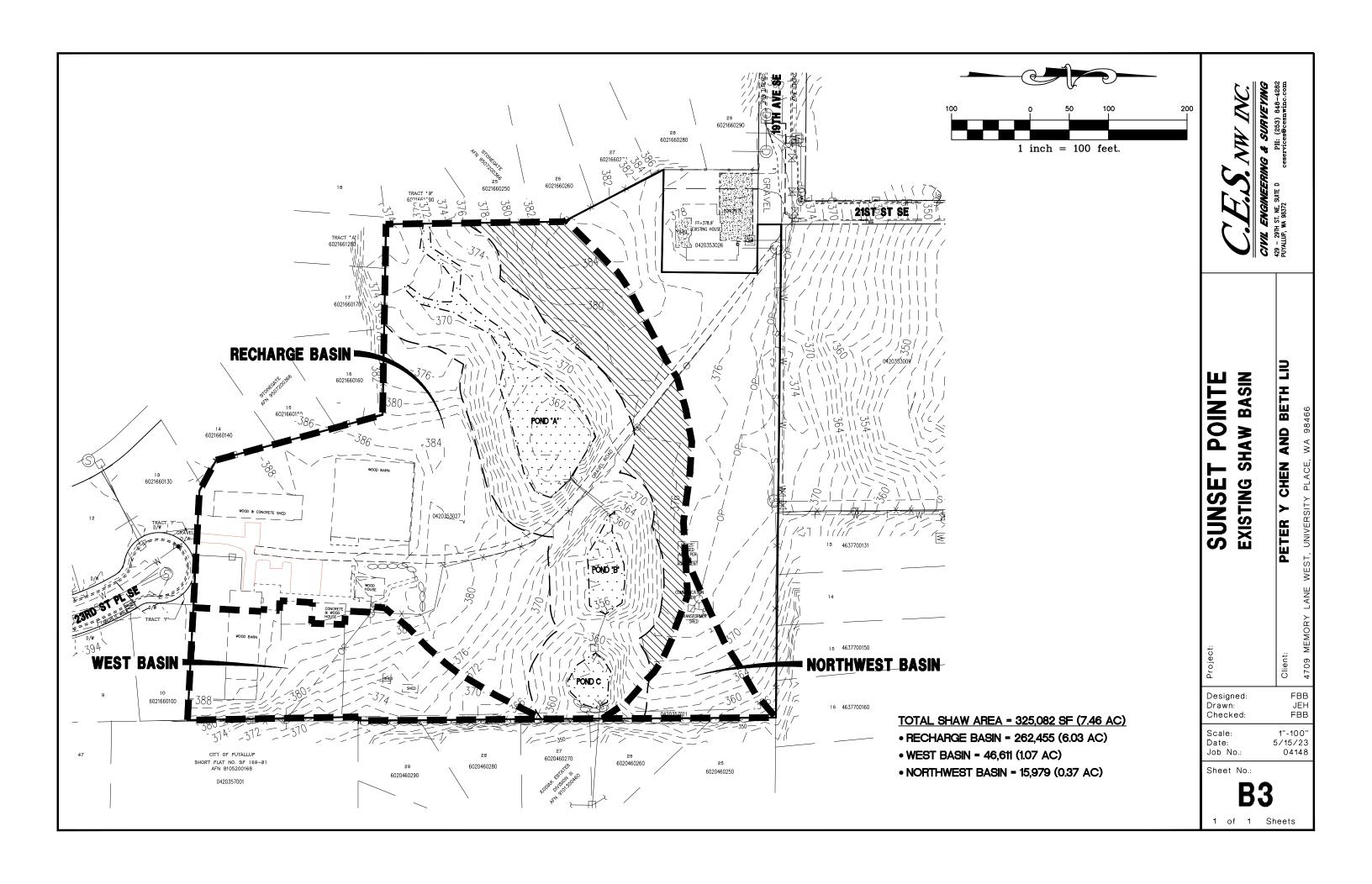
Bellingham

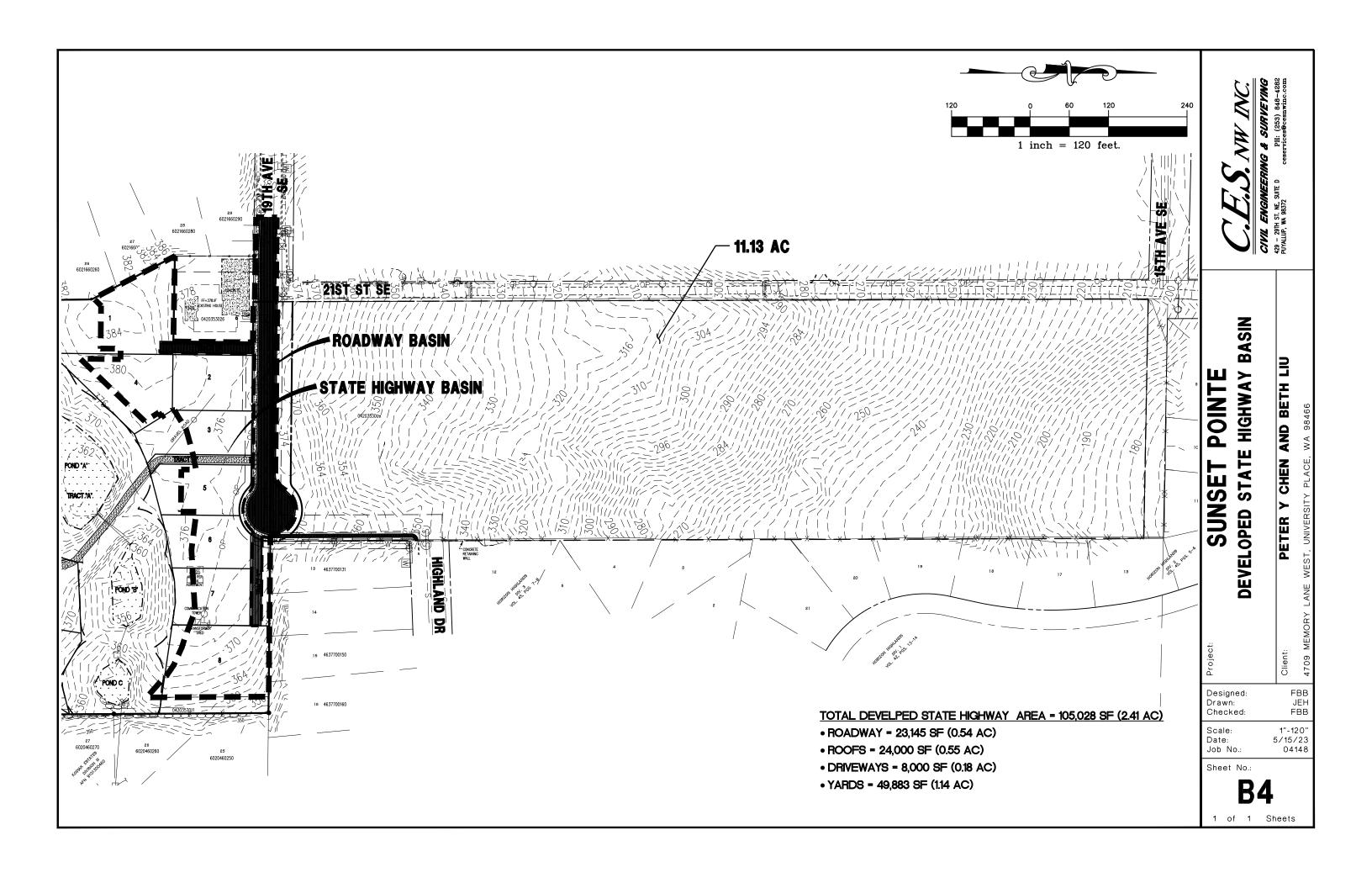
Percent of map unit: 2 percent Landform: Depressions

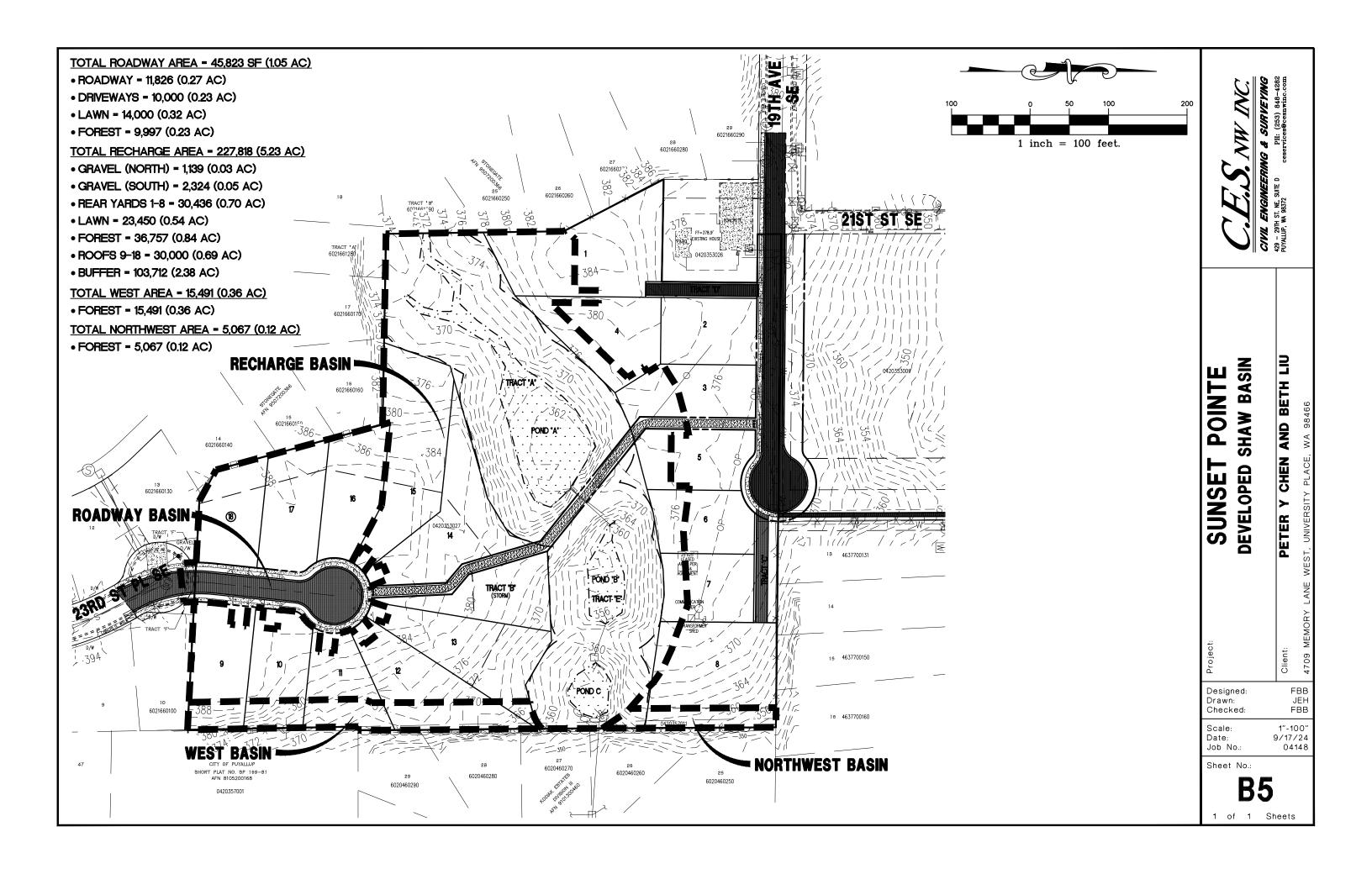
Hydric soil rating: Yes


Data Source Information


Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 13, Feb 22, 2018


APPENDIX B


Basin Exhibits


Existing Overall Basin Map	B-1
Existing State Highway Basin Map	B-2
Existing Shaw Basin Map	B-3
Developed State Highway Basin	B-4
Developed Shaw Basin	B-5
FIRM Panel 53053C0342E	B-6
Downstream Map	B-7

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The **community map repository** should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) Report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS Report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study Report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study Report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control structures**. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study Report for information on flood control structures for this jurisdiction.

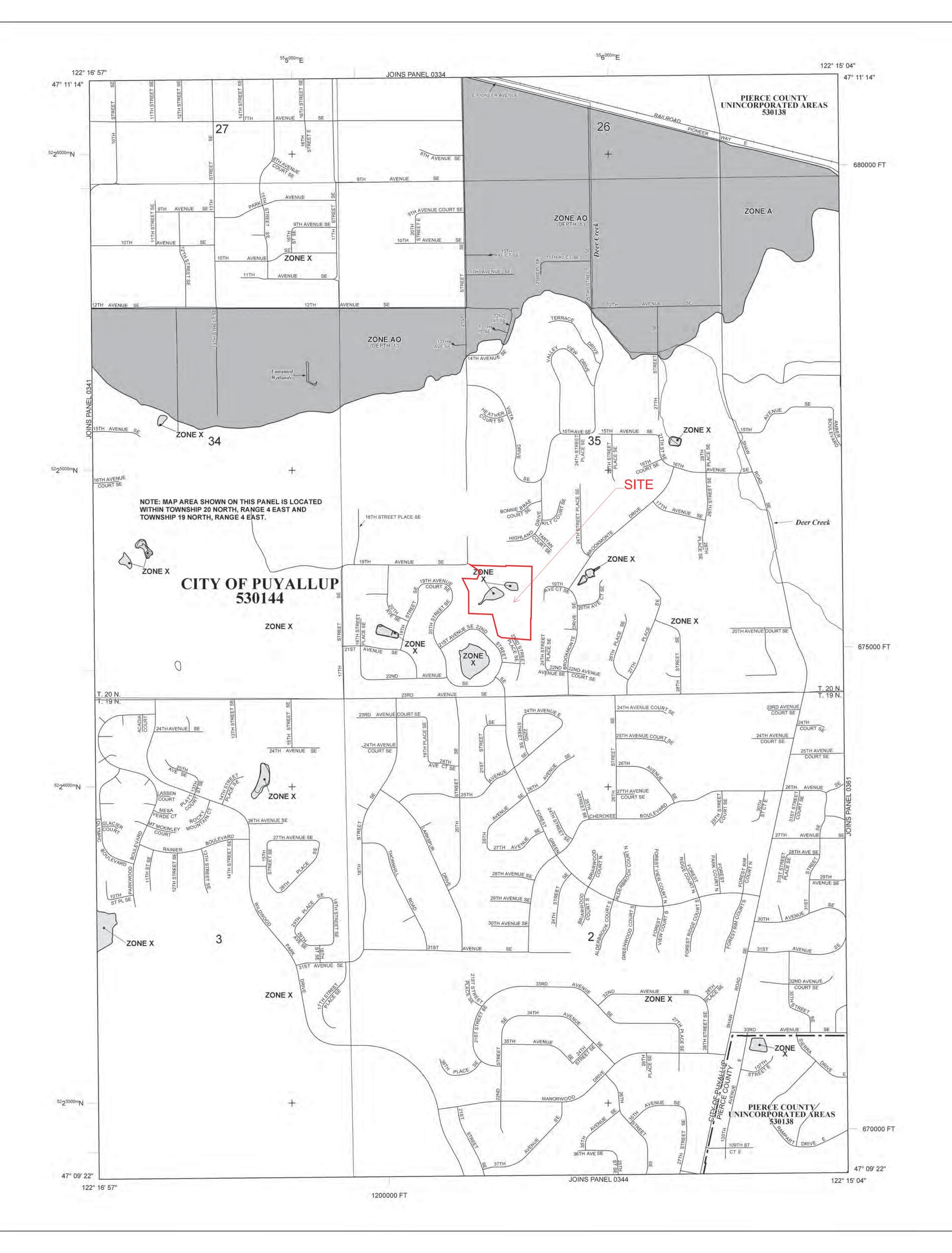
The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 10. The **horizontal datum** was NAD 83, GRS 1980 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

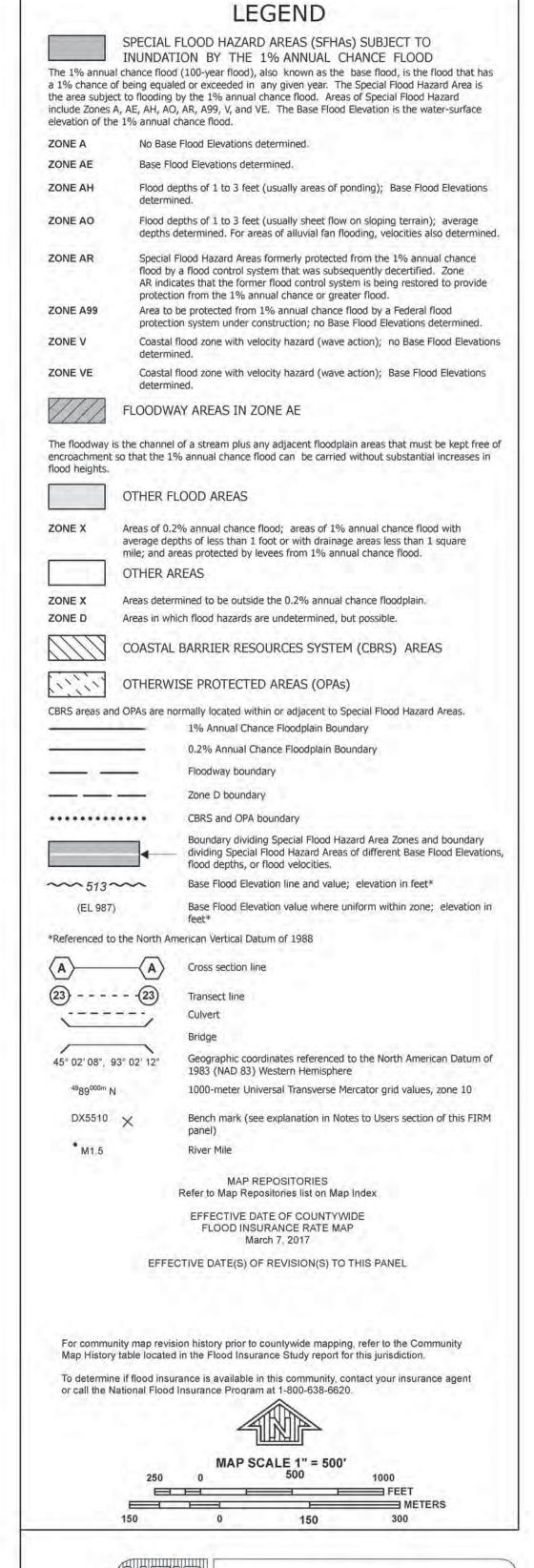
Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same **vertical datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov or contact the National Geodetic Survey at the following

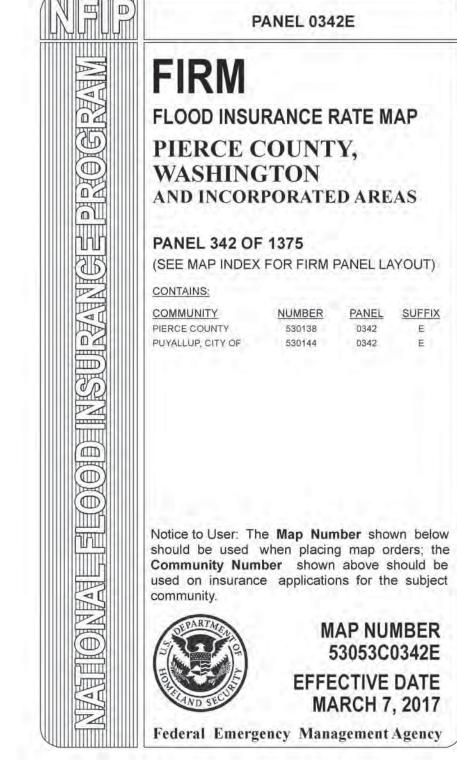
NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713- 3242, or visit its website at http://www.ngs.noaa.gov.

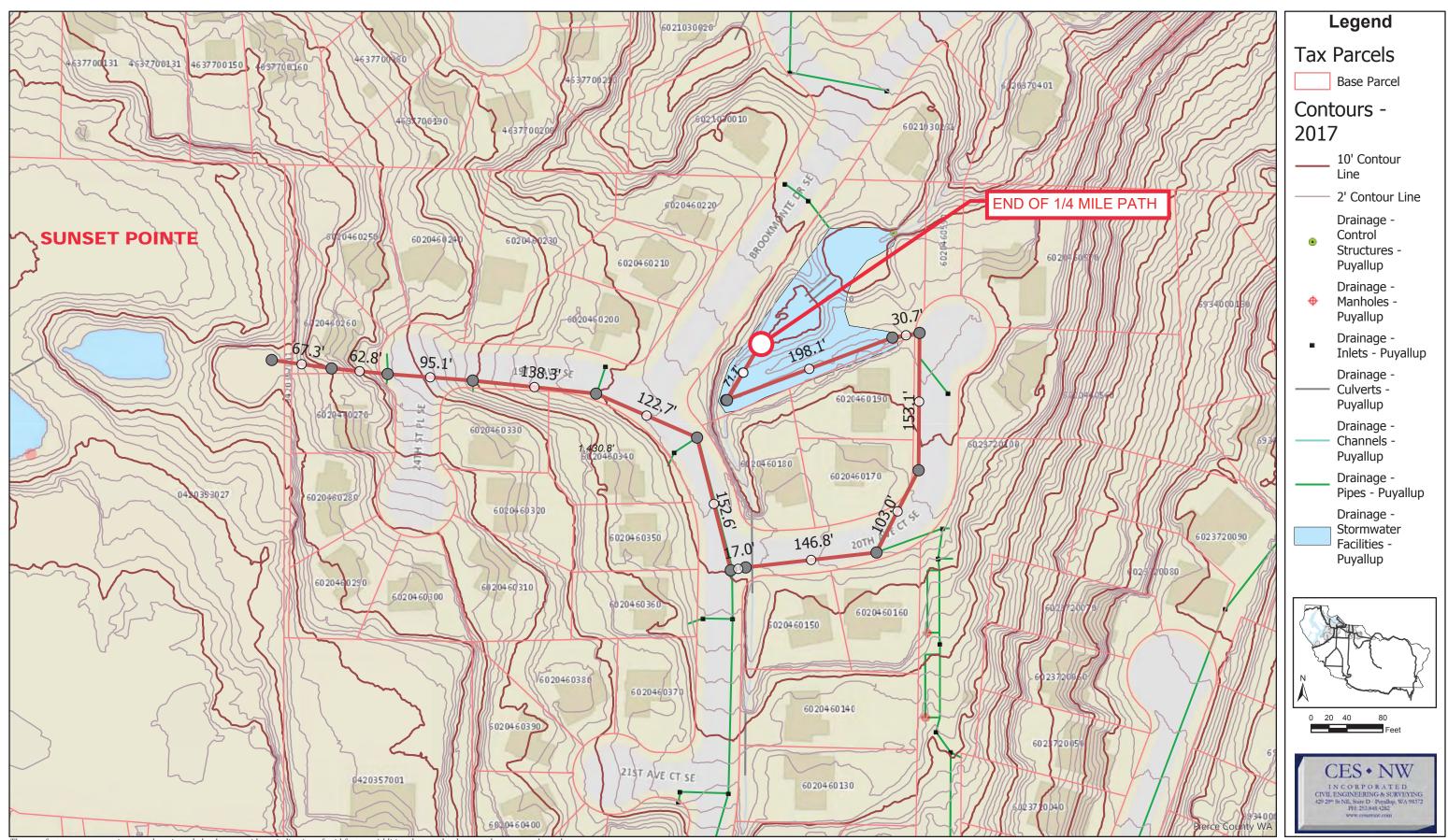
Base map information shown on this FIRM was derived from multiple sources. Base map files were provided in digital format by Pierce County GIS, WA DNR, WSDOT, USFWS, Washington State Department of Ecology, and Puget Sound Regional Council. This information was compiled at scales of 1:1,200 to 1:24,000 during the time period 1996-2012.

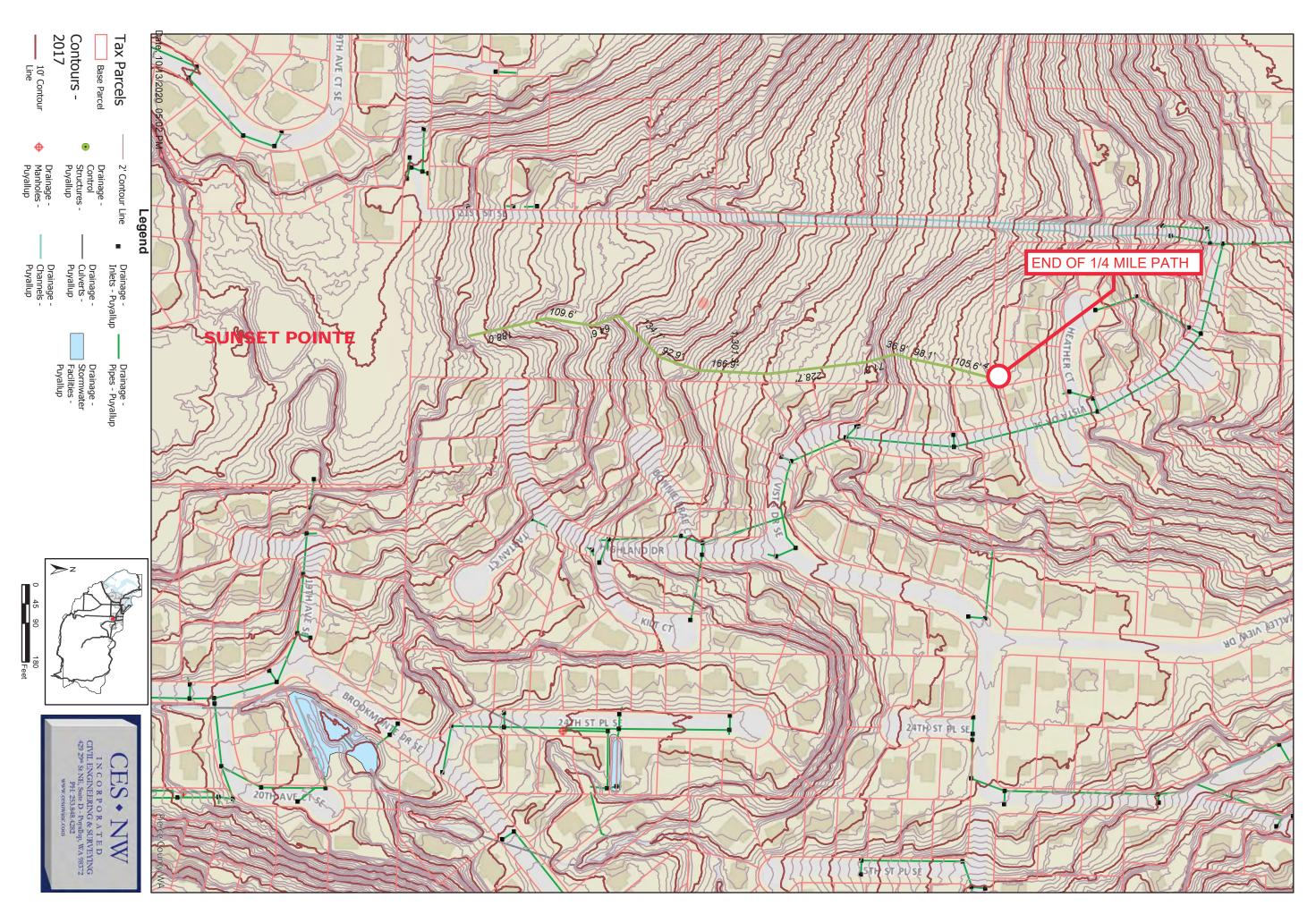

The **profile baselines** depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data, the **profile baseline**, in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.


Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.


Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

For information on available products associated with this FIRM visit the Map Service Center (MSC) website at http://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the MSC website.


If you have questions about this map, how to order products, or the National Flood Insurance Program in general, please call the FEMA Map Information eXchange (FMIX) at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.



Shaw Road 1/4 Mile Path

State Highway 1/4 Mile Path

APPENDIX C

Computer Printouts

WWHM Modeling Results

C-1

STATE HIGHWAY BASIN

WWHM2012 PROJECT REPORT

Project Name: North Basin Dispersion

Site Name: South Basin

Site Address: 2301 23rd Street SE

City : Puyallup, WA
Report Date: 5/22/2023
Gage : 40 IN EAST
Data Start : 10/01/1901
Data End : 09/30/2059
Precip Scale: 1.00

Version Date: 2021/08/18

Version : 4.2.18

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

Low Flow Threshold for POC 2 : 50 Percent of the 2 Year

High Flow Threshold for POC 2: 50 year

PREDEVELOPED LAND USE

Name : Pre-Dev 19th

Bypass: No

GroundWater: No

Pervious Land Use
C, Forest, Mod
2.9

Pervious Total 1.9

Impervious Land Use acre

Impervious Total 0

Basin Total 1.9

Element Flows To:

Surface Interflow Groundwater

Name : Pre-Dev 19th

Bypass: No

GroundWater: No

Pervious Land Use acre
C, Forest, Mod 1.9

Pervious Total 1.9

Impervious Land Use acre

Impervious Total 0

Basin Total 1.9

Element Flows To:

Surface Interflow Groundwater

MITIGATED LAND USE

Name : Post Dev

Bypass: No

GroundWater: No

Pervious Land Use acre C, Pasture, Flat 1.14

Pervious Total 1.14

 Impervious Land Use
 acre

 ROADS FLAT
 0.54

 ROOF TOPS FLAT
 0.551

 DRIVEWAYS FLAT
 0.184

Impervious Total 1.275

Basin Total 2.415

Element Flows To:

Surface Interflow Groundwater

Name : Modelling Credits

Bypass: No

GroundWater: No

Pervious Land Use acre
C, Forest, Mod 2.415

Pervious Total 2.415

Impervious Land Use acre

Impervious Total 0

Basin Total 2.415

Element Flows To:

Surface Interflow Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1

Total Pervious Area:1.9 Total Impervious Area:0

Mitigated Landuse Totals for POC #1

Total Pervious Area:1.14
Total Impervious Area:1.275

Flow Frequency Return Periods for Predeveloped. POC #1

Flow(cfs)
0.043345
0.067109
0.080905
0.095886
0.105541
0.113928

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.471902
5 year	0.633742
10 year	0.75141
25 year	0.912502
50 year	1.041822
100 year	1.179383

Stream Protection Duration
Annual Peaks for Predeveloped and Mitigated. POC #1

Annual	Peaks	for Predevelo	ped and Mitiga
Year		Predeveloped	Mitigated
1902		0.035	0.541
1903		0.026	0.600
1904		0.053	0.737
1905		0.022	0.307
1906		0.011	0.346
1907		0.067	0.496
1908		0.048	0.389
1909		0.047	0.461
1910		0.066	0.462
1911		0.043	0.510
1912		0.165	0.975
1913		0.067	0.356
1914		0.017	1.526
1915		0.028	0.324
1916		0.043	0.575
1917		0.015	0.228
1918		0.046	0.458
1919		0.036	0.302
1920		0.044	0.396
1921		0.048	0.352
1922		0.048	0.542
1923		0.038	0.372
1924		0.019	0.665
1925		0.023	0.294
1926		0.043	0.540
1927		0.030	0.463
1928		0.033	0.349
1929		0.068	0.655
1930		0.042	0.690
1931		0.040	0.342
1932		0.031	0.373
1933		0.034	0.373
1934		0.088	0.621
1935		0.040	0.313
1936		0.036	0.437
1937		0.061	0.555
1938		0.036	0.319
1939		0.003	0.384
1940		0.039	0.691
1941		0.024	0.756
1942		0.059	0.540
1943		0.030	0.517
1944		0.066	0.737
1945		0.047	0.549
1945		0.030	0.450
1947		0.030	0.334
1948		0.091	0.463
1949		0.079	0.706
1950		0.023	0.390
1951		0.030	0.603
1952		0.120	0.762
1953		0.108	0.694

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968	0.038 0.033 0.018 0.057 0.114 0.072 0.021 0.071 0.039 0.019 0.020 0.080 0.023 0.023 0.037 0.038 0.036	0.387 0.348 0.322 0.377 0.499 0.506 0.374 1.040 0.449 0.331 0.970 0.462 0.371 0.534 0.433 0.401
1970	0.055	0.463
1971 1972	0.084 0.055	0.458
1973	0.072	0.806
1974	0.043	0.605
1975 1976	0.090	0.672
1977	0.048 0.021	0.689
1978	0.079	0.517
1979	0.023	0.511
1980 1981	0.046 0.042	0.510 0.467
1982	0.020	0.380
1983	0.072	0.532
1984	0.032	0.522
1985 1986	0.051 0.043	0.605 0.316
1987	0.043	0.518
1988	0.051	0.321
1989	0.047	0.302
1990 1991	0.054 0.043	0.396 0.557
1992	0.056	0.534
1993	0.058	0.592
1994	0.085	0.439
1995 1996	0.019 0.095	0.327
1997	0.038	0.393
1998	0.046	0.488
1999	0.005	0.519
2000 2001	0.034 0.019	0.448
2002	0.069	0.692
2003	0.053	0.385
2004 2005	0.047 0.099	0.552 1.076
2006	0.027	0.495
2007	0.029	0.562
2008	0.046 0.030	0.459
2009 2010	0.026	0.347

Stream Protection Duration

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated

Kank	Preaevelopea	Mitigate
1	0.1651	1.5257
2	0.1252	1.4028
3	0.1205	1.0760

4	0.1197	1.0396
5	0.1180	1.0282
6	0.1141	0.9746
7	0.1076	0.9700
8	0.1026	0.9429
9	0.1002	0.8559
10	0.0992	0.8059
11	0.0945	0.7945
12	0.0913	0.7622
13	0.0895	0.7560
14	0.0882	0.7485
15	0.0879	0.7374
16	0.0849	0.7368
17	0.0845	0.7101
18	0.0840	0.7061
19	0.0802	0.6989
20	0.0794	0.6948
21	0.0789	0.6938
22	0.0722	0.6924
23	0.0719	0.6910
24	0.0715	0.6903
25	0.0715	0.6892
26	0.0708	0.6827
27	0.0698	0.6719
28	0.0692	0.6696
29	0.0680	0.6649
30	0.0672	0.6554
31	0.0665	0.6289
32	0.0664	0.6206
33	0.0657	0.6053
34	0.0651	0.6046
35	0.0645	0.6027
36	0.0610	0.6027
37	0.0593	0.6005
38	0.0591	0.6000
39	0.0590	0.5922
40	0.0577	0.5749
41	0.0568	0.5628
42	0.0559	0.5619
43	0.0555	0.5578
44	0.0552	0.5574
45	0.0536	0.5550
46	0.0533	0.5524
47	0.0533	0.5514
48	0.0526	0.5493
49	0.0511	0.5493
50	0.0511	0.5421
51	0.0506	0.5413
52	0.0497	0.5405
53	0.0496	0.5402
54 55	0.0484	0.5345 0.5339
55 56	0.0481 0.0480	0.5320
57	0.0480	0.5221
58	0.0479	0.5188
59	0.0476	0.5182
60	0.0475	0.5173

61	0.0474	0.5169
62		0.5153
	0.0474	
63	0.0473	0.5144
64	0.0470	0.5114
65	0.0469	0.5101
66	0.0460	0.5097
67	0.0457	0.5073
68	0.0457	0.5067
69	0.0457	0.5063
70	0.0452	0.4991
71	0.0445	0.4970
72	0.0443	0.4959
73	0.0437	0.4949
74	0.0435	0.4881
75	0.0431	0.4756
76	0.0430	0.4724
77	0.0430	0.4716
78	0.0428	0.4668
79	0.0427	0.4632
80	0.0426	0.4629
81	0.0425	0.4627
82	0.0420	0.4627
83	0.0404	0.4621
84	0.0403	0.4620
85	0.0396	0.4607
86	0.0393	0.4594
87	0.0393	0.4582
88	0.0381	0.4577
89	0.0381	0.4577
90	0.0379	0.4532
91	0.0377	0.4520
92	0.0375	0.4502
93	0.0370	0.4490
94	0.0366	0.4489
95	0.0364	0.4488
96	0.0363	0.4484
97	0.0359	0.4481
98	0.0358	0.4400
99	0.0357	0.4389
100	0.0356	0.4380
101	0.0348	0.4368
102	0.0342	0.4353
	0.0342	
103		0.4344
104	0.0336	0.4333
105	0.0333	0.4260
106	0.0333	0.4228
107	0.0328	0.4021
108	0.0324	0.4011
109	0.0317	0.3963
110	0.0309	0.3958
111	0.0305	0.3929
112	0.0303	0.3900
113	0.0303	0.3893
114	0.0299	0.3875
115	0.0299	0.3847
116	0.0290	0.3846
117	0.0286	0.3842
T T /	0.0200	0.3042

Stream Protection Duration POC #1 The Facility FAILED

Facility FAILED duration standard for 1+ flows.

Flow(cfs)	Predev	Mit Perc	entage	Pass/Fail
0.0217	55678	381710	685	Fail
0.0225	51273	371295	724	Fail
0.0234	47185	361545	766	Fail
0.0242	43462	352237	810	Fail
0.0251	40105	343373	856	Fail
0.0259	37190	335063	900	Fail
0.0268	34431	326864	949	Fail

31889 29551 27495 25634 23867 22304 20892 19551 18288 17102 15961 14903 13955 13063 12271 11518 10787 10083 9413 8792 8233 7728 7224 6781 6399 6094 5817 5512 5230 4963 4739 4485 4292 4097 3869 3648 3474 33162 3018 23018 23018 2302 2007 1978 1875 1683 1765 1683 1765 1683 1765 1683 1765 1683 1765 1683 1765 1683 1765 1683 1765 1683 1765 1775 177	318997 311739 304704 297778 291130 284870 278665 272460 266699 261048 255563 250411 245480 240439 235564 230854 226201 221824 217503 213348 209304 205204 201271 197392 193625 190024 186589 183044 179664 176340 173182 169969 166867 163764 160828 157836 154956 152130 149471 146812 144263 141715 139222 136729 134291 131964 129582 127366 125095 122879 12181	1000 1054 1108 1161 1219 1277 1333 1393 1458 1526 1680 1759 1840 1919 2004 2096 2199 2310 2426 2542 2655 2786 2910 3025 3118 3207 3320 3435 3353 3458 4366 4460 4593 4727 4864 4947 5077 5200 5412 5572 5732 5732 5732 5732 5732 5732 573	Fail Fail Fail Fail Fail Fail Fail Fail
1978 1875 1765	125095 122879 120718	6324 6553 6839	Fail Fail Fail
	29551 27495 25634 23867 22304 20892 19551 18288 17102 15961 14903 13955 13063 12271 11518 10787 10083 9413 8792 8233 7728 7224 6781 6399 6094 5817 5512 5230 4963 4739 4485 4292 4097 3869 3648 3474 33162 3018 2791 2677 2526 2410 2302 2007 1978 1875 1875 1875 1875 1875 1875 1875 18	29551 311739 27495 304704 25634 297778 23867 291130 22304 284870 20892 278665 19551 272460 18288 266699 17102 261048 15961 255563 14903 250411 13955 245480 13063 240439 12271 235564 11518 230854 10787 226201 10083 221824 9413 217503 8792 213348 8233 209304 7728 205204 7224 201271 6781 197392 6399 193625 6094 190024 5817 186589 5512 183044 5230 179664 4963 176340 4739 173182 4485 169969 4292 166867 4097 163764	29551 311739 1054 27495 304704 1108 25634 297778 1161 23867 291130 1219 22304 284870 1277 20892 278665 1333 19551 272460 1393 18288 266699 1458 17102 261048 1526 15961 255563 1601 14903 250411 1680 13955 245480 1759 13063 240439 1840 12271 235564 1919 11518 230854 2004 10787 226201 2096 10083 221824 2199 9413 217503 2310 8792 213348 2426 8233 209304 2542 7228 205204 2655 7224 201271 2786 6781 197392 2910 6399 193625 3025 6094 19024 3118

0.0759 0.0767 0.0776 0.0776 0.0784 0.0793 0.0801 0.0810 0.0818 0.0827 0.0835 0.0844 0.0852 0.0861 0.0869 0.0878 0.0886 0.0894 0.0903 0.0911 0.0920 0.0928 0.0937 0.0945 0.0962	1248 1191 1135 1083 1032 981 929 869 819 770 708 663 626 583 539 500 456 416 380 351 318 296 276 263 246	106812 104984 103156 101383 99610 97838 96120 94403 92796 91189 89638 88142 86591 85095 83600 82270 80830 79500 78226 76841 75566 74292 72963 71744 70470	8558 8814 9088 9361 9652 9973 10346 10863 11330 11842 12660 13294 13832 14596 15510 16454 17725 19110 20585 21892 23762 25098 26435 27279 28646	Fail Fail Fail Fail Fail Fail Fail Fail
				Fail
0.0937	296			
0.0945	276	72963	26435	Fail
0.0954	263	71744	27279	Fail
0.0962	246	70470	28646	Fail
0.0971	231	69251	29978	Fail
0.0979	216	68143	31547	Fail
0.0988	203	66979	32994	Fail
0.0996	180	65871	36595	Fail
0.1005	157	64819	41285	Fail
0.1013	141	63766	45224	Fail
0.1022	127	62714 61606	49381	Fail
0.1030 0.1038	113 104	60497	54518 58170	Fail Fail
0.1036	99	59556	60157	Fail
0.1055	89	58503	65733	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0.2178 acre-feet On-line facility target flow: 0.2341 cfs. Adjusted for 15 min: 0.2341 cfs. Off-line facility target flow: 0.134 cfs. Adjusted for 15 min: 0.134 cfs.

LID Report

LID Technique Used for Total Volume Volume Infiltration Cumulative Percent Water Quality Percent Comment
Treatment? Needs Through Volume Volume

Volume Water Quality

Treatment Facility (ac-ft.) Infiltration Infiltrated

 (ac-ft)
 (ac-ft)
 Credit

 Total Volume Infiltrated
 0.00
 0.00
 0.00
 0.00

Total Volume Infiltrated 0.00 0.00 0.00 0.00 0.00

Compliance with LID Standard 8 Duration Analysis Result = Failed

Stream Protection Duration

Predeveloped Landuse Totals for POC #2

Total Pervious Area:1.9 Total Impervious Area:0

Mitigated Landuse Totals for POC #2

Total Pervious Area:2.415 Total Impervious Area:0

Flow Frequency Return Periods for Predeveloped. POC #2

Return Period	Flow(cfs)
2 year	0.043345
5 year	0.067109
10 year	0.080905
25 year	0.095886
50 year	0.105541
100 year	0 113928

Flow Frequency Return Periods for Mitigated. POC #2

Return Period	Flow(cfs)
2 year	0.055093
5 year	0.0853
10 year	0.102835
25 year	0.121876
50 year	0.134148
100 year	0.144809

Stream Protection Duration

Annual Peaks for Predeveloped and Mitigated. POC #2

Year	Predeveloped	Mitigated
1902	0.035	0.044
1903	0.026	0.034
1904	0.053	0.068
1905	0.022	0.028
1906	0.011	0.015
1907	0.067	0.085
1908	0.048	0.061
1909	0.047	0.060
1910	0.066	0.084
1911	0.043	0.055
1912	0.165	0.210
1913	0.067	0.085

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928	0.017 0.028 0.043 0.015 0.046 0.036 0.044 0.048 0.048 0.038 0.019 0.023 0.043 0.030 0.033	0.022 0.036 0.054 0.019 0.058 0.045 0.055 0.061 0.061 0.048 0.024 0.030 0.054 0.039
1930 1931	0.042 0.040	0.054
1932	0.031	0.039
1933	0.034	0.044
1934 1935	0.088 0.040	0.112
1936	0.036	0.031
1937	0.061	0.078
1938	0.036	0.045
1939	0.003	0.004
1940 1941	0.039 0.024	0.050
1941	0.059	0.030
1943	0.030	0.038
1944	0.066	0.083
1945	0.047	0.060
1946	0.030	0.038
1947 1948	0.020 0.091	0.025 0.116
1949	0.079	0.101
1950	0.023	0.029
1951	0.030	0.038
1952	0.120	0.152
1953 1954	0.108 0.038	0.137
1955	0.033	0.042
1956	0.018	0.022
1957	0.057	0.072
1958	0.114	0.145
1959 1960	0.072 0.021	0.092
1961	0.071	0.027
1962	0.039	0.049
1963	0.019	0.024
1964	0.020	0.025
1965 1966	0.080 0.023	0.102
1967	0.023	0.030
1968	0.038	0.048
1969	0.036	0.045
1970	0.055	0.070

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984	0.084 0.055 0.072 0.043 0.090 0.048 0.021 0.079 0.023 0.046 0.042 0.020 0.072 0.032 0.032 0.051	0.107 0.071 0.091 0.055 0.114 0.061 0.027 0.100 0.029 0.058 0.053 0.026 0.091 0.041 0.065
1986 1987	0.043 0.084 0.051	0.054 0.107 0.065
1988 1989	0.047	0.060
1990 1991	0.054 0.043	0.068 0.055
1992	0.056	0.071
1993 1994	0.058 0.085	0.073
1995	0.019	0.025
1996	0.095 0.038	0.120
1997 1998	0.036	0.048
1999	0.005	0.006
2000 2001	0.034 0.019	0.043
2002	0.069	0.088
2003	0.053	0.067
2004 2005	0.047 0.099	0.060 0.126
2006	0.027	0.034
2007 2008	0.029 0.046	0.036
2009	0.030	0.038
2010	0.026	0.033
2011 2012	0.024 0.036	0.030
2013	0.027	0.034
2014 2015	0.019 0.037	0.024
2015	0.015	0.040
2017	0.065	0.083
2018 2019	0.118 0.121	0.150 0.153
2020	0.036	0.046
2021 2022	0.059 0.024	0.075
2023	0.050	0.031
2024	0.125	0.159
2025 2026	0.044 0.071	0.057
2027	0.027	0.034

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059	0.023 0.048 0.088 0.029 0.017 0.026 0.026 0.100 0.053 0.014 0.047 0.006 0.025 0.034 0.103 0.048 0.065 0.043 0.051 0.037 0.050 0.044 0.032 0.044 0.032 0.045 0.027 0.048 0.027 0.048 0.027 0.048 0.059 0.024 0.021 0.033 0.040 0.070	0.030 0.061 0.112 0.037 0.022 0.034 0.033 0.127 0.068 0.060 0.07 0.032 0.043 0.130 0.062 0.055 0.064 0.063 0.063 0.056 0.040 0.057 0.034 0.057 0.034 0.057 0.034 0.057 0.034 0.057 0.034 0.057 0.040 0.057 0.034 0.057 0.034 0.057 0.040 0.057 0.042 0.057 0.042 0.057 0.042 0.050 0.042 0.050 0.042 0.050 0.042 0.050 0.042 0.050 0.050 0.042 0.050 0.042 0.050 0.0
--	--	--

Stream Protection Duration

Ranked Annual Peaks for Predeveloped and Mitigated. POC #2 Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigate
1	0.1651	0.2098
2	0.1252	0.1591
3	0.1205	0.1532
4	0.1197	0.1522
5	0.1180	0.1499
6	0.1141	0.1450
7	0.1076	0.1367
8	0.1026	0.1304
9	0.1002	0.1273
10	0.0992	0.1261
11	0.0945	0.1201
12	0.0913	0.1161
13	0.0895	0.1138
14	0.0882	0.1120
15	0.0879	0.1117
16	0.0849	0.1079
17	0.0845	0.1074
18	0.0840	0.1068
19	0.0802	0.1020
20	0.0794	0.1009

21	0.0789	0.1003
22	0.0722	0.0918
23	0.0719	0.0914
24	0.0715	0.0909
25	0.0715	0.0908
26	0.0708	0.0900
27	0.0698	0.0887
28	0.0692	0.0879
	0.0692	
29		0.0865
30	0.0672	0.0854
31	0.0665	0.0846
32	0.0664	0.0844
33	0.0657	0.0835
34	0.0651	0.0827
35	0.0645	0.0820
36	0.0610	0.0776
37	0.0593	0.0754
38	0.0591	0.0752
39	0.0590	0.0750
40	0.0577	0.0733
41	0.0568	0.0722
42	0.0559	0.0710
43	0.0555	0.0705
44	0.0552	0.0701
45	0.0536	0.0681
46	0.0533	0.0678
47	0.0533	0.0678
48	0.0526	0.0669
49	0.0511	0.0650
50	0.0511	0.0649
51	0.0506	0.0643
52	0.0497	0.0632
53	0.0496	0.0631
54	0.0484	0.0616
55	0.0481	0.0611
56	0.0480	0.0610
57	0.0480	0.0610
58	0.0479	0.0609
59	0.0476	0.0605
60	0.0475	0.0604
61	0.0474	0.0603
62	0.0474	0.0602
63	0.0473	0.0601
64	0.0470	0.0597
65	0.0469	0.0596
66	0.0460	0.0584
67	0.0457	0.0581
68	0.0457	0.0581
69	0.0457	0.0581
70	0.0452	0.0575
71	0.0445	0.0565
72	0.0443	0.0563
73	0.0437	0.0555
74	0.0435	0.0553
75	0.0431	0.0548
76	0.0430	0.0547
77	0.0430	0.0546
		0.0010

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131	0.0428 0.0427 0.0426 0.0425 0.0420 0.0404 0.0403 0.0396 0.0393 0.0388 0.0381 0.0379 0.0377 0.0375 0.0370 0.0366 0.0364 0.0363 0.0359 0.0358 0.0357 0.0356 0.0348 0.0342 0.0341 0.0336 0.0333 0.0328 0.0333 0.0328 0.0324 0.0317 0.0309 0.0305 0.0303 0.0299 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0268 0.0271 0.0270 0.0269 0.0268 0.0265	0.0544 0.0543 0.0542 0.0540 0.0534 0.0512 0.0504 0.0499 0.0499 0.0493 0.0484 0.0481 0.0480 0.0476 0.0470 0.0465 0.0462 0.0461 0.0456 0.0454 0.0453 0.0453 0.0453 0.0427 0.0423 0.0427 0.0423 0.0423 0.0423 0.0416 0.0412 0.0435 0.0423 0.0427 0.0423 0.0434 0.0427 0.0438 0.0427 0.0438 0.0427 0.0438 0.0427 0.0438 0.0423 0.0416 0.0412 0.0403 0.0385 0.0385 0.0385 0.0385 0.0385 0.0385 0.0385 0.0385 0.0385 0.0385 0.0385 0.0385 0.0385 0.0344 0.0343 0.0342 0.0343 0.0342 0.0335 0.0344 0.0337 0.0335 0.0329 0.0320 0.0311 0.0305 0.0305 0.0303
129	0.0244	0.0311
130	0.0240	0.0305

Stream Protection Duration POC #2 The Facility FAILED

Facility FAILED duration standard for 1+ flows.

				_ /
Flow(cfs)		Mit Pero	_	
0.0217	55678	92519	166	Fail
0.0225	51273	85760	167	Fail
0.0234	47185	79389	168	Fail
0.0242	43462	73683	169	Fail
0.0251	40105	68475	170	Fail
0.0259	37190	63822	171	Fail
0.0268	34431	59445	172	Fail
0.0276	31889	55456	173	Fail
0.0284	29551	51944	175	Fail
0.0293	27495	48692	177	Fail
0.0301	25634	45595	177	Fail
0.0310	23867	42753	179	Fail
0.0318	22304	40171	180	Fail
0.0327	20892	37805	180	Fail
0.0335	19551	35595	182	Fail
0.0344	18288	33567	183	Fail
0.0352	17102	31551	184	Fail
0.0361	15961	29678	185	Fail
0.0369	14903	28060	188	Fail
0.0378	13955	26520	190	Fail
0.0386	13063	25124	192	Fail
0.0395	12271	23767	193	Fail
0.0403	11518	22520	195	Fail
0.0412	10787	21396	198	Fail

0.0420 0.0429	10083 9413	20288 19279	201 204	Fail Fail
0.0437	8792	18282	207	Fail
0.0445	8233	17357	210	Fail
0.0454	7728	16443	212	Fail
0.0462	7224	15545	215	Fail
0.0471	6781	14759	217	Fail
0.0479	6399	14027	219	Fail
0.0488	6094 5817	13318	218	Fail
0.0496 0.0505	5512	12665 12027	217 218	Fail Fail
0.0513	5230	11457	219	Fail
0.0522	4963	10881	219	Fail
0.0530	4739	10327	217	Fail
0.0539	4485	9762	217	Fail
0.0547	4292	9257	215	Fail
0.0556	4097	8787	214	Fail
0.0564	3869	8321	215	Fail
0.0573	3648	7922	217	Fail
0.0581	3474	7534	216	Fail
0.0589	3312	7147	215	Fail
0.0598	3162	6798	214	Fail Fail
0.0615	3018 2916	6498 6244	215 214	Fail
0.0623	2791	6011	214	Fail
0.0632	2677	5778	215	Fail
0.0640	2526	5551	219	Fail
0.0649	2410	5324	220	Fail
0.0657	2302	5105	221	Fail
0.0666	2200	4908	223	Fail
0.0674	2097	4730	225	Fail
0.0683	1978	4532	229	Fail
0.0691	1875	4360	232	Fail
0.0700 0.0708	1765 1683	4226	239	Fail Fail
0.0708	1594	4053 3877	240 243	Fail
0.0725	1524	3700	242	Fail
0.0733	1458	3549	243	Fail
0.0742	1378	3415	247	Fail
0.0750	1306	3298	252	Fail
0.0759	1248	3180	254	Fail
0.0767	1191	3064	257	Fail
0.0776	1135	2974	262	Fail
0.0784	1083	2880	265	Fail
0.0793 0.0801	1032	2786	269	Fail
0.0810	981 929	2695 2572	274 276	Fail Fail
0.0818	869	2482	285	Fail
0.0827	819	2390	291	Fail
0.0835	770	2303	299	Fail
0.0844	708	2225	314	Fail
0.0852	663	2152	324	Fail
0.0861	626	2057	328	Fail
0.0869	583	1967	337	Fail
0.0878	539	1884	349	Fail
0.0886	500	1794	358	Fail
0.0894	456	1730	379	Fail

0.0903	416	1657	398	Fail
0.0911	380	1590	418	Fail
0.0920	351	1532	436	Fail
0.0928	318	1481	465	Fail
0.0937	296	1426	481	Fail
0.0945	276	1359	492	Fail
0.0954	263	1306	496	Fail
0.0962	246	1261	512	Fail
0.0971	231	1209	523	Fail
0.0979	216	1174	543	Fail
0.0988	203	1127	555	Fail
0.0996	180	1086	603	Fail
0.1005	157	1048	667	Fail
0.1013	141	1007	714	Fail
0.1022	127	967	761	Fail
0.1030	113	929	822	Fail
0.1038	104	882	848	Fail
0.1047	99	840	848	Fail
0.1055	89	797	895	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality BMP Flow and Volume for POC #2

On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs.

Adjusted for 15 min: 0 cfs.

Off-line facility target flow: 0 cfs.

Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent Water Quality	Percent	Comment			
	Treatment?	Needs	Through	Volume	Volume
Volume	Water Quality				
		Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Total Volume Infiltrated		0.00	0.00	0.00	0.00
0.00	No Treat. C	redit			
Compliance with LID Standard 8					
Duration Analysis Result = Failed					

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation.

In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

RECHARGE BASIN

WWHM2012 PROJECT REPORT

Project Name: Wetland 2023.05.19

Site Name: Sunset Pointe

Site Address: 2301 23rd Ave Ne

City : Puyallup
Report Date: 5/22/2023
Gage : 40 IN EAST
Data Start : 10/01/1901
Data End : 09/30/2059
Precip Scale: 1.00

Version Date: 2021/08/18

Version : 4.2.18

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Building Roof Areas

Bypass: No

Impervious Land UseacreROOF TOPS FLAT0.383

Element Flows To:

Outlet 1 Outlet 2

Pasture

Name : Pasture

Bypass: No

GroundWater: No

Pervious Land Use acre

C, Pasture, Mod 2.026

Element Flows To:

SurfaceInterflowGroundwaterBuffer AreaBuffer AreaBuffer Area

Name : Gravel
Bypass: No

Impervious Land UseacreROADS FLAT0.272

Element Flows To:

Outlet 1 Outlet 2

Buffer Area

Name : Northside of Bufffer

Bypass: No

GroundWater: No

Pervious Land Use
C, Pasture, Mod
.964

Element Flows To:

SurfaceInterflowGroundwaterBuffer AreaBuffer AreaBuffer Area

Name : Buffer Area

Bypass: No

GroundWater: No

Pervious Land Use C, Pasture, Mod 2.38

Element Flows To:

Surface Interflow Groundwater

MITIGATED LAND USE

Name : Buffer Area

Bypass: No

GroundWater: No

Pervious Land Use
C, Pasture, Mod
2.38

Element Flows To:

Surface Interflow Groundwater

Name : Rear Yards of Lots 1, 3-8

Bypass: No

GroundWater: No

Pervious Land Use
C, Pasture, Mod
.71

Element Flows To:

SurfaceInterflowGroundwaterBuffer AreaBuffer AreaBuffer Area

Name : Gravel Path (north of Buffer)

Bypass: No

Impervious Land UseacreROADS MOD0.023

Element Flows To:

Outlet 1 Outlet 2

Buffer Area

Name : Roof Area lots 9-15

Bypass: No

Impervious Land UseacreROOF TOPS FLAT0.482

Element Flows To:

Outlet 1 Outlet 2

Lawn Lots 9-15

Name : Lawn Lots 9-15

Bypass: No

GroundWater: No

Pervious Land Use
C, Pasture, Mod
.543

Element Flows To:

SurfaceInterflowGroundwaterForest Lots 9-15Forest Lots 9-15Forest Lots 9-15

Name : Forest Lots 9-15

Bypass: No

GroundWater: No

Pervious Land Use
C, Forest, Mod
.394

Element Flows To:

SurfaceInterflowGroundwaterBuffer AreaBuffer AreaBuffer Area

Name : Gravel Path South of Buffer

Bypass: No

Impervious Land Use acre
ROADS MOD 0.053

Element Flows To:

Outlet 1 Outlet 2

Buffer Area

Name : Tract B Forest

Bypass: No

GroundWater: No

Pervious Land Use acre

C, Forest, Mod .446

Element Flows To:

SurfaceInterflowGroundwaterBuffer AreaBuffer AreaBuffer Area

Name : Roof Lots 16-18

Bypass: No

Impervious Land Use acre
ROOF TOPS FLAT 0.207

Element Flows To:

Outlet 1 Outlet 2

Buffer Area

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1

Total Pervious Area:5.37
Total Impervious Area:0.655

Mitigated Landuse Totals for POC #1

Total Pervious Area:4.473
Total Impervious Area:0.765

Flow Frequency Return Periods for Predeveloped. POC #1

Return Period	Flow(cfs)
2 year	0.112872
5 year	0.193671
10 year	0.264542
25 year	0.37753
50 year	0.481219
100 year	0.603897

Flow Frequency Return Periods for Mitigated. POC #1

rrow rroducinoj necuri	
Return Period	Flow(cfs)
2 year	0.097715
5 year	0.16574
10 year	0.224884
25 year	0.318502
50 year	0.403877
100 year	0.504383

Stream Protection Duration

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigate
1902	0.095	0.078
1903	0.081	0.069
1904	0.332	0.259
1905	0.075	0.066
1906	0.031	0.028
1907	0.156	0.139
1908	0.110	0.097
1909	0.095	0.088
1910	0.147	0.135
1911	0.115	0.100
1912	1.091	0.879
1913	0.186	0.157
1914	0.049	0.042
1915	0.094	0.084
1916	0.112	0.094
1917	0.041	0.037
1918	0.139	0.120
1919	0.116	0.096
1920	0.113	0.101
1921	0.131	0.114
1922	0.179	0.154
1923	0.108	0.094
1924	0.065	0.055
1925	0.072	0.061
1926	0.101	0.091
1927	0.067	0.060
1928	0.085	0.074
1929	0.148	0.137

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949	0.097 0.098 0.086 0.112 0.268 0.111 0.109 0.147 0.117 0.024 0.120 0.051 0.195 0.086 0.225 0.120 0.106 0.060 0.202 0.206 0.068	0.086 0.087 0.075 0.093 0.227 0.099 0.092 0.137 0.096 0.022 0.106 0.047 0.167 0.075 0.200 0.102 0.096 0.051 0.177 0.179 0.060
1951	0.082	0.070
1952	0.585	0.475
1953	0.282	0.253
1954	0.108	0.092
1955	0.083	0.071
1956	0.056	0.048
1957	0.144	0.122
1958	0.299	0.254
1959	0.250	0.221
1960	0.055	0.049
1961	0.258	0.212
1962	0.102	0.086
1963	0.063	0.054
1964	0.104	0.087
1965	0.197	0.170
1966	0.061	0.054
1967	0.134	0.114
1968	0.122	0.103
1969	0.091	0.080
1970	0.138	0.123
1971	0.214	0.178
1972	0.142	0.125
1973	0.210	0.178
1974	0.127	0.113
1975	0.351	0.310
1976	0.225	0.185
1977	0.062	0.052
1978	0.203	0.179
1979	0.069	0.058
1980	0.124	0.110
1981	0.111	0.097
1982	0.060	0.051
1983	0.194	0.160
1984	0.097	0.087
1985	0.205	0.165
1986	0.119	0.103

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996	0.264 0.104 0.114 0.136 0.112 0.122 0.140 0.191 0.069 0.278 0.080	0.226 0.092 0.098 0.114 0.096 0.112 0.121 0.166 0.060 0.236 0.073
1998	0.126	0.113
1999	0.045	0.037
2000	0.116	0.099
2001	0.047	0.044
2002	0.353	0.285
2003	0.144	0.122
2004	0.105	0.098
2005	0.497	0.406
2006	0.074	0.064
2007	0.081	0.073
2008	0.122	0.101
2009	0.091	0.076
2010	0.075	0.063
2011	0.059	0.052
2012	0.109	0.102
2013	0.072	0.061
2014	0.064	0.055
2015	0.237	0.198
2016	0.043	0.039
2017	0.135	0.119
2018	0.360	0.301
2019	0.397	0.337
2020	0.113	0.101
2021	0.137	0.115
2022	0.068	0.061
2023	0.120	0.107
2024	0.936	0.762
2025	0.133	0.109
2026	0.175	0.154
2027	0.090	0.074
2028	0.065	0.058
2029	0.110	0.096
2030	0.198	0.174
2031	0.073	0.062
2032	0.052	0.047
2033	0.075	0.065
2034	0.081	0.070
2035	0.247	0.217
2036	0.129	0.115
2037	0.045	0.039
2038	0.145	0.130
2039	0.029	0.024
2040	0.091	0.077
2041	0.090	0.076
2042	0.264	0.231
2043	0.146	0.127

2044	0.167	0.135
2045	0.119	0.105
2046	0.151	0.124
2047	0.105	0.093
2048	0.129	0.109
2049	0.104	0.094
2050	0.076	0.070
2051	0.172	0.154
2052	0.084	0.071
2053	0.141	0.119
2054	0.351	0.270
2055	0.066	0.060
2056	0.070	0.057
2057	0.104	0.088
2058	0.111	0.092
2059	0.184	0.165

Stream Protection Duration

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Rank	Predeveloped	Mitigated
1	1.0909	0.8794
2	0.9355	0.7616
3	0.5848	0.4746
4	0.4975	0.4060
5	0.3967	0.3368
6	0.3602	0.3102
7	0.3530	0.3011
8	0.3509	0.2849
9	0.3508	0.2704
10	0.3316	0.2594
11	0.2990	0.2544
12	0.2818	0.2533
13	0.2780	0.2355
14	0.2678	0.2312
15	0.2643	0.2265
16	0.2638	0.2259
17	0.2582	0.2208
18	0.2499	0.2169
19	0.2474	0.2120
20	0.2371	0.1996
21	0.2248	0.1979
22	0.2246	0.1849
23	0.2141	0.1795
24	0.2099	0.1788
25	0.2064	0.1783
26	0.2050	0.1782
27	0.2032	0.1767
28	0.2015	0.1745
29	0.1983	0.1704
30	0.1971	0.1666
31	0.1952	0.1657
32	0.1941	0.1653
33	0.1907	0.1647
34	0.1864	0.1595
35	0.1839	0.1572
36	0.1793	0.1540

94	0.1052	0.0924
95	0.1045	0.0922
96	0.1043	0.0921
97	0.1038	0.0907
98	0.1038	0.0880
99	0.1019	0.0879
100	0.1014	0.0874
101	0.0975	0.0874
102	0.0966	0.0873
103	0.0966	0.0862
104	0.0954	0.0857
105	0.0949	0.0841
106	0.0940	0.0802
107	0.0911	0.0778
108	0.0909	0.0774
109	0.0908	0.0763
110	0.0902	0.0760
111	0.0897	0.0754
112	0.0863	0.0747
113	0.0858	0.0744
114	0.0851	0.0738
115	0.0840	0.0729
116	0.0835	0.0728
117	0.0824	0.0712
118	0.0813	0.0709
119	0.0812	0.0705
120	0.0810	0.0702
121	0.0797	0.0697
122	0.0763	0.0695
123	0.0750	0.0659
124	0.0748	0.0655
125	0.0745	0.0641
126	0.0739	0.0631
127	0.0725	0.0617
128	0.0722	0.0614
129	0.0717	0.0611
130	0.0697	0.0607
131	0.0694	0.0605
132	0.0689	0.0602
133	0.0683	0.0602
134	0.0678	0.0596
135	0.0673	0.0583
136	0.0661	0.0580
137	0.0654	0.0571
138	0.0653	0.0555
139	0.0644	0.0552
140	0.0627	0.0541
141	0.0616	0.0537
142	0.0610	0.0524
143	0.0604	0.0523
144	0.0598	0.0508
145	0.0594	0.0507
146	0.0555	0.0490
147	0.0554	0.0484
148	0.0516	0.0472
149	0.0509	0.0471
150	0.0309	0.0443
130	0.040/	0.0443

151	0.0466	0.0425
152	0.0452	0.0389
153	0.0447	0.0387
154	0.0428	0.0367
155	0.0414	0.0365
156	0.0314	0.0284
157	0.0286	0.0236
158	0.0237	0.0221

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit	Perce	ntage	Pass/Fail
0.0564	131189	873	67	66	Pass
0.0607	111798	730	73	65	Pass
0.0650	91743	587	25	64	Pass
0.0693	78724	495	34	62	Pass
0.0736	68143	420	44	61	Pass
0.0779	59168	356	50	60	Pass
0.0822	49462	291	30	58	Pass
0.0865	43262	248	58	57	Pass
0.0908	38105	212	57	55	Pass
0.0951	32083	173	63	54	Pass
0.0993	28083	149	86	53	Pass
0.1036	24692	128	64	52	Pass
0.1079	21573	112	13	51	Pass
0.1122	18194	956	2	52	Pass
0.1165	16050	836	0	52	Pass
0.1208	14171	746	2	52	Pass
0.1251	12210	652	6	53	Pass
0.1294	10875	589	5	54	Pass
0.1337	9762	522	0	53	Pass
0.1380	8604	468	5	54	Pass
0.1423	7662	410	4	53	Pass
0.1465	7058	366		51	Pass
0.1508	6582	327		49	Pass
0.1551	5900	282	5	47	Pass
0.1594	5409	249	0	46	Pass
0.1637	4963	218		43	Pass
0.1680	4540	190		41	Pass
0.1723	4013	162		40	Pass
0.1766	3642	141		38	Pass
0.1809	3329	125	5	37	Pass
0.1852	2950	108	0	36	Pass
0.1894	2667	976		36	Pass
0.1937	2383	879		36	Pass
0.1980	1978	754		38	Pass
0.2023	1771	666		37	Pass
0.2066	1602	574		35	Pass
0.2109	1472	452		30	Pass
0.2152	1326	339		25	Pass
0.2195	1212	285		23	Pass
0.2238	1102	218		19	Pass

0.2281	995	185	18	Dagg
0.2324	897	164	18	Pass Pass
0.2324	835	142	17	Pass
0.2300	766	122	15	
	636		12	Pass
0.2452		81		Pass
0.2495	493	61	12	Pass
0.2538	411	45	10	Pass
0.2581	334	37	11	Pass
0.2624	284	34	11	Pass
0.2667	244	29	11	Pass
0.2710	227	29	12	Pass
0.2753	200	26	13	Pass
0.2796	177	25	14	Pass
0.2838	156	24	15	Pass
0.2881	125	23	18	Pass
0.2924	93	22	23	Pass
0.2967	60	22	36	Pass
0.3010	47	21	44	Pass
0.3053	34	20	58	Pass
0.3096	33	20	60	Pass
0.3139	32	19	59	Pass
0.3182	27	19	70	Pass
0.3225	27	19	70	Pass
0.3268	26	19	73	Pass
0.3310	25	19	76	Pass
0.3353	24	19	79	Pass
0.3396	24	18	75	Pass
0.3339	23	18	78	
				Pass
0.3482	23	17	73	Pass
0.3525	21	17	80	Pass
0.3568	20	17	85	Pass
0.3611	19	17	89	Pass
0.3654	19	15	78	Pass
0.3697	19	15	78	Pass
0.3740	18	14	77	Pass
0.3782	18	13	72	Pass
0.3825	18	13	72	Pass
0.3868	18	13	72	Pass
0.3911	18	13	72	Pass
0.3954	18	13	72	Pass
0.3997	17	13	76	Pass
0.4040	17	13	76	Pass
0.4083	17	12	70	Pass
0.4126	17	12	70	Pass
0.4169	17	12	70	Pass
0.4211	17	12	70	Pass
0.4254	15	12	80	Pass
0.4297	14	12	85	Pass
0.4340	14	12	85	Pass
0.4340	14	12	85	Pass
0.4363	14	12	85	
				Pass
0.4469	14	12	85	Pass
0.4512	14	12	85	Pass
0.4555	13	12	92	Pass
0.4598	13	12	92	Pass
0.4641	13	12	92	Pass
0.4683	13	11	84	Pass

```
0.4726
         13
                   11
                           84
                                   Pass
0.4769
                           76
          13
                   10
                                   Pass
                           76
0.4812
          13
                   10
                                   Pass
```

Water Quality BMP Flow and Volume for POC #1

On-line facility volume: $\boldsymbol{0}$ acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

Off-line facility target flow: 0 cfs.

Adjusted for 15 min: 0 cfs.

Wetlands Input Volume

Average Annual Volume (acft)

Series 1: 501 POC 1 Predeveloped flow

Series 2: 801 POC 1 Mitigated flow

Month	Series 1	Series 2	Percent	Pass/Fail
Jan	1.0971	0.9664	88.1	Pass
Feb	0.9454	0.8322	88.0	Pass
Mar	0.7053	0.6271	88.9	Pass
Apr	0.3191	0.2925	91.7	Pass
May	0.1080	0.1047	96.9	Pass
Jun	0.0387	0.0422	109.0	Pass
Jul	0.0079	0.0096	122.6	Fail
Aug	0.0008	0.0015	182.5	Fail
Sep	0.0060	0.0093	154.3	Fail
Oct	0.0737	0.0875	118.7	Fail
Nov	0.5991	0.5492	91.7	Pass
Dec	1.0717	0.9470	88.4	Pass

Day	Series 1	Series 2	Percent	Pass/Fail
Jan1	0.0319	0.0283	88.9	Pass
2	0.0328	0.0292	89.1	Pass
3	0.0371	0.0326	87.9	Pass
4	0.0362	0.0314	86.8	Pass
5	0.0340	0.0299	87.8	Pass
6	0.0339	0.0299	88.3	Pass
7	0.0341	0.0300	88.1	Pass
8	0.0323	0.0284	88.0	Pass
9	0.0327	0.0290	88.7	Pass
10	0.0329	0.0291	88.5	Pass
11	0.0340	0.0299	88.0	Pass
12	0.0328	0.0288	87.8	Pass
13	0.0355	0.0313	88.2	Pass
14	0.0398	0.0348	87.2	Pass
15	0.0404	0.0350	86.5	Pass
16	0.0393	0.0343	87.1	Pass
17	0.0386	0.0339	87.7	Pass
18	0.0415	0.0365	88.0	Pass
19	0.0432	0.0377	87.3	Pass
20	0.0424	0.0369	87.1	Pass
21	0.0362	0.0320	88.3	Pass
22	0.0346	0.0310	89.8	Pass
23	0.0367	0.0326	89.0	Pass

24	0.0382	0.0335	87.7	Pass
25	0.0354	0.0309	87.5	Pass
26	0.0355	0.0314	88.5	Pass
27	0.0344	0.0303	88.1	Pass
28	0.0321	0.0284	88.4	Pass
29	0.0284	0.0253	89.3	Pass
30	0.0277	0.0250	90.2	Pass
31	0.0315	0.0280	89.0	Pass
Feb1	0.0346	0.0303	87.5	Pass
2	0.0337	0.0292	86.8	Pass
3	0.0336	0.0294	87.5	Pass
4	0.0330	0.0256	88.7	Pass
5	0.0289	0.0230	89.3	
				Pass
6	0.0344	0.0300	87.0	Pass
7	0.0336	0.0294	87.4	Pass
8	0.0337	0.0294	87.4	Pass
9	0.0303	0.0267	88.2	Pass
10	0.0298	0.0264	88.7	Pass
11	0.0290	0.0258	88.9	Pass
12	0.0303	0.0267	88.2	Pass
13	0.0312	0.0274	87.9	Pass
14	0.0307	0.0269	87.7	Pass
15	0.0310	0.0275	88.5	Pass
16	0.0369	0.0325	88.1	Pass
17	0.0414	0.0359	86.7	Pass
18	0.0436	0.0377	86.5	Pass
19	0.0442	0.0382	86.4	Pass
20	0.0389	0.0340	87.3	Pass
21	0.0343	0.0306	89.2	Pass
22	0.0320	0.0288	89.9	Pass
23	0.0320	0.0257	90.2	Pass
24	0.0283	0.0237	90.2	Pass
25	0.0322	0.0284	88.1	Pass
26	0.0326	0.0287	88.1	Pass
27	0.0339	0.0297	87.5	Pass
28	0.0331	0.0290	87.6	Pass
29	0.0291	0.0256	87.9	Pass
Mar1	0.0269	0.0241	89.6	Pass
2	0.0264	0.0236	89.6	Pass
3	0.0254	0.0227	89.6	Pass
4	0.0254	0.0226	89.1	Pass
5	0.0251	0.0224	89.2	Pass
6	0.0238	0.0211	88.7	Pass
7	0.0215	0.0194	90.2	Pass
8	0.0237	0.0213	90.2	Pass
9	0.0255	0.0225	88.1	Pass
10	0.0245	0.0215	87.9	Pass
11	0.0247	0.0219	88.7	Pass
12	0.0252	0.0223	88.6	Pass
13	0.0246	0.0217	88.3	Pass
14	0.0243	0.0216	88.7	Pass
15	0.0231	0.0205	88.7	Pass
16	0.0231	0.0189	89.2	Pass
17	0.0212	0.0189	90.1	Pass
18	0.0193	0.0176	90.1	
				Pass
19	0.0177	0.0160	90.6	Pass
20	0.0173	0.0156	89.8	Pass

21	0.0177	0.0158	89.5	Pass
22	0.0214	0.0190	88.7	Pass
23	0.0226	0.0195	86.6	Pass
24	0.0219	0.0191	87.3	Pass
25	0.0213	0.0188	88.1	Pass
26	0.0210	0.0187	89.2	Pass
27	0.0215	0.0191	88.6	Pass
28	0.0210	0.0187	89.1	Pass
29	0.0224	0.0199	88.9	Pass
30	0.0223	0.0197	88.5	Pass
31	0.0213	0.0189	88.7	Pass
Apr1	0.0177	0.0159	89.9	Pass
2	0.0140	0.0129	92.6	Pass
3	0.0131	0.0123	94.5	Pass
4	0.0131	0.0129	92.6	Pass
5	0.0142	0.0129	90.5	Pass
6	0.0142	0.0123	90.1	Pass
7	0.0133			
		0.0118	90.3	Pass
8	0.0140	0.0126	89.9	Pass
9	0.0143	0.0127	89.0	Pass
10	0.0146	0.0130	89.1	Pass
11	0.0133	0.0120	90.1	Pass
12	0.0129	0.0117	90.8	Pass
13	0.0106	0.0097	92.3	Pass
14	0.0083	0.0080	95.9	Pass
15	0.0071	0.0069	97.5	Pass
16	0.0066	0.0065	98.8	Pass
17	0.0072	0.0068	95.0	Pass
18	0.0065	0.0061	94.5	Pass
19	0.0075	0.0070	93.5	Pass
20	0.0093	0.0082	89.1	Pass
21	0.0088	0.0078	88.7	Pass
22	0.0082	0.0075	90.5	Pass
23	0.0096	0.0087	90.5	Pass
24	0.0096	0.0085	89.2	Pass
25	0.0077	0.0070	91.4	Pass
26	0.0064	0.0061	95.9	Pass
27	0.0060	0.0058	97.1	Pass
28	0.0054	0.0053	97.9	Pass
29	0.0048	0.0047	98.9	Pass
30	0.0048	0.0048	99.1	Pass
May1	0.0070	0.0066	94.0	Pass
_2	0.0077	0.0069	89.9	Pass
3	0.0072	0.0065	90.9	Pass
4	0.0068	0.0063	92.9	Pass
5	0.0070	0.0065	92.9	Pass
6	0.0064	0.0059	92.6	Pass
7	0.0056	0.0054	95.0	Pass
8	0.0048	0.0046	96.7	Pass
9	0.0035	0.0036	101.3	Pass
10	0.0027	0.0029	106.2	Pass
11	0.0027	0.0026	105.1	Pass
12	0.0023	0.0023	103.1	Pass
13	0.0022	0.0023	100.5	Pass
14	0.0024	0.0024	100.0	Pass
15	0.0022	0.0022	106.1	
16	0.0018	0.0020	108.1	Pass
10	0.0024	0.0023	103.0	Pass

17	0.0029	0.0028	97.4	Pass
18	0.0025	0.0025	98.7	Pass
19	0.0020	0.0021	106.4	Pass
20	0.0023	0.0024	103.8	Pass
21	0.0022	0.0023	101.1	Pass
22	0.0022	0.0022	100.2	Pass
23	0.0022	0.0022	98.5	Pass
24	0.0022	0.0021	97.7	Pass
25	0.0023	0.0022	96.1	Pass
26	0.0021	0.0020	96.8	Pass
27	0.0021	0.0020	97.5	Pass
28	0.0019	0.0019	99.0	Pass
29	0.0013	0.0013	100.2	Pass
30	0.0021	0.0021	100.2	
	0.0020			Pass
31		0.0019	106.5	Pass
Jun1	0.0019	0.0021	106.4	Pass
2	0.0026	0.0026	99.0	Pass
3	0.0023	0.0023	97.9	Pass
4	0.0021	0.0021	102.2	Pass
5	0.0024	0.0025	100.6	Pass
6	0.0022	0.0022	101.3	Pass
7	0.0022	0.0022	100.6	Pass
8	0.0019	0.0020	102.1	Pass
9	0.0023	0.0024	102.0	Pass
10	0.0024	0.0024	100.3	Pass
11	0.0021	0.0022	102.5	Pass
12	0.0015	0.0017	110.1	Pass
13	0.0012	0.0014	117.5	Pass
14	0.0009	0.0012	124.3	Fail
15	0.0008	0.0010	126.2	Fail
16	0.0007	0.0009	129.9	Fail
17	0.0006	0.0008	132.4	Fail
18	0.0008	0.0010	119.2	Pass
19	0.0008	0.0010	116.1	Pass
20	0.0006	0.0009	124.4	Fail
21	0.0006	0.0008	124.4	Fail
22	0.0005	0.0007	135.8	Fail
23	0.0006	0.0008	128.8	Fail
24	0.0007	0.0008	117.8	Pass
25	0.0005	0.0007	129.2	Fail
26	0.0004	0.0006	148.4	Fail
27	0.0004	0.0006	141.6	Fail
28	0.0004	0.0005	137.3	Fail
29	0.0004	0.0005	129.1	Fail
30	0.0005	0.0005	117.7	Pass
Jul1	0.0006	0.0007	110.9	Pass
2	0.0006	0.0006	109.8	Pass
3	0.0004	0.0005	127.4	Fail
4	0.0003	0.0004	151.3	Fail
5	0.0002	0.0004	161.2	Fail
6	0.0002	0.0003	177.8	Fail
7	0.0002	0.0003	159.1	Fail
8	0.0002	0.0003	148.4	Fail
9	0.0002	0.0003	162.8	Fail
10	0.0001	0.0002	181.8	Fail
11	0.0001	0.0002	155.7	Fail
12	0.0005	0.0005	105.6	Pass
	2.000	2.000	_55.5	_ ~~

13	0.0006	0.0006	92.1	Pass
14	0.0007	0.0007	97.8	Pass
15	0.0006	0.0006	104.3	Pass
16	0.0004	0.0005	118.4	Pass
17	0.0003	0.0004	134.8	Fail
18	0.0004	0.0004	115.5	Pass
19	0.0003	0.0003	114.0	Pass
20	0.0002	0.0002	123.7	Fail
21	0.0001	0.0002	133.8	Fail
22	0.0001	0.0001	152.9	Fail
23	0.0001	0.0001	182.0	Fail
24	0.0001	0.0001	211.9	Fail
25	0.0000	0.0001	210.2	Fail
			180.6	
26	0.0000	0.0000		Fail
27	0.0000	0.0000	154.5	Fail
28	0.0000	0.0000	143.6	Fail
29	0.0000	0.0000	145.2	Fail
30	0.0000	0.0000	150.8	Fail
31	0.0000	0.0000	132.2	Fail
Aug1	0.0000	0.0000	112.5	Pass
2	0.0000	0.0000	106.2	Pass
3	0.0000	0.0000	107.4	Pass
4	0.0000	0.0000	159.4	Fail
5	0.0000	0.0000	194.5	Fail
6	0.0000	0.0000	212.3	Fail
7	0.0000	0.0000	213.9	Fail
8	0.0000	0.0000	200.4	Fail
9	0.0000	0.0000	188.1	Fail
10	0.0000	0.0000	127.6	Fail
11	0.0000	0.0000	119.7	Pass
12	0.0000	0.0000	150.7	Fail
13	0.0000	0.0000	179.9	Fail
14	0.0000	0.0000	161.2	Fail
15	0.0000	0.0000	138.1	Fail
16	0.0000	0.0000	127.9	Fail
17	0.0000	0.0000	128.8	Fail
18	0.0000	0.0000	141.3	Fail
19	0.0000	0.0000	167.9	Fail
20	0.0000	0.0000	177.9	Fail
21	0.0000	0.0000	188.7	Fail
22	0.0000	0.0000	166.2	Fail
23	0.0000	0.0000	132.8	Fail
24	0.0000	0.0001	130.3	Fail
25	0.0000	0.0001	159.9	Fail
	0.0001	0.0001	181.4	
26	0.0001			Fail
27		0.0001	199.4	Fail
28	0.0001	0.0001	210.1	Fail
29	0.0001	0.0002	247.5	Fail
30	0.0001	0.0002	303.8	Fail
31	0.0005	0.0006	116.5	Pass
Sep1	0.0006	0.0006	101.7	Pass
2	0.0005	0.0005	113.6	Pass
3	0.0003	0.0004	139.5	Fail
4	0.0002	0.0004	176.3	Fail
5	0.0001	0.0003	218.8	Fail
6	0.0001	0.0002	264.5	Fail
7	0.0001	0.0002	281.0	Fail

8	0.0001	0.0001	251.7	Fail
9	0.0001	0.0001	248.5	Fail
10	0.0000	0.0001	269.2	Fail
11	0.0000	0.0001	301.6	Fail
12	0.0000	0.0001	318.8	Fail
13	0.0000	0.0001	328.0	Fail
14	0.0000	0.0001	248.7	Fail
15	0.0000	0.0001	183.7	Fail
16	0.0000	0.0001	141.1	Fail
17	0.0000	0.0001	136.9	Fail
18	0.0001	0.0001	160.3	Fail
19	0.0001	0.0002	206.6	Fail
20	0.0001	0.0002	208.9	Fail
21	0.0002	0.0004	156.0	Fail
22	0.0007	0.0007	100.6	Pass
23	0.0006	0.0007	104.6	Pass
24	0.0005	0.0006	134.0	Fail
25	0.0003	0.0006	179.6	Fail
26	0.0002	0.0005	228.4	Fail
27	0.0002	0.0004	257.2	Fail
28	0.0001	0.0004	285.2	Fail
29	0.0001	0.0003	350.0	Fail
30	0.0002	0.0004	251.5	Fail
Oct1	0.0004	0.0006	150.9	Fail
2	0.0004	0.0006	168.1	Fail
3	0.0003	0.0006	225.6	Fail
4	0.0003	0.0006	249.6	Fail
5	0.0003	0.0006	240.7	Fail
6	0.0018	0.0020	107.8	Pass
7	0.0024	0.0023	96.1	Pass
8	0.0022	0.0023	104.4	Pass
9	0.0022	0.0025	110.1	Pass
10	0.0018	0.0023	124.2	Fail
11	0.0016	0.0022	138.8	Fail
12	0.0014	0.0021	148.2	Fail
13	0.0011	0.0018	159.3	Fail
14	0.0011	0.0017	167.1	Fail
15	0.0010	0.0017	156.9	Fail
16	0.0010	0.0010	131.1	Fail
17		0.0019		
18	0.0017 0.0023	0.0020	123.2 112.4	Fail
19	0.0023	0.0026	117.3	Pass
				Pass
20	0.0024	0.0029	123.3	Fail
21	0.0026	0.0032	124.1	Fail
22	0.0028	0.0034	123.1	Fail
23	0.0026	0.0034	130.4	Fail
24	0.0030	0.0038	126.5	Fail
25	0.0031	0.0039	127.3	Fail
26	0.0043	0.0050	118.0	Pass
27	0.0059	0.0064	107.3	Pass
28	0.0070	0.0072	103.9	Pass
29	0.0071	0.0073	104.0	Pass
30	0.0072	0.0077	106.4	Pass
31	0.0094	0.0094	100.0	Pass
Nov1	0.0086	0.0086	99.1	Pass
2	0.0094	0.0093	98.4	Pass
3	0.0093	0.0090	97.3	Pass

4	0.0084	0.0085	102.0	Pass
5	0.0077	0.0083	107.6	Pass
6	0.0086	0.0092	107.4	Pass
7	0.0096	0.0098	102.3	Pass
8	0.0095	0.0097	102.7	Pass
9	0.0111	0.0110	99.3	Pass
10	0.0129	0.0124	96.4	Pass
11	0.0147	0.0138	93.9	Pass
12	0.0161	0.0148	92.4	Pass
13	0.0175	0.0162	92.5	Pass
14	0.0187	0.0171	91.3	Pass
15	0.0189	0.0174	92.1	Pass
16	0.0215	0.0197	91.7	Pass
17	0.0211	0.0193	91.1	Pass
18	0.0219	0.0198	90.6	Pass
19	0.0247	0.0223	90.2	Pass
20	0.0258	0.0229	88.7	Pass
21	0.0258	0.0230	89.0	Pass
22	0.0272	0.0244	89.4	Pass
23	0.0326	0.0290	89.1	Pass
24	0.0367	0.0321	87.5	Pass
25	0.0396	0.0344	86.9	Pass
26	0.0367	0.0320	87.1	Pass
27	0.0331	0.0295	89.2	Pass
28	0.0312	0.0281	90.3	Pass
29	0.0310	0.0282	90.8	Pass
30	0.0329	0.0293	89.0	Pass
Dec1	0.0327	0.0290	88.6	Pass
2	0.0351	0.0230	88.6	Pass
3	0.0378	0.0311	87.4	Pass
4	0.0370	0.0333	87.3	Pass
5	0.0379	0.0333	87.6	Pass
6	0.0373	0.0332	88.2	Pass
7	0.0346	0.0323	89.2	Pass
8	0.0319	0.0303	89.9	Pass
9	0.0291	0.0267	91.4	Pass
10	0.0321	0.0200	90.2	Pass
11	0.0336	0.0298	88.7	Pass
12	0.0338	0.0298	87.9	Pass
13 14	0.0333 0.0346	0.0295 0.0306	88.5 88.4	Pass
15	0.0347	0.0306	88.2	Pass Pass
16	0.0347	0.0300	88.2	
17	0.0353	0.0323	87.4	Pass
	0.0333	0.0309	88.5	Pass
18	0.0313		89.5	Pass
19		0.0288		Pass
20	0.0346	0.0305	88.2	Pass
21	0.0371	0.0324	87.3	Pass
22	0.0369	0.0321	87.0	Pass
23	0.0339	0.0297	87.7	Pass
24	0.0325	0.0289	89.0	Pass
25	0.0332	0.0297	89.3	Pass
26	0.0376	0.0332	88.1	Pass
27	0.0361	0.0315	87.3	Pass
28	0.0351	0.0309	88.1	Pass
29	0.0365	0.0322	88.2	Pass
30	0.0338	0.0296	87.6	Pass

LID Report

Total Volume Volume Infiltration Cumulative LID Technique Used for Percent Water Quality Percent Comment Treatment? Needs Through Volume Volume Volume Water Quality Treatment Facility (ac-ft.) Infiltration Infiltrated Treated (ac-ft) (ac-ft) Credit 0.00 0.00 Total Volume Infiltrated 0.00 0.00 No Treat. Credit Compliance with LID Standard 8 Duration Analysis Result = Passed

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by: Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

WWHM2012 PROJECT REPORT

Project Name: Overall Wetland 2024.09.18

Site Name: Sunset Pointe

Site Address: 2301 23rd Ave Ne

City : Puyallup
Report Date: 9/19/2024
Gage : 40 IN EAST
Data Start : 10/01/1901
Data End : 09/30/2059
Precip Scale: 1.00

Version Date: 2023/01/27

Version : 4.2.19

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Building Roof Areas

Bypass: No

Impervious Land UseacreROOF TOPS FLAT0.383

Element Flows To:

Outlet 1 Outlet 2

Pasture

Name : Pasture

Bypass: No

GroundWater: No

Pervious Land Use acre

C, Pasture, Mod 2.026

Element Flows To:

SurfaceInterflowGroundwaterBuffer AreaBuffer AreaBuffer Area

Name : Gravel
Bypass: No

Impervious Land UseacreROADS FLAT0.272

Element Flows To:

Outlet 1 Outlet 2

Buffer Area

Name : Northside of Bufffer

Bypass: No

GroundWater: No

Pervious Land Use
C, Pasture, Mod
.964

Element Flows To:

SurfaceInterflowGroundwaterBuffer AreaBuffer AreaBuffer Area

Name : Buffer Area

Bypass: No

GroundWater: No

Pervious Land Use C, Pasture, Mod 2.38

Element Flows To:

Surface Interflow Groundwater

MITIGATED LAND USE

Name : Buffer Area

Bypass: No

GroundWater: No

Pervious Land Use
C, Pasture, Mod
2.38

Element Flows To:

Surface Interflow Groundwater

Name : Rear Yards of Lots 1, 3-8

Bypass: No

GroundWater: No

Pervious Land Use
C, Pasture, Mod
.71

Element Flows To:

SurfaceInterflowGroundwaterBuffer AreaBuffer AreaBuffer Area

Name : Gravel Path (north of Buffer)

Bypass: No

Impervious Land UseacreROADS MOD0.023

Element Flows To:

Outlet 1 Outlet 2

Buffer Area

Name : Roof Area lots 9-14

Bypass: No

Impervious Land UseacreROOF TOPS FLAT0.413

Element Flows To:

Outlet 1 Outlet 2

Lawn Lots 9-15

Name : Lawn Lots 9-15

Bypass: No

GroundWater: No

Pervious Land Use
C, Pasture, Mod
.543

Element Flows To:

SurfaceInterflowGroundwaterForest Lots 9-15Forest Lots 9-15Forest Lots 9-15

Name : Forest Lots 9-15

Bypass: No

GroundWater: No

Pervious Land Use
C, Forest, Mod
.394

Element Flows To:

SurfaceInterflowGroundwaterBuffer AreaBuffer AreaBuffer Area

Name : Gravel Path South of Buffer

Bypass: No

Impervious Land Use acre
ROADS MOD 0.053

Element Flows To:

Outlet 1 Outlet 2

Buffer Area

Name : Tract B Forest

Bypass: No

GroundWater: No

Pervious Land Use
C, Forest, Mod
.446

Element Flows To:

SurfaceInterflowGroundwaterBuffer AreaBuffer AreaBuffer Area

Name : Roof Lots 15-18

Bypass: No

Impervious Land Use acre
ROOF TOPS FLAT 0.137

Element Flows To:

Outlet 1 Outlet 2

Lawn (50/50)

Name : Forest Lot 16-18

 $\textbf{Bypass:} \ \texttt{No}$

GroundWater: No

Pervious Land Use
C, Forest, Mod .23

Element Flows To:

Surface Interflow Groundwater
Lawn 16-18 Lawn 16-18 Lawn 16-18

Name : Lawn 16-18

Bypass: No

GroundWater: No

Pervious Land Use
C, Pasture, Flat
.32

Element Flows To:

Surface Interflow Groundwater

23rd Onsite 23rd Onsite

Name : 23rd Onsite

Bypass: No

Impervious Land UseacreROADS FLAT0.27

Element Flows To:

Outlet 1 Outlet 2

Tract B Forest

Name : Driveways Lots 9-18

Bypass: No

 $\begin{array}{c|cccc} \underline{\text{Impervious Land Use}} & \underline{\text{acre}} \\ \hline \text{DRIVEWAYS MOD} & 0.23 \end{array}$

Element Flows To:

Outlet 1 Outlet 2

23rd Onsite

Name : Lawn (50/50)

Bypass: No

GroundWater: No

Pervious Land Use
C, Pasture, Mod
.137

Element Flows To:

SurfaceInterflowGroundwaterBuffer AreaBuffer AreaBuffer Area

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1

Total Pervious Area:5.37
Total Impervious Area:0.655

Mitigated Landuse Totals for POC #1

Total Pervious Area:5.16
Total Impervious Area:1.126

Flow Frequency Return Periods for Predeveloped. POC #1 Return Period Flow(cfs)

Return Period	FIOW (CIS)
2 year	0.112872
5 year	0.193671
10 year	0.264542
25 year	0.37753
50 year	0.481219
100 year	0.603897

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.102017
5 year	0.175111
10 year	0.240653
25 year	0.347321
50 year	0.447146
100 year	0.567241

Stream Protection Duration

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1902	0.095	0.090
1903	0.081	0.074
1904	0.332	0.246
1905	0.075	0.070
1906	0.031	0.028
1907	0.156	0.142
1908	0.110	0.101
1909	0.095	0.088
1910	0.147	0.133
1911	0.115	0.106
1912	1.091	1.121
1913	0.186	0.172
1914	0.049	0.046
1915	0.094	0.092
1916	0.112	0.099
1917	0.041	0.035
1918	0.139	0.136

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934	0.116 0.113 0.131 0.179 0.108 0.065 0.072 0.101 0.067 0.085 0.148 0.097 0.098 0.098 0.086 0.112 0.268 0.111	0.110 0.105 0.126 0.151 0.098 0.056 0.068 0.090 0.059 0.081 0.131 0.089 0.088 0.084 0.103 0.233 0.110
1935	0.111	0.110
1937	0.147	0.130
1938	0.117	0.107
1939 1940	0.024 0.120	0.022 0.117
1941	0.051	0.048
1942	0.195	0.192
1943	0.086 0.225	0.082
1944 1945	0.225	0.200
1946	0.106	0.094
1947	0.060	0.052
1948	0.202	0.180
1949 1950	0.206 0.068	0.186
1951	0.082	0.076
1952	0.585	0.561
1953	0.282	0.274
1954 1955	0.108 0.083	0.107 0.073
1956	0.056	0.053
1957	0.144	0.130
1958	0.299	0.275
1959 1960	0.250 0.055	0.232
1961	0.258	0.219
1962	0.102	0.094
1963	0.063	0.057
1964 1965	0.104 0.197	0.085
1966	0.061	0.053
1967	0.134	0.107
1968	0.122	0.106
1969 1970	0.091 0.138	0.082
1971	0.214	0.200
1972	0.142	0.127
1973	0.210	0.182
1974 1975	0.127 0.351	0.110
-		

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989	0.225 0.062 0.203 0.069 0.124 0.111 0.060 0.194 0.097 0.205 0.119 0.264 0.104 0.114 0.136 0.112	0.180 0.056 0.185 0.068 0.116 0.111 0.055 0.174 0.091 0.162 0.111 0.230 0.097 0.101 0.120 0.097
1992	0.122	0.119
1993 1994	0.140 0.191	0.125 0.172
1995	0.069	0.068
1996 1997	0.278 0.080	0.254
1998	0.126	0.120
1999 2000	0.045 0.116	0.042
2001	0.047	0.045
2002	0.353	0.313
2003 2004	0.144 0.105	0.134
2005	0.497	0.439
2006 2007	0.074 0.081	0.071
2008	0.122	0.113
2009 2010	0.091 0.075	0.086
2010	0.059	0.070
2012	0.109	0.094
2013 2014	0.072 0.064	0.067
2015	0.237	0.192
2016 2017	0.043 0.135	0.038
2018	0.360	0.335
2019	0.397 0.113	0.335
2020 2021	0.113	0.104
2022	0.068	0.065
2023 2024	0.120 0.936	0.110 0.981
2025	0.133	0.124
2026 2027	0.175 0.090	0.161 0.082
2028	0.065	0.061
2029 2030	0.110 0.198	0.099 0.182
2031	0.073	0.065
2032	0.052	0.052

2033 2034 2035 2036 2037 2038	0.075 0.081 0.247 0.129 0.045 0.145	0.069 0.069 0.228 0.117 0.039 0.126
2039	0.029	0.026
2040 2041 2042 2043 2044 2045	0.091 0.090 0.264 0.146 0.167 0.119	0.085 0.080 0.242 0.136 0.156
2046 2047	0.151 0.105	0.141
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057	0.129 0.104 0.076 0.172 0.084 0.141 0.351 0.066 0.070 0.104 0.111	0.115 0.094 0.068 0.154 0.079 0.137 0.231 0.060 0.063 0.095 0.102
2059	0.184	0.156

Stream Protection Duration

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigated
1	1.0909	1.1214
2	0.9355	0.9813
3	0.5848	0.5608
4	0.4975	0.4386
5	0.3967	0.3432
6	0.3602	0.3355
7	0.3530	0.3347
8	0.3509	0.3134
9	0.3508	0.2749
10	0.3316	0.2744
11	0.2990	0.2541
12	0.2818	0.2461
13	0.2780	0.2418
14	0.2678	0.2329
15	0.2643	0.2323
16	0.2638	0.2312
17	0.2582	0.2298
18	0.2499	0.2282
19	0.2474	0.2187
20	0.2371	0.2005
21	0.2248	0.1999
22	0.2246	0.1917
23	0.2141	0.1915
24	0.2099	0.1859
25	0.2064	0.1853

26	0 2050	0 1024
26	0.2050	0.1824
27	0.2032	0.1822
28	0.2015	0.1804
29	0.1983	0.1802
30	0.1971	0.1799
31	0.1952	0.1740
32	0.1941	0.1723
33	0.1907	0.1716
34	0.1864	0.1623
35	0.1839	0.1606
36	0.1793	0.1562
37	0.1748	0.1557
38	0.1718	0.1545
39	0.1672	0.1509
40	0.1562	0.1415
41	0.1508	0.1410
42	0.1479	0.1374
43	0.1473	
		0.1361
44	0.1471	0.1357
45	0.1460	0.1342
46	0.1448	0.1330
47	0.1443	0.1305
48	0.1437	0.1302
49	0.1423	0.1295
50	0.1405	0.1281
51	0.1398	0.1269
52	0.1391	0.1258
53	0.1385	0.1255
54	0.1374	0.1251
55	0.1355	0.1237
56	0.1350	0.1235
57	0.1343	0.1199
58	0.1334	0.1195
59	0.1311	0.1194
60	0.1294	0.1193
61	0.1287	0.1170
62	0.1272	
		0.1169
63	0.1260	0.1165
64	0.1245	0.1154
65	0.1219	0.1136
66	0.1218	0.1129
67	0.1216	0.1109
68	0.1202	0.1105
69	0.1199	0.1105
70	0.1198	0.1102
71	0.1192	0.1101
72	0.1192	0.1098
73	0.1172	0.1096
74	0.1160	0.1075
75	0.1160	0.1075
76	0.1153	0.1074
77	0.1140	0.1072
78	0.1134	0.1064
79	0.1131	0.1061
80	0.1121	0.1057
81	0.1120	0.1054
82	0.1118	0.1041

02	0 1112	0.1031
83	0.1112	
84	0.1112	0.1019
85	0.1110	0.1012
86	0.1105	0.1007
87	0.1098	0.1000
88	0.1095	0.0991
89	0.1094	0.0990
90	0.1084	0.0989
91	0.1076	0.0984
92	0.1057	0.0974
93	0.1055	0.0974
94	0.1052	0.0946
95	0.1045	0.0944
96	0.1043	0.0943
97	0.1038	0.0943
98	0.1038	0.0938
99	0.1019	0.0925
100	0.1014	0.0915
101	0.0975	0.0898
102	0.0966	0.0896
103	0.0966	0.0887
104	0.0954	0.0878
105	0.0949	0.0878
106	0.0940	0.0856
107	0.0911	0.0849
108	0.0909	0.0848
109	0.0908	0.0837
110	0.0902	0.0820
111	0.0897	0.0820
112	0.0863	0.0817
113	0.0858	0.0810
114	0.0851	0.0801
115	0.0840	0.0796
116	0.0835	0.0790
117	0.0824	0.0759
118	0.0813	0.0735
119	0.0812	0.0733
120	0.0810	0.0720
121	0.0797	0.0713
122	0.0763	0.0704
123	0.0750	0.0703
124	0.0748	0.0694
125	0.0745	0.0690
126	0.0739	0.0685
127	0.0725	0.0684
128	0.0722	0.0681
129	0.0717	0.0676
130	0.0697	0.0666
131	0.0694	0.0650
132	0.0689	0.0649
133	0.0683	0.0632
		0.0627
134	0.0678	
135	0.0673	0.0613
136	0.0661	0.0610
137	0.0654	0.0603
138	0.0653	0.0593
139	0.0644	0.0571

140	0.0627	0.0571
141	0.0616	0.0556
142	0.0610	0.0556
143	0.0604	0.0549
144	0.0598	0.0531
145	0.0594	0.0527
146	0.0555	0.0522
147	0.0554	0.0516
148	0.0516	0.0503
149	0.0509	0.0476
150	0.0487	0.0457
151	0.0466	0.0450
152	0.0452	0.0416
153	0.0447	0.0392
154	0.0428	0.0385
155	0.0414	0.0352
156	0.0314	0.0283
157	0.0286	0.0261
158	0.0237	0.0220

Stream Protection Duration POC #1 The Facility FAILED

Facility FAILED duration standard for 1+ flows.

Flow(cfs)	Predev	Mit Perc	entage	Pass/Fail
0.0564	131189	128973	98	Pass
0.0607	111798	109305	97	Pass
0.0650	91743	89472	97	Pass
0.0693	78724	76674	97	Pass
0.0736	68143	65816	96	Pass
0.0779	59168	56786	95	Pass
0.0822	49462	47528	96	Pass
0.0865	43262	40841	94	Pass
0.0908	38105	35207	92	Pass
0.0951	32083	29562	92	Pass
0.0993	28083	25800	91	Pass
0.1036	24692	22199	89	Pass
0.1079	21573	19036	88	Pass
0.1122	18194	16000	87	Pass
0.1165	16050	14083	87	Pass
0.1208	14171	12377	87	Pass
0.1251	12210	10471	85	Pass
0.1294	10875	9352	85	Pass
0.1337	9762	8515	87	Pass
0.1380	8604	7800	90	Pass
0.1423	7662	6975	91	Pass
0.1465	7058	6354	90	Pass
0.1508	6582	5800	88	Pass
0.1551	5900	5073	85	Pass
0.1594	5409	4649	85	Pass
0.1637	4963	4240	85	Pass
0.1680	4540	3765	82	Pass
0.1723	4013	3168	78	Pass
0.1766	3642	2829	77	Pass

0.3525 21 19 90 Pass 0.3568 20 19 95 Pass 0.3611 19 19 100 Pass 0.3654 19 19 100 Pass 0.3697 19 19 100 Pass 0.3740 18 19 105 Pass 0.3782 18 19 105 Pass 0.3825 18 19 105 Pass 0.3868 18 18 100 Pass 0.3911 18 17 94 Pass 0.3997 17 17 100 Pass	0.3611 0.3654 0.3697 0.3740 0.3782 0.3825 0.3868 0.3911 0.3954	19 19 19 18 18 18 18 18	19 19 19 19 19 19 18 17	100 100 100 105 105 105 100 94	Pass Pass Pass Pass Pass Pass Pass Pass	
0.3825 18 19 105 Pass 0.3868 18 18 100 Pass 0.3911 18 17 94 Pass 0.3954 18 17 94 Pass	0.3868 0.3911 0.3954 0.3997 0.4040 0.4083 0.4126 0.4169	18 18 18 17 17 17 17	18 17 17 17 17 17 17	100 94 94 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass Pass	

0.4254	15	17	113	Fail
0.4297	14	17	121	Fail
0.4340	14	17	121	Fail
0.4383	14	17	121	Fail
0.4426	14	16	114	Fail
0.4469	14	16	114	Fail
0.4512	14	16	114	Fail
0.4555	13	16	123	Fail
0.4598	13	15	115	Fail
0.4641	13	14	107	Pass
0.4683	13	14	107	Pass
0.4726	13	14	107	Pass
0.4769	13	12	92	Pass
0.4812	13	11	84	Pass

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

_

Water Quality BMP Flow and Volume for POC #1

On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs.

Adjusted for 15 min: 0 cfs.

Off-line facility target flow: 0 cfs.

Adjusted for 15 min: 0 cfs.

LID Report

LID Techniq	[ue	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent	Water Quality	Percent	Comment			
		Treatment?	Needs	Through	Volume	Volume
Volume		Water Quality				
			Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	l	Treated				
			(ac-ft)	(ac-ft)		Credit
Total Volume	e Infiltrated		0.00	0.00	0.00	0.00
0.00	0%	No Treat. C	redit			
Compliance	with LID Standa	rd 8				
Duration An	alysis Result =	: Failed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by: Clear Creek Solutions, Inc. 2005-2024; All Rights Reserved.

ROADWAY BASIN

WWHM2012 PROJECT REPORT

Project Name: Roadway
Site Name: Sunset
Site Address: 2301 23rd
City : Puyallup
Report Date: 6/25/2024
Gage : 40 IN EAST
Data Start : 10/01/1901
Data End : 09/30/2059
Precip Scale: 1.00

Version Date: 2023/01/27

Version : 4.2.19

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre
C, Pasture, Flat .009

Pervious Total 0.009

Impervious Land Use acre
ROADS FLAT 0.149

Impervious Total 0.149

Basin Total 0.158

Element Flows To:

Surface Interflow Groundwater

MITIGATED LAND USE

Name : Basin 1

Bypass: No

GroundWater: No

Pervious Land Use
C, Pasture, Flat
acre
.046

Pervious Total 0.046

Impervious Land UseacreROADS FLAT0.1

Impervious Total 0.1

Basin Total 0.146

Element Flows To:

Surface Interflow Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1

Total Pervious Area:0.009 Total Impervious Area:0.149

Mitigated Landuse Totals for POC #1

Total Pervious Area:0.046 Total Impervious Area:0.1

Flow Frequency Return Periods for Predeveloped. POC #1

Return Period	Flow(cfs)
2 year	0.053546
5 year	0.071826
10 year	0.085106
25 year	0.103273
50 year	0.117847
100 year	0.133343

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.036445
5 year	0.048897
10 year	0.057944
25 year	0.070323
50 year	0.080255
100 year	0.090815

Stream Protection Duration
Annual Peaks for Predeveloped and Mitigated. POC #1

Annual	Peaks	for Predevelo	ped and Mitiga
Year		Predeveloped	Mitigated
1902		0.063	0.042
1903		0.070	0.047
1904		0.080	0.056
1905		0.036	0.024
1906		0.040	0.027
1907		0.053	0.037
1908		0.044	0.030
1909		0.054	0.036
1910		0.051	0.035
1911		0.058	0.039
1912		0.097	0.070
1913		0.042	0.028
1914		0.178	0.120
1915		0.036	0.025
1916		0.067	0.025
1917		0.027	0.018
1918		0.053	0.036
1919		0.033	0.023
1920		0.044	0.030
1921		0.038	0.026
1921		0.059	0.041
1923		0.039	0.028
1923		0.041	0.052
1924		0.078	
			0.023
1926 1927		0.063 0.054	0.042 0.036
		0.034	0.027
1928 1929		0.038	0.051
1929		0.076	0.051
1930		0.039	0.026
1931		0.042	0.029
1932		0.042	0.029
1934		0.041	0.047
1935		0.036	0.047
1936		0.049	0.034
1937		0.049	0.044
1937		0.003	0.025
1939		0.037	0.030
1940		0.043	0.054
1941		0.088	0.059
1941		0.060	0.041
1942		0.059	0.041
1943			
1944		0.085 0.064	0.057
1945		0.050	0.043 0.035
1947		0.039	0.035
		0.053	0.036
1948 1949		0.033	0.055
1949		0.082	0.033
1950		0.046	0.031
1952		0.080	0.056
1953		0.074	0.052

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966	0.043 0.041 0.038 0.043 0.054 0.054 0.044 0.121 0.052 0.039 0.112 0.052 0.042 0.059	0.030 0.027 0.025 0.029 0.038 0.038 0.029 0.081 0.035 0.026 0.075 0.035 0.029
1968	0.050	0.034
1969	0.045	0.031
1970	0.051	0.035
1971	0.050	0.035
1972	0.163	0.110
1973	0.094	0.063
1974	0.069	0.047
1975	0.071	0.050
1976	0.076	0.052
1977	0.033	0.022
1978	0.055	0.039
1979	0.059	0.040
1980	0.057	0.039
1981	0.054	0.037
1982	0.044	0.030
1983	0.059	0.041
1984	0.059	0.040
1985	0.067	0.046
1986	0.034	0.024
1987	0.061	0.041
1988	0.036	0.024
1989	0.035	0.024
1990	0.043	0.030
1991	0.065	0.044
1992	0.062	0.042
1993	0.069	0.046
1994	0.048	0.033
1995	0.037	0.025
1996	0.050	0.034
1997	0.044	0.030
1998	0.053	0.037
1999	0.061	0.041
2000	0.050	0.034
2001	0.041	0.028
2002	0.074	0.052
2002 2003 2004 2005	0.043 0.064 0.125	0.029 0.043 0.084
2006	0.058	0.039
2007	0.065	0.044
2008	0.053	0.036
2009	0.040	0.027
2010	0.052	0.035

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2030 2031 2032 2033 2034 2035 2036 2037 2038 2040 2041 2042 2043 2044 2045 2046 2047 2046 2047 2046 2047 2046 2047 2046 2047 2048 2049 2040 2041 2042 2048 2049 2040 2041 2042 2043 2044 2045 2046 2047 2046 2047 2046 2047 2048 2049 2040 2041 2042 2043 2044 2045 2046 2047 2046 2047 2046 2047 2046 2047 2046 2047 2048 2049 2040 2041 2042 2043 2044 2045 2046 2047 2046 2047 2046 2047 2046 2047 2048 2049 2040 2041 2042 2043 2040 2041 2040 2041 2040 2041 2042 2043 2044 2045 2046 2047 2046 2047 2046 2047 2046 2047 2046 2047 2040 2040 2041 2042 2043 2044 2045 2046 2047 2046 2047 2048 2049 2040 2041 2046 2047 2046 2047 2048 2048 2049 2050 2040 2041 2042 2048 2049 2050 2050 2050 2050 2050 2050 2050 205	0.054 0.051 0.048 0.047 0.077 0.051 0.078 0.047 0.070 0.057 0.048 0.080 0.100 0.105 0.052 0.059 0.064 0.025 0.041 0.087 0.026 0.041 0.087 0.026 0.044 0.055 0.042 0.058 0.055 0.042 0.058 0.055 0.042 0.058 0.055 0.042 0.058 0.055 0.042 0.058 0.055 0.042 0.043 0.055 0.042 0.054 0.043 0.055 0.042 0.055 0.042 0.054 0.055 0.042 0.055 0.042 0.055 0.042 0.055 0.042 0.055 0.042 0.055 0.042 0.055 0.042 0.055 0.043 0.055 0.064 0.070 0.048 0.039 0.043 0.053 0.045	0.036 0.035 0.033 0.032 0.053 0.053 0.034 0.052 0.039 0.033 0.054 0.067 0.075 0.035 0.040 0.043 0.017 0.029 0.059 0.018 0.029 0.037 0.028 0.038 0.029 0.038 0.038 0.029 0.039 0.033 0.034 0.040 0.043
2050 2051 2052	0.049 0.069 0.053	0.033 0.048 0.035

Stream Protection Duration

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated

Kank	Preaevelopea	Mitigate
1	0.1780	0.1195
2	0.1631	0.1097
3	0.1253	0.0842

4	0.1211	0.0814
5	0.1116	0.0755
6	0.1101	0.0752
7	0.1054	0.0739
8	0.0999	0.0700
9	0.0966	0.0671
10	0.0942	0.0632
11	0.0883	0.0606
12	0.0879	0.0593
13	0.0874	0.0587
14	0.0852	0.0575
15	0.0830	0.0564
16	0.0825	0.0557
17 18	0.0807 0.0806	0.0555
19	0.0797	0.0542
20 21	0.0797 0.0796	0.0541 0.0535
22	0.0782 0.0777	0.0532
24	0.0770	0.0524
25	0.0763	0.0521
26	0.0758	0.0519
27	0.0740	0.0518
28	0.0737	0.0513
29	0.0713	0.0507
30	0.0704	0.0502
31	0.0704	0.0477
32	0.0702	0.0473
33	0.0701	0.0473
34	0.0700	0.0471
35	0.0691	0.0470
36	0.0690	0.0469
37	0.0687	0.0468
38	0.0673	0.0464
39	0.0671	0.0461
40 41	0.0669 0.0658	0.0451
42 43	0.0651 0.0650	0.0437
44 45	0.0648 0.0646	0.0437 0.0437 0.0435
46	0.0644	0.0432
47 48	0.0643	0.0432
49 50	0.0641	0.0431
51 52	0.0631 0.0624	0.0424
53	0.0606	0.0412
54	0.0605	0.0411
55	0.0598	0.0408
56	0.0594	0.0407
57	0.0594	0.0407
58	0.0593	0.0406
59	0.0592	0.0401
60	0.0591	0.0401

61	0.0591	0.0400
62	0.0586	0.0397
63	0.0581	0.0394
64	0.0580	0.0393
65	0.0577	0.0391
66	0.0572	0.0390
67	0.0569	0.0388
68	0.0552	0.0387
69	0.0551	0.0383
70	0.0550	0.0381
71	0.0549	0.0378
72	0.0543	0.0376
73	0.0541	0.0373
74	0.0540	0.0371
75	0.0539	0.0370
76	0.0539	0.0369
77	0.0538	0.0365
78	0.0535	0.0363
79	0.0535	0.0363
80	0.0534	0.0361
81		
	0.0534	0.0361
82	0.0534	0.0359
83	0.0532	0.0359
84	0.0532	0.0359
85	0.0528	0.0354
86	0.0525	0.0353
87	0.0521	0.0352
88	0.0520	0.0351
89	0.0520	0.0351
90	0.0515	0.0351
91	0.0510	0.0349
92	0.0508	0.0347
93	0.0506	0.0346
94	0.0504	0.0345
95	0.0503	0.0344
96	0.0502	0.0342
97	0.0499	0.0341
98	0.0497	0.0341
99	0.0496	0.0340
100	0.0495	0.0337
101	0.0489	0.0337
102	0.0483	0.0334
103	0.0481	0.0333
103	0.0481	0.0333
		0.0329
105	0.0476 0.0471	
106		0.0327
107	0.0470	0.0315
108	0.0456	0.0308
109	0.0449	0.0306
110	0.0448	0.0303
111	0.0445	0.0303
112	0.0444	0.0301
113	0.0442	0.0300
114	0.0439	0.0300
115	0.0439	0.0299
116	0.0436	0.0297
117	0.0436	0.0296

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 150 150 150 150 150 150 150 150	0.0436 0.0435 0.0433 0.0433 0.0433 0.0432 0.0427 0.0421 0.0419 0.0417 0.0415 0.0413 0.0412 0.0412 0.0407 0.0405 0.0405 0.0392 0.0389 0.0389 0.0389 0.0387 0.0384 0.0379 0.0376 0.0370 0.0366 0.0370 0.0366 0.0355 0.0355 0.0355 0.0352 0.0338 0.0337 0.0338 0.0337 0.0336 0.0352 0.0338 0.0328 0.0328	0.0296 0.0295 0.0295 0.0294 0.0293 0.0293 0.0291 0.0287 0.0286 0.0284 0.0282 0.0277 0.0277 0.0277 0.0273 0.0272 0.0271 0.0269 0.0265 0.0265 0.0265 0.0265 0.0265 0.0265 0.0265 0.0265 0.0263 0.0272 0.0271 0.0269 0.0271 0.0269 0.0265
153 154	0.0336 0.0328	0.0230

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Per	centage	Pass/Fail
0.0268	4957	1120	22	Pass
0.0277	4364	980	22	Pass
0.0286	3813	853	22	Pass
0.0295	3374	734	21	Pass
0.0305	2995	641	21	Pass
0.0314	2668	566	21	Pass
0.0323	2385	504	21	Pass

0.0332 0.0341 0.0351	2134 1937 1725	449 387 334	21 19 19	Pass Pass Pass
0.0360 0.0369 0.0378	1542 1397 1270	291 255 226	18 18 17	Pass Pass Pass
0.0387 0.0397	1143 1049	199 176	17 16	Pass Pass
0.0397	967	157	16	Pass
0.0415	869	133	15	Pass
0.0424	791	123	15	Pass
0.0433	730	113	15	Pass
0.0443 0.0452	648 593	102 92	15 15	Pass Pass
0.0461	541	87	16	Pass
0.0470	495	76	15	Pass
0.0479	463	65	14	Pass
0.0489	429	60	13	Pass
0.0498	393	58	14	Pass
0.0507 0.0516	349	56	16 16	Pass
0.0516	318 289	53 47	16 16	Pass Pass
0.0535	263	45	17	Pass
0.0544	244	38	15	Pass
0.0553	223	37	16	Pass
0.0562	208	33	15	Pass
0.0571	193	31	16	Pass
0.0581	175	30	17	Pass
0.0590 0.0599	163 149	29 25	17 16	Pass Pass
0.0608	136	24	17	Pass
0.0617	131	23	17	Pass
0.0627	124	22	17	Pass
0.0636	116	21	18	Pass
0.0645	105	21	20	Pass
0.0654 0.0663	95 90	19	20 20	Pass
0.0673	84	18 17	20	Pass Pass
0.0682	79	16	20	Pass
0.0691	75	15	20	Pass
0.0700	72	13	18	Pass
0.0709	63	13	20	Pass
0.0719	61	13	21	Pass
0.0728 0.0737	56	13	23	Pass
0.0737	56 54	13 11	23 20	Pass Pass
0.0755	54	9	16	Pass
0.0764	49	9	18	Pass
0.0774	46	9	19	Pass
0.0783	42	8	19	Pass
0.0792	42	8	19	Pass
0.0801	38 35	7 7	18	Pass
0.0810	35 33	6	20 18	Pass Pass
0.0829	32	6	18	Pass
0.0838	30	6	20	Pass
0.0847	30	5	16	Pass

0.0856 0.0866 0.0875 0.0884	29 29 27 25	5 5 5 5	17 17 18 20	Pass Pass Pass Pass
0.0893	23	5	21	Pass
0.0902	22	5	22	Pass
0.0912	22	5	22	Pass
0.0921	21	5	23	Pass
0.0930	20	5	25	Pass
0.0939	19	5	26	Pass
0.0948	17	5	29	Pass
0.0958	16	4	25	Pass
0.0967	15	4	26	Pass
0.0976	15	4	26	Pass
0.0985	15	3	20	Pass
0.0994	15	3	20	Pass
0.1004	14	3	21	Pass
0.1013	14	3	21	Pass
0.1022	13	3	23	Pass
0.1031	13	3	23	Pass
0.1040	13	3	23	Pass
0.1050	12	2	16	Pass
0.1059	11	2	18	Pass
0.1068	11	2	18	Pass
0.1077	11	2	18	Pass
0.1086	11	2	18	Pass
0.1096	11	2	18	Pass
0.1105	10	1	10	Pass
0.1114	10	1	10	Pass
0.1123	9	1	11	Pass
0.1132	9	1	11	Pass
0.1142	9	1	11	Pass
0.1151	9	1	11	Pass
0.1160	8	1	12	Pass
0.1169	8	1	12	Pass
0.1178	8	1	12	Pass

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Techni	.que	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent	Water Quality	Percent	Comment			
		Treatment?	Needs	Through	Volume	Volume
Volume		Water Quality				
			Treatment	Facility	(ac-ft.)	Infiltration
Infiltrate	ed	Treated				
			(ac-ft)	(ac-ft)		Credit
Total Volu	me Infiltrated		0.00	0.00	0.00	0.00
0.00	0%	No Treat. C	redit			

Compliance with LID Standard 8

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by: Clear Creek Solutions, Inc. 2005-2024; All Rights Reserved.

WWHM2012 PROJECT REPORT

Project Name: 23rd Flow 2024.06.25

Site Name: Sunset

Site Address: 2301 23rd City : Puyallup Report Date: 6/25/2024 Gage : 40 IN EAST Data Start : 10/01/1901 Data End : 09/30/2059 Precip Scale: 1.00

Version Date: 2023/01/27

Version : 4.2.19

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Existing

Bypass: No

GroundWater: No

Pervious Total 1.177

Impervious Land Use acre

Impervious Total 0

Basin Total 1.177

Element Flows To:

Surface Interflow Groundwater

MITIGATED LAND USE

Name : Forest
Bypass: No

GroundWater: No

Pervious Land Use
C, Forest, Mod
.23

Element Flows To:
Surface
Yard 16-18L
Yard 16-18L
Yard 16-18L

Groundwater

Yard 16-18L

Name : Yard 16-18L

Bypass: No

GroundWater: No

Pervious Land Use acre
C, Pasture, Mod .32

Element Flows To:

Surface Interflow Groundwater

Roadway Roadway

Name : Driveways

Bypass: No

ImperviousLandUseacreDRIVEWAYSFLAT0.23

Element Flows To:

Outlet 1 Outlet 2

Roadway

Name : Roadway

Bypass: No

ImperviousLand UseacreROADSFLAT0.27

Element Flows To:

Outlet 1 Outlet 2

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1

Total Pervious Area:1.177
Total Impervious Area:0

Mitigated Landuse Totals for POC #1

Total Pervious Area:0.55
Total Impervious Area:0.5

Flow Frequency Return Periods for Predeveloped. POC #1

Return Period	Flow(cfs)
2 year	0.026851
5 year	0.041573
10 year	0.050119
25 year	0.059399
50 year	0.06538
100 year	0.070576

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	<u>Flow(cfs)</u>
2 year	0.170064
5 year	0.228153
10 year	0.270355
25 year	0.328094
50 year	0.374419
100 year	0.423675

Stream Protection Duration

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1902	0.022	0.187
1903	0.016	0.210
1904	0.033	0.255
1905	0.014	0.113
1906	0.007	0.123
1907	0.041	0.181
1908	0.030	0.139
1909	0.029	0.174
1910	0.041	0.173
1911	0.027	0.176
1912	0.102	0.361
1913	0.042	0.126
1914	0.011	0.556
1915	0.017	0.115
1916	0.026	0.209
1917	0.009	0.086
1918	0.028	0.160
1919	0.022	0.099
1920	0.027	0.139
1921	0.029	0.126
1922	0.030	0.180
1923	0.024	0.143
1924	0.011	0.243
1925	0.015	0.101
1926	0.026	0.205

1927 1928 1929 1930 1931 1932 1933 1934	0.019 0.020 0.042 0.026 0.025 0.019 0.021 0.055 0.025	0.172 0.132 0.235 0.260 0.121 0.139 0.135 0.225 0.119
1936 1937 1938	0.023 0.038 0.022	0.152 0.193 0.119
1939	0.002	0.148
1940	0.024	0.257
1941 1942	0.015 0.037	0.265
1943	0.019	0.191
1944	0.041	0.271
1945 1946	0.029 0.019	0.205 0.162
1947	0.013	0.126
1948	0.057	0.167
1949	0.049 0.014	0.256 0.119
1950 1951	0.014	0.119
1952	0.074	0.288
1953	0.067	0.255
1954 1955	0.023 0.021	0.143
1956	0.011	0.116
1957	0.035	0.137
1958 1959	0.071 0.045	0.185 0.191
1960	0.013	0.131
1961	0.044	0.381
1962 1963	0.024 0.012	0.162 0.117
1964	0.012	0.327
1965	0.050	0.168
1966	0.015	0.134
1967 1968	0.023 0.023	0.188 0.137
1969	0.022	0.147
1970	0.034	0.166
1971 1972	0.052 0.034	0.173 0.514
1973	0.045	0.279
1974	0.027	0.217
1975 1976	0.055 0.030	0.252
1977	0.013	0.103
1978	0.049	0.195
1979 1980	0.014 0.028	0.183 0.175
1981	0.026	0.173
1982	0.012	0.136
1983	0.044	0.197

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000	0.020 0.032 0.027 0.052 0.032 0.029 0.033 0.027 0.035 0.036 0.053 0.012 0.059 0.024 0.028 0.003 0.021	0.189 0.218 0.114 0.172 0.118 0.104 0.135 0.201 0.187 0.219 0.164 0.114 0.167 0.144 0.174 0.192 0.170
2001	0.012	0.130
2002 2003	0.043 0.033	0.254
2003	0.033	0.140
2005	0.061	0.378
2006 2007	0.017 0.018	0.170
2007	0.028	0.201
2009	0.019	0.129
2010	0.016	0.171
2011 2012	0.015 0.022	0.155 0.170
2013	0.017	0.138
2014	0.012	0.144
2015 2016	0.023 0.009	0.254
2017	0.040	0.250
2018	0.073	0.178
2019 2020	0.075 0.022	0.240
2021	0.022	0.163
2022	0.015	0.244
2023 2024	0.031 0.078	0.308
2025	0.028	0.151
2026	0.044	0.179
2027 2028	0.017 0.014	0.199
2029	0.030	0.140
2030	0.054	0.266
2031 2032	0.018 0.011	0.088
2032	0.016	0.164
2034	0.016	0.132
2035 2036	0.062 0.033	0.189 0.132
2036	0.009	0.132
2038	0.029	0.183
2039	0.004 0.016	0.340
2040	0.010	0.144

2041	0.021	0.172
2042	0.064	0.201
2043	0.030	0.215
2044	0.040	0.155
2045	0.027	0.133
2046	0.031	0.139
2047	0.023	0.177
2048	0.031	0.143
2049	0.027	0.204
2050	0.020	0.160
2051	0.028	0.233
2052	0.017	0.153
2053	0.029	0.141
2054	0.037	0.265
2055	0.015	0.161
2056	0.013	0.216
2057	0.021	0.112
2058	0.025	0.206
2059	0.043	0.229

Stream Protection Duration

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Rank	Predeveloped	Mitigated
1	0.1023	0.5557
2	0.0775	0.5141
3	0.0747	0.3808
4	0.0742	0.3780
5	0.0731	0.3773
6	0.0707	0.3612
7	0.0666	0.3400
8	0.0636	0.3271
9	0.0621	0.3081
10	0.0614	0.2879
11	0.0585	0.2793
12	0.0566	0.2708
13	0.0555	0.2661
14	0.0546	0.2655
15	0.0545	0.2649
16	0.0526	0.2599
17	0.0523	0.2565
18	0.0521	0.2565
19	0.0497	0.2552
20	0.0492	0.2546
21	0.0489	0.2535
22	0.0448	0.2535
23	0.0446	0.2517
24	0.0443	0.2505
25	0.0443	0.2471
26	0.0439	0.2437
27	0.0432	0.2429
28	0.0429	0.2400
29	0.0421	0.2350
30	0.0416	0.2326
31	0.0412	0.2290
32	0.0411	0.2246
33	0.0407	0.2186

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	0.0403 0.0400 0.0378 0.0367 0.0366 0.0357 0.0352 0.0346 0.0344 0.0342 0.0332 0.0330 0.0330 0.0326 0.0317	0.2183 0.2174 0.2156 0.2147 0.2105 0.2094 0.2074 0.2061 0.2051 0.2050 0.2043 0.2012 0.2008 0.2006 0.1988 0.1968 0.1949
51	0.0313	0.1931
52 53	0.0308 0.0307	0.1921 0.1917
54	0.0300	0.1917
55	0.0298	0.1915
56	0.0297	0.1911
57	0.0297	0.1897 0.1892
58 59	0.0297 0.0295	0.1892
60	0.0294	0.1881
61	0.0294	0.1872
62	0.0293	0.1868
63	0.0293	0.1855
64	0.0291	0.1834
65	0.0290	0.1827
66 67	0.0285 0.0283	0.1825 0.1814
68	0.0283	0.1795
69	0.0283	0.1785
70	0.0280	0.1776
71	0.0276	0.1768
72	0.0274	0.1759
73 74	0.0270 0.0269	0.1749 0.1744
75	0.0267	0.1736
76	0.0267	0.1735
77	0.0266	0.1727
78	0.0265	0.1727
79	0.0264	0.1724
80	0.0264	0.1724
81 82	0.0263 0.0260	0.1719 0.1706
83	0.0250	0.1696
84	0.0250	0.1696
85	0.0246	0.1696
86	0.0243	0.1682
87	0.0240	0.1674
88 89	0.0236 0.0236	0.1671 0.1660
90	0.0235	0.1642
<i>- - - - - - - - - -</i>		· · · · · · · · · · · · · · · · · · ·

91	0.0234	0.1637
92	0.0232	0.1634
93	0.0232	0.1624
94	0.0229	0.1617
95	0.0225	0.1613
96	0.0225	0.1605
97	0.0222	0.1604
98	0.0221	0.1604
99	0.0221	0.1547
100	0.0221	0.1547
101	0.0215	0.1532
102	0.0212	0.1519
103	0.0211	0.1505
104	0.0208	0.1483
105	0.0206	0.1482
106	0.0206	0.1472
107	0.0203	0.1444
108	0.0201	0.1441
109	0.0196	0.1435
110	0.0191	0.1435
111	0.0189	0.1431
112	0.0188	0.1426
113	0.0188	0.1413
114	0.0185	0.1400
115	0.0185	0.1398
116	0.0180	0.1394
117	0.0177	0.1394
118	0.0174	0.1390
119	0.0168	0.1388
120	0.0167	0.1382
121	0.0167	0.1374
122	0.0166	0.1371
123	0.0164	0.1361
124	0.0164	0.1355
125	0.0163	0.1353
126	0.0160	0.1343
127	0.0156	0.1334
128	0.0152	0.1324
129	0.0151	0.1319
130	0.0148	0.1318
131	0.0148	0.1315
132	0.0145	0.1301
133	0.0145	0.1291
134	0.0144	0.1289
135	0.0144	0.1261
136	0.0143	0.1257
137	0.0136	0.1256
138	0.0132	0.1234
139	0.0132	0.1214
140	0.0130	0.1194
141	0.0125	0.1188
142	0.0123	0.1186
143	0.0121	0.1181
144	0.0120	0.1173
145	0.0117	0.1158
146	0.0116	0.1154
147	0.0115	0.1143

148	0.0115	0.1139
149	0.0109	0.1135
150	0.0108	0.1124
151	0.0107	0.1120
152	0.0092	0.1042
153	0.0090	0.1030
154	0.0088	0.1011
155	0.0071	0.0993
156	0.0036	0.0885
157	0.0029	0.0859
158	0.0019	0.0819

Stream Protection Duration POC #1 The Facility FAILED

Facility FAILED duration standard for 1+ flows.

Flow(cfs)	Predev	Mit Perc	-	Pass/Fail
0.0134	55733	268638	482	Fail
0.0140	51229	259220	506	Fail
0.0145	47201	250577	530	Fail
0.0150	43512	242267	556	Fail
0.0155	40127	234068	583	Fail
0.0160	37213	226422	608	Fail
0.0166	34437	218888	635	Fail
0.0171	31922	211907	663	Fail
0.0176	29534	205093	694	Fail
0.0181	27512	198722	722	Fail
0.0187	25634	192462	750	Fail
0.0192	23889	186589	781	Fail
0.0197	22293	180661	810	Fail
0.0202	20908	175177	837	Fail
0.0208	19551	169803	868	Fail
0.0213	18293	164595	899	Fail
0.0218	17097	159720	934	Fail
0.0223	15966	154845	969	Fail
0.0229	14903	150302	1008	Fail
0.0234	13961	145870	1044	Fail
0.0239	13063	141659	1084	Fail
0.0244	12277	137504	1120	Fail
0.0250	11512	133405	1158	Fail
0.0255	10787	129693	1202	Fail
0.0260	10083	125926	1248	Fail
0.0265	9413	122325	1299	Fail
0.0271	8787	118779	1351	Fail
0.0276	8233	115344	1400	Fail
0.0281	7734	112131	1449	Fail
0.0286	7230	108918	1506	Fail
0.0292	6787	105871	1559	Fail
0.0297	6399	102824	1606	Fail
0.0302	6100	99887	1637	Fail
0.0307	5812	96951	1668	Fail
0.0313	5514	94181	1708	Fail
0.0318	5230	91522	1749	Fail
0.0323	4966	88973	1791	Fail

0.0496 982 35490 3614 Fail 0.0502 929 34487 3712 Fail 0.0507 870 33562 3857 Fail 0.0512 818 32620 3987 Fail 0.0517 770 31794 4129 Fail	0.0496 982 35490 3614 Fail 0.0502 929 34487 3712 Fail 0.0507 870 33562 3857 Fail 0.0512 818 32620 3987 Fail 0.0517 770 31794 4129 Fail 0.0523 708 30936 4369 Fail 0.0528 663 30105 4540 Fail 0.0533 626 29296 4679 Fail 0.0538 583 28504 4889 Fail	0.0496 982 35490 3614 Fail 0.0502 929 34487 3712 Fail 0.0507 870 33562 3857 Fail 0.0512 818 32620 3987 Fail 0.0517 770 31794 4129 Fail 0.0523 708 30936 4369 Fail 0.0528 663 30105 4540 Fail 0.0533 626 29296 4679 Fail 0.0538 583 28504 4889 Fail 0.0544 540 27739 5136 Fail 0.0549 500 26963 5392 Fail 0.0554 456 26249 5756 Fail 0.0559 417 25573 6132 Fail 0.0565 380 24914 6556 Fail	0.0496 982 35490 3614 Fail 0.0502 929 34487 3712 Fail 0.0507 870 33562 3857 Fail 0.0512 818 32620 3987 Fail 0.0517 770 31794 4129 Fail 0.0523 708 30936 4369 Fail 0.0528 663 30105 4540 Fail 0.0533 626 29296 4679 Fail 0.0538 583 28504 4889 Fail 0.0544 540 27739 5136 Fail 0.0549 500 26963 5392 Fail 0.0554 456 26249 5756 Fail 0.0559 417 25573 6132 Fail	0.0328 0.0334 0.0339 0.0344 0.0349 0.0355 0.0360 0.0365 0.0370 0.0376 0.0381 0.0386 0.0397 0.0402 0.0407 0.0412 0.0418 0.0423 0.0428 0.0423 0.0428 0.0423 0.0428 0.0423 0.0428 0.0448 0.0428 0.0448 0.0448 0.0449 0.0460 0.0465 0.0475 0.0486 0.0491	4734 4486 4293 4099 3869 3648 3474 3312 3019 2915 2793 2677 2526 2412 2303 2200 2097 1979 1875 1768 1683 1594 1525 1459 1378 1306 1248 1191 1135 1083 1031	86370 83987 81605 79389 77173 75012 72852 70857 68918 67090 65317 63489 61716 59943 58337 56619 55124 53700 52276 50797 49428 48093 46841 45556 44304 43118 41911 40808 39706 38598 37600 36515	1824 1872 1900 1936 1994 2056 2097 2139 2179 2222 2240 2273 2305 2373 2418 2458 2505 2641 2709 2795 2857 2938 2987 3036 3129 3209 3269 3333 3471 3541	Fail Fail Fail Fail Fail Fail Fail Fail
	0.0528 663 30105 4540 Fail 0.0533 626 29296 4679 Fail 0.0538 583 28504 4889 Fail	0.0528 663 30105 4540 Fail 0.0533 626 29296 4679 Fail 0.0538 583 28504 4889 Fail 0.0544 540 27739 5136 Fail 0.0549 500 26963 5392 Fail 0.0554 456 26249 5756 Fail 0.0559 417 25573 6132 Fail 0.0565 380 24914 6556 Fail	0.0528 663 30105 4540 Fail 0.0533 626 29296 4679 Fail 0.0538 583 28504 4889 Fail 0.0544 540 27739 5136 Fail 0.0549 500 26963 5392 Fail 0.0554 456 26249 5756 Fail 0.0559 417 25573 6132 Fail 0.0565 380 24914 6556 Fail 0.0570 351 24216 6899 Fail 0.0575 318 23628 7430 Fail 0.0580 296 22986 7765 Fail 0.0586 276 22398 8115 Fail 0.0591 263 21800 8288 Fail 0.0596 246 21263 8643 Fail	0.0512 0.0517	818 770	32620 31794	3987 4129	Fail Fail

0.0628	142	18210	12823	Fail
0.0633	126	17761	14096	Fail
0.0638	112	17324	15467	Fail
0.0643	104	16886	16236	Fail
0.0649	99	16493	16659	Fail
0.0654	89	16055	18039	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality BMP Flow and Volume for POC #1

On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs.

Adjusted for 15 min: 0 cfs.

Off-line facility target flow: 0 cfs.

Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent Water Quality	Percent	Comment			
	Treatment?	Needs	Through	Volume	Volume
Volume	Water Quality				
		Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Total Volume Infiltrated		0.00	0.00	0.00	0.00
0.00	No Treat. C	redit			
Compliance with LID Standa	ard 8				
Duration Analysis Result =	= Failed				

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by: Clear Creek Solutions, Inc. 2005-2024; All Rights Reserved.

WEST BASIN

WWHM2012 PROJECT REPORT

Project Name: Flow Analysis - West

Site Name: Sunset

Site Address: 2301 23rd
City : Puyallup
Report Date: 5/22/2023
Gage : 40 IN EAST
Data Start : 10/01/1901
Data End : 09/30/2059
Precip Scale: 1.00

Version Date: 2021/08/18

Version : 4.2.18

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Pre-West

Bypass: No

GroundWater: No

Pervious Land Use acre
C, Forest, Mod 1.072

Pervious Total 1.072

Impervious Land Use acre

Impervious Total 0

Basin Total 1.072

Element Flows To:

Surface Interflow Groundwater

MITIGATED LAND USE

Name : Post West

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Mod .355

Pervious Total 0.355

Impervious Land Use acre

Impervious Total 0

Basin Total 0.355

Element Flows To:

Surface Interflow Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1

Total Pervious Area:1.072 Total Impervious Area:0

Mitigated Landuse Totals for POC #1

Total Pervious Area:0.355 Total Impervious Area:0

Flow Frequency Return Periods for Predeveloped. POC #1

Return Period	Flow(cfs)
2 year	0.024456
5 year	0.037864
10 year	0.045648
25 year	0.0541
50 year	0.059547
100 year	0.06428

Flow Frequency Return Periods for Mitigated. POC #1

Flow(cfs)
0.008099
0.012539
0.015117
0.017916
0.019719
0.021287

Stream Protection Duration
Annual Peaks for Predeveloped and Mitigated. POC #1

Annua⊥	Peaks	for Predevelo	ped and Miti
Year		Predeveloped	Mitigated
1902		0.020	0.006
1903		0.015	0.005
1904		0.030	0.010
1905		0.012	0.004
1906		0.006	0.002
1907		0.038	0.012
1908		0.027	0.009
1909		0.026	0.009
1910		0.037	0.012
1911		0.024	0.008
1912		0.093	0.031
1913		0.038	0.013
1914		0.010	0.003
1915		0.016	0.005
1916		0.024	0.008
1917		0.008	0.003
1918		0.026	0.009
1919		0.020	0.007
1920		0.025	0.008
1921		0.027	0.009
1922		0.027	0.009
1922		0.027	0.009
1924		0.010	0.003
1925		0.013	0.004
1926		0.024	0.008
1927		0.017	0.006
1928		0.018	0.006
1929		0.038	0.013
1930		0.024	0.008
1931		0.023	0.008
1932		0.017	0.006
1933		0.019	0.006
1934		0.050	0.016
1935		0.023	0.008
1936		0.021	0.007
1937		0.034	0.011
1938		0.020	0.007
1939		0.002	0.001
1940		0.022	0.007
1941		0.013	0.004
1942		0.033	0.011
1943		0.017	0.006
1944		0.037	0.012
1945		0.027	0.012
1946		0.017	0.006
1947		0.011	0.004
1948		0.052	0.017
1949		0.045	0.015
1950		0.013	0.004
1951		0.017	0.006
1952		0.068	0.022
1953		0.061	0.020
1954		0.021	0.007
1955		0.019	0.006

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971	0.010 0.032 0.064 0.041 0.012 0.040 0.022 0.011 0.011 0.045 0.013 0.021 0.021 0.020 0.031 0.048 0.031	0.003 0.011 0.021 0.013 0.004 0.013 0.007 0.004 0.015 0.004 0.007 0.007 0.007 0.007 0.016 0.010
1973	0.041	0.013
1974 1975	0.024 0.051	0.008
1976	0.027	0.009
1977	0.012	0.004
1978 1979	0.045 0.013	0.015
1980	0.026	0.009
1981	0.024	0.008
1982 1983	0.011 0.040	0.004
1984	0.018	0.006
1985	0.029	0.010
1986 1987	0.024 0.047	0.008
1988	0.029	0.010
1989	0.026	0.009
1990	0.030	0.010
1991 1992	0.024 0.032	0.008
1993	0.033	0.011
1994	0.048	0.016
1995 1996	0.011 0.053	0.004
1997	0.021	0.007
1998	0.026	0.009
1999 2000	0.003 0.019	0.001
2001	0.011	0.003
2002	0.039	0.013
2003 2004	0.030 0.027	0.010
2005	0.056	0.019
2006	0.015	0.005
2007 2008	0.016 0.026	0.005
2009	0.020	0.009
2010	0.015	0.005
2011 2012	0.014 0.020	0.004
- 0 + 2	0.020	0.007

Stream Protection Duration

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigated
1	0.0931	0.0308
2	0.0706	0.0234
3	0.0680	0.0225
4	0.0676	0.0224
5	0.0666	0.0220

6			
7	6	0 0644	0 0213
8 0.0579 0.0192 9 0.0565 0.0187 10 0.0533 0.0177 12 0.0515 0.0171 13 0.0505 0.0167 14 0.0497 0.0165 15 0.0496 0.0164 16 0.0479 0.0159 17 0.0477 0.0158 18 0.0474 0.0157 19 0.0453 0.0150 20 0.0448 0.0147 21 0.0445 0.0147 22 0.0408 0.0135 23 0.0406 0.0134 24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0374 0.0124 32 0.0374 0.0124 33 0.0371 0.0123 34 0.0364 0.0114			
9			
10 0.0560 0.0185 11 0.0533 0.0177 12 0.0515 0.0171 13 0.0505 0.0167 14 0.0497 0.0165 15 0.0496 0.0159 16 0.0479 0.0159 17 0.0477 0.0158 18 0.0474 0.0157 19 0.0453 0.0150 20 0.0448 0.0147 21 0.0445 0.0147 22 0.0408 0.0135 23 0.0406 0.0134 24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0375 0.0124 32 0.0374 0.0124 33 0.0371 0.0123 34 0.0367 0.0122 35 0.0364 0.0121			
11 0.0533 0.0177 12 0.0515 0.0171 13 0.0505 0.0167 14 0.0497 0.0165 15 0.0496 0.0164 16 0.0479 0.0159 17 0.0477 0.0158 18 0.0474 0.0157 19 0.0453 0.0150 20 0.0448 0.0147 21 0.0445 0.0147 22 0.0408 0.0135 23 0.0406 0.0134 24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0375 0.0124 32 0.0374 0.0124 33 0.0371 0.0123 34 0.0367 0.0122 35 0.0364 0.0114 37 0.0364 0.0110			
12 0.0515 0.0171 13 0.0505 0.0167 14 0.0497 0.0165 15 0.0496 0.0159 16 0.0479 0.0159 17 0.0477 0.0158 18 0.0474 0.0157 19 0.0453 0.0150 20 0.0448 0.0148 21 0.0405 0.0147 22 0.0408 0.0135 23 0.0406 0.0134 24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0379 0.0124 32 0.0374 0.0124 33 0.0371 0.0124 34 0.0367 0.0122 35 0.0364 0.011 37 0.0335 0.0111 38 0.0334 0.0110			
13 0.0505 0.0167 14 0.0497 0.0165 15 0.0496 0.0164 16 0.0479 0.0159 17 0.0477 0.0158 18 0.0474 0.0157 19 0.0453 0.0150 20 0.0448 0.0147 21 0.0405 0.0135 23 0.0406 0.0134 24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0375 0.0124 32 0.0374 0.0124 33 0.0371 0.0123 34 0.0364 0.0121 33 0.0371 0.0123 34 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0110 40 0.0325 0.0104			
14 0.0497 0.0165 15 0.0496 0.0164 16 0.0479 0.0159 17 0.0477 0.0158 18 0.0474 0.0157 19 0.0453 0.0150 20 0.0448 0.0148 21 0.0445 0.0147 22 0.0408 0.0135 23 0.0406 0.0134 24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0379 0.0126 31 0.0375 0.0124 32 0.0374 0.0124 33 0.0371 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0110 40 0.0325 0.0106			
15 0.0496 0.0164 16 0.0479 0.0159 17 0.0477 0.0158 18 0.0474 0.0157 19 0.0453 0.0150 20 0.0448 0.0148 21 0.0405 0.0147 22 0.0408 0.0135 23 0.0406 0.0134 24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0379 0.0126 31 0.0375 0.0124 32 0.0374 0.0123 34 0.0367 0.0123 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 40 0.0325 0.0108 41 0.0321 0.0106	13	0.0505	0.0167
16 0.0479 0.0159 17 0.0477 0.0158 18 0.0474 0.0157 19 0.0453 0.0150 20 0.0448 0.0148 21 0.0445 0.0147 22 0.0408 0.0135 23 0.0406 0.0134 24 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0379 0.0126 31 0.0375 0.0124 32 0.0374 0.0123 34 0.0367 0.0123 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0325 0.0106 42 0.0315 0.0104 43 0.0313 0.0104	14	0.0497	0.0165
17 0.0477 0.0158 18 0.0474 0.0157 19 0.0453 0.0150 20 0.0448 0.0148 21 0.0445 0.0147 22 0.0408 0.0135 23 0.0406 0.0134 24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0379 0.0126 31 0.0375 0.0124 32 0.0374 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104	15	0.0496	0.0164
18 0.0474 0.0157 19 0.0453 0.0150 20 0.0448 0.0148 21 0.0445 0.0147 22 0.0408 0.0135 23 0.0406 0.0134 24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0379 0.0126 31 0.0375 0.0124 32 0.0374 0.0124 33 0.0371 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 41 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0315 0.0104	16	0.0479	0.0159
19 0.0453 0.0150 20 0.0448 0.0148 21 0.0445 0.0147 22 0.0408 0.0135 23 0.0406 0.0134 24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0379 0.0124 32 0.0374 0.0124 33 0.0371 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0100	17	0.0477	0.0158
20 0.0448 0.0148 21 0.0445 0.0147 22 0.0408 0.0135 23 0.0406 0.0134 24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0379 0.0126 31 0.0375 0.0124 32 0.0374 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100	18	0.0474	0.0157
21 0.0445 0.0135 22 0.0408 0.0135 23 0.0406 0.0134 24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0129 29 0.0384 0.0127 30 0.0379 0.0126 31 0.0375 0.0124 32 0.0374 0.0123 34 0.0367 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100	19	0.0453	0.0150
22 0.0408 0.0135 23 0.0406 0.0134 24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0375 0.0126 31 0.0375 0.0124 32 0.0374 0.0124 33 0.0371 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0325 0.0108 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0100 47 0.0301 0.0100 48 0.0297 0.098	20	0.0448	0.0148
22 0.0408 0.0135 23 0.0406 0.0134 24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0375 0.0126 31 0.0375 0.0124 32 0.0374 0.0124 33 0.0371 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0325 0.0108 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0100 47 0.0301 0.0100 48 0.0297 0.098		0.0445	
23 0.0406 0.0134 24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0379 0.0126 31 0.0375 0.0124 32 0.0374 0.0123 34 0.0367 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098		0.0408	
24 0.0403 0.0134 25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0379 0.0126 31 0.0375 0.0124 32 0.0374 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 50 0.0289 0.0095			
25 0.0403 0.0134 26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0379 0.0126 31 0.0375 0.0124 32 0.0374 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.098 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0099			
26 0.0399 0.0132 27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0379 0.0126 31 0.0375 0.0124 32 0.0374 0.0124 33 0.0371 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 50 0.0288 0.0095 51 0.0285 0.0099			
27 0.0394 0.0130 28 0.0390 0.0129 29 0.0384 0.0127 30 0.0379 0.0126 31 0.0375 0.0124 32 0.0374 0.0124 33 0.0371 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 50 0.0289 0.0096 50 0.0289 0.0099 51 0.0285 0.0099 54 0.0271 0.0090			
28 0.0390 0.0129 29 0.0384 0.0127 30 0.0379 0.0126 31 0.0375 0.0124 32 0.0374 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0090 55 0.0271 0.0090 56 0.0271 0.0090			
29 0.0384 0.0127 30 0.0379 0.0126 31 0.0375 0.0124 32 0.0374 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090			
30 0.0379 0.0126 31 0.0375 0.0124 32 0.0374 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 55 0.0271 0.0090 56 0.0271 0.0090			
31 0.0375 0.0124 32 0.0374 0.0124 33 0.0371 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090			
32 0.0374 0.0124 33 0.0371 0.0123 34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 59 0.0269 0.0089			
33 0.0371 0.0123 34 0.0367 0.0122 35 0.0364 0.0111 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0099 53 0.0280 0.0093 54 0.0271 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 59 0.0269 0.0089			
34 0.0367 0.0122 35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 59 0.0269 0.0089 60 0.0268 0.0089 <td></td> <td></td> <td></td>			
35 0.0364 0.0121 36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 59 0.0269 0.0089 60 0.0268 0.0089			
36 0.0344 0.0114 37 0.0335 0.0111 38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.098 50 0.0288 0.0095 51 0.0285 0.0096 50 0.0281 0.0093 51 0.0280 0.0093 52 0.0281 0.0093 53 0.0271 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 58 0.0270 0.0089 60 0.0268 0.0089 61 0.0268 0.0089			
37 0.0335 0.0111 38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 60 0.0268 0.0089 61 0.0268 0.0089			
38 0.0334 0.0110 39 0.0333 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 60 0.0268 0.0089 61 0.0268 0.0089			
39 0.0333 0.0110 40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 60 0.0268 0.0089 61 0.0268 0.0089			
40 0.0325 0.0108 41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089	38	0.0334	0.0110
41 0.0321 0.0106 42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 60 0.0268 0.0089 61 0.0268 0.0089	39	0.0333	0.0110
42 0.0315 0.0104 43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 60 0.0268 0.0089 61 0.0268 0.0089	40	0.0325	0.0108
43 0.0313 0.0104 44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 60 0.0268 0.0089 61 0.0268 0.0089	41		0.0106
44 0.0311 0.0103 45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 60 0.0268 0.0089 61 0.0268 0.0089	42	0.0315	0.0104
45 0.0302 0.0100 46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 60 0.0268 0.0089 61 0.0268 0.0089	43	0.0313	0.0104
46 0.0301 0.0100 47 0.0301 0.0100 48 0.0297 0.0098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089	44	0.0311	0.0103
47 0.0301 0.0100 48 0.0297 0.0098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089	45	0.0302	0.0100
48 0.0297 0.0098 49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089	46	0.0301	0.0100
49 0.0289 0.0096 50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089	47	0.0301	0.0100
50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089	48	0.0297	0.0098
50 0.0288 0.0095 51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089		0.0289	0.0096
51 0.0285 0.0094 52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089	50	0.0288	
52 0.0281 0.0093 53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089			
53 0.0280 0.0093 54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089			
54 0.0273 0.0090 55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089			
55 0.0271 0.0090 56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089			
56 0.0271 0.0090 57 0.0271 0.0090 58 0.0270 0.0089 59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089			
57 0.0271 0.0090 58 0.0270 0.0089 59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089			
58 0.0270 0.0089 59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089			
59 0.0269 0.0089 60 0.0268 0.0089 61 0.0268 0.0089			
60 0.0268 0.0089 61 0.0268 0.0089			
61 0.0268 0.0089			
02 0.0207 0.0088			
	UZ	0.020/	0.0000

63 64 65 66 67 68 69 70 71 73 74 75 77 78 79 81 82 83 84 85 88 89 99 192 93 94 99 101 102 104 106 107 108 109 109 109 109 109 109 109 109 109 109	0.0267 0.0265 0.0264 0.0259 0.0258 0.0258 0.0255 0.0251 0.0250 0.0246 0.0245 0.0243 0.0243 0.0241 0.0241 0.0241 0.0241 0.0224 0.0227 0.0228 0.0227 0.0224 0.0222 0.0219 0.0215 0.0215 0.0215 0.0215 0.0215 0.0211 0.0209 0.0206 0.0205 0.0205 0.0205 0.0205 0.0205 0.0205 0.0201 0.0193 0.0193 0.0193 0.0193 0.0193 0.0193 0.0193 0.0188 0.0188 0.0188	0.0088 0.0088 0.0088 0.0085 0.0085 0.0085 0.0085 0.0083 0.0083 0.0082 0.0081 0.0080 0.0080 0.0080 0.0080 0.0080 0.0071
106	0.0188	0.0062
107	0.0185	0.0061
108	0.0183	0.0061

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit Per	centage	Pass/Fail
0.0122	55733	2332	4	Pass
0.0127	51284	2018	3	Pass
0.0132	47185	1710	3	Pass
0.0137	43456	1475	3	Pass
0.0141	40165	1268	3	Pass
0.0146	37207	1102	2	Pass
0.0151	34448	940	2	Pass
0.0156	31900	780	2	Pass
0.0161	29529	632	2	Pass

0.0165	27517	511	1	Pass
0.0170	25656	386	1	Pass
0.0175	23883	298	1	Pass
0.0180 0.0184	22299	247	1	Pass
0.0189	20886 19573	203 143	0	Pass
0.0194	18299	105	0	Pass Pass
0.0194	17102	80	0	Pass
0.0204	15961	61	0	Pass
0.0204	14903	43	0	Pass
0.0213	13972	21	0	Pass
0.0218	13075	9	0	Pass
0.0223	12277	6	0	Pass
0.0227	11512	4	0	Pass
0.0232	10787	4	0	Pass
0.0237	10088	3	0	Pass
0.0242	9418	3	0	Pass
0.0247	8792	3	0	Pass
0.0251	8233	3	0	Pass
0.0256	7728	3	0	Pass
0.0261	7235	2	0	Pass
0.0266	6787	2	0	Pass
0.0270	6399	2	0	Pass
0.0275	6094	2	0	Pass
0.0280	5812	2	0	Pass
0.0285	5515	2	0	Pass
0.0290	5232	2	0	Pass
0.0294	4965	2	0	Pass
0.0299	4734 4483	2	0	Pass
0.0304	4403	0	0	Pass Pass
0.0303	4099	0	0	Pass
0.0313	3871	0	0	Pass
0.0323	3648	0	0	Pass
0.0328	3474	0	0	Pass
0.0333	3312	0	0	Pass
0.0337	3166	0	0	Pass
0.0342	3019	0	0	Pass
0.0347	2915	0	0	Pass
0.0352	2789	0	0	Pass
0.0356	2680	0	0	Pass
0.0361	2527	0	0	Pass
0.0366	2410	0	0	Pass
0.0371	2302	0	0	Pass
0.0376	2200	0	0	Pass
0.0380	2097	0	0	Pass
0.0385	1978	0	0	Pass
0.0390	1875	0	0	Pass
0.0395	1767	0	0	Pass
0.0400	1682	0	0	Pass
0.0404	1594	0	0	Pass
0.0409	1525 1458	0	0	Pass
0.0414	1378	0	0	Pass Pass
0.0419	1305	0	0	Pass
0.0428	1249	0	0	Pass
0.0433	1191	0	0	Pass
		-	•	

0.0438 0.0443 0.0447	1135 1083 1032	0 0 0	0 0 0	Pass Pass
0.0447	982	0	0	Pass Pass
0.0457	929	0	0	Pass
0.0457	869	0	0	Pass
0.0466	819	0	0	Pass
0.0471	771	0	0	Pass
0.0476	710	0	0	Pass
0.0470	663	0	0	Pass
0.0486	626	0	0	Pass
0.0490	583	0	0	Pass
0.0495	541	0	0	Pass
0.0500	500	0	0	Pass
0.0505	456	0	0	Pass
0.0509	417	0	0	Pass
0.0514	380	0	0	Pass
0.0519	352	0	0	Pass
0.0524	318	0	0	Pass
0.0529	297	0	0	Pass
0.0533	276	0	0	Pass
0.0538	263	0	0	Pass
0.0543	246	0	0	Pass
0.0548	231	0	0	Pass
0.0552	216	0	0	Pass
0.0557	203	0	0	Pass
0.0562	180	0	0	Pass
0.0567	154	0	0	Pass
0.0572	142	0	0	Pass
0.0576	126	0	0	Pass
0.0581	112	0	0	Pass
0.0586	104	0	0	Pass
0.0591	99	0	0	Pass
0.0595	89	0	0	Pass

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technic	que	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent	Water Quality	Percent Treatment?	Comment Needs	Through	Volume	Volume
Volume		Water Quality	Needs	2		
			Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	i	Treated				
			(ac-ft)	(ac-ft)		Credit
Total Volum	e Infiltrated		0.00	0.00	0.00	0.00
0.00	0%	No Treat. C	redit			

Compliance with LID Standard 8

Duration Analysis Result = Passed

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by: Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

NORTHWEST BASIN

WWHM2012 PROJECT REPORT

Project Name: Flow Analysis - NW

Site Name: Sunset

Site Address: 2301 23rd
City : Puyallup
Report Date: 5/22/2023
Gage : 40 IN EAST
Data Start : 10/01/1901
Data End : 09/30/2059
Precip Scale: 1.00

Version Date: 2021/08/18

Version : 4.2.18

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Pre-Northwest

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Mod .366

Pervious Total 0.366

Impervious Land Use acre

Impervious Total 0

Basin Total 0.366

Element Flows To:

Surface Interflow Groundwater

MITIGATED LAND USE

Name : Post Northwest

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Mod .115

Pervious Total 0.115

Impervious Land Use acre

Impervious Total 0

Basin Total 0.115

Element Flows To:

Surface Interflow Groundwater

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1

Total Pervious Area:0.366 Total Impervious Area:0

-

Mitigated Landuse Totals for POC #1

Total Pervious Area:0.115 Total Impervious Area:0

Flow Frequency Return Periods for Predeveloped. POC #1

Return Period	Flow(cfs)
2 year	0.00835
5 year	0.012927
10 year	0.015585
25 year	0.018471
50 year	0.02033
100 year	0.021946

Flow Frequency Return Periods for Mitigated. POC #1

Return Period	Flow(cfs)
2 year	0.002623
5 year	0.004062
10 year	0.004897
25 year	0.005804
50 year	0.006388
100 year	0.006896

Stream Protection Duration
Annual Peaks for Predeveloped and Mitigated. POC #1

Annual	Peaks	for Predevelo	ped and Miti
Year		Predeveloped	Mitigated
1902		0.007	0.002
1903		0.005	0.002
1904		0.010	0.003
1905		0.004	0.001
1906		0.002	0.001
1907		0.013	0.004
1908		0.009	0.003
1909		0.009	0.003
1910		0.013	0.004
1911		0.008	0.003
1912		0.032	0.010
1913		0.013	0.004
1914		0.003	0.001
1915		0.005	0.002
		0.003	0.002
1916			
1917		0.003	0.001
1918		0.009	0.003
1919		0.007	0.002
1920		0.008	0.003
1921		0.009	0.003
1922		0.009	0.003
1923		0.007	0.002
1924		0.004	0.001
1925		0.005	0.001
1926		0.008	0.003
1927		0.006	0.002
1928		0.006	0.002
1929		0.013	0.004
1930		0.008	0.003
1931		0.008	0.002
1932		0.006	0.002
1933		0.007	0.002
1934		0.017	0.005
1935		0.008	0.002
1936		0.007	0.002
1937		0.012	0.004
1938		0.007	0.002
1939		0.001	0.000
1940		0.008	0.002
1941		0.005	0.001
1942		0.011	0.004
1943		0.006	0.004
1944		0.013	0.004
1945		0.009	0.003
1946		0.006	0.002
1947		0.004	0.001
1948		0.018	0.006
1949		0.015	0.005
1950		0.004	0.001
1951		0.006	0.002
1952		0.023	0.007
1953		0.021	0.007
1954		0.007	0.002
1955		0.006	0.002

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970	0.003 0.011 0.022 0.014 0.004 0.014 0.007 0.004 0.005 0.005 0.005 0.007 0.007 0.007 0.007	0.001 0.003 0.007 0.004 0.001 0.002 0.001 0.005 0.001 0.002 0.002 0.002 0.003 0.005
1973	0.014	0.004
1974 1975	0.008 0.017	0.003
1976	0.009	0.003
1977	0.004	0.001
1978 1979	0.015 0.004	0.005
1980	0.009	0.003
1981	0.008	0.003
1982	0.004	0.001
1983 1984	0.014 0.006	0.004
1985	0.010	0.002
1986	0.008	0.003
1987	0.016	0.005
1988 1989	0.010 0.009	0.003
1990	0.010	0.003
1991	0.008	0.003
1992	0.011	0.003
1993 1994	0.011 0.016	0.003
1995	0.004	0.001
1996	0.018	0.006
1997	0.007	0.002
1998 1999	0.009 0.001	0.003
2000	0.007	0.002
2001	0.004	0.001
2002	0.013	0.004
2003 2004	0.010 0.009	0.003
2005	0.019	0.006
2006	0.005	0.002
2007	0.006 0.009	0.002
2008 2009	0.009	0.003
2010	0.005	0.002
2011	0.005	0.001
2012	0.007	0.002

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2030 2031 2032 2033 2044 2049 2040 2041 2042 2043 2044 2045 2044 2045 2046 2047 2048 2049 2040 2041 2042 2044 2045 2046 2047 2048 2049 2040 2041 2042 2044 2045 2046 2047 2048 2049 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050	0.004 0.007 0.003 0.013 0.023 0.023 0.007 0.011 0.005 0.010 0.024 0.009 0.014 0.005 0.004 0.009 0.017 0.006 0.003 0.005 0.005 0.019 0.010 0.003 0.005 0.019 0.010 0.003 0.005 0.009 0.012 0.009 0.012 0.009 0.012 0.009 0.010 0.009 0.010 0.009 0.010 0.009 0.010 0.009 0.011	0.001 0.002 0.001 0.004 0.007 0.007 0.002 0.004 0.001 0.003 0.008 0.003 0.005 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.003 0.002 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001
2052	0.005	0.002
2053	0.009	0.003

Stream Protection Duration

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigate
1	0.0318	0.0100
2	0.0241	0.0076
3	0.0232	0.0073
4	0.0231	0.0072
5	0.0227	0.0071

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 48 49 40 40 40 40 40 40 40 40 40 40 40 40 40	0.0220 0.0207 0.0198 0.0193 0.0191 0.0182 0.0176 0.0172 0.0170 0.0169 0.0163 0.0163 0.0162 0.0155 0.0155 0.0153 0.0152 0.0139 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138 0.0131 0.0129 0.0128 0.0128 0.0127 0.0125 0.0124 0.0118 0.0114 0.0114 0.0114 0.0114 0.0111 0.0109 0.0108 0.0107 0.0106 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103 0.01099 0.0098 0.0097 0.0096 0.0093 0.0093	0.0069 0.0065 0.0062 0.0061 0.0060 0.0057 0.0055 0.0053 0.0053 0.0051 0.0051 0.0051 0.0044 0.0044 0.0044 0.0043 0.0043 0.0043 0.0042 0.0042 0.0041 0.0040 0.0040 0.0040 0.0040 0.0030 0.0036
51	0.0097	0.0031
52	0.0096	0.0030
53	0.0096	0.0030
54	0.0093	0.0029

63	0.0091	0.0029
64	0.0090	0.0028
65	0.0090	0.0028
66	0.0089	0.0028
67	0.0088	0.0028
68	0.0088	0.0028
69	0.0088	0.0028
70	0.0087	0.0027
71	0.0086	0.0027
72	0.0085	0.0027
73	0.0084	0.0026
74	0.0084	0.0026
75	0.0083	0.0026
76	0.0083	0.0026
77	0.0083	0.0026
78	0.0082	0.0026
79	0.0082	0.0026
80	0.0082	0.0026
81 82 83 84 85	0.0082 0.0081 0.0078 0.0078	0.0026 0.0025 0.0024 0.0024 0.0024
86	0.0076	0.0024
87	0.0075	0.0023
88	0.0073	0.0023
89	0.0073	0.0023
90	0.0073	0.0023
91	0.0073	0.0023
92	0.0072	0.0023
93	0.0071	0.0022
94	0.0070	0.0022
95	0.0070	0.0022
96	0.0070	0.0022
97	0.0069	0.0022
98	0.0069	0.0022
99	0.0069	0.0022
100	0.0069	0.0022
101	0.0067	0.0021
102	0.0066	0.0021
103	0.0066	0.0021
104	0.0065	0.0020
105	0.0064	0.0020
106 107 108 109	0.0064 0.0063 0.0062 0.0061 0.0059	0.0020 0.0020 0.0020 0.0020 0.0019
111	0.0059	0.0018
112	0.0058	0.0018
113	0.0058	0.0018
114	0.0058	0.0018
115	0.0058	0.0018
116	0.0056	0.0018
117	0.0055	0.0017
118	0.0054	0.0017
119	0.0052	0.0016

Stream Protection Duration POC #1

The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0042	55678	188	8 3	Pass
0.0043	51223	159	4 3	Pass
0.0045	47163	135	9 2	Pass
0.0047	43451	117	3 2	Pass
0.0048	40110	100	3 2	Pass
0.0050	37174	831	. 2	Pass
0.0052	34415	666	1	Pass
0.0053	31883	535	1	Pass
0.0055	29523	405	1	Pass

0.0056	27484	305	1	Pass	
0.0058	25634	251	0	Pass	
0.0060	23867	203	0	Pass	
0.0061	22288	141	0	Pass	
0.0063	20886	104	0	Pass	
0.0065	19551	78	0	Pass	
0.0066	18282	60	0	Pass	
0.0068	17097	38	0	Pass	
0.0069	15955	15	0	Pass	
0.0071	14903	8	0	Pass	
0.0073	13944	5	0	Pass	
0.0074	13063	4	0	Pass	
0.0076	12271	3	0	Pass	
0.0078	11512	3	0	Pass	
0.0079	10787	3	0	Pass	
0.0081	10083	3	0	Pass	
0.0083	9413	3	0	Pass	
0.0084		3			
	8792		0	Pass	
0.0086	8233	2	0	Pass	
0.0087	7728	2	0	Pass	
0.0089	7230	2	0	Pass	
0.0091	6781	2	0	Pass	
0.0092	6399	2	0	Pass	
0.0094	6094	2	0	Pass	
0.0096	5812	2	0	Pass	
0.0097	5511	2	0	Pass	
0.0099	5230	1	0	Pass	
0.0100	4974	0	0	Pass	
0.0102	4739	0	0	Pass	
0.0104	4490	0	0	Pass	
0.0105	4309	0	0	Pass	
0.0107	4099	0	0	Pass	
0.0109	3874	0	0	Pass	
0.0110	3657	0	0	Pass	
0.0112	3475	0	0	Pass	
0.0114	3315	0	0	Pass	
0.0115	3175	0	0	Pass	
0.0117	3019	0	0	Pass	
0.0118	2917	0	0	Pass	
0.0120	2800	0	0	Pass	
0.0122	2677	0	0	Pass	
0.0123	2528	0	0	Pass	
0.0125	2416	0	0	Pass	
0.0123	2302	0	0	Pass	
0.0128	2201	0	0	Pass	
0.0120	2099	0	0	Pass	
0.0130		0	0		
	1978			Pass	
0.0133	1876	0	0	Pass	
0.0135	1769	0	0	Pass	
0.0136	1688	0	0	Pass	
0.0138	1594	0	0	Pass	
0.0140	1528	0	0	Pass	
0.0141	1461	0	0	Pass	
0.0143	1379	0	0	Pass	
0.0145	1306	0	0	Pass	
0.0146	1250	0	0	Pass	
0.0148	1191	0	0	Pass	

0.0149	1137 1085	0	0	Pass Pass
0.0153	1032	0	0	Pass
0.0154	983	0	0	Pass
0.0156	930	0	0	Pass
0.0158	869	0	0	Pass
0.0159	819	0	0	Pass
0.0161	774	0	0	Pass
0.0163	708	0	0	Pass
0.0164	663	0	0	Pass
0.0166	627	0	0	Pass
0.0167	583	0	0	Pass
0.0169	541	0	0	Pass
0.0171	501	0	0	Pass
0.0172	458	0	0	Pass
0.0174	417	0	0	Pass
0.0176	380	0	0	Pass
0.0177	354	0	0	Pass
0.0179	318	0	0	Pass
0.0180	297	0	0	Pass
0.0182	277	0	0	Pass
0.0184	263	0	0	Pass
0.0185	246	0	0	Pass
0.0187	231	0	0	Pass
0.0189	216	0	0	Pass
0.0190	203	0	0	Pass
0.0192	180	0	0	Pass
0.0194	154	0	0	Pass
0.0195	142	0	0	Pass
0.0197	127	0	0	Pass
0.0198	112	0	0	Pass
0.0200	104	0	0	Pass
0.0202	99	0	0	Pass
0.0203	89	0	0	Pass

Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

Off-line facility target flow: 0 cfs.

Adjusted for 15 min: 0 cfs.

LID Report

LID Techni	ique	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent	Water Quality	Percent Treatment?	Comment Needs	Through	Volume	Volume
Volume		Water Quality	Treatment	Facility	(ac-ft.)	Infiltration
Infiltrate	ed	Treated			(,	
			(ac-ft)	(ac-ft)		Credit
	me Infiltrated		0.00	0.00	0.00	0.00
0 00	0 %	No Troat C	rodit			

0.00 0% No Treat. Credit
Compliance with LID Standard 8 Duration Analysis Result = Passed

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by: Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

APPENDIX D

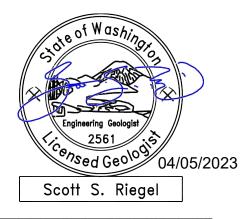
Reports

Geotechnical Engineer's Report	D-1
Groundwater Monitoring	D-2
Critical Areas Assessment	D-3
Habitat Letter	D-4

GEOTECHNICAL ENGINEER'S REPORT

Geotechnical Engineering Construction Observation/Testing Environmental Services

ES-5559


1805 - 136th Place N.E., Suite 201 Bellevue, WA 98005 (425) 449-4704 Fax (425) 449-4711 www.earthsolutionsnw.com

PREPARED FOR

MR. PETER CHEN

January 11, 2018 Updated April 5, 2023

Chase G. Halsen, L.G. Senior Project Geologist

Scott S. Riegel, L.G., L.E.G. Associate Principal Geologist

GEOTECHNICAL ENGINEERING STUDY SUNSET POINTE 2301 – 23RD STREET SOUTHEAST PUYALLUP, WASHINGTON

ES-5559

Earth Solutions NW, LLC 15365 Northeast 90th Street, Suite 100 Redmond, Washington 98052 Phone: 425-449-4704 | Fax: 425-449-4711 www.earthsolutionsnw.com

Important Information about This

Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will not be adequate to develop geotechnical design recommendations for the project.

Do <u>not</u> rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it;
 e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnical-engineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.*

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- · the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- · the composition of the design team; or
- · project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept*

responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- · confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction-phase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note*

conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures*. If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are not building-envelope or mold specialists.

Telephone: 301/565-2733

e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent or intentional (fraudulent) misrepresentation.

January 11, 2018 Updated April 5, 2023 ES-5559

Earth Solutions NW LLC

Geotechnical Engineering, Construction
Observation/Testing and Environmental Services

Mr. Peter Chen 4709 Memory Lane West University Place, Washington 98488

Dear Mr. Chen:

Earth Solutions NW, LLC (ESNW) is pleased to present this report in support of the proposed project. Based on the results of our investigation, the proposed residential plat is feasible from a geotechnical standpoint. Our study indicates the site is underlain by areas of existing fill that overly Vashon drift glacial deposits Light to heavy perched groundwater seepage was encountered at three test pit locations at an approximate exposure depth of about one-and-one-half to six feet below the existing ground surface. As such, it is our opinion that the contractor should be prepared to manage zones of perched groundwater seepage during construction.

In our opinion, the proposed residential structures may be constructed on conventional continuous and spread footing foundations bearing upon competent native soil, recompacted native soil, recompacted existing fill, or suitable structural fill placed directly on competent native soils. In general, native soils suitable for foundation support are anticipated to be encountered at depths of approximately two to five feet below the existing ground surface. Areas underlain by existing fill may require additional preparation efforts to establish suitable and uniform bearing conditions. Additional preparation activities will likely involve overexcavating unsuitable existing fill and restoring grades with suitable structural fill. Re-working and re-compacting the in-place fill may be feasible in areas where the fill is devoid of organic and deleterious material but must be evaluated by ESNW during grading. Areas of deeper fill (if encountered) may require additional or complete over excavation and restoration or alternative foundation support designs. In general, where loose or unsuitable soil conditions are exposed at foundation subgrade elevations, compaction of soils to the specifications of structural fill, or overexcavation and replacement with a suitable structural fill material, will be necessary.

Stormwater management is currently proposed via a pond facility located within Tract B. Based on the soil and groundwater conditions and the results of representative in-situ infiltration testing it is our opinion that infiltration is considered infeasible in the areas tested. Further discussion of infiltration feasibility is provided in this report.

Originally completed in January 2018, this report has been updated to reflect the current proposed site layout and to provide responses to comments prepared by the City of Puyallup (see attached DRT letter). The current project proposal no longer includes the development of the northernmost site parcel (currently referred to as Parcel A). As such, soil and groundwater exposed at test pits TP-14 through TP-18 were not utilized as a basis for the recommendations and evaluations provided in this report.

Recommendations for foundation design, site preparation, drainage, and other pertinent development aspects are provided in this study. We appreciate the opportunity to be of service to you on this project. If you have questions regarding the content of this geotechnical engineering study, please call.

Sincerely,

EARTH SOLUTIONS NW, LLC

Chase G. Halsen, L.G. Senior Project Geologist

Table of Contents

ES-5559

RODUCTION General	
Project Description	
E CONDITIONS	
Surface	
Subsurface	
Topsoil and Fill	
Native Soil	
Geologic Setting	
Groundwater	
Geologically Hazardous Areas	
Landslide Hazard	
Erosion Hazard	
DRT Comments and Response	
CUSSION AND RECOMMENDATIONS	
General	
Site Preparation and Earthwork	
Temporary Erosion Control	
Stripping	
In-situ and Imported Soils	
Subgrade Preparation	
Structural Fill	
Slope Fill	
Temporary Excavations and Slopes	
Foundations	
Seismic Design	
Slab-on-Grade Floors	
Retaining Walls	
<u>Drainage</u>	
Infiltration Feasibility Evaluation	
Preliminary Stormwater Pond Recommendation	
Utility Support and Trench Backfill	
Preliminary Pavement Sections	

Table of Contents

Cont'd

ES-5559

GRAPHICS

Plate 1 Vicinity Map

Plate 2 Test Pit Location Plan

Plate 3 Slope Fill Detail

Plate 4 Retaining Wall Drainage Detail

Plate 5 Footing Drain Detail

APPENDICES

Appendix A Subsurface Exploration

Test Pit Logs

Appendix B Laboratory Test Results

GEOTECHNICAL ENGINEERING STUDY SUNSET POINTE 2301 – 23RD STREET SOUTHEAST PUYALLUP, WASHINGTON

ES-5559

INTRODUCTION

General

This geotechnical engineering study (study) was prepared for the proposed residential plat to be completed at 2301 – 23rd Street Southeast in Puyallup, Washington. The purpose of this study was to provide geotechnical recommendations for currently proposed development plans. Our scope of services for completing this study included the following:

- Completion of test pits for purposes of characterizing site soils.
- Completion of laboratory testing of soil samples collected at the test pit locations.
- Conduction of engineering analyses and preparation of this report.

The following documents and maps were reviewed as part of our study preparation:

- Sunset Pointe Preliminary Plat Set, prepared by CES NW, Inc., dated October 22, 2020;
- Puyallup Municipal Code Chapter 21.06;
- Development Review Team Letter, prepared by the City of Puyallup, dated May 16, 2022;
- Online Web Soil Survey (WSS) resource, maintained by the Natural Resources Conservation Service under the United States Department of Agriculture;
- Liquefaction Susceptibility for Pierce County incorporating data from the Washington State Department of Natural Resources, dated September 2004, and;
- Geologic Map of the South Half of the Tacoma Quadrangle, Washington, by Timothy J. Walsh. 1987.

Project Description

We understand the site will be developed into a residential plat consisting of 18 residential lots and general site improvements. Stormwater management will be provided via a pond located within Tract B. At the time of report submission, building load plans were not available for review; however, based on our experience with similar developments, the proposed residential structures will likely be two to three stories in height and constructed using relatively lightly loaded wood framing supported on conventional foundations. Perimeter footing loads of about 1 to 2 kips per lineal foot (klf) are expected. Slab-on-grade loading is anticipated to be approximately 150 pounds per square foot (psf). We understand that grade fills of up to 20 feet will be necessary to achieve design elevations across the building pads and grading will occur in a stepped configuration where practical do reduce the site modifications required. Deeper excavations will likely be required to construct the stormwater pond.

If the above design assumptions are incorrect or change, ESNW should be contacted to review the recommendations provided in this report. ESNW should review the final designs to confirm that appropriate geotechnical recommendations have been incorporated into the plans.

SITE CONDITIONS

Surface

The subject site is located east of the intersection between 19th Avenue Southeast and 21st Street Southeast in Puyallup, Washington. The approximate location of the subject site is depicted on Plate 1 (Vicinity Map). The irregular-shaped property is comprised of two adjoining tax parcels (Pierce County Parcel Nos. 042035-3027) totaling approximately 9.09 acres.

The site is bordered on all sides primarily by existing residential development. A sewer and water easement is present on site, trending roughly east to west along the entire northern edge of the development area. A relay station is present within the east-central site area. Multiple barn and storage structures appear to have been present within the southern site area but had been demolished before our fieldwork. Based on our field observations, it appears that the land has been previously modified through the placement of fill material. It appears that the fill had been placed to establish an access pathway to the southern site area, to level sloping areas, and fill an existing natural trough feature. Based on our observations, it is our opinion the site modification was likely not associated with recent development. Current topography varies across the site; however, maintains an overall northerly/northeasterly declivity. Approximately 30 to 35 feet of total elevation change occurs within the proposed development area. Three existing wetlands (designated A-C on the referenced plans) are present within the central site area.

Subsurface

The subsurface explorations and in-situ filed testing consisted of the following:

- October 24, 2017: Completing 19 test pits were conducted across the entire site area (including Parcel A).
- May 15, 2019: Completing four test pits were conducted and targeted to the proposed stormwater management pond (Tract B). Three shallow groundwater monitoring piezometers were installed during this exploration.
- January 22, 2020: Completing two test pits were performed to conduct small-scale pilot infiltration testing at representative site areas. A shallow, groundwater monitoring piezometer was installed at both test pit locations.

Each exploration and in-situ testing program was observed, logged, and sampled by an ESNW representative and completed using machinery and an operator retained by our firm and completed to assess and classify subsurface soil and groundwater conditions across the site. The approximate locations of the test pits are depicted on Plate 2 (Test Pit Location Plan). Please refer to the test pit logs provided in Appendix A for a more detailed description of subsurface conditions. Representative soil samples collected at the test pit locations were analyzed in accordance with the Unified Soil Classification System (USCS) and United States Department of Agriculture (USDA) methods and procedures.

Topsoil and Fill

Topsoil was encountered generally within the upper 2 to 18 inches of existing grades at the test pit locations. The topsoil was characterized by dark brown color, the presence of fine organic material, and small root intrusions.

Fill was observed at the majority of the test pit locations, ranging in approximate depths from 1 to 13 feet below the existing ground surface (bgs). The fill was observed to be variable in nature, typically consisting of silty sand to sandy silt, and encountered in a loose to medium dense and moist condition. In general, the majority of the fill was observed to be free of debris, except isolated areas of brick and wire debris and trace organics. Due to the high variability in texture of the fill soils, ESNW should be retained to evaluate the suitability of fill encountered during construction.

Native Soil

Underlying topsoil and fill, native soils were encountered consisting of soils associated with and representative of glacial drift deposits. In general, the predominant native soil type should be considered silty sand with or without gravel (USCS: SM). However, localized areas and depositional lenses of poorly graded sand and silt (USCS: SP and ML, respectively) were encountered. The native soils were typically encountered in a medium dense and moist conditions.

Geologic Setting

The referenced geologic map resource identifies Vashon undifferentiated drift (Qdv) across the site and surrounding areas. Although not specifically characterized within the geologic map resource, Vashon drift typically consists of glacial till, glaciofluvial, and glaciolacustrine sediments. The reference WSS resource indicates soils of the Everett very gravelly sandy loam, Indianola loamy sand, and Kitsap silt loam (Map Unit Symbols: 13B, 18C, 20B, and 20C, respectively). These soil groups are typically associated with moraines, eskers, kames, and terrace landforms, derived from glacial outwash and glaciolacustrine material. The variability in the makeup of the native soils is generally consistent with that of Vashon drift.

Groundwater

Perched groundwater seepage was encountered at TP-4, TP-201, and TP-202 during the subsurface explorations. In general, the seepage was exposed at depths of about one-and-one-half to six feet bgs and characterized as light to heavy.

In our opinion, the contractor should anticipate, and be prepared to manage, zones of perched groundwater seepage during construction, especially within deeper excavations depending on the time of year grading occurs. Groundwater seepage is common within glacial sediments, particularly within relatively permeable lenses and/or atop dense to very dense, unweathered deposits. Seepage rates and elevations fluctuate depending on many factors, including precipitation duration and intensity, the time of year, and soil conditions. In general, groundwater flow rates are higher during the wetter, winter months.

ESNW is currently performing a groundwater monitoring program for the site at three of the previously installed shallow wells. The results of the program and applicable design recommendations will be provided in a summary letter separate from this report.

Geologically Hazardous Areas

In preparation of this report, we reviewed the applicable city of Puyallup mapping and geologically hazardous area code section 21.06.

Landslide Hazard

As defined in Puyallup Municipal Code (PMC) 21.06.1210, landslide and erosion hazard areas include those identified by the U.S. Department of Agriculture Natural Resources Conservation Service as having a moderate to severe, severe, or very severe erosion hazard because of natural characteristics, including vegetative cover, soil texture, slope, gradient, and rainfall patterns, or human-induced changes to natural characteristics. Landslide and erosion hazard areas include areas with the following characteristics:

- Areas that have shown mass movement during the Holocene epoch (from 10,000 years ago to the present) or that are underlain or covered by mass wastage debris of that epoch;
- Slopes that are parallel or subparallel to planes of weakness (such as bedding planes, joint systems, and fault planes) in subsurface materials;
- Slopes having gradients steeper than 80 percent subject to rock fall during seismic shaking;
- Areas potentially unstable because of stream incision or stream bank erosion;
- Areas located in a canyon, ravine, or on an active alluvial fan, presently or potentially subject to inundation by debris flows or flooding;
- Any area with a slope of 40 percent or steeper and a vertical relief of 10 or more feet, except areas composed of consolidated rock and properly engineered manmade slopes/retained fill. A slope is delineated by establishing its toe and top and measured by averaging the inclination over at least 10 feet of vertical relief;
- Areas with a severe limitation for building development because of slope conditions, according to the Natural Resource Conservations Service, and;
- Areas meeting all three of the following criteria: (A) slopes steeper than 15 percent, except
 that slopes of less than 15 percent may be considered erosion hazard areas if they have
 certain unstable soil and drainage characteristics; (B) hillsides intersecting geologic
 contacts with a relatively permeable sediment overlying a relatively impermeable sediment
 or bedrock; and (C) wet season springs or groundwater seepage.

Based on the conditions encountered during our subsurface explorations, review of available topographic information, and review of the referenced slope schematic (which includes delineations of slopes greater than 40 percent), it appears that the majority of the site does not contain a landslide hazard, as defined by the PMC, except as noted below.

Slopes of 40 percent or greater have been delineated within the central site area and are associated with the sidewalls of Wetland A and Wetland C. However, these slopes are isolated and relatively minor in extent. Based on a review of the referenced preliminary plat plan set, a 25-foot buffer has been applied to each respective steep slope feature. Although the buffer appears to intersect the northwest corner of Lot 15, it is outside of the proposed building pad area; therefore, is outside future structural improvements.

In general, the development areas of the site do not contain a landslide hazard. Although some areas on site may meet the PMC criteria for landslide hazard, they are isolated and limited in occurrence. In our opinion, the site does not contain a hazard that would preclude successful development. However, remediation of unsuitable existing soils and groundwater drainage improvements will likely be necessary to assist in maintaining or improving post-construction soil stability. As such, ESNW should be present during grading activities to help identify areas of unsuitable soil and groundwater seepage and provide such mitigation recommendations. From a geotechnical standpoint, provided the recommendations of the referenced report and those contained within this letter are incorporated into the project designs, it is our opinion, based on our understanding of the current scope, the project can be developed as is currently proposed.

Erosion Hazard

As delineated in Puyallup Municipal Code (PMC) 21.06.1210, erosion hazard areas include those identified by the U.S. Department of Agriculture Natural Resources Conservation Service as having a moderate to severe, severe, or very severe erosion hazard because of natural characteristics, including vegetative cover, soil texture, slope, gradient, and rainfall patterns, or human-induced changes to natural characteristics.

Site soils are considered to have moderate to severe erosion potential when exposed to precipitation. In our opinion, provided appropriate temporary and permanent erosion and sediment control (ESC) measures are incorporated into final designs, the potential for erosion will remain low both during and after construction. Site BMPs and other means of sediment and surface flow control measures should be actively maintained during construction to ensure proper performance and functions. While seasonal grading restrictions may not be required for this project, we recommend the developer be prepared to employ enhanced ESC measures during the rainy season and be prepared to suspend grading activities if adequate BMPs cannot perform as intended during intense precipitation.

Provided the above recommendations and considerations are included with the construction plan and sequence, it is our opinion that the proposed development will not adversely affect soil stability on adjacent properties. Please note that our evaluation and corresponding lot recommendations are based on plans and site layouts made available to ESNW during report preparation. If site layout plans change, ESNW should be notified to provide updated recommendations.

DRT Comments and Response

For ease of review and clarity, this section of the report will be focused on responding to geotechnically related jurisdictional comments provided in the referenced DRT letter. Some elements of this response may be a duplicated from the discussion, evaluations, and/or recommendations provided in this report.

Planning and Review Comment 4: A 25' native growth protection area (NGPA) shall be provided on the rear of lot 13 due to slopes and protective buffer areas of 40% (or more) slopes and wetlands, per the Geotech report. These areas shall be landscaped and landscape plan shall be provided for these lots during final landscape plan and approval. February 2022, staff follow up comment: Please revise the lot layout with this protection area shown on the plat sheet(s) as 40% (or more) area (using the same call out as on Tract A) and show buffer setback.

ESNW Response: As indicated on the referenced plan set, a NGPA of 35' feet has been incorporated along the east property line and encompasses all or a part of Lots 8 through 13. Furthermore, a 25-foot buffer has been incorporated in sloping areas that meet or exceed 40 percent, both of which are located around Wetland A or C. The slope buffer in proximity to Wetland A encompasses a part of the proposed stormwater pond and a minor portion of Lot 15. With respect to Wetland C, the slope buffer does not encroach on any adjacent lot areas.

Engineering Review Comment 2: First and foremost, there will be no further review of the civil portion of the Major Plat due to the non-response to repeated requests for detailed long term groundwater monitoring. In addition, 2 test pits are not adequate for a site this size. Infiltration must be shown as infeasible in order for the project to claim that it is infeasible and not use it. Provide detailed account of testing and tabulated results.

ESNW Response: Site subsurface conditions were explored in October 2017, May 2019, and January 2020 and indicated variability concerning soil types present and grain size distribution across the site. Per USDA testing methods and procedures, native soils are also classified as slightly gravelly sand, gravelly loamy coarse sand, very gravelly loamy sand, and loam. Fines contents were about 6 percent within the sands, 26 to 40 percent within the sandy loam, and 58 to 98 percent within the gravelly loam and loam, as indicated by the sieve results of representative samples. To further evaluate site infiltration potential, two small-scale pilot infiltration tests (PITs) were performed in January 2020. The following table depicts each infiltration test location, encountered soil type, test depth, measured rate, appropriate safety factors, and recommended design rate.

Location	Soil	Test Depth	Measured Rate	Correc	tion Fac	tors	Recommended Design Rate
Location	Туре	(ft bgs)	(in/hr)	CF _v	CFt	CFm	(in/hr)
TP-201	ML	4.0	0	0.33	0.5	0.9	0
TP-202	ML	4.0	0	0.33	0.5	0.9	0

In accordance with our previous evaluations and recommendations, it is our opinion that infiltration be considered infeasible for the proposed project. Based on the soil and groundwater conditions exposed during each subsurface exploration, and the observed field infiltration rate of zero in/hr. at both PIT locations, it is our opinion that infiltration infeasibility has been sufficiently demonstrated.

Mr. Peter Chen January 11, 2018 Updated April 5, 2023

Engineering Review Comment 6b: The stormwater pond is located within a steep slope buffer. Per the DOE stormwater manual, the facility shall not be located above a slope that exceeds 15 percent.

Engineering Review Comment 6d: The stormwater pond will be a City-owned infrastructure. The city does not accept its current location above a steep slope that leads to a wetland. This configuration will likely cause additional maintenance and has a potential for failure over time. The pond shall be relocated.

ESNW Response: From a geotechnical standpoint, construction of the stormwater pond at the proposed location may be considered feasible provided that lateral water migration can be sufficiently prevented. In our opinion, this can be achieved by including a low-permeable liner in the pond construction. Liners can consist of a geo-membrane or compacted soil that meets the requirements of the governing stormwater manual.

Engineering Review Comment 7: Does the soils within the wetland tract have any capabilities of infiltrating?

ESNW Response: From a geotechnical standpoint, infiltration should not be considered within the wetland areas. The presence of perennial, ponded water indicates that the wetland area is underlying by a confining or restrictive layer. Vertical transmission of water may occur; however, based on the soil conditions encountered at the test pit locations and or field observations, it would likely be a nearly negligible amount in concurrence with lateral water migration, however, it is not expected to the degree which would allow for successful, targeted infiltration designs to the area.

DISCUSSION AND RECOMMENDATIONS

General

Based on the results of our investigation, the construction of the proposed residential development is feasible from a geotechnical standpoint. The primary geotechnical considerations associated with the proposed development include foundation support, slab-ongrade subgrade support, the suitability of using on-site soils as structural fill, and construction of the stormwater facility(s).

Site Preparation and Earthwork

Initial site preparation activities will consist of installing temporary erosion control measures, establishing grading limits, and performing clearing and site stripping. Subsequent earthwork activities will involve mass site grading and related infrastructure improvements.

Temporary Erosion Control

The following temporary erosion control measures are offered:

- Temporary construction entrances and drive lanes, consisting of at least six inches of quarry spalls, should be considered to both minimize off-site soil tracking and provide a stable access entrance surface. The placement of a geotextile fabric beneath the quarry spalls will provide greater stability if needed. Existing asphalt/gravel drive lanes can be considered for use as a temporary construction entrance and should be observed by ESNW before construction.
- Silt fencing should be placed around the site perimeter.
- When not in use, soil stockpiles should be covered or otherwise protected.
- Temporary measures for controlling surface water runoff, such as interceptor trenches, sumps, or interceptor swales, should be installed before beginning earthwork activities.
- Dry soils disturbed during construction should be wetted to minimize dust.

Additional BMPs, as specified by the project civil engineer and indicated on the plans, should be incorporated into construction activities. Temporary erosion control measures should be continually maintained and improved to provide proper function over the course of construction.

Stripping

Topsoil was encountered generally within the upper 2 to 18 inches of existing grades at the test pit locations. Based on the encountered conditions, an average topsoil thickness of about eight to nine inches may be assumed ESNW should be retained to observe site stripping activities at the time of construction so that the degree of required stripping may be assessed. The exposed subgrade may still possess root elements, other organic material, or be present in a loose condition. As such, ESNW should evaluate the exposed soil subgrade to determine if further stripping or in-situ compaction efforts prior to fill operations or finish grading is necessary. Overstripping should be avoided, as it is unnecessary and may result in increased project development costs. Topsoil and organic-rich soil are neither suitable for foundation support nor for use as structural fill. Topsoil and organic-rich soil may be used in non-structural areas if desired.

In-situ and Imported Soils

On-site soils are highly moisture sensitive; therefore, successful use as structural fill largely being dictated by the moisture content at the time of placement and compaction. Remedial measures, such as soil aeration and/or cement treatment (where allowed by the local jurisdiction or utility district), may be necessary as part of site grading and earthwork activities. Existing fill soils to be used within structural applications must be free of deleterious debris, especially concerning construction-like debris and organic material. If the on-site soils cannot be successfully compacted, the use of an imported soil may be necessary. In our opinion, a contingency should be provided in the project budget for the export of soil that cannot be successfully compacted as structural fill if grading activities take place during periods of extended rainfall activity. Soils with fine contents greater than 5 percent typically degrade rapidly when exposed to periods of rainfall.

Imported soil intended for use as structural fill should consist of a well-graded, granular soil with a moisture content that is at (or slightly above) the optimum level. During wet weather conditions, imported soil intended for use as structural fill should consist of a well-graded, granular soil with a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction).

Subgrade Preparation

Following site stripping, cuts and fills will be completed to establish proposed subgrade elevations across the site. To establish a suitable subgrade for structural elements, recompaction of existing fill soils will likely be necessary for some areas. Due to the variable thickness and extent of the existing fill, it is our opinion that structural elements within the deeper fill areas be underlain by at least four feet of structural fill. It may be possible to recompact and reuse existing fill provided that it is free of deleterious material and contain a moisture content that is near optimum and is approved by ESNW at the time of placement and compaction.

Subgrades founded in competent native soils can likely be compacted in situ with mechanical equipment until a uniformly firm and unyielding condition is achieved. ESNW should observe the subgrade(s) during initial site preparation activities to confirm soil conditions are as anticipated and to provide supplementary recommendations for subgrade preparation, as necessary.

Please note the above considerations are based on current site layout plans available to ESNW, as depicted on the Test Pit Location Plan attached to this report. Should site layout designs change, ESNW should be informed and allowed to reevaluate necessary preparation efforts in relation to corresponding Lot numbers.

Structural Fill

Structural fill is defined as compacted soil placed in the foundation, slab-on-grade, roadway, permanent slope, retaining wall, and utility trench backfill areas. Soils placed in structural areas should be placed in loose lifts of 12 inches or less and compacted to a relative compaction of 95 percent, based on the laboratory maximum dry density as determined by the Modified Proctor Method (ASTM D1557). Soils intended for use as structural fill should be generally free of organic and deleterious material. For soil placed in utility trenches underlying structural areas, compaction requirements are dictated by the local city, county, or utility district, and are typically specified to a relative compaction of at least 95 percent.

Slope Fill

Structural fill placed along sloping areas (where a "sloping area" is defined as an area inclined at 15 percent or steeper) should be placed on a level bench as depicted on Plate 3 (Slope Fill Detail). Benches must be "keyed" into the slope and subsequently filled and compacted with suitable structural fill before continuing to the next bench. Sloping finish grades should be "overbuilt" using a bench-style fill and cut to the design gradient to ensure a permanent compacted slope face is maintained. ESNW should observe structural fill placement to confirm subgrade conditions and provide additional drainage recommendations, as necessary.

Temporary Excavations and Slopes

Excavation activities will likely expose loose to medium dense fill and weathered native soils that transition to medium dense to dense native soils at depth. Based on the soil conditions observed at the test pit locations, the following allowable temporary slope inclinations, as a function of horizontal to vertical (H:V) inclination, may be used. The applicable Federal Occupation Safety and Health Administration (OSHA) and Washington Industrial Safety and Health Act (WISHA) soil classifications are also provided:

Loose to medium dense soil
 1.5H:1V (Type C)

Areas containing groundwater seepage
 1.5H:1V (Type C)

Dense to very dense native soil
 0.75H:1V (Type A)

Steeper temporary slope inclinations within undisturbed, very dense native deposits may be feasible based on the soil and groundwater conditions exposed within the excavations. Steeper inclinations may be considered and must be subsequently approved, by ESNW at the time of grading.

Permanent slopes should be planted with vegetation to enhance stability and minimize erosion and should maintain a maximum gradient of 2H:1V or inclination prescribed by the governing jurisdiction. The presence of perched groundwater may cause localized sloughing of temporary slopes due to excess seepage forces. An ESNW representative should observe temporary and permanent slopes to confirm the slope inclinations are suitable for the exposed soil conditions and to provide additional excavation and slope recommendations, as necessary. If the recommended temporary slope inclinations cannot be achieved, temporary shoring may be necessary to support excavations.

Foundations

In our opinion, the proposed residential structures may be constructed on conventional continuous and spread footing foundations bearing upon competent native soil, recompacted native soil, recompacted existing fill, or suitable structural fill placed directly on competent native soils. In general, native soils competent for foundation support are anticipated to be encountered at approximate depths of two to five feet below the existing ground surface elevation. Areas underlain by existing fill may require additional preparation techniques to establish suitable and uniform bearing conditions, such as overexcavating unsuitable existing fill and restoring grades with suitable structural fill. Re-working and re-compacting the in-place fill may be feasible in areas where the fill is devoid of organic and deleterious material but must be evaluated by ESNW during grading. Areas of deeper fill may require additional or complete over excavation and restoration or alternative foundation support implementations (see Subgrade Preparation section of the report). In general, where loose or unsuitable soil conditions are exposed at foundation subgrade elevations, compaction of soils to the specifications of structural fill, or overexcavation and replacement with a suitable structural fill material, will be necessary.

Provided the foundations will be supported as described above, the following parameters may be used for the design:

Allowable soil bearing capacity
 2,500 psf

Passive earth pressure
 300 pcf (equivalent fluid)

• Coefficient of friction 0.40

A one-third increase in the allowable soil bearing capacity may be assumed for short-term wind and seismic loading conditions. The above passive pressure and friction values include a factor-of-safety of 1.5. With structural loading as expected, total settlement in the range of one inch and differential settlement of about one-half inch is anticipated. The majority of the settlements should occur during construction, as dead loads are applied.

Seismic Design

The 2018 International Building Code (2018 IBC) recognizes the most recent edition of the Minimum Design Loads for Buildings and Other Structures manual (ASCE 7-16) for seismic design, specifically concerning earthquake loads. Based on the soil conditions encountered at the test pit locations, the parameters and values provided below are recommended for seismic design per the 2018 IBC.

Parameter	Value
Site Class	D*
Mapped short period spectral response acceleration, $S_S(g)$	1.255
Mapped 1-second period spectral response acceleration, $S_1(g)$	0.432
Short period site coefficient, Fa	1.0
Long period site coefficient, F _v	1.868 [†]
Adjusted short period spectral response acceleration, S _{MS} (g)	1.255
Adjusted 1-second period spectral response acceleration, $S_{M1}\left(g\right)$	0.807†
Design short period spectral response acceleration, $S_{DS}(g)$	0.837
Design 1-second period spectral response acceleration, $S_{D1}\left(g\right)$	0.538 [†]

^{*} Assumes medium dense native soil conditions, encountered to a maximum depth of 18 feet bgs during the October 207, May 2019, and January 2020 field exploration, remain medium dense (if not become denser) to at least 100 feet bgs.

[†] Values assume F_v may be determined using linear interpolation per Table 11.4-2 in ASCE 7-16.

As indicated in the table footnote, several of the seismic design values provided above are dependent on the assumption that site-specific ground motion analysis (per Section 11.4.8 of ASCE 7-16) will not be required for the subject project. ESNW recommends the validity of this assumption be confirmed at the earliest available opportunity during the planning and early design stages of the project. Further discussion between the project structural engineer, the project owner, and ESNW may be prudent to determine the possible impacts to the structural design due to increased earthquake load requirements under the 2018 IBC. ESNW can provide additional consulting services to aid with design efforts, including supplementary geotechnical and geophysical investigation, upon request.

Liquefaction is a phenomenon where saturated or loose soil suddenly loses internal strength and behaves as a fluid. This behavior is in response to increased pore water pressures resulting from an earthquake or another intense ground shaking. In our opinion, site susceptibility to liquefaction may be considered low. The depth of the regional groundwater table and the encountered in-situ density of the native soil were the primary bases for this opinion.

Slab-on-Grade Floors

Slab-on-grade floors for the proposed residential structures should be supported on a well-compacted, firm, and unyielding subgrade. Where feasible, competent native soil exposed at the slab-on-grade subgrade level can likely be compacted in situ to the specifications of structural fill. Unstable or yielding areas of the subgrade should be recompacted, or overexcavated and replaced with suitable structural fill, before construction of the slab.

A capillary break consisting of a minimum of four inches of free-draining crushed rock or gravel should be placed below the slab. The free-draining material should have a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction). In areas where slab moisture is undesirable, the installation of a vapor barrier below the slab should be considered. If a vapor barrier is to be utilized, it should be a material specifically designed for use as a vapor barrier and should be installed in accordance with the specifications of the manufacturer.

Retaining Walls

Retaining walls must be designed to resist earth pressures and applicable surcharge loads. The following parameters may be used for the design:

	•	Active earth	pressure (vielding cond	dition)	35 pcf	(eguiva	lent fluid	(b
--	---	--------------	------------	---------------	---------	--------	---------	------------	----

At-rest earth pressure (restrained condition)
 55 pcf

Traffic surcharge (passenger vehicles)
 70 psf (rectangular distribution)*

Passive earth pressure
 300 pcf (equivalent fluid)

• Coefficient of friction 0.40

Seismic surcharge
 8H psf**

Where applicable.

^{**} Where H equals the retained height (in feet).

The above design parameters are based on a level backfill condition and level grade at the wall toe. Revised design values will be necessary if sloping grades are to be used above or below retaining walls. Additional surcharge loading from adjacent foundations, sloped backfill, or other relevant loads should be included in the retaining wall design.

Retaining walls should be backfilled with free-draining material that extends along the height of the wall and a distance of at least 18 inches behind the wall. The upper 12 inches of the wall backfill may consist of a less permeable soil if desired. A perforated drainpipe should be placed along the base of the wall and connected to an approved discharge location. A typical retaining wall drainage detail is provided on Plate 4. If drainage is not provided, hydrostatic pressures should be included in the wall design.

Drainage

Based on our field observations, isolated zones of perched groundwater seepage should be anticipated within site excavations depending on the time of year grading occurs. Temporary measures to control surface water runoff and groundwater seepage during construction would likely involve interceptor trenches and sumps. ESNW should be consulted during preliminary grading to identify areas of seepage and provide recommendations to reduce the potential for instability related to seepage effects.

Finish grades must be designed to direct surface drain water away from structures and slopes. Water must not be allowed to pond adjacent to structures or slopes. In our opinion, foundation drains should be installed along building perimeter footings. A typical foundation drain detail is provided on Plate 5.

Infiltration Feasibility Evaluation

Site subsurface conditions were initially explored in October 2017, May 2019, and January 2020 and indicated variability concerning soil types present and grain size distribution across the site. Per USDA testing methods and procedures, native soils are also classified as slightly gravelly sand, gravelly loamy coarse sand, very gravelly loamy sand, and loam. Fines contents were about 6 percent within the sands, 26 to 40 percent within the sandy loam, and 58 to 98 percent within the gravelly loam and loam, as indicated by the sieve results of representative samples. To further evaluate site infiltration potential, two small-scale pilot infiltration tests (PITs) were performed in January 2020. The following table depicts each infiltration test location, encountered soil type, test depth, measured rate, appropriate safety factors, and recommended design rate.

Location	Soil	Test Depth	Measured Rate	Correc	Correction Factors		Recommended Design Rate
	Туре	(ft bgs)	(in/hr)	CF _∨	CFt	CF _m	(in/hr)
TP-201	ML	4.0	0	0.33	0.5	0.9	0
TP-202	ML	4.0	0	0.33	0.5	0.9	0

In accordance with our previous evaluations and recommendations, it is our opinion that infiltration be considered infeasible for the proposed project. Based on the soil and groundwater conditions exposed during each subsurface exploration, and the observed field infiltration rate of zero in/hr. at both PIT locations, it is our opinion that infiltration infeasibility has been sufficiently demonstrated.

Preliminary Stormwater Pond Recommendations

We understand that a stormwater detention pond will be constructed in Tract B for stormwater management for the project. We anticipate cuts of 10 feet or more feet will be necessary to reach the design subgrade elevation of the pond. Based on our field observations, grade cuts for the pond are likely to expose glacial drift deposits. Where necessary, the pond liner should consist of a suitable low-permeability material and may include compacted till liner. Appropriate gradation, liner thickness, and liner installation requirements should be determined by reviewing the standards provided in the governing stormwater management manual.

The functional success of a pond is largely related to construction methods, particularly compacted berms. In our experience, inadequate or poor construction techniques may cause pond berms to leak and fail. Leaks are difficult to detect and remediate, and as such, are costly and time-consuming to address. ESNW should be contacted to review the final pond designs to confirm that appropriate geotechnical considerations have been incorporated. ESNW should observe construction activities for the pond on a full-time basis to confirm adequate soil compaction and installation methods are used and to provide supplementary recommendations, as necessary.

Utility Support and Trench Backfill

In our opinion, on-site soils will generally be suitable for the support of utilities. Remedial measures may be necessary for some areas to provide support for utilities, such as overexcavation and replacement with structural fill and/or placement of geotextile fabric. Groundwater seepage may be encountered within utility excavations, and caving of trench walls may occur where groundwater is encountered. Depending on the time of year and conditions encountered, dewatering, as well as temporary trench shoring, may be necessary during utility trench excavation and installation.

Successful use will depend on the soil's moisture content at the time of placement and compaction. The silt soils encountered at our test pit locations is not suitable for utility trench backfill. Moisture conditioning of the soils may be necessary at some locations before use as structural fill. Each section of the utility lines must be adequately supported in the bedding material. Utility trench backfill should consist of and be placed and compacted to the specifications of structural fill as previously detailed in this report, or to the applicable specifications of the governing jurisdiction or agency.

Preliminary Pavement Sections

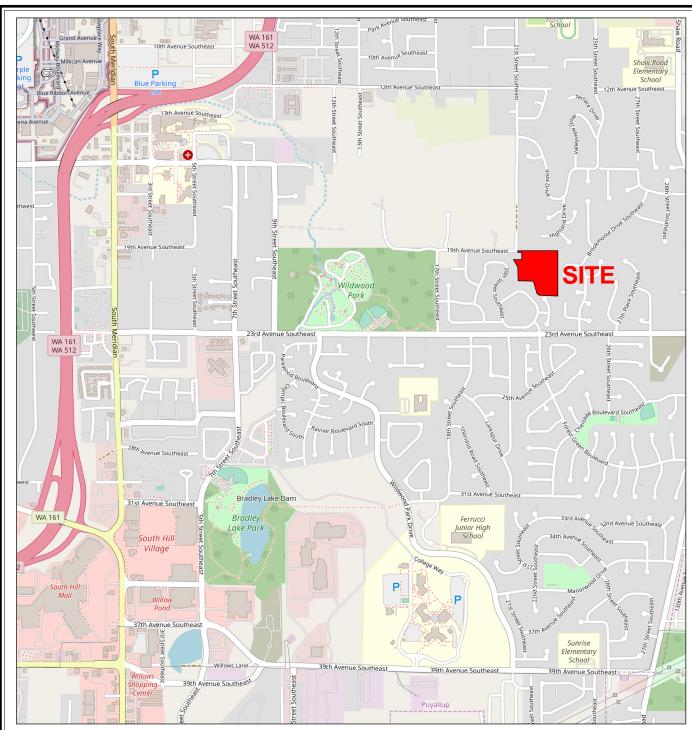
The performance of site pavements is largely related to the condition of the underlying subgrade. To ensure adequate pavement performance, the subgrade should be in a firm and unyielding condition when subjected to proofrolling with a loaded dump truck. Structural fill in pavement areas should be compacted to the specifications previously detailed in this report. Soft, wet, or otherwise unsuitable subgrade areas may still exist after base grading activities. Areas containing unsuitable or yielding subgrade conditions will require remedial measures, such as over-excavation and/or placement of thicker crushed rock or structural fill sections, before pavement.

We anticipate new pavement sections will be subjected primarily to passenger vehicle traffic. For lightly loaded pavement areas subjected primarily to passenger vehicles, the following preliminary pavement sections may be considered:

- A minimum of two inches of hot mix asphalt (HMA) placed over four inches of crushed rock base (CRB), or;
- A minimum of two inches of HMA placed over three inches of asphalt-treated base (ATB).

For heavy-loaded pavement areas such as main interior access roads and areas subject to occasional large commercial vehicle traffic, the following preliminary pavement sections may be considered:

- Three inches of HMA placed over six inches of CRB, or;
- Three inches of HMA placed over three inches of ATB.


The HMA, ATB, and CRB materials should conform to WSDOT specifications. All soil base material should be compacted to a relative compaction of 95 percent, based on the laboratory maximum dry density as determined by a modified proctor test (ASTM D1557). Final pavement design recommendations, including recommendations for heavy traffic areas, access roads, and frontage improvement areas, can be provided once final traffic loading has been determined. Road standards utilized by the governing jurisdiction may supersede the recommendations provided in this report. If the roadway will be constructed with an inverted crown, additional drainage recommendations may be necessary, as evaluated and recommended by ESNW at the time of construction.

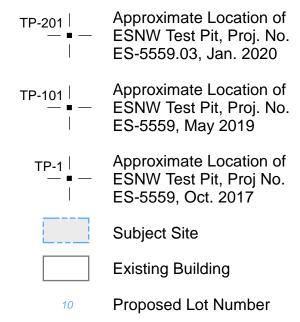
LIMITATIONS

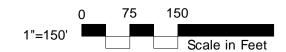
The recommendations and conclusions provided in this study are professional opinions consistent with the level of care and skill that is typical of other members in the profession currently practicing under similar conditions in this area. A warranty is neither expressed nor implied. Variations in the soil and groundwater conditions observed at the test pit locations may exist and may not become evident until construction. ESNW should reevaluate the conclusions provided in this study if variations are encountered.

Additional Services

ESNW should have an opportunity to review final project plans with respect to the geotechnical recommendations provided in this report. ESNW should also be retained to provide testing and consultation services during construction.

Reference: Pierce County, Washington OpenStreetMap.org


NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.


Vicinity Map Sunset Pointe Puyallup, Washington

Drwn. CAM	Date 04/05/2023	Proj. No. 5559
Checked CGH	Date April 2023	Plate 1

LEGEND

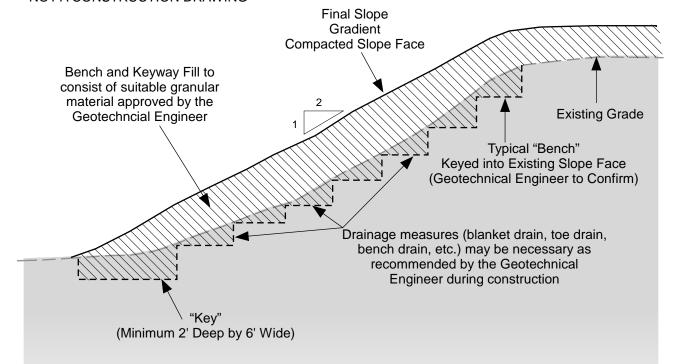
NOTE: The graphics shown on this plate are not intended for design purposes or precise scale measurements, but only to illustrate the approximate test locations relative to the approximate locations of existing and / or proposed site features. The information illustrated is largely based on data provided by the client at the time of our study. ESNW cannot be responsible for subsequent design changes or interpretation of the data by others.

NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

Test Pit Location Plan Sunset Pointe Puyallup, Washington

olutions NWLLC

Drwn. By CAM

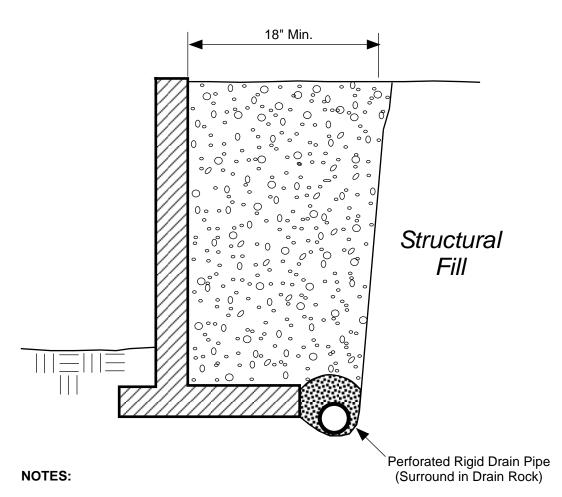

Checked By CGH

Date 04/05/2023

Proj. No. 5559

Plate 2

SCHEMATIC ONLY - NOT TO SCALE NOT A CONSTRUCTION DRAWING


NOTES:

- Slope should be stripped of topsoil and unsuitable materials prior to excavating Keyway or benches.
- Benches will typically be equal to a bulldozer blade width of approximately 8 feet but shall be at least 4 feet.
- Final slope gradient should be 2H: 1V.
- Final slope face should be densified by over-building with compacted fill and trimming back to shape or by compaction with a bulldozer or vibratory drum roller.
- Planting or hydroseeding slope face with a rapid growth deep-rooted vegetative mat will reduce erosion potential of slope area.
- Use of pegged-in-place jute matting or geotechnical fabric will help maintain the seed and mulch in place until the root system has an opportunity to germinate.

Structural fill should be placed in thin loose lifts not exceeding 12 inches in thickness. Each lift should be compacted to no less than the degree specified in the "Site Preparation and Earthwork" section of this report. No additional lift should be placed until compaction is achieved.

Drwn. MRS	Date 10/09/2018	Proj. No.	5559
Checked CGH	Date Oct. 2018	Plate	3

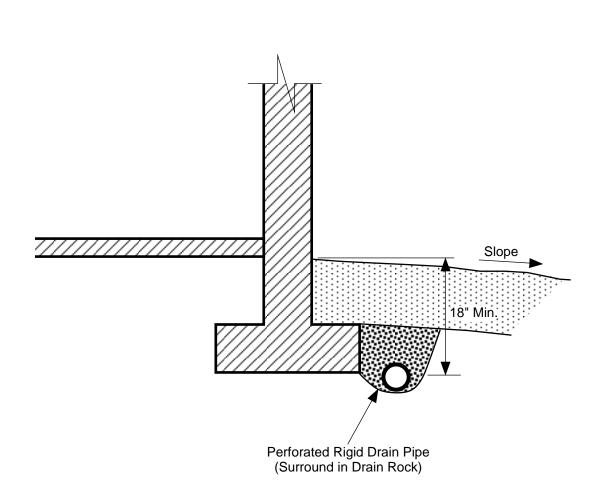
 Free-draining Backfill should consist of soil having less than 5 percent fines.
 Percent passing No. 4 sieve should be 25 to 75 percent.

 Sheet Drain may be feasible in lieu of Free-draining Backfill, per ESNW recommendations.

 Drain Pipe should consist of perforated, rigid PVC Pipe surrounded with 1-inch Drain Rock.

LEGEND:

Free-draining Structural Backfill


1-inch Drain Rock

SCHEMATIC ONLY - NOT TO SCALE NOT A CONSTRUCTION DRAWING

Retaining Wall Drainage Detail Sunset Pointe Puyallup, Washington

Drwn. MRS	Date 10/09/2018	Proj. No.	5559
Checked CGH	Date Oct. 2018	Plate	4

NOTES:

- Do NOT tie roof downspouts to Footing Drain.
- Surface Seal to consist of 12" of less permeable, suitable soil. Slope away from building.

LEGEND:

Surface Seal: native soil or other low-permeability material.

1-inch Drain Rock

SCHEMATIC ONLY - NOT TO SCALE NOT A CONSTRUCTION DRAWING

Footing Drain Detail Sunset Pointe Puyallup, Washington

Drwn. MRS	Date 10/09/2018	Proj. No.	5559
Checked CGH	Date Oct. 2018	Plate	5

Appendix A

Subsurface Exploration Test Pit Logs

ES-5559

Subsurface conditions at the subject site were explored by an ESNW representative on October 24, 2017, May 15, 2019, and January 22, 2020. A total of 25 test pits were excavated at accessible areas of the site using an operator and trackhoe retained by ESNW. The approximate locations of the test pits are illustrated on Plate 2 of this study. The test pits logs are provided in this Appendix. The test pits were excavated to a maximum depth of approximately 18 feet bgs.

The final logs represent the interpretations of the field logs and the results of laboratory analyses. The stratification lines on the logs represent the approximate boundaries between soil types. In actuality, the transitions may be more gradual.

	Coarse Sieve	ွှ	GW	Well-graded gravel with or without sand, little to	Moisture	Content	Symbols		
	₽4	0/110/g		no fines	Dry - Absence of m the touch	oisture, dusty, dry to	ATD = At time ✓ of drilling ATD = At time ✓ of drilling Bentonite		
	50% on No.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	GP	Poorly graded gravel with or without sand, little to no fines	Damp - Perceptible optimum MC	moisture, likely below	Static water Very level (date) Grout		
200 Sieve	Gravels - More Than 50% (Fraction Retained on No.		<u>)</u>	Silty gravel with or without	Moist - Damp but n at/near optimum M	o visible water, likely C	seal Filter pack with blank casing		
	- More	Fines	GM	sand	likely above optimu		section Screened casing or Hydrotip with		
Coarse-Grained Soils - More Than 50% Retained on No.	ravels -ractio	12%	GC	Clayey gravel with or without sand	Saturated/Water Be water, typically belo	earing - Visible free w groundwater table	filter pack		
Coarse-Grained 50% Retained	IS F			without sand	Terms Describing Relative Density and Consistency				
Gra			•	Well-graded sand with	Coarse-Graine	d Soils:	Test Symbols & Units		
rse- % R	rse	8	SW	or without gravel, little to	<u>Density</u>	SPT blows/foot	Fines = Fines Content (%)		
oal 50%	Coarse Sieve	5% Fine	•	no fines	Very Loose	< 4	MC = Moisture Content (%)		
a C	ρ 4 Ο 8	2%		Poorly graded sand with	Loose	4 to 9	DD = Dry Density (pcf)		
Ĕ	ē ō.	v	SP	or without gravel, little to	Medium Dense	10 to 29			
More	ands - 50% or More Fraction Passes No.			no fines	Dense Very Dense	30 to 49 ≥ 50	Str = Shear Strength (tsf) PID = Photoionization Detector (ppm)		
	% c Pas	ပ္သ	SM	Silty sand with or without		. "	,		
	- 50 ion I	Fine	SIVI	gravel	Fine-Grained Consistency	Soils: SPT blows/foot	OC = Organic Content (%)		
	Sands - Fracti	%////			Very Soft	< 2	CEC = Cation Exchange Capacity (meq/100 g)		
	Sa	$\left \begin{array}{c} \\ \\ \end{array} \right / / / / /$	SC	Clayey sand with or without gravel	Soft	2 to 3	LL = Liquid Limit (%)		
				Williout gravor	Medium Stiff	4 to 7	PL = Plastic Limit (%)		
	_			Silt with or without sand	Stiff	8 to 14	PI = Plasticity Index (%)		
	0.50		ML	or gravel; sandy or	Very Stiff	15 to 29			
	ys			gravelly silt	Hard	≥ 30			
ve	ilts and Clays			Clay of low to medium plasticity; lean clay with		Componen	t Definitions		
- 200 Sieve	and		CL	or without sand or gravel; sandy or gravelly lean clay	Descriptive Term	Size Range	e and Sieve Number		
200			1	Saridy of graverry learn clay	Boulders	Larger than	า 12"		
Soils No. 2	0, 5		OL	Organic clay or silt of	Cobbles	3" to 12"	4 (4 75 mm)		
ned S	<u>.</u> _			low plasticity	Gravel Coarse Gravel Fine Gravel	3" to No. 4 3" to 3/4" 3/4" to No.			
irai Pas		\Box		Elastic silt with or without	Sand		5 mm) to No. 200 (0.075 mm)		
Fine-Grained 50% or More Passes	/S More		MH	sand or gravel; sandy or gravelly elastic silt	Coarse Sand Medium Sand Fine Sand	No. 10 (2.0	imm) to No. 10 (2.00 mm) 10 mm) to No. 40 (0.425 mm) 125 mm) to No. 200 (0.075 mm)		
or N	Clay			Clay of high plasticity;	Silt and Clay	`	an No. 200 (0.075 mm)		
20%	Silts and Clays		СН	fat clay with or without sand or gravel; sandy or gravelly fat clay		Modifier I	Definitions		
	Silk				Percentage by Weight (Approx.)	Modifier			
	. <u>.</u>		ОН	Organic clay or silt of medium to high plasticity	< 5	Trace (san	d, silt, clay, gravel)		
	υ	<u> </u>	3		5 to 14	Slightly (sa	ndy, silty, clayey, gravelly)		
ghly	Organic Soils	717 717 717 71	PT	Peat, muck, and other	15 to 29	Sandy, silty	, clayey, gravelly		
Ī	Š	77 7		highly organic soils	≥ 30	Very (sand	y, silty, clayey, gravelly)		
Ħ			FILL Made Ground		field and/or laboratory obs plasticity estimates, and s	ervations, which include de hould not be construed to in tratory classification methor	as shown on the exploration logs are based on visual ensity/consistency, moisture condition, grain size, and mply field or laboratory testing unless presented hereinds of ASTM D2487 and D2488 were used as an System.		

Earth Solutions NWLLC

TEST PIT NUMBER TP-201

PROJ	ECT NUM	MBER ES-5559.03	3			PROJECT NAME Sunset Pointe	
DATE	STARTE	D 1/22/20	(СОМР	LETED 1/22/20	GROUND ELEVATION 374 ft	
EXCA	VATION	CONTRACTOR N	W Exc	avatin	g	LATITUDE LONGITUDE	
LOGG	ED BY _	CGH	(CHEC	KED BY SSR	GROUND WATER LEVEL:	
NOTE	S Depth	of Topsoil & Sod	6": gra	ss		$ar{oldsymbol{ol}oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}}$	
о ОЕРТН	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
			TPSL	<u>21 1/2</u> .2	_{0.5} Dark brown TOPS0	DIL, root intrusions to 1'	373.5
		MC = 20.7	ML		Tan SILT, medium -mottled texture	dense, moist to wet	
		MC = 32.6 Fines = 88.9			4.5 [USDA Classification	on: LOAM]	369.5
5		MC = 15.1	SP		, , , , ,	SAND, dense, moist to wet taining at contact, light groundwater seepage at 6'	368.0
		MC = 30.7	ML		Gray SILT with san		000.0
		MC = 30.5 Fines = 78.7			Test pit terminated	on: slightly gravelly LOAM] at 8.0 feet below existing grade. Groundwater seepage encountered at avation. No caving observed.	366.0

TEST PIT NUMBER TP-202

PROJ	ECT NUM	MBER _ES-5559.03	<u> </u>		PROJECT NAME Sunset Pointe	
DATE	STARTE	D 1/22/20	(COMP	_ETED _1/22/20	
EXCA	VATION (CONTRACTOR N	W Exc	avatin	g LATITUDE LONGITUDE	
LOGG	ED BY	CGH	(CHEC	KED BY SSR GROUND WATER LEVEL:	
NOTE	S Depth	n of Topsoil & Sod 6	6": gra	SS	$ar{oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}}}}$	
l					AFTER EXCAVATION	
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
			TPSL	1/ N 1/2	0.5 Dark brown TOPSOIL, root intrusions to 6"	387.5
			FILL		Crushed rock (Fill)	
			FILL	\bowtie	1.5 -light perched groundwater seepage	386.5
					Tan silty SAND, medium dense, moist	
		MC = 31.9	SM		~<8" sand lens	385.3
L		1110 0110		HH	Tan sandy SILT, dense, moist	300.0
			ML		-becomes gray	
		MC = 19.4	IVIL		THORA OL IS IS A LOAD	
		Fines = 58.7 MC = 31.8			4.5 [USDA Classification: slightly gravelly LOAM]	383.5
5					Gray silty SAND, dense, moist -light iron oxide staining	
					-light from oxide staffing	
├ ┤			SM			
			SIVI			
┞╶┤					-increased sand content	
		MC = 13.3			8.0 [USDA Classification: slightly gravelly fine sandy LOAM]	200.0
		Fines = 39.9		<u>le l'elle</u>	Test pit terminated at 8.0 feet below existing grade. Groundwater seepage encountered at 1.0 foot during excavation. No caving observed.	380.0

Earth Solutions NWLLC Earth School Redmon Telepho

GENERAL BH / TP / WELL - 5559.GPJ - GINT US.GDT - 4/5/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-101

PROJE	ECT NUN	IBER <u>ES-5559</u>			PROJECT NAME Sunset Pointe	PROJECT NAME Sunset Pointe		
					ETED 5/19/19 GROUND ELEVATION 383 ft			
					LATITUDE LONGITUDE			
					ED BY SSR GROUND WATER LEVEL:			
					mble			
					AFTER EXCAVATION			
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION			
0			+	12. 11/2	Dark brown TOPSOIL, root intrusions to 12"			
			TPSL	1/ 1/1/1	.0	382.0		
 		MC = 13.8	SM		Gray silty SAND with gravel, dense, moist (Fill)	552.5		
5					-sand lens ~12" thick			
		MC = 20.0		5	.5 Gray SILT, medium dense, moist (Fill)	377.5		
10		MC = 27.3 Fines = 90.0	ML	1	-becomes brown, increased fines [USDA Classification: slightly gravelly LOAM]	370.0		
					Tan SILT, medium dense, wet	0.0.0		
15		MC = 31.9 Fines = 95.8	ML		[USDA Classification: LOAM]	368.0		
-10					Tan silty SAND, medium dense, wet to saturated	300.0		
		MC = 35.3	SM		-minor iron oxide staining -sand lens 6"- 12" thick			
						265.0		
		MC = 28.5	<i></i>	<u>[14] </u>	Test pit terminated at 18.0 feet below existing grade. No groundwater encountered during excavation. No caving observed.	365.0		

TEST PIT NUMBER TP-102

PAGE 1 OF 1

PROJ	ECT NUN	IBER _ES-5559					PROJECT NAME Sunset Pointe	
DATE	STARTE	D 5/15/19		COMF	LETED	5/15/19	GROUND ELEVATION 376 ft	
EXCA	VATION	CONTRACTOR N	W Exc	cavatii	ng		LATITUDE LONGITUDE	
LOGG	ED BY _	CGH		CHEC	KED BY	SSR	GROUND WATER LEVEL:	
NOTE	S Depth	of Topsoil & Sod	12": he	eavy b	ramble		abla at time of excavation	
SURF	ACE CON	IDITIONS						
о ОЕРТН (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC			MATERIAL DESCRIPTION	
			TDCI	7/1/2	<u>:</u>	Dark brown TOPS	OIL, root intrusions to 2.25'	
L			TPSL	1/ 1/1	1.0			375.0
						Brown silty SAND,	loose, moist	
L -	SM							
					2.5	Gray SILT, dense,	maiat	373.5
		MC = 25.4 Fines = 98.3				[USDA Classification		
		1 11103 – 30.0				-heavy iron oxide s		
						-neavy from oxide s	naming	
_								
5								
		MC = 32.0						
├ -		Fines = 92.5	ML			-becomes brown, v	vet	
						[USDA Classification	on: LOAM]	
						-becomes wet to sa	aturated	
		MC = 35.2			9.5			366.5
			,			Test pit terminated excavation. No ca	at 9.5 feet below existing grade. No groundwater encountered during ving observed.	

Earth Solutions NWLLC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-103

PAGE 1 OF 1

PROJ	ECT NUM	MBER <u>ES-5559</u>			PROJECT NAME Sunset Point	te	
DATE	STARTE	D 5/15/19		COMPL	TED _5/15/19 GROUND ELEVATION _384 ft		
EXCA	VATION	CONTRACTOR 1	√W Exc	cavating	LATITUDE	LONGITUDE	
LOGG	SED BY _	CGH		CHECK	D BY SSR GROUND WATER LEVEL:		
NOTE	S Depth	n of Topsoil & Sod	8": hea	avy busl	$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$	/ATION	
SURF	ACE CON	NDITIONS			AFTER EXCAVATION	DN	
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRI	PTION	
			TPSL		Dark brown TOPSOIL, root intrusions to 6.25' (Fill)		383.4
5		MC = 11.3 MC = 10.4 MC = 11.7	SM		Gray silty SAND with gravel, medium dense to dense den	e, moist (Fill)	
		MC = 20.2		<u> </u>	.0 Test pit terminated at 11.0 feet below existing grade	e. No groundwater encountered during	373.0
					excavation. No caving observed.		

Earth Solutions NWuc

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-104

Gray silty SAND with gravel, medium dense to dense, moist -becomes brown -becomes gray MC = 23.5 MC = 23.5 ML ML ML ML Gray silty SAND with gravel, medium dense to dense, moist -becomes brown -becomes brown -becomes brown -becomes brown, wet								PROJECT NAME Sunset Pointe GROUND ELEVATION 383 ft		
LOGGED BY _CGH										
NOTES Depth of Topsoil & Sod 8": grass SURFACE CONDITIONS TESTS OBJECT OBJ	1									
SURFACE CONDITIONS AFTER EXCAVATION MATERIAL DESCRIPTION MATERIAL DESCRIPTION TESTS TO SO DAY DO MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION Gray silty SAND with gravel, medium dense to dense, moist -becomes brown -becomes gray MC = 23.5 MC = 23.5 MC = 29.8 Fines = 93.5 Test pit terminated at 11.0 feet below existing grade. No groundwater encountered during excavation. No caving observed.	1									
TESTS Signal Age of Ag										
TPSL Shown TOPSOIL, root intrusions to 12" Gray silty SAND with gravel, medium dense to dense, moist -becomes brown -becomes gray MC = 23.5 MC = 23.5 MC = 29.8 Fines = 93.5 Test pit terminated at 11.0 feet below existing grade. No groundwater encountered during excavation. No caving observed.										
Gray silty SAND with gravel, medium dense to dense, moist -becomes brown -becomes gray MC = 23.5 MC = 23.5 MC = 29.8 Fines = 93.5 Gray silty SAND with gravel, medium dense to dense, moist -becomes brown -becomes brown -becomes brown, wet -comparison of the property of the proper		SAMPLE TYPE NUMBER	TESTS					MATERIAL DESCRIPTION		
Gray silty SAND with gravel, medium dense to dense, moist -becomes brown -becomes gray MC = 23.5 MC = 23.5 MC = 29.8 Fines = 93.5 Gray silty SAND with gravel, medium dense to dense, moist -becomes brown -becomes brown -becomes brown, wet -comparison of the property of the proper				TPSL	7. 7.17	0.6	Dark brown TOPS	SOIL, root intrusions to 12"		382.4
MC = 19.9 SM -becomes gray MC = 23.5 SM -heavy iron oxide staining 3: Gray SILT, loose, moist to wet -becomes brown, wet ML - 29.8 Fines = 93.5 Test pit terminated at 11.0 feet below existing grade. No groundwater encountered during excavation. No caving observed.	-					0.0	Gray silty SAND	with gravel, medium dense to dense, moist		002.
MC = 23.5 Gray SILT, loose, moist to wet -becomes brown, wet ML MC = 29.8 Fines = 93.5 Test pit terminated at 11.0 feet below existing grade. No groundwater encountered during excavation. No caving observed.			MC = 19.9	SM						
MC = 23.5 Gray SILT, loose, moist to wet -becomes brown, wet ML MC = 29.8 Fines = 93.5 Test pit terminated at 11.0 feet below existing grade. No groundwater encountered during excavation. No caving observed.							hoovy iron oxido	staining		
- becomes brown, wet - 10 MC = 29.8 Fines = 93.5 Test pit terminated at 11.0 feet below existing grade. No groundwater encountered during excavation. No caving observed.	5		MC = 23.5			5.0	•			378.0
Fines = 93.5 Test pit terminated at 11.0 feet below existing grade. No groundwater encountered during excavation. No caving observed.	 10			ML			-becomes brown,	wet		
Fines = 93.5 Test pit terminated at 11.0 feet below existing grade. No groundwater encountered during excavation. No caving observed.			MC = 29 8			11.0	[USDA Classifica	tion: LOAM]		372.0
	NEET / 17 WEEK - 0009.01 01 00.00 1 - 4/0/20						Test pit terminate excavation. No c	d at 11.0 feet below existing grade. No grade aving observed.	oundwater encountered during	

TEST PIT NUMBER TP-1

PAGE 1 OF 1

PROJE	ECT NUN	IBER ES-5559				PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17	(COMPL	ETED 10/24/17	GROUND ELEVATION
EXCA	VATION (CONTRACTOR N	W Exc	avating]	LATITUDE LONGITUDE
LOGG	ED BY _	CGH	(CHECK	ED BY HTW	GROUND WATER LEVEL:
NOTE	S Depth	of Topsoil &Sod 1	" - 3": (grass		$ar{igspace}$ At time of excavation
SURF	ACE CON	IDITIONS				AFTER EXCAVATION
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
			Rock			•
			ML		1.0 Brown SILT, loc	<u> </u>
5		MC = 7.4 Fines = 6.2 MC = 4.4	SP- SM		[USDA Classific	um dense to dense
		MC = 7.4		10 1 4 F T T	Test pit termina	ted at 9.0 feet below existing grade. No groundwater encountered during

Test pit terminated at 9.0 feet below existing grade. No groundwater encountered during excavation. No caving observed.

TEST PIT NUMBER TP-2

PAGE 1 OF 1

PROJECT NUMBER ES	-5559		PROJECT NAME Sunset Pointe	
DATE STARTED 10/24/1	7 CC	OMPLETED _	10/24/17 GROUND ELEVATION	
EXCAVATION CONTRAC	TOR NW Exca	vating	LATITUDE LONGITUDE	
			HTW GROUND WATER LEVEL:	
NOTES Depth of Topsoi	& Sod 4": brush	1	oxdot At time of excavation $oxdot$	
SURFACE CONDITIONS			AFTER EXCAVATION	
SAMPLE TYPE NUMBER		LOG	MATERIAL DESCRIPTION	
			Dark brown TOPSOIL (Fill), root intrusions to 7'	
MC =		5.0	Clean washed ROCK (Fill) Brown/tan sandy SILT, medium dense, moist -light iron oxide staining 2'- 4'	
MC =	9.5 ML SP	8.0	Gray poorly graded SAND, medium dense to dense, moist Tan sandy SILT, dense, moist Gray poorly graded SAND with gravel, dense, moist -caving caused by excavation activities	
MC =	4.8	···· (3.0	Test pit terminated at 9.0 feet below existing grade. No groundwater seepag during excavation. Caving observed from 6.0 to 6.5 feet and 8.0 feet to BOH	e encountered I.

TEST PIT NUMBER TP-3

PAGE 1 OF 1

PROJ	ECT NUM	MBER ES-5559				PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17		COMPL	ETED 10/24/17	GROUND ELEVATION
EXCA	VATION (CONTRACTOR N	IW Exc	cavating	<u>g</u>	LATITUDE LONGITUDE
LOGG	ED BY _	CGH		CHECK	KED BY HTW	GROUND WATER LEVEL:
NOTE	S Depth	of Topsoil & Sod	18": bı	rush		$oxtime ext{Y}$ at time of excavation
SURF	ACE CON	NDITIONS				
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
					Dark brown TOPS	OIL (Fill), intrusions to 7'
			TPSL	-		
				-	1.5 Gray silty SAND w	ith gravel, medium dense, moist (Fill)
-					, ,	
		MC = 8.9			-clean washed roc	k ~4" thick
		WC - 6.9			-becomes brown of	ense
			0.4			
_		MC = 0.4	SM			
5		MC = 8.1 Fines = 15.9			[USDA Classificati	on: very gravelly loamy SAND]
					7.0	nd, medium dense, moist (Fill)
					Gray SILT WILL Sa	ia, mediam dense, moist (Fill)
-			ML			
		MC = 19.2			9.0	
		<u> </u>			Test pit terminated excavation. No ca	at 9.0 feet below existing grade. No groundwater encountered during ving observed.

Earth Solutions NWLC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-4

EXCAVA LOGGE NOTES	ATION (ED BY	CONTRACTOR NOTE: 1.0 CGH nof Topsoil & Sod	NW Exc 	cavating CHECKE	GROUND ELEVATION LATITUDE LONGITUDE D BY HTW GROUND WATER LEVEL: AT TIME OF EXCAVATION AFTER EXCAVATION
о ОЕРТН	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
5			SM		Brown silty SAND, loose to medium dense, moist (Fill) -root intrusions to 9' -heavy perched groundwater seepage
10		MC = 12.3 MC = 19.3	ML	7	Gray SILT with sand, loose to medium dense, wet (Fill) -trace organics -light iron oxide staining
 15		MC = 22.1	ML	1	Brown sandy SILT, dense, moist -light iron oxide staining 5.0
15		MC = 27.4	,		Test pit terminated at 15.0 feet below existing grade. Groundwater encountered seepage encountered at 4.0 feet during excavation. Caving observed from 0.0 to 9.0 feet.

TEST PIT NUMBER TP-5

PAGE 1 OF 1

PROJ	ECT NUM	IBER <u>ES-5559</u>				PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17	(COMPL	_ETED _10/24/17	GROUND ELEVATION
EXCA	VATION (CONTRACTOR N	W Exc	avatin	g	LATITUDE LONGITUDE
LOGG	ED BY	CGH	(CHECK	KED BY HTW	GROUND WATER LEVEL:
NOTE	S Depth	of Topsoil & Sod 1	12": br	ush		$ar{oxtime}$ at time of excavation
SURF	ACE CON	IDITIONS				AFTER EXCAVATION
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
			TPSL	7. 7.1. 7. 7.1.	Dark brown TOPS	SOIL, root intrusions to 3'
 5		MC = 7.2	SM			mp to moist
 		MC = 20.9			-becomes dense -light iron oxide sta -becomes gray, ve -moderate cement	
		MC = 12.4			9.5 Test pit terminated excavation. No ca	d at 9.5 feet below existing grade. No groundwater encountered during aving observed.

TEST PIT NUMBER TP-6

PAGE 1 OF 1

PROJ	ECT NUM	MBER <u>ES-5559</u>			PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17		COMP	LETED 10/24/17 GROUND ELEVATION
EXCA	VATION (CONTRACTOR N	W Exc	cavatin	g LATITUDE LONGITUDE
LOGG	ED BY	CGH		CHEC	KED BY HTW GROUND WATER LEVEL:
NOTE	S Depth	of Topsoil & Sod	2"- 4":	grass	$oxed{oxed}$ at time of excavation $oxed{oxed}$
SURF	ACE CON	IDITIONS			AFTER EXCAVATION
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
					Brown silty SAND, medium dense, moist (Fill)
			SM		-root intrusions to 7'
					2.5 Relic TOPSOIL Horizon
5		MC = 20.5	ML		Brown sandy SILT, medium dense, moist (Fill) -minor brick debris -becomes gray
10		MC = 10.0	SP		Brown poorly graded SAND, dense, moist -light iron oxide staining
		MC = 31.7			-becomes wet to saturated
			•		Test pit terminated at 12.0 feet below existing grade. No groundwater encountered during excavation. No caving observed.

TEST PIT NUMBER TP-7

PAGE 1 OF 1

DATE S EXCAV LOGGE NOTES	ATION (ED BY _(ED Depth	CONTRACTOR N	W Exc	avatin CHECI brush	g	
о ОЕРТН (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
5		MC = 9.5	SM			
		MC = 18.0		<u>kalada</u>	9.0	d at 9.0 feet below existing grade. No groundwater encountered during aving observed.

TEST PIT NUMBER TP-8

PAGE 1 OF 1

PROJE	ECT NUM	IBER ES-5559				PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17	(COMPLE	TED 10/24/17	GROUND ELEVATION
EXCA	/ATION (CONTRACTOR N	W Exc	avating		LATITUDE LONGITUDE
						_ GROUND WATER LEVEL:
NOTES	B Depth	of Topsoil & Sod	4": bru	sh		$ar{oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}$
SURFA	ACE CON	IDITIONS				AFTER EXCAVATION
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
			TPSL	0.	.ວ	SOIL, root intrusions to 5'
5		MC = 16.3 MC = 17.8	SM	8.8	-becomes gray, d	D, medium dense, moist dense ed SAND, dense, moist
		MC = 3.2		10.		ed at 9.0 feet below existing grade. No groundwater encountered during caving observed.

TEST PIT NUMBER TP-9

PAGE 1 OF 1

PROJ	ECT NUM	MBER ES-5559					PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17	(COMP	LETED	10/24/17	GROUND ELEVATION
EXCA	VATION	CONTRACTOR N	W Exc	avatin	ng		LATITUDE LONGITUDE
LOGG	SED BY _	CGH	(CHEC	KED BY	_HTW	GROUND WATER LEVEL:
NOTE	S Depth	of Topsoil & Sod	4": gra	SS			$oxed{oxed}$ at time of excavation
SURF	ACE CON	NDITIONS					AFTER EXCAVATION
о ОЕРТН (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION
Ť			TPSL	<u>1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1</u>	0.5	Dark brown TOPS	SOIL, root intrusions to 3'
 5		MC = 21.7 Fines = 81.2	ML			Erown SILT with s [USDA Classificat -becomes gray -light iron oxide st	•
		MC = 3.9	SP		6.0	Test pit terminate	d SAND, dense, moist d at 6.5 feet below existing grade. No groundwater encountered during
		<u> </u>	,			Test pit terminate excavation. No ca	

TEST PIT NUMBER TP-10

PAGE 1 OF 1

				PROJECT NAME Sunset Pointe		
				LATITUDE		
				GROUND WATER LEVEL:		
NOTES Dept	h of Topsoil & Sod 2	2": grass		abla at time of excav	ATION	
SURFACE CO	NDITIONS				N	
O DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC LOG		MATERIAL DESC	RIPTION	
			• •	medium dense, moist (Fill)		
 		SM 2.				
 	MC = 12.4			medium dense, moist		
_ 5	MC = 18.7	SM	-becomes gray, de	nise.		
	MC = 8.9	9.		d at 9.0 feet below existing grade. ving observed.	No groundwater encountered du	uring

TEST PIT NUMBER TP-11

	PROJE	ECT NUM	IBER <u>ES-5559</u>				PROJECT NAME Sunset Pointe
CONTINUE	DATE	STARTE	D 10/24/17	(СОМРІ	L ETED 10/24/17	GROUND ELEVATION
CONTINUE	EXCA	VATION (CONTRACTOR N	W Exc	avatin	g	LATITUDE LONGITUDE
SURFACE CONDITIONS TESTS TES							
TESTS TEST PILOT MATERIAL DESCRIPTION TesT pit terminated at 10.0 feet below existing grade. No groundwater encountered during	NOTE	S Depth	of Topsoil & Sod 6	6": gra	ss		$oxed{oxed}$ at time of excavation
TPSL 32 0.5 Dark brown TOPSOIL, root intrusions to 4' Tan silty SAND, medium dense, moist -moderate iron oxide staining to 4' MC = 20.1 SM -intermittent light iron oxide staining -becomes dense MC = 16.0 Test pit terminated at 10.0 feet below existing grade. No groundwater encountered during	SURF	ACE CON	IDITIONS				AFTER EXCAVATION
Tan sitty SAND, medium dense, moist -moderate iron oxide staining to 4' MC = 20.1 MC = 20.1 SM -intermittent light iron oxide staining -becomes dense MC = 16.0 Test pit terminated at 10.0 feet below existing grade. No groundwater encountered during		SAMPLE TYPE NUMBER	TESTS	U.S.C.			
				TPSL	7/ 1/2	0.0	
MC = 21.1 MC = 20.1 SM -intermittent light iron oxide staining -becomes dense MC = 16.0 MC = 16.0 Test pit terminated at 10.0 feet below existing grade. No groundwater encountered during						_	
excavation. No caving observed.			MC = 20.1	SM		-intermittent light in -becomes dense	d at 10.0 feet below existing grade. No groundwater encountered during
						excavation. No ca	aving observed.

TEST PIT NUMBER TP-12

PAGE 1 OF 1

PROJ	ECT NUM	MBER _ES-5559				PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17	(COMP	LETED 10/24/17	GROUND ELEVATION
EXCA	VATION (CONTRACTOR N	W Exc	cavatir	ng	LATITUDE LONGITUDE
LOGG	ED BY _	CGH	(CHEC	KED BY HTW	GROUND WATER LEVEL:
NOTE	S Depth	of Topsoil & Sod 2	2": gra	SS		$ar{oxed}$ at time of excavation
SURF	ACE CON	NDITIONS				AFTER EXCAVATION
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
 5		MC = 15.2 Fines = 60.2	ML		Brown sandy SILT -root intrusions to -becomes gray [USDA Classificati	
		MC = 17.3			Test pit terminated excavation. No ca	l at 6.0 feet below existing grade. No groundwater encountered during

TEST PIT NUMBER TP-13

PAGE 1 OF 1

PROJECT NU	MBER <u>ES-5559</u>				PROJECT NAME Sunset Pointe		
DATE START	ED _10/24/17	(COMP	LETED 10/24/17	GROUND ELEVATION		
EXCAVATION	CONTRACTOR N	W Exc	avatin	g	LATITUDE LONGITUDE		
LOGGED BY	CGH	(CHEC	KED BY HTW	GROUND WATER LEVEL:		
NOTES Dept	h of Topsoil & Sod 4	l": gra	ss		$ar{oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}$		
SURFACE CO	NDITIONS				AFTER EXCAVATION		
O DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
				Brown sandy SIL1	, loose to medium dense, moist		
	MC = 27.3 MC = 23.9	ML		-becomes gray			
10	MC = 16.0	SP		10.0	d SAND with gravel, dense, wet		
	10.0	•		Test pit terminate excavation. No ca	d at 10.0 feet below existing grade. No groundwater encountered during aving observed.		

TEST PIT NUMBER TP-14

PAGE 1 OF 1

PROJEC	T NUM	BER <u>ES-5559</u>				PROJECT NAME Sunset Point	e
DATE ST	TARTE	1 10/24/17		COMPLETED	10/24/17	GROUND ELEVATION	
EXCAVA	ATION C	CONTRACTOR N	IW Exc	cavating		LATITUDE	LONGITUDE
						GROUND WATER LEVEL:	
NOTES	Depth	of Topsoil & Sod	6"- 8":	grass		abla at time of excav	ATION
SURFAC	E CON	DITIONS				AFTER EXCAVATIO	N
ОЕРТН (ff)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESC	RIPTION
0			TPSI	0.5	Dark brown TOPSC	IL, root intrusions to 3'	
5		MC = 15.2 MC = 7.1	SM		Brown silty SAND, I	oose to medium dense, moist	
		MC = 12.5	SP	10.0	Brown silty SAND, o		
		MC = 9.0	SM	12.0	,		No groundwater encountered during
					excavation. No cav		

Earth Solutions NWLLC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-15 PAGE 1 OF 1

EXCAVATION LOGGED BY NOTES Surfa SURFACE CO	CONTRACTOR N	NW Excavating CHECKE	TED 10/24/17 GROUND ELEVATION
O DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC LOG	MATERIAL DESCRIPTION
5	MC = 18.9	SM	Brown silty SAND, loose, moist (Fill) -trace to moderate organics throughout -root intrusions to 12'
10	MC = 91.3 Fines = 79.0		[USDA Classification: gravelly loamy coarse SAND] -becomes wet
	MC = 28.6	ML 15	Gray sandy SILT, medium dense, moist Test pit terminated at 16.0 feet below existing grade. No groundwater encountered during excavation. No caving observed.

TEST PIT NUMBER TP-16

PAGE 1 OF 1

PROJECT	NUMBER ES-5559			PROJECT NAME Sunset Pointe			
DATE STA	RTED 10/24/17	CON	IPLETED 10/24/17	GROUND ELEVATION			
EXCAVAT	ON CONTRACTOR N	W Excava	ting	LATITUDE LONGITUDE			
LOGGED I	BY CGH	CHE	CKED BY HTW	_ GROUND WATER LEVEL:			
NOTES S	urface Conditions: brus	sh		$oxed{oxed}$ at time of excavation			
SURFACE	CONDITIONS			AFTER EXCAVATION			
O DEPTH (ft)	NOMBER TESTS	U.S.C.S. GRAPHIC		MATERIAL DESCRIPTION			
	MC = 30.8 MC = 16.5	SM	-root intrusions to	SAND, loose, wet to 3' I, medium dense, moist			
	MC = 7.9	<u> </u>	1.10.0	ed at 6.0 feet below existing grade. No groundwater encountered during			

excavation. No caving observed.

TEST PIT NUMBER TP-17

PAGE 1 OF 1

PROJ	ECT NUN	MBER <u>ES-5559</u>				PROJECT NAME Sunset Poi	nte		
DATE	STARTE	D 10/24/17		COMPLE	TED 10/24/17	GROUND ELEVATION			
EXCA	VATION	CONTRACTOR N	W Ex	cavating		LATITUDE	LONGITUDE		
LOGG	ED BY _	CGH		CHECKE	D BY HTW	GROUND WATER LEVEL:			
NOTE	S Depth	n of Topsoil & Sod	4"։ brւ	ısh		$ar{igspace}$ at time of exca	AVATION		
l									
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DES	SCRIPTION		
 5		MC = 24.1	SM	7.1	-root intrusions				
		MC = 6.3	SM	7.	, ,	, medium dense, moist			
I			,		Test pit termina	ated at 7.5 feet below existing grade	 No groundwater encountered duri 	ina	

Test pit terminated at 7.5 feet below existing grade. No groundwater encountered during excavation. No caving observed.

TEST PIT NUMBER TP-18

PAGE 1 OF 1

PROJ	ECT NUM	MBER ES-5559				PROJECT NAME Sunset Pointe					
DATE	STARTE	D 10/24/17		COMPI	LETED 10/24/17	GROUND ELEVATION					
EXCA	VATION	CONTRACTOR N	W Ex	cavatin	g	LATITUDE LONGITUDE					
LOGG	ED BY _	CGH		CHECK	KED BY HTW	GROUND WATER LEVEL:					
NOTE	S Depth	of Topsoil & Sod 2	2"- 3":	brush		$ar{oldsymbol{ol}oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}}$					
SURF	ACE CON	NDITIONS				AFTER EXCAVATION					
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION					
	Browr -root i MC = 14.9 -wire (loose, moist (Fill)					
		MC = 6.3			Test pit terminated excavation. No car	at 6.0 feet below existing grade. No groundwater encountered during ving observed.					

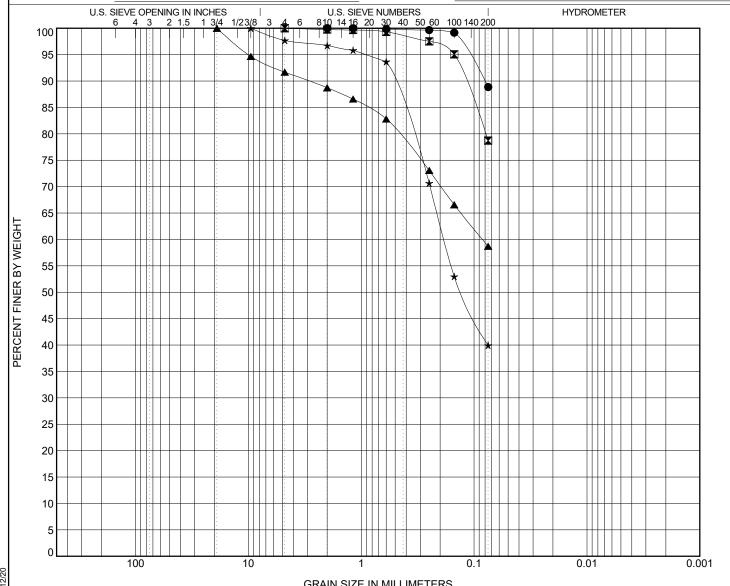
TEST PIT NUMBER TP-19

PAGE 1 OF 1

PROJE	CT NUM	IBER <u>ES-5559</u>				PROJECT NAME Sunset Poir	te				
DATES	STARTE	D 10/24/17	(COMPL	_ETED _10/24/17	GROUND ELEVATION					
EXCAV	ATION (CONTRACTOR N	W Exc	avating	g	LATITUDE	LONGITUDE				
LOGGE	ED BY	CGH	(CHECK	KED BY HTW	HTW GROUND WATER LEVEL:					
NOTES	Depth	of Topsoil & Sod	10": br	ush		$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$					
SURFA	CE CON	IDITIONS				AFTER EXCAVATION					
о ОЕРТН (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION					
			TPSL	7. 7.7. 7.7. 7.	Dark brown TOPS	SOIL, root intrusions to 2'					
		MC = 13.0	SM		Gray silty SAND, -becomes dense	medium dense, moist					
		MC = 15.4	/	1 14/14/1/1	***		No groundwater encountered during				

Appendix B Laboratory Test Results ES-5559

Earth Solutions NW_{LLC}

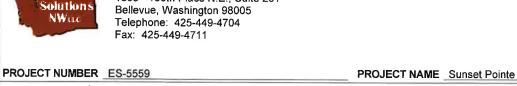

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704

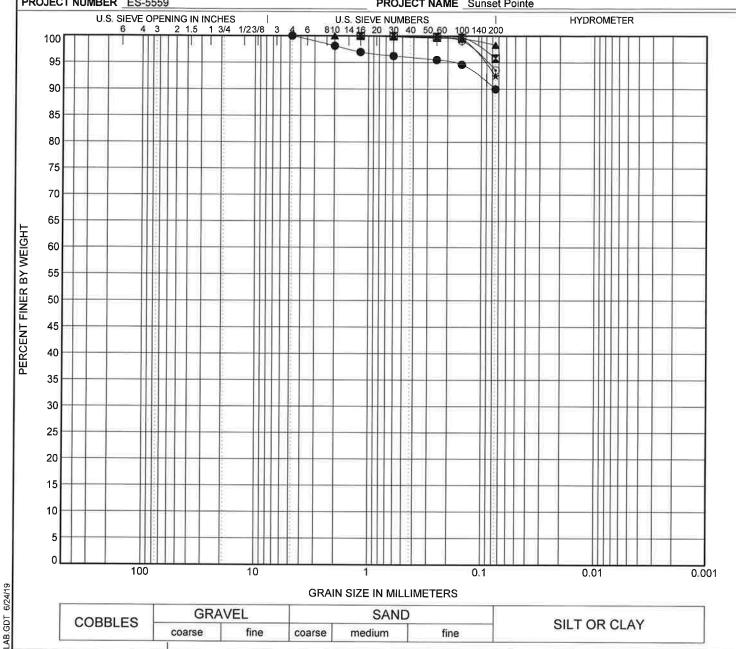
Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

PROJECT NAME Sunset Pointe

GRAIN SIZE IN MILLIMETERS


COBBLES	GRA	VEL		SAND)	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY


S	pecimen Ide	entification			C	Classification	า				Сс	Cu	
S ●	TP-201	4.00ft.		USDA: Tan Loam. USCS: ML.									
	TP-201	8.00ft.		USDA: Gray Slightly Gravelly Loam. USCS: ML with Sand.									
lack	TP-202	4.00ft.		USDA: Ta	an Slightly G	ravelly Loa	m. USCS	: Sandy	ML.				
*	TP-202	8.00ft.		USDA: Gray Slightly Gravelly Fine Sandy Loam. USCS: SM.									
S	pecimen Ide	entification	D100	D60	D30	D10	LL	PL	PI	%Silt	%Clay		
•	TP-201	4.0ft.	2							8	38.9		
X	TP-201	8.0ft.	4.75							7	78.7		
▲	TP-202	4.0ft.	19 0.084 58								58.7		
*	TP-202	8.0ft.	9.5	9.5 0.184 39									
П													

Earth Solutions NW i.e

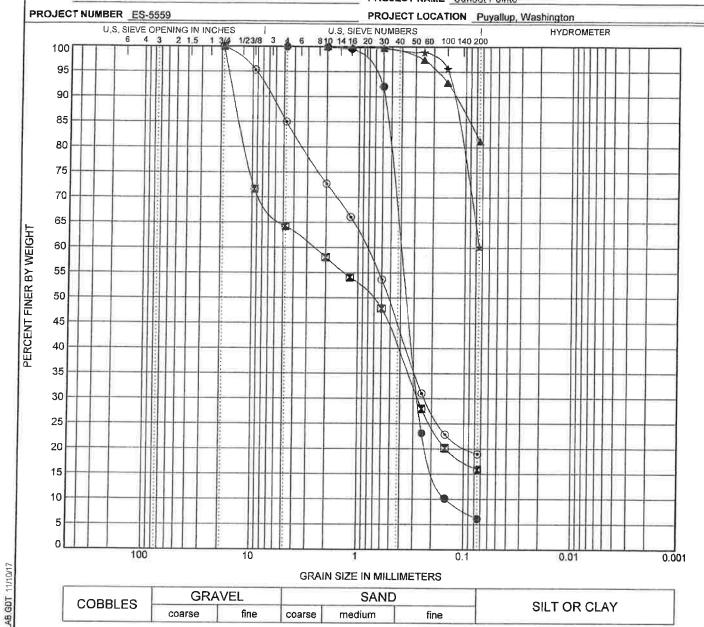
Earth Solutions NW 1805 - 136th Place N.E., Suite 201

GRAIN SIZE DISTRIBUTION

GRAIN SIZE IN MILLIMETERS

COBBLES	GRA	VEL		SAND			
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY	

	Specimen Id	lentification			C	Classification	n				Сс	Cu	
	TP-101	10.00ft.		USDA	Gray Slight	ly Gravelly	Loam. L	ISCS: MI	L.				
I	TP-101	14.00ft.			USDA: Ta	an Loam. U	SCS: ML						
* ©	TP-102	3.00ft.			USDA: Gr	ay Loam. U	SCS: ML						
*	TP-102	6.00ft.		USDA Brown Loam. USCS: ML.									
©	TP-104	11.00ft.		USDA: Brown Loam. USCS: ML.									
3	Specimen Id	entification	D100	D60	D30	D10	LL	PL	PI	%Silt	% (Clay	
•	TP-101	10.0ft.	4.75							9	0.0		
X	TP-101	14.0ft.	1.18							9	5.8		
	TP-102	3.0ft.	2							9	8.3		
*	TP-102	6.0ft.	1.18							9	2.5		
0	TP-104	11.0ft.	1.18								3.5		


Earth Solutions NWm

Earth Solutions NW, LLC 1805 - 136th PL N.E., Suite 201 Bellevue, WA 98005 Telephone: 425-449-4704 Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

CLIENT Peter Chen

PROJECT NAME Sunset Pointe

GRAIN SIZE IN MILLIMETERS

COBBLES	GRA	VEL		SAND		CILT OD CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

	pecimen lo	dentification			C	Classification	1				Сс	Cu
•	TP-01	3.00ft.		USDA: E	rown Slight	y Gravelly	Sand. US	SCS: SP-	SM.		1.28	2.74
	TP-03	5.00ft.	US	DA: Brown \	Very Gravell	y Loamy Sa	nd. USC	S: SM w	ith Grav	el.		
A	TP-09	2.50ft.		US	DA: Gray Lo	am. USCS:	ML with	Sand.				
*	TP-12	4.00ft.		U	SDA: Brown	Loam. USC	S: Sand	y ML.				
0	TP-15	10.50ft.	USD	A: Brown G	ravelly Loan	y Coarse S	and. US	CS: SM	with Gra	vel.		
S	pecimen lo	lentification	D100	D60	D30	D10	LL	PL	PI	%Silt	%(Clay
	TP-01	3.0ft.	4.75	0.399	0.273	0.146					6.2	
	TP-03	5.0ft.	19	2.638	0.273					1	5.9	
	TP-09	2.5ft.	2							8	1.2	
* •	TP-12	4.0ft.	2							6	0.2	
0	TP-15	10.5ft.	19	0.847	0.234					1	9.0	

Report Distribution

ES-5559

EMAIL ONLY Mr. Peter Chen

4709 Memory Lane West

University Place, Washington 98488

EMAIL ONLY CES NW, Inc.

429 – 29th Street Northeast, Suite D

Puyallup, Washington 98372

Attention: Mr. Fred Brown, P.E.

May 9, 2023 Updated May 25, 2023 ES-5559.05

Earth Solutions NW LLC

Geotechnical Engineering, Construction
Observation/Testing and Environmental Services

Peter Chen 4709 Memory Lane West University Place, Washington 98488

Subject: Groundwater Monitoring Program Summary

Sunset Pointe

2301 – 23rd Street Southeast

Puyallup, Washington

Reference: Earth Solutions NW, LLC

Geotechnical Engineering Study, ES-5559, updated April 5, 2023

Dear Peter:

As requested, Earth Solutions NW, LLC (ESNW) has prepared this letter summarizing the recently completed groundwater monitoring program for the proposed development.

Groundwater Monitoring

Seasonal groundwater monitoring was conducted at three monitoring locations across the subject development area, which ESNW installed during earlier phases of work for the site. Please refence the attached Plate 1 (Test Pit Location Plan) for the approximate monitoring areas. The monitoring period was conducted from December 16, 2022, through the end of April 2023. Groundwater depths and fluctuations were recorded via hand measurements in combination with daily recordings obtained by dataloggers. The following table depicts the approximate surface elevation of each well, the approximate peak groundwater condition (GWC), the corresponding approximate groundwater elevation, and the occurrence date. Please note that if more precise peak GWC values are necessary, the surface elevations of each well location should be surveyed and recorded by a professional land surveyor.

Monitoring Well Location	Peak GWC Depth (ft bgs)	Approximate Surface Elevation (ft)	Approximate GWC Elevation (ft)	Peak Date
TP-104	10.6'	384	373.4	12/16/2022*
TP-201	N/A	376	N/A	N/A
TP-202	N/A	388	N/A	N/A

^{*} Peak GWC elevation occurred on multiple dates.

Based on our observations and the recorded conditions, the site does not have a shallow, uniform groundwater table. There were no indications or records of significant subsurface water exposures at TP-201 or TP-202. Date are attached for levels recorded during our monitoring program. A relatively consistent water level was recorded at TP-104; however, in our opinion, represents a minor accumulation of water that could not infiltrate given the soil conditions in the area and not related to groundwater. This correlates with the subsurface conditions encountered at the test pit locations, which consist predominately of dense glacially consolidated deposits with isolated and discontinuous sandy layers.

The opinions and evaluations provided in this letter do not cover unforeseen or changed conditions. ESNW should observe the infiltration surface during construction to confirm soil conditions are as anticipated and to provide supplemental recommendations, if deemed necessary.

We trust this letter meets your current needs. Should you have any questions regarding the content herein, or require additional information, please call.

Sincerely,

EARTH SOLUTIONS NW, LLC

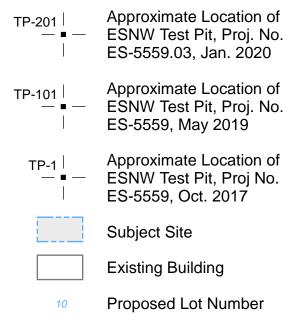
Chase G. Halsen, L.G., L.E.G.

Senior Project Geologist

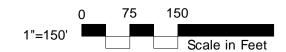
Engineering Geologist
2561
2561
35
Scott S. Riegel

Scott S. Riegel, L.G., L.E.G. Associate Principal Geologist

Attachments: Plate 1 – Test Pit Location Plan


Groundwater Level Data

cc: CES NW, Inc.


Attention: Fred Brown, P.E. (Email only)

Dawn Markakis (Email only)

LEGEND

NOTE: The graphics shown on this plate are not intended for design purposes or precise scale measurements, but only to illustrate the approximate test locations relative to the approximate locations of existing and / or proposed site features. The information illustrated is largely based on data provided by the client at the time of our study. ESNW cannot be responsible for subsequent design changes or interpretation of the data by others.

NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

Test Pit Location Plan Sunset Pointe Puyallup, Washington

Solutions NWLLC

mical Engineering, Construction

Testing and Environmental Services

Drwn. By CAM

Checked By CGH

Date 05/08/2023

Proj. No. 5559.05

Plate

Serial_number: 2151506 Project ID:

ES-5559.05 Sunset Pointe Location: TP-104

Location: Tract Area LEVEL UNIT: m

Offset: 0.000000 m TEMPERATURE

UNIT: °C

UNIT: C								
	Time	ms	LEVEL			Approximate Depth from Ground Surface	Highest Recorded Elevation (ft. bgs)	Total Well Depth
12/17/2022	12:00:00 AM	0	0.09	10.95	0.30	10.32	10.19	10.62'
12/18/2022	12:00:00 AM	0	0.093	10.91	0.31	10.31		
12/19/2022	12:00:00 AM	0	0.094	10.876	0.31	10.31		
	12:00:00 AM	0				10.35		
	12:00:00 AM					10.33		
	12:00:00 AM	0				10.31		
	12:00:00 AM	0				10.33		
12/24/2022	12:00:00 AM	0	0.0915	10.692	0.30	10.32		
12/25/2022	12:00:00 AM	0	0.0835	10.633	0.27	10.35		
12/26/2022	12:00:00 AM	0	0.0947	10.576	0.31	10.31		
12/27/2022	12:00:00 AM	0	0.0973	10.523	0.32	10.30	1	
	12:00:00 AM	0				10.27		
	12:00:00 AM					10.31		
	12:00:00 AM	0				10.29		
	12:00:00 AM	0				10.28		
	12:00:00 AM					10.29		
1/2/2023	12:00:00 AM	0	0.1074	10.179	0.35	10.27		
1/3/2023	12:00:00 AM	0	0.1139	10.116	0.37	10.25		
1/4/2023	12:00:00 AM	0	0.1042	10.077	0.34	10.28		
1/5/2023	12:00:00 AM	0	0.1016	10.042	0.33	10.29		
1/6/2023	12:00:00 AM	0	0.1019	10.011	0.33	10.29		
	12:00:00 AM					10.32		
	12:00:00 AM	0				10.27		
	12:00:00 AM	0				10.31		
	12:00:00 AM	0				10.29		
1/11/2023	12:00:00 AM	0	0.1017	9.867	0.33	10.29		
1/12/2023	12:00:00 AM	0	0.0994	9.839	0.33	10.29		
1/13/2023	12:00:00 AM	0	0.1002	9.798	0.33	10.29		
1/14/2023	12:00:00 AM	0	0.1058	9.743	0.35	10.27		
	12:00:00 AM	0				10.26		
	12:00:00 AM	0				10.25		
	12:00:00 AM	0				10.29		
	12:00:00 AM					10.29		
1/19/2023	12:00:00 AM	0	0.1085	9.598	0.36	10.26		
1/20/2023	12:00:00 AM	0	0.0949	9.58	0.31	10.31		
1/21/2023	12:00:00 AM	0	0.1039	9.562	0.34	10.28		
1/22/2023	12:00:00 AM	0	0.1085	9.54	0.36	10.26	i	
	12:00:00 AM	0				10.30		
	12:00:00 AM					10.30		
		0						
	12:00:00 AM					10.31		
	12:00:00 AM	0				10.31		
1/27/2023	12:00:00 AM	0				10.30		
1/28/2023	12:00:00 AM	0	0.1028	9.447	0.34	10.28		
1/29/2023	12:00:00 AM	0	0.1187	9.434	0.39	10.23		
1/30/2023	12:00:00 AM	0	0.1099	9.433	0.36	10.26	i	
1/31/2023	12:00:00 AM	0				10.26		
	12:00:00 AM					10.25		
	12:00:00 AM	0				10.25		
	12:00:00 AM					10.30		
	12:00:00 AM					10.27		
	12:00:00 AM	0				10.32		
	12:00:00 AM		0.1056	9.359	0.35	10.27		
2/7/2023	12:00:00 AM	0	0.1161	9.359	0.38	10.24		
2/8/2023	12:00:00 AM	0	0.1181	9.35	0.39	10.23		
	12:00:00 AM					10.25		
	12:00:00 AM					10.21		
	12:00:00 AM					10.22		
	12:00:00 AM					10.21		
	12:00:00 AM					10.23		
2/14/2023	12:00:00 AM	0	0.1175	9.226	0.39	10.23		
2/15/2023	12:00:00 AM	0	0.1124	9.213	0.37	10.25		
	12:00:00 AM					10.22		
	12:00:00 AM					10.21		
	12:00:00 AM	0				10.26		
	12:00:00 AM							
						10.25		
	12:00:00 AM					10.26		
	12:00:00 AM					10.26		
2/22/2023	12:00:00 AM	0	0.1276	9.078	0.42	10.20	1	

2/23/2023	12:00:00 AM	0	0.125	9.059	0.41	1	.0.21
2/24/2023	12:00:00 AM	0	0.1295	9.05	0.42	1	.0.20
	12:00:00 AM	0	0.1189	9.039	0.39		.0.23
	12:00:00 AM	0	0.1165	9.024	0.38		.0.24
	12:00:00 AM	0	0.1037	9.003	0.34		.0.28
	12:00:00 AM	0	0.1229	8.996	0.40		0.22
	12:00:00 AM	0	0.1173	8.981	0.38		0.24
	12:00:00 AM	0	0.1095	8.976	0.36		0.26
	12:00:00 AM 12:00:00 AM	0	0.1059	8.966	0.35		0.27
	12:00:00 AM	0 0	0.1166 0.1243	8.955 8.928	0.38 0.41		.0.24 .0.21
	12:00:00 AM	0	0.1243	8.921	0.41		.0.25
	12:00:00 AM	0	0.1123	8.909	0.35		.0.27
	12:00:00 AM	0	0.1078	8.889	0.34		.0.28
	12:00:00 AM	0	0.1064	8.867	0.35		.0.27
	12:00:00 AM	0	0.1136	8.85	0.37		.0.25
	12:00:00 AM	0	0.1105	8.827	0.36		0.26
	12:00:00 AM	0	0.1058	8.812	0.35		0.27
	12:00:00 AM	0	0.1161	8.789	0.38		0.24
	12:00:00 AM	0	0.1158	8.77	0.38		0.24
3/15/2023	12:00:00 AM	0	0.1249	8.746	0.41	1	0.21
3/16/2023	12:00:00 AM	0	0.1059	8.725	0.35	1	0.27
3/17/2023	12:00:00 AM	0	0.1182	8.707	0.39	1	0.23
3/18/2023	12:00:00 AM	0	0.1069	8.68	0.35	1	0.27
3/19/2023	12:00:00 AM	0	0.1144	8.663	0.38	1	0.24
3/20/2023	12:00:00 AM	0	0.1199	8.647	0.39	1	.0.23
3/21/2023	12:00:00 AM	0	0.1093	8.635	0.36	1	0.26
3/22/2023	12:00:00 AM	0	0.111	8.625	0.36	1	0.26
3/23/2023	12:00:00 AM	0	0.1072	8.612	0.35	1	.0.27
	12:00:00 AM	0	0.1057	8.603	0.35	1	.0.27
	12:00:00 AM	0	0.1069	8.595	0.35	1	.0.27
	12:00:00 AM	0	0.1041	8.583	0.34		.0.28
	12:00:00 AM	0	0.101	8.577	0.33		0.29
	12:00:00 AM	0	0.1103	8.562	0.36		.0.26
	12:00:00 AM	0	0.1152	8.554	0.38		.0.24
	12:00:00 AM	0	0.1085	8.543	0.36		0.26
	12:00:00 AM	0	0.1	8.538	0.33		0.29
	12:00:00 AM	0	0.1229	8.531	0.40		0.22
	12:00:00 AM 12:00:00 AM	0 0	0.115 0.117	8.526 8.519	0.38 0.38		.0.24
	12:00:00 AM	0	0.117	8.505	0.36		.0.26
	12:00:00 AM	0	0.1037	8.505	0.34		.0.28
	12:00:00 AM	0	0.103	8.495	0.34		.0.26
	12:00:00 AM	0	0.1175	8.486	0.39		.0.23
	12:00:00 AM	0	0.0978	8.479	0.32		.0.30
	12:00:00 AM	0	0.1014	8.468	0.33		.0.29
	12:00:00 AM	0	0.105	8.461	0.34		.0.28
	12:00:00 AM	0	0.111	8.451	0.36		0.26
	12:00:00 AM	0	0.1063	8.44	0.35		0.27
4/13/2023	12:00:00 AM	0	0.1055	8.434	0.35	1	0.27
4/14/2023	12:00:00 AM	0	0.1075	8.43	0.35	1	0.27
4/15/2023	12:00:00 AM	0	0.1092	8.428	0.36	1	0.26
4/16/2023	12:00:00 AM	0	0.1044	8.433	0.34	1	0.28
4/17/2023	12:00:00 AM	0	0.1076	8.435	0.35	1	.0.27
4/18/2023	12:00:00 AM	0	0.1252	8.436	0.41	1	.0.21
4/19/2023	12:00:00 AM	0	0.1105	8.437	0.36	1	0.26
	12:00:00 AM	0	0.1105	8.437	0.36	1	0.26
	12:00:00 AM	0	0.1177	8.442	0.39		.0.23
	12:00:00 AM	0	0.1061	8.449	0.35		.0.27
	12:00:00 AM	0	0.1193	8.455	0.39		.0.23
	12:00:00 AM	0	0.1164	8.46	0.38		.0.24
	12:00:00 AM	0	0.1126	8.46	0.37		.0.25
	12:00:00 AM	0	0.108	8.461	0.35		.0.27
	12:00:00 AM	0	0.109	8.465	0.36		0.26
	12:00:00 AM	0	0.1171	8.471	0.38		0.24
	12:00:00 AM	0	0.1321	8.48	0.43		0.19
	12:00:00 AM	0	0.1172	8.486	0.38		0.24
5/1/2023	12:00:00 AM	0	0.1046	8.496	0.34	1	.0.28

Serial_number: 2151508

Project ID: TP-201

TP-201 Location:

ES-5559.05 LEVEL UNIT: m

Offset: 0.000000 m TEMPERATURE

TEMPER									
UNIT: °C	-	Time	ms	LEVEL	TEMPERATURE	M to Et	Approximate Depth from Ground Surface	Highest Recorded Elevation (ft. bgs)	Total Well Depth
Dute	12/17/2022	12:00:00 AM							7.8'
		12:00:00 AM							
	12/19/2022	12:00:00 AM	. (
	12/20/2022	12:00:00 AM	۱ (-0.0398	10.06	-0.13	7.9	93	
		12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM				-0.14			
		12:00:00 AM				-0.11			
		12:00:00 AM 12:00:00 AM				-0.14 -0.09			
		12:00:00 AM							
		12:00:00 AM						79 Outliers	
		12:00:00 AM							
		12:00:00 AM							
	12/31/2022	12:00:00 AM	1 (-0.01	8.86	-0.03	7.8	33	
	1/1/2023	12:00:00 AM	۱ (-0.0272	8.817	-0.09	7.8	39	
	1/2/2023	12:00:00 AM	1 (-0.0366	8.8	-0.12	7.9	92	
		12:00:00 AM				-0.09			
		12:00:00 AM				-0.08			
		12:00:00 AM							
		12:00:00 AM				-0.08			
		12:00:00 AM 12:00:00 AM							
		12:00:00 AM				-0.13			
		12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM							
	1/14/2023	12:00:00 AM	. (-0.12		92	
	1/15/2023	12:00:00 AM	۱ (-0.0322	8.758	-0.11	7.9	91	
	1/16/2023	12:00:00 AM	1 (-0.0278	8.732	-0.09	7.8	39	
		12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM 12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM		-0.0479	8.594	-0.16	7.9	96	
	1/28/2023	12:00:00 AM	1 (-0.0402	8.584	-0.13	7.9	93	
	1/29/2023	12:00:00 AM	1 (-0.0198	8.58	-0.06	7.8	36	
		12:00:00 AM		-0.0281	8.568	-0.09	7.8	39	
		12:00:00 AM				-0.11			
		12:00:00 AM				-0.09			
		12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM 12:00:00 AM				-0.09 -0.15			
		12:00:00 AM				-0.07			
		12:00:00 AM							
		12:00:00 AM							
	2/9/2023	12:00:00 AM	۱ (-0.0378	8.409	-0.12	7.9	92	
	2/10/2023	12:00:00 AM	1 (-0.0288	8.391	-0.09	7.8	39	
		12:00:00 AM		-0.0289	8.364	-0.09	7.8	39	
		12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM 12:00:00 AM							
		12:00:00 AM 12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM							
		12:00:00 AM				-0.09			
		12:00:00 AM							
	2/24/2023	12:00:00 AM	۱ (-0.0225	8.132	-0.07	7.8	37	
	2/25/2023	12:00:00 AM	1 (-0.0349	8.115	-0.11	7.9	91	

2/26/2023	12:00:00 AM	0	-0.039	8.098	-0.13	7.93
2/27/2023	12:00:00 AM	0	-0.0298	8.084	-0.10	7.90
	12:00:00 AM	0	-0.0317	8.068	-0.10	7.90
	12:00:00 AM	0	-0.0204	8.057	-0.07	7.87
	12:00:00 AM	0	-0.0329	8.039	-0.11	7.91
	12:00:00 AM	0	-0.0313	8.022	-0.10	7.90
	12:00:00 AM	0	-0.0375	8	-0.12	7.92
	12:00:00 AM	0	-0.0246	7.976	-0.08	7.88
	12:00:00 AM	0	-0.0249	7.953	-0.08	7.88
	12:00:00 AM	0 0	-0.0298	7.932	-0.10	7.90
	12:00:00 AM	0	-0.0377 -0.0319	7.907	-0.12	7.92
	12:00:00 AM 12:00:00 AM	0	-0.0319	7.881 7.86	-0.10 -0.13	7.90 7.93
	12:00:00 AM	0	-0.0388	7.833	-0.13	7.88
	12:00:00 AM	0	-0.035	7.833	-0.00	7.91
	12:00:00 AM	0	-0.0355	7.79	-0.12	7.92
	12:00:00 AM	0	-0.0252	7.767	-0.08	7.88
	12:00:00 AM	0	-0.022	7.74	-0.07	7.87
	12:00:00 AM	0	-0.03	7.705	-0.10	7.90
3/17/2023	12:00:00 AM	0	-0.028	7.673	-0.09	7.89
3/18/2023	12:00:00 AM	0	-0.0322	7.646	-0.11	7.91
3/19/2023	12:00:00 AM	0	-0.0362	7.628	-0.12	7.92
3/20/2023	12:00:00 AM	0	-0.0305	7.616	-0.10	7.90
	12:00:00 AM	0	-0.0318	7.604	-0.10	7.90
	12:00:00 AM	0	-0.0302	7.598	-0.10	7.90
	12:00:00 AM	0	-0.0267	7.593	-0.09	7.89
	12:00:00 AM	0	-0.0281	7.587	-0.09	7.89
	12:00:00 AM	0	-0.0263	7.585	-0.09	7.89
	12:00:00 AM	0	-0.0319	0.941	-0.10	7.90
	12:00:00 AM 12:00:00 AM	0 0	-0.0319 -0.039	7.231 7.251	-0.10 -0.13	7.90 7.93
	12:00:00 AM	0	-0.039	7.375	-0.13	7.90
	12:00:00 AM	0	-0.0314	7.394	-0.10	7.90
	12:00:00 AM	0	-0.0313	7.411	-0.10	7.90
	12:00:00 AM	0	-0.0231	7.431	-0.08	7.88
	12:00:00 AM	0	-0.0328	7.444	-0.11	7.91
	12:00:00 AM	0	-0.0273	7.455	-0.09	7.89
4/4/2023	12:00:00 AM	0	-0.03	7.47	-0.10	7.90
4/5/2023	12:00:00 AM	0	-0.0284	7.486	-0.09	7.89
4/6/2023	12:00:00 AM	0	-0.0372	7.5	-0.12	7.92
4/7/2023	12:00:00 AM	0	-0.0286	7.517	-0.09	7.89
	12:00:00 AM	0	-0.0321	7.531	-0.11	7.91
	12:00:00 AM	0	-0.0294	7.545	-0.10	7.90
	12:00:00 AM	0	-0.0279	7.557	-0.09	7.89
	12:00:00 AM	0	0.027	7.566	0.09	7.71
	12:00:00 AM	0	-0.029	7.616	-0.10	7.90
	12:00:00 AM 12:00:00 AM	0	-0.0382	7.633 7.655	-0.13	7.93 7.90
	12:00:00 AM	0	-0.0302 -0.0277	7.681	-0.10 -0.09	7.90
	12:00:00 AM	0	-0.0277	7.706	-0.03	7.92
	12:00:00 AM	0	-0.0317	7.735	-0.12	7.90
4/18/2023	12:00:00 AM	0	-0.0287	7.764	-0.09	7.89
	12:00:00 AM	0	-0.0276	7.793	-0.09	7.89
	12:00:00 AM	0	-0.027	7.819	-0.09	7.89
	12:00:00 AM	0	-0.0201	7.851	-0.07	7.87
	12:00:00 AM	0	-0.0355	7.876	-0.12	7.92
	12:00:00 AM	0	-0.0367	7.898	-0.12	7.92
4/24/2023	12:00:00 AM	0	-0.0247	7.931	-0.08	7.88
4/25/2023	12:00:00 AM	0	-0.027	7.945	-0.09	7.89
	12:00:00 AM	0	-0.0319	7.964	-0.10	7.90
	12:00:00 AM	0	-0.0306	7.985	-0.10	7.90
	12:00:00 AM	0	-0.0302	8.009	-0.10	7.90
	12:00:00 AM	0	-0.0221	8.035	-0.07	7.87
	12:00:00 AM	0	-0.029	8.066	-0.10	7.90
5/1/2023	12:00:00 AM	0	-0.0309	8.101	-0.10	7.90

Serial_number:

2151491

Project ID:

ES-5559.05 Sunset Pointe

Location: TP-202

TP-202

LEVEL W

UNIT: m

Offset: 0.000000 m TEMPERATURE

UNIT: °C									
Date	7	Гіте	mc	I EV/EI	TEMPERATURE	M to Et	Approximate Depth from Ground Surface	Highest Recorded Elevation (ft. bgs)	Total Well Depth
Date	12/17/2022	12:00:00 AN	ms .a	0 -0.03		-0.13	• • • • • • • • • • • • • • • • • • • •	, ,,	7.75'
	12/17/2022	12:00:00 AN		0 -0.03		-0.13			7.73
	12/19/2022			0 -0.02		-0.09			
	12/20/2022			0 -0.02		-0.14			
	12/20/2022	12:00:00 AN		0 -0.02		-0.10			
	12/22/2022	12:00:00 AN		0 -0.03		-0.13			
	12/23/2022	12:00:00 AN		0 -0.04		-0.15			
	12/24/2022	12:00:00 AN		0 -0.03		-0.12			
	12/25/2022			0 -0.0		-0.12			
	12/26/2022	12:00:00 AN		0 -0.04		-0.15			
	12/27/2022	12:00:00 AN		0 0.24		0.81		4 Outliers	
	12/28/2022	12:00:00 AN		0 0.12		0.42			
	12/29/2022	12:00:00 AN		0 -0.04		-0.14			
	12/30/2022	12:00:00 AN		0 -0.04		-0.14			
	12/31/2022	12:00:00 AN		0 -0.02		-0.08			
	1/1/2023	12:00:00 AN	И	0 -0.02	.98 8.847	-0.10	7.89	5	
	1/2/2023	12:00:00 AN	И	0 -0.03	88 8.979	-0.13	7.88	8	
	1/3/2023	12:00:00 AN	И	0 -0.02	9.074	-0.09	7.84	4	
	1/4/2023	12:00:00 AN	И	0 -0.02	48 9.142	-0.08	7.83	3	
	1/5/2023	12:00:00 AN	И	0 -0.04	36 9.202	-0.14	7.89	9	
	1/6/2023	12:00:00 AN	И	0 -0.02	9.229	-0.09	7.84	4	
	1/7/2023	12:00:00 AN	И	0 -0.03	9.258	-0.12	7.8	7	
	1/8/2023	12:00:00 AN	И	0 -0.04	9.277	-0.13	7.88	8	
	1/9/2023	12:00:00 AN	M	0 -0.03	9.284	-0.13	7.88	8	
	1/10/2023	12:00:00 AN	Λ	0 -0.03	9.283	-0.10	7.89	5	
	1/11/2023	12:00:00 AN	Λ	0 -0.02	9.279	-0.09	7.84	4	
	1/12/2023	12:00:00 AN	M	0 -0.03	9.275	-0.10	7.89	5	
	1/13/2023	12:00:00 AN	M	0 -0.04	9.279	-0.15	7.90	0	
	1/14/2023	12:00:00 AN		0 -0.03		-0.13			
	1/15/2023	12:00:00 AN	M	0 -0.03	9.234	-0.11	7.86	6	
	1/16/2023	12:00:00 AN	M	0 -0.03	9.214	-0.10			
	1/17/2023	12:00:00 AN	M	0 -0.03		-0.10			
	1/18/2023	12:00:00 AN	М	0 -0.03		-0.13			
	1/19/2023	12:00:00 AN		0 -0.02		-0.08			
	1/20/2023	12:00:00 AN		0 -0.03		-0.13			
	1/21/2023	12:00:00 AN	М	0 -0.0	9.176	-0.12	7.8	7	

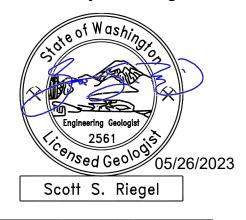
1/22/2023	12:00:00 AM	0	-0.0278	9.17	-0.09	7.84
1/23/2023	12:00:00 AM	0	-0.0356	9.169	-0.12	7.87
1/24/2023	12:00:00 AM	0	-0.0379	9.158	-0.12	7.87
1/25/2023	12:00:00 AM	0	-0.056	9.151	-0.18	7.93
1/26/2023	12:00:00 AM	0	-0.0332	9.144	-0.11	7.86
1/27/2023	12:00:00 AM	0	-0.0297	9.137	-0.10	7.85
1/28/2023	12:00:00 AM	0	-0.0443	9.13	-0.15	7.90
1/29/2023	12:00:00 AM	0	-0.0244	9.106	-0.08	7.83
1/30/2023	12:00:00 AM	0	-0.033	9.089	-0.11	7.86
1/31/2023	12:00:00 AM	0	-0.0373	9.074	-0.12	7.87
2/1/2023	12:00:00 AM	0	-0.0324	9.059	-0.11	7.86
2/2/2023	12:00:00 AM	0	-0.0313	9.041	-0.10	7.85
2/3/2023	12:00:00 AM	0	-0.0466	9.028	-0.15	7.90
2/4/2023	12:00:00 AM	0	-0.0332	9.003	-0.11	7.86
2/5/2023	12:00:00 AM	0	-0.0504	8.989	-0.17	7.92
2/6/2023	12:00:00 AM	0	-0.0264	8.957	-0.09	7.84
2/7/2023	12:00:00 AM	0	-0.0399	8.934	-0.13	7.88
2/8/2023	12:00:00 AM	0	-0.0287	8.902	-0.09	7.84
2/9/2023	12:00:00 AM	0	-0.0423	8.876	-0.14	7.89
2/10/2023	12:00:00 AM	0	-0.0269	8.851	-0.09	7.84
2/11/2023	12:00:00 AM	0	-0.036	8.819	-0.12	7.87
2/12/2023	12:00:00 AM	0	-0.0318	8.793	-0.10	7.85
2/13/2023	12:00:00 AM	0	-0.0241	8.77	-0.08	7.83
2/14/2023	12:00:00 AM	0	-0.039	8.745	-0.13	7.88
2/15/2023	12:00:00 AM	0	-0.032	8.725	-0.10	7.85
2/16/2023	12:00:00 AM	0	-0.0386	8.708	-0.13	7.88
2/17/2023	12:00:00 AM	0	-0.0313	8.689	-0.10	7.85
2/18/2023	12:00:00 AM	0	-0.0336	8.676	-0.11	7.86
2/19/2023	12:00:00 AM	0	-0.0309	8.657	-0.10	7.85
2/20/2023	12:00:00 AM	0	-0.0383	8.641	-0.13	7.88
2/21/2023	12:00:00 AM	0	-0.0472	8.622	-0.15	7.90
2/22/2023	12:00:00 AM	0	-0.0323	8.601	-0.11	7.86
2/23/2023	12:00:00 AM	0	-0.0338	8.585	-0.11	7.86
2/24/2023	12:00:00 AM	0	-0.0272	8.546	-0.09	7.84
2/25/2023	12:00:00 AM	0	-0.0393	8.535	-0.13	7.88
2/26/2023	12:00:00 AM	0	-0.042	8.521	-0.14	7.89
2/27/2023	12:00:00 AM	0	-0.0338	8.505	-0.11	7.86
2/28/2023	12:00:00 AM	0	-0.0346	8.491	-0.11	7.86
3/1/2023	12:00:00 AM	0	-0.025	8.468	-0.08	7.83
3/2/2023	12:00:00 AM	0	-0.0371	8.453	-0.12	7.87
3/3/2023	12:00:00 AM	0	-0.0356	8.431	-0.12	7.87
3/4/2023	12:00:00 AM	0	-0.0408	8.405	-0.13	7.88
3/5/2023	12:00:00 AM	0	-0.0274	8.378	-0.09	7.84
3/6/2023	12:00:00 AM	0	-0.0281	8.35	-0.09	7.84
3/7/2023	12:00:00 AM	0	-0.0334	8.323	-0.11	7.86
3/8/2023	12:00:00 AM	0	-0.0411	8.298	-0.13	7.88
3/9/2023	12:00:00 AM	0	-0.0355	8.271	-0.12	7.87
3/10/2023	12:00:00 AM	0	-0.0415	8.254	-0.14	7.89

3/11/2023	12:00:00 AM	0	-0.0285	8.219	-0.09	7.84	
3/12/2023	12:00:00 AM	0	-0.0391	8.194	-0.13	7.88	
3/13/2023	12:00:00 AM	0	-0.0384	8.172	-0.13	7.88	
3/14/2023	12:00:00 AM		-0.0296	8.119	-0.10	7.85	
3/15/2023	12:00:00 AM		-0.0264	8.068	-0.09	7.84	
3/16/2023	12:00:00 AM	0	-0.0348	8.048	-0.11	7.86	
3/17/2023	12:00:00 AM	0	-0.032	8.037	-0.10	7.85	
3/18/2023	12:00:00 AM		-0.0361	8.025	-0.12	7.87	
3/19/2023	12:00:00 AM		-0.0399	8.015	-0.13	7.88	
3/20/2023	12:00:00 AM	0	-0.034	8.004	-0.11	7.86	
3/21/2023	12:00:00 AM		-0.0358	7.988	-0.12	7.87	
3/22/2023	12:00:00 AM		-0.0338	7.981	-0.11	7.86	
3/23/2023	12:00:00 AM		-0.0307	7.971	-0.10	7.85	
3/24/2023	12:00:00 AM		-0.0318	7.965	-0.10	7.85	
3/25/2023	12:00:00 AM		-0.0306	7.963	-0.10	7.85	
3/26/2023	12:00:00 AM		-0.0335	7.963	-0.11	7.86	
3/27/2023	12:00:00 AM		-0.0361	7.968	-0.12	7.87	
3/28/2023	12:00:00 AM		-0.0422	7.975	-0.14	7.89	
3/29/2023	12:00:00 AM		-0.0347	7.982	-0.11	7.86	
3/30/2023	12:00:00 AM		-0.0359	7.99	-0.12	7.87	
3/31/2023	12:00:00 AM		-0.0348	8	-0.11	7.86	
4/1/2023	12:00:00 AM		-0.0263	8.014	-0.09	7.84	
4/2/2023	12:00:00 AM		-0.0364	8.022	-0.12	7.87	
4/3/2023	12:00:00 AM		-0.0318	8.028	-0.10	7.85	
4/4/2023	12:00:00 AM		-0.0336	8.04	-0.11	7.86	
4/5/2023	12:00:00 AM		-0.0326	8.046	-0.11	7.86	
4/6/2023	12:00:00 AM	0	-0.041	8.06	-0.13	7.88	
4/7/2023	12:00:00 AM		-0.0322	8.07	-0.11	7.86	
4/8/2023	12:00:00 AM	0	-0.036	8.08	-0.12	7.87	
4/9/2023	12:00:00 AM		-0.0333	8.084	-0.11	7.86	
4/10/2023	12:00:00 AM		-0.0321	8.063	-0.11	7.86	
4/11/2023	12:00:00 AM	0	0.0604	7.788	0.20	7.55	
4/12/2023	12:00:00 AM		-0.0326	7.876	-0.11	7.86	
4/13/2023	12:00:00 AM		-0.0368	7.945	-0.12	7.87	
4/14/2023	12:00:00 AM	0	-0.034	8.003	-0.11	7.86	
4/15/2023	12:00:00 AM		-0.0315	8.05	-0.10	7.85	
4/16/2023	12:00:00 AM	0	-0.041	8.094	-0.13	7.88	
4/17/2023	12:00:00 AM	0	-0.035	8.126	-0.11	7.86	
4/18/2023	12:00:00 AM		-0.0312	8.158	-0.10	7.85	
4/19/2023	12:00:00 AM		-0.0311	8.188	-0.10	7.85	
4/20/2023	12:00:00 AM	0	-0.031	8.216	-0.10	7.85	
4/21/2023	12:00:00 AM		-0.0241	8.246	-0.08	7.83	
4/22/2023	12:00:00 AM	0	-0.039	8.275	-0.13	7.88	
4/23/2023	12:00:00 AM		-0.0393	8.299	-0.13	7.88	
4/24/2023	12:00:00 AM		-0.0333	8.32	-0.13	7.84	
4/25/2023	12:00:00 AM	0	-0.031	8.338	-0.10	7.85	
4/26/2023	12:00:00 AM		-0.0352	8.359	-0.12	7.87	
4/27/2023	12:00:00 AM		-0.0342	8.377	-0.11	7.86	
.,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3		0.0	V	7.55	

4/28/2023	12:00:00 AM	0	-0.0333	8.398	-0.11	7.86
4/29/2023	12:00:00 AM	0	-0.0251	8.415	-0.08	7.83
4/30/2023	12:00:00 AM	0	-0.032	8.443	-0.10	7.85
5/1/2023	12:00:00 AM	0	-0.034	8.466	-0.11	7.86

Geotechnical Engineering Construction Observation/Testing Environmental Services

ES-5559


1805 - 136th Place N.E., Suite 201 Bellevue, WA 98005 (425) 449-4704 Fax (425) 449-4711 www.earthsolutionsnw.com

PREPARED FOR

PETER CHEN

January 11, 2018 Updated May 26, 2023

Chase G. Halsen, L.G., L.E.G. Senior Project Geologist

Scott S. Riegel, L.G., L.E.G. Associate Principal Geologist

GEOTECHNICAL ENGINEERING STUDY SUNSET POINTE 2301 – 23RD STREET SOUTHEAST PUYALLUP, WASHINGTON

ES-5559

Earth Solutions NW, LLC 15365 Northeast 90th Street, Suite 100 Redmond, Washington 98052 Phone: 425-449-4704 | Fax: 425-449-4711 www.earthsolutionsnw.com

Important Information about This

Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will not be adequate to develop geotechnical design recommendations for the project.

Do <u>not</u> rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it;
 e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnical-engineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.*

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- · the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- · the composition of the design team; or
- · project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept*

responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- · confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction-phase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note*

conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures*. If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are not building-envelope or mold specialists.

Telephone: 301/565-2733

e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent or intentional (fraudulent) misrepresentation.

January 11, 2018 Updated May 26, 2023 ES-5559

Earth Solutions NW LLC

Geotechnical Engineering, Construction
Observation/Testing and Environmental Services

Peter Chen 4709 Memory Lane West University Place, Washington 98488

Greetings:

Earth Solutions NW, LLC (ESNW) is pleased to present this report in support of the proposed project. Based on the results of our investigation, the proposed residential plat is feasible from a geotechnical standpoint. Our study indicates the site is underlain by areas of existing fill that overly Vashon drift glacial deposits Light to heavy perched groundwater seepage was encountered at three test pit locations at an approximate exposure depth of about one-and-one-half to six feet below the existing ground surface. As such, it is our opinion that the contractor should be prepared to manage zones of perched groundwater seepage during construction.

In our opinion, the proposed residential structures may be constructed on conventional continuous and spread footing foundations bearing upon competent native soil, recompacted native soil, recompacted existing fill, or suitable structural fill placed directly on competent native soils. In general, native soils suitable for foundation support are anticipated to be encountered at depths of approximately two to five feet below the existing ground surface. Areas underlain by existing fill may require additional preparation efforts to establish suitable and uniform bearing conditions. Additional preparation activities will likely involve overexcavating unsuitable existing fill and restoring grades with suitable structural fill. Re-working and re-compacting the in-place fill may be feasible in areas where the fill is devoid of organic and deleterious material but must be evaluated by ESNW during grading. Areas of deeper fill (if encountered) may require additional or complete over excavation and restoration or alternative foundation support designs. In general, where loose or unsuitable soil conditions are exposed at foundation subgrade elevations, compaction of soils to the specifications of structural fill, or overexcavation and replacement with a suitable structural fill material, will be necessary.

Stormwater management is currently proposed using dispersion/level spreader BMPs for roadways and on targeted lots. Based on the soil and groundwater conditions and the results of representative in-situ infiltration testing it is our opinion that infiltration is considered infeasible in the areas tested. Further discussion of infiltration feasibility is provided in this report.

Originally completed in January 2018, this report has been updated to reflect the current proposed site layout and to provide responses to comments prepared by the City of Puyallup (see attached DRT letter). The current project proposal no longer includes the development of the northernmost site parcel (currently referred to as Parcel A). As such, soil and groundwater exposed at test pits TP-14 through TP-18 were not utilized as a basis for the recommendations and evaluations provided in this report.

Recommendations for foundation design, site preparation, drainage, and other pertinent development aspects are provided in this study. We appreciate the opportunity to be of service to you on this project. If you have questions regarding the content of this geotechnical engineering study, please call.

Sincerely,

EARTH SOLUTIONS NW, LLC

Chase G. Halsen, L.G., L.E.G Senior Project Geologist

Table of Contents

ES-5559

	PA
INTRODUCTION	,
General	,
Project Description	2
1 Tojout Bocomption	_
SITE CONDITIONS	2
Surface	2
Subsurface	
Topsoil and Fill	
Native Soil	(
Geologic Setting	4
Groundwater	4
Geologically Hazardous Areas	4
Landslide Hazard	
Erosion Hazard	(
DRT Comments and Response	(
DISCUSSION AND RECOMMENDATIONS	8
General	8
Site Preparation and Earthwork	8
Temporary Erosion Control	Ć
Stripping	9
In-situ and Imported Soils	(
Subgrade Preparation	
Structural Fill	
Slope Fill	
Temporary Excavations and Slopes	
Foundations	
Seismic Design	
Slab-on-Grade Floors	
Retaining Walls	
<u>Drainage</u>	
Infiltration Feasibility Evaluation	
Stormwater System	
Utility Support and Trench Backfill	
Preliminary Pavement Sections	
<u>LIMITATIONS</u>	
Additional Services	

Table of Contents

Cont'd

ES-5559

GRAPHICS

Plate 1 Vicinity Map

Plate 2 Test Pit Location Plan

Plate 3 Slope Fill Detail

Plate 4 Retaining Wall Drainage Detail

Plate 5 Footing Drain Detail

APPENDICES

Appendix A Subsurface Exploration

Test Pit Logs

Appendix B Laboratory Test Results

GEOTECHNICAL ENGINEERING STUDY SUNSET POINTE 2301 – 23RD STREET SOUTHEAST PUYALLUP, WASHINGTON

ES-5559

INTRODUCTION

General

This geotechnical engineering study (study) was prepared for the proposed residential plat to be completed at 2301 – 23rd Street Southeast in Puyallup, Washington. The purpose of this study was to provide geotechnical recommendations for currently proposed development plans. Our scope of services for completing this study included the following:

- Completion of test pits for purposes of characterizing site soils.
- Completion of laboratory testing of soil samples collected at the test pit locations.
- Conduction of engineering analyses and preparation of this report.

The following documents and maps were reviewed as part of our study preparation:

- Sunset Pointe Preliminary Plat Set, prepared by CES NW, Inc., dated May 22, 2023;
- Puyallup Municipal Code Chapter 21.06;
- Development Review Team Letter, prepared by the City of Puyallup, dated May 16, 2022;
- Online Web Soil Survey (WSS) resource, maintained by the Natural Resources Conservation Service under the United States Department of Agriculture;
- Liquefaction Susceptibility for Pierce County incorporating data from the Washington State Department of Natural Resources, dated September 2004, and;
- Geologic Map of the South Half of the Tacoma Quadrangle, Washington, by Timothy J. Walsh, 1987.

Project Description

We understand the site will be developed into a residential plat consisting of 18 residential lots and general site improvements. Stormwater management will be provided using dispersion/level spreader BMPs at some locations. At the time of report submission, building load plans were not available for review; however, based on our experience with similar developments, the proposed residential structures will likely be two to three stories in height and constructed using relatively lightly loaded wood framing supported on conventional foundations. Perimeter footing loads of about 1 to 2 kips per lineal foot (klf) are expected. Slab-on-grade loading is anticipated to be approximately 150 pounds per square foot (psf). We understand that grade fills of up to 20 feet will be necessary to achieve design elevations across the building pads and grading will occur in a stepped configuration where practical do reduce the site modifications required. Deeper excavations will likely be required to construct the stormwater pond.

If the above design assumptions are incorrect or change, ESNW should be contacted to review the recommendations provided in this report. ESNW should review the final designs to confirm that appropriate geotechnical recommendations have been incorporated into the plans.

SITE CONDITIONS

Surface

The subject site is located east of the intersection between 19th Avenue Southeast and 21st Street Southeast in Puyallup, Washington. The approximate location of the subject site is depicted on Plate 1 (Vicinity Map). The irregular-shaped property is comprised of two adjoining tax parcels (Pierce County Parcel Nos. 042035-3027) totaling approximately 9.09 acres.

The site is bordered on all sides primarily by existing residential development. A sewer and water easement is present on site, trending roughly east to west along the entire northern edge of the development area. A relay station is present within the east-central site area. Multiple barn and storage structures appear to have been present within the southern site area but had been demolished before our fieldwork. Based on our field observations, it appears that the land has been previously modified through the placement of fill material. It appears that the fill had been placed to establish an access pathway to the southern site area, to level sloping areas, and fill an existing natural trough feature. Based on our observations, it is our opinion the site modification was likely not associated with recent development. Current topography varies across the site; however, maintains an overall northerly/northeasterly declivity. Approximately 30 to 35 feet of total elevation change occurs within the proposed development area. Three existing wetlands (designated A-C on the referenced plans) are present within the central site area.

Subsurface

The subsurface explorations and in-situ filed testing consisted of the following:

- October 24, 2017: Completing 19 test pits were conducted across the entire site area (including Parcel A).
- May 15, 2019: Completing four test pits were conducted and targeted to the proposed stormwater management pond (Tract B). Three shallow groundwater monitoring piezometers were installed during this exploration.
- January 22, 2020: Completing two test pits were performed to conduct small-scale pilot infiltration testing at representative site areas. A shallow, groundwater monitoring piezometer was installed at both test pit locations.

Each exploration and in-situ testing program was observed, logged, and sampled by an ESNW representative and completed using machinery and an operator retained by our firm and completed to assess and classify subsurface soil and groundwater conditions across the site. The approximate locations of the test pits are depicted on Plate 2 (Test Pit Location Plan). Please refer to the test pit logs provided in Appendix A for a more detailed description of subsurface conditions. Representative soil samples collected at the test pit locations were analyzed in accordance with the Unified Soil Classification System (USCS) and United States Department of Agriculture (USDA) methods and procedures.

Topsoil and Fill

Topsoil was encountered generally within the upper 2 to 18 inches of existing grades at the test pit locations. The topsoil was characterized by dark brown color, the presence of fine organic material, and small root intrusions.

Fill was observed at the majority of the test pit locations, ranging in approximate depths from 1 to 13 feet below the existing ground surface (bgs). The fill was observed to be variable in nature, typically consisting of silty sand to sandy silt, and encountered in a loose to medium dense and moist condition. In general, the majority of the fill was observed to be free of debris, except isolated areas of brick and wire debris and trace organics. Due to the high variability in texture of the fill soils, ESNW should be retained to evaluate the suitability of fill encountered during construction.

Native Soil

Underlying topsoil and fill, native soils were encountered consisting of soils associated with and representative of glacial drift deposits. In general, the predominant native soil type should be considered silty sand with or without gravel (USCS: SM). However, localized areas and depositional lenses of poorly graded sand and silt (USCS: SP and ML, respectively) were encountered. The native soils were typically encountered in a medium dense and moist conditions.

Geologic Setting

The referenced geologic map resource identifies Vashon undifferentiated drift (Qdv) across the site and surrounding areas. Although not specifically characterized within the geologic map resource, Vashon drift typically consists of glacial till, glaciofluvial, and glaciolacustrine sediments. The reference WSS resource indicates soils of the Everett very gravelly sandy loam, Indianola loamy sand, and Kitsap silt loam (Map Unit Symbols: 13B, 18C, 20B, and 20C, respectively). These soil groups are typically associated with moraines, eskers, kames, and terrace landforms, derived from glacial outwash and glaciolacustrine material. The variability in the makeup of the native soils is generally consistent with that of Vashon drift.

Groundwater

Perched groundwater seepage was encountered at TP-4, TP-201, and TP-202 during the subsurface explorations. In general, the seepage was exposed at depths of about one-and-one-half to six feet bgs and characterized as light to heavy.

In our opinion, the contractor should anticipate, and be prepared to manage, zones of perched groundwater seepage during construction, especially within deeper excavations depending on the time of year grading occurs. Groundwater seepage is common within glacial sediments, particularly within relatively permeable lenses and/or atop dense to very dense, unweathered deposits. Seepage rates and elevations fluctuate depending on many factors, including precipitation duration and intensity, the time of year, and soil conditions. In general, groundwater flow rates are higher during the wetter, winter months.

ESNW is currently performing a groundwater monitoring program for the site at three of the previously installed shallow wells. The results of the program and applicable design recommendations will be provided in a summary letter separate from this report.

Geologically Hazardous Areas

In preparation of this report, we reviewed the applicable city of Puyallup mapping and geologically hazardous area code section 21.06.

Landslide Hazard

As defined in Puyallup Municipal Code (PMC) 21.06.1210, landslide and erosion hazard areas include those identified by the U.S. Department of Agriculture Natural Resources Conservation Service as having a moderate to severe, severe, or very severe erosion hazard because of natural characteristics, including vegetative cover, soil texture, slope, gradient, and rainfall patterns, or human-induced changes to natural characteristics. Landslide and erosion hazard areas include areas with the following characteristics:

- Areas that have shown mass movement during the Holocene epoch (from 10,000 years ago to the present) or that are underlain or covered by mass wastage debris of that epoch;
- Slopes that are parallel or subparallel to planes of weakness (such as bedding planes, joint systems, and fault planes) in subsurface materials;
- Slopes having gradients steeper than 80 percent subject to rock fall during seismic shaking;
- Areas potentially unstable because of stream incision or stream bank erosion;
- Areas located in a canyon, ravine, or on an active alluvial fan, presently or potentially subject to inundation by debris flows or flooding;
- Any area with a slope of 40 percent or steeper and a vertical relief of 10 or more feet, except areas composed of consolidated rock and properly engineered manmade slopes/retained fill. A slope is delineated by establishing its toe and top and measured by averaging the inclination over at least 10 feet of vertical relief;
- Areas with a severe limitation for building development because of slope conditions, according to the Natural Resource Conservations Service, and;
- Areas meeting all three of the following criteria: (A) slopes steeper than 15 percent, except
 that slopes of less than 15 percent may be considered erosion hazard areas if they have
 certain unstable soil and drainage characteristics; (B) hillsides intersecting geologic
 contacts with a relatively permeable sediment overlying a relatively impermeable sediment
 or bedrock; and (C) wet season springs or groundwater seepage.

Based on the conditions encountered during our subsurface explorations, review of available topographic information, and review of the referenced slope schematic (which includes delineations of slopes greater than 40 percent), it appears that the majority of the site does not contain a landslide hazard, as defined by the PMC, except as noted below.

Slopes of 40 percent or greater have been delineated within the central site area and are associated with the sidewalls of Wetland A and Wetland C. However, these slopes are isolated and relatively minor in extent. Based on a review of the referenced preliminary plat plan set, a 25-foot buffer has been applied to each respective steep slope feature. Although the buffer appears to intersect the northwest corner of Lot 14, it is outside of the proposed building pad area; therefore, is outside future structural improvements.

In general, the development areas of the site do not contain a landslide hazard. Although some areas on site may meet the PMC criteria for landslide hazard, they are isolated and limited in occurrence. In our opinion, the site does not contain a hazard that would preclude successful development. However, remediation of unsuitable existing soils and groundwater drainage improvements will likely be necessary to assist in maintaining or improving post-construction soil stability. As such, ESNW should be present during grading activities to help identify areas of unsuitable soil and groundwater seepage and provide such mitigation recommendations. From a geotechnical standpoint, provided the recommendations of the referenced report and those contained within this letter are incorporated into the project designs, it is our opinion, based on our understanding of the current scope, the project can be developed as is currently proposed.

Erosion Hazard

As delineated in Puyallup Municipal Code (PMC) 21.06.1210, erosion hazard areas include those identified by the U.S. Department of Agriculture Natural Resources Conservation Service as having a moderate to severe, severe, or very severe erosion hazard because of natural characteristics, including vegetative cover, soil texture, slope, gradient, and rainfall patterns, or human-induced changes to natural characteristics.

Site soils are considered to have moderate to severe erosion potential when exposed to precipitation. In our opinion, provided appropriate temporary and permanent erosion and sediment control (ESC) measures are incorporated into final designs, the potential for erosion will remain low both during and after construction. Site BMPs and other means of sediment and surface flow control measures should be actively maintained during construction to ensure proper performance and functions. While seasonal grading restrictions may not be required for this project, we recommend the developer be prepared to employ enhanced ESC measures during the rainy season and be prepared to suspend grading activities if adequate BMPs cannot perform as intended during intense precipitation.

Provided the above recommendations and considerations are included with the construction plan and sequence, it is our opinion that the proposed development will not adversely affect soil stability on adjacent properties. Please note that our evaluation and corresponding lot recommendations are based on plans and site layouts made available to ESNW during report preparation. If site layout plans change, ESNW should be notified to provide updated recommendations.

DRT Comments and Response

For ease of review and clarity, this section of the report will be focused on responding to geotechnically related jurisdictional comments provided in the referenced DRT letter. Some elements of this response may be a duplicated from the discussion, evaluations, and/or recommendations provided in this report.

Planning and Review Comment 4: A 25' native growth protection area (NGPA) shall be provided on the rear of lot 13 due to slopes and protective buffer areas of 40% (or more) slopes and wetlands, per the Geotech report. These areas shall be landscaped and landscape plan shall be provided for these lots during final landscape plan and approval. February 2022, staff follow up comment: Please revise the lot layout with this protection area shown on the plat sheet(s) as 40% (or more) area (using the same call out as on Tract A) and show buffer setback.

ESNW Response: As indicated on the referenced plan set, a NGPA easement of 35' feet has been incorporated along the east property line and encompasses all or a part of Lots 8 through 13. Furthermore, a 25-foot buffer has been incorporated in sloping areas that meet or exceed 40 percent, both of which are located around Wetland A or C. The slope buffer in proximity to Wetland A encompasses a part of Lot 14; however does not encroach into the building envelope for that lot. With respect to Wetland C, the slope buffer does not encroach on any adjacent lot areas.

Engineering Review Comment 2: First and foremost, there will be no further review of the civil portion of the Major Plat due to the non-response to repeated requests for detailed long term groundwater monitoring. In addition, 2 test pits are not adequate for a site this size. Infiltration must be shown as infeasible in order for the project to claim that it is infeasible and not use it. Provide detailed account of testing and tabulated results.

ESNW Response: Site subsurface conditions were explored in October 2017, May 2019, and January 2020 and indicated variability concerning soil types present and grain size distribution across the site. Per USDA testing methods and procedures, native soils are also classified as slightly gravelly sand, gravelly loamy coarse sand, very gravelly loamy sand, and loam. Fines contents were about 6 percent within the sands, 26 to 40 percent within the sandy loam, and 58 to 98 percent within the gravelly loam and loam, as indicated by the sieve results of representative samples. To further evaluate site infiltration potential, two small-scale pilot infiltration tests (PITs) were performed in January 2020. The following table depicts each infiltration test location, encountered soil type, test depth, measured rate, appropriate safety factors, and recommended design rate.

Location	Soil	Test Depth	Measured Rate	Correc	tion Fac	tors	Recommended Design Rate
Location	Type	(ft bgs)	(in/hr)	CF _v	CFt	CF _m	(in/hr)
TP-201	ML	4.0	0	0.33	0.5	0.9	0
TP-202	ML	4.0	0	0.33	0.5	0.9	0

In accordance with our previous evaluations and recommendations, it is our opinion that infiltration be considered infeasible for the proposed project. Based on the soil and groundwater conditions exposed during each subsurface exploration, and the observed field infiltration rate of zero in/hr. at both PIT locations, it is our opinion that infiltration infeasibility has been sufficiently demonstrated.

Engineering Review Comment 6b: The stormwater pond is located within a steep slope buffer. Per the DOE stormwater manual, the facility shall not be located above a slope that exceeds 15 percent.

Engineering Review Comment 6d: The stormwater pond will be a City-owned infrastructure. The city does not accept its current location above a steep slope that leads to a wetland. This configuration will likely cause additional maintenance and has a potential for failure over time. The pond shall be relocated.

ESNW Response: From a geotechnical standpoint, construction of the stormwater pond at the proposed location may be considered feasible provided that lateral water migration can be sufficiently prevented. In our opinion, this can be achieved by including a low-permeable liner in the pond construction. Liners can consist of a geo-membrane or compacted soil that meets the requirements of the governing stormwater manual.

Engineering Review Comment 7: Does the soils within the wetland tract have any capabilities of infiltrating?

ESNW Response: From a geotechnical standpoint, infiltration should not be considered within the wetland areas. The presence of perennial, ponded water indicates that the wetland area is underlying by a confining or restrictive layer. Vertical transmission of water may occur; however, based on the soil conditions encountered at the test pit locations and or field observations, it would likely be a nearly negligible amount in concurrence with lateral water migration, however, it is not expected to the degree which would allow for successful, targeted infiltration designs to the area.

DISCUSSION AND RECOMMENDATIONS

General

Based on the results of our investigation, the construction of the proposed residential development is feasible from a geotechnical standpoint. The primary geotechnical considerations associated with the proposed development include foundation support, slab-ongrade subgrade support, the suitability of using on-site soils as structural fill, and construction of the stormwater facility(s).

Site Preparation and Earthwork

Initial site preparation activities will consist of installing temporary erosion control measures, establishing grading limits, and performing clearing and site stripping. Subsequent earthwork activities will involve mass site grading and related infrastructure improvements.

Temporary Erosion Control

The following temporary erosion control measures are offered:

- Temporary construction entrances and drive lanes, consisting of at least six inches of quarry spalls, should be considered to both minimize off-site soil tracking and provide a stable access entrance surface. The placement of a geotextile fabric beneath the quarry spalls will provide greater stability if needed. Existing asphalt/gravel drive lanes can be considered for use as a temporary construction entrance and should be observed by ESNW before construction.
- Silt fencing should be placed around the site perimeter.
- When not in use, soil stockpiles should be covered or otherwise protected.
- Temporary measures for controlling surface water runoff, such as interceptor trenches, sumps, or interceptor swales, should be installed before beginning earthwork activities.
- Dry soils disturbed during construction should be wetted to minimize dust.

Additional BMPs, as specified by the project civil engineer and indicated on the plans, should be incorporated into construction activities. Temporary erosion control measures should be continually maintained and improved to provide proper function over the course of construction.

Stripping

Topsoil was encountered generally within the upper 2 to 18 inches of existing grades at the test pit locations. Based on the encountered conditions, an average topsoil thickness of about eight to nine inches may be assumed ESNW should be retained to observe site stripping activities at the time of construction so that the degree of required stripping may be assessed. The exposed subgrade may still possess root elements, other organic material, or be present in a loose condition. As such, ESNW should evaluate the exposed soil subgrade to determine if further stripping or in-situ compaction efforts prior to fill operations or finish grading is necessary. Overstripping should be avoided, as it is unnecessary and may result in increased project development costs. Topsoil and organic-rich soil are neither suitable for foundation support nor for use as structural fill. Topsoil and organic-rich soil may be used in non-structural areas if desired.

In-situ and Imported Soils

On-site soils are highly moisture sensitive; therefore, successful use as structural fill largely being dictated by the moisture content at the time of placement and compaction. Remedial measures, such as soil aeration and/or cement treatment (where allowed by the local jurisdiction or utility district), may be necessary as part of site grading and earthwork activities. Existing fill soils to be used within structural applications must be free of deleterious debris, especially concerning construction-like debris and organic material. If the on-site soils cannot be successfully compacted, the use of an imported soil may be necessary. In our opinion, a contingency should be provided in the project budget for the export of soil that cannot be successfully compacted as structural fill if grading activities take place during periods of extended rainfall activity. Soils with fine contents greater than 5 percent typically degrade rapidly when exposed to periods of rainfall.

Imported soil intended for use as structural fill should consist of a well-graded, granular soil with a moisture content that is at (or slightly above) the optimum level. During wet weather conditions, imported soil intended for use as structural fill should consist of a well-graded, granular soil with a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction).

Subgrade Preparation

Following site stripping, cuts and fills will be completed to establish proposed subgrade elevations across the site. To establish a suitable subgrade for structural elements, recompaction of existing fill soils will likely be necessary for some areas. Due to the variable thickness and extent of the existing fill, it is our opinion that structural elements within the deeper fill areas be underlain by at least four feet of structural fill. It may be possible to recompact and reuse existing fill provided that it is free of deleterious material and contain a moisture content that is near optimum and is approved by ESNW at the time of placement and compaction.

Subgrades founded in competent native soils can likely be compacted in situ with mechanical equipment until a uniformly firm and unyielding condition is achieved. ESNW should observe the subgrade(s) during initial site preparation activities to confirm soil conditions are as anticipated and to provide supplementary recommendations for subgrade preparation, as necessary.

Please note the above considerations are based on current site layout plans available to ESNW, as depicted on the Test Pit Location Plan attached to this report. Should site layout designs change, ESNW should be informed and allowed to reevaluate necessary preparation efforts in relation to corresponding Lot numbers.

Structural Fill

Structural fill is defined as compacted soil placed in the foundation, slab-on-grade, roadway, permanent slope, retaining wall, and utility trench backfill areas. Soils placed in structural areas should be placed in loose lifts of 12 inches or less and compacted to a relative compaction of 95 percent, based on the laboratory maximum dry density as determined by the Modified Proctor Method (ASTM D1557). Soils intended for use as structural fill should be generally free of organic and deleterious material. For soil placed in utility trenches underlying structural areas, compaction requirements are dictated by the local city, county, or utility district, and are typically specified to a relative compaction of at least 95 percent.

Slope Fill

Structural fill placed along sloping areas (where a "sloping area" is defined as an area inclined at 15 percent or steeper) should be placed on a level bench as depicted on Plate 3 (Slope Fill Detail). Benches must be "keyed" into the slope and subsequently filled and compacted with suitable structural fill before continuing to the next bench. Sloping finish grades should be "overbuilt" using a bench-style fill and cut to the design gradient to ensure a permanent compacted slope face is maintained. ESNW should observe structural fill placement to confirm subgrade conditions and provide additional drainage recommendations, as necessary.

Temporary Excavations and Slopes

Excavation activities will likely expose loose to medium dense fill and weathered native soils that transition to medium dense to dense native soils at depth. Based on the soil conditions observed at the test pit locations, the following allowable temporary slope inclinations, as a function of horizontal to vertical (H:V) inclination, may be used. The applicable Federal Occupation Safety and Health Administration (OSHA) and Washington Industrial Safety and Health Act (WISHA) soil classifications are also provided:

Loose to medium dense soil
 1.5H:1V (Type C)

Areas containing groundwater seepage
 1.5H:1V (Type C)

Dense to very dense native soil
 0.75H:1V (Type A)

Steeper temporary slope inclinations within undisturbed, very dense native deposits may be feasible based on the soil and groundwater conditions exposed within the excavations. Steeper inclinations may be considered and must be subsequently approved, by ESNW at the time of grading.

Permanent slopes should be planted with vegetation to enhance stability and minimize erosion and should maintain a maximum gradient of 2H:1V or inclination prescribed by the governing jurisdiction. The presence of perched groundwater may cause localized sloughing of temporary slopes due to excess seepage forces. An ESNW representative should observe temporary and permanent slopes to confirm the slope inclinations are suitable for the exposed soil conditions and to provide additional excavation and slope recommendations, as necessary. If the recommended temporary slope inclinations cannot be achieved, temporary shoring may be necessary to support excavations.

Foundations

In our opinion, the proposed residential structures may be constructed on conventional continuous and spread footing foundations bearing upon competent native soil, recompacted native soil, recompacted existing fill, or suitable structural fill placed directly on competent native soils. In general, native soils competent for foundation support are anticipated to be encountered at approximate depths of two to five feet below the existing ground surface elevation. Areas underlain by existing fill may require additional preparation techniques to establish suitable and uniform bearing conditions, such as overexcavating unsuitable existing fill and restoring grades with suitable structural fill. Re-working and re-compacting the in-place fill may be feasible in areas where the fill is devoid of organic and deleterious material but must be evaluated by ESNW during grading. Areas of deeper fill may require additional or complete over excavation and restoration or alternative foundation support implementations (see Subgrade Preparation section of the report). In general, where loose or unsuitable soil conditions are exposed at foundation subgrade elevations, compaction of soils to the specifications of structural fill, or overexcavation and replacement with a suitable structural fill material, will be necessary.

Provided the foundations will be supported as described above, the following parameters may be used for the design:

Allowable soil bearing capacity
 2,500 psf

Passive earth pressure
 300 pcf (equivalent fluid)

• Coefficient of friction 0.40

A one-third increase in the allowable soil bearing capacity may be assumed for short-term wind and seismic loading conditions. The above passive pressure and friction values include a factor-of-safety of 1.5. With structural loading as expected, total settlement in the range of one inch and differential settlement of about one-half inch is anticipated. The majority of the settlements should occur during construction, as dead loads are applied.

Seismic Design

The 2018 International Building Code (2018 IBC) recognizes the most recent edition of the Minimum Design Loads for Buildings and Other Structures manual (ASCE 7-16) for seismic design, specifically concerning earthquake loads. Based on the soil conditions encountered at the test pit locations, the parameters and values provided below are recommended for seismic design per the 2018 IBC.

Parameter	Value
Site Class	D*
Mapped short period spectral response acceleration, $S_S(g)$	1.255
Mapped 1-second period spectral response acceleration, $S_1(g)$	0.432
Short period site coefficient, Fa	1.0
Long period site coefficient, F _v	1.868 [†]
Adjusted short period spectral response acceleration, S _{MS} (g)	1.255
Adjusted 1-second period spectral response acceleration, $S_{M1}\left(g\right)$	0.807†
Design short period spectral response acceleration, S _{DS} (g)	0.837
Design 1-second period spectral response acceleration, $S_{D1}\left(g\right)$	0.538 [†]

^{*} Assumes medium dense native soil conditions, encountered to a maximum depth of 18 feet bgs during the October 207, May 2019, and January 2020 field exploration, remain medium dense (if not become denser) to at least 100 feet bgs.

[†] Values assume F_v may be determined using linear interpolation per Table 11.4-2 in ASCE 7-16.

As indicated in the table footnote, several of the seismic design values provided above are dependent on the assumption that site-specific ground motion analysis (per Section 11.4.8 of ASCE 7-16) will not be required for the subject project. ESNW recommends the validity of this assumption be confirmed at the earliest available opportunity during the planning and early design stages of the project. Further discussion between the project structural engineer, the project owner, and ESNW may be prudent to determine the possible impacts to the structural design due to increased earthquake load requirements under the 2018 IBC. ESNW can provide additional consulting services to aid with design efforts, including supplementary geotechnical and geophysical investigation, upon request.

Liquefaction is a phenomenon where saturated or loose soil suddenly loses internal strength and behaves as a fluid. This behavior is in response to increased pore water pressures resulting from an earthquake or another intense ground shaking. In our opinion, site susceptibility to liquefaction may be considered low. The depth of the regional groundwater table and the encountered in-situ density of the native soil were the primary bases for this opinion.

Slab-on-Grade Floors

Slab-on-grade floors for the proposed residential structures should be supported on a well-compacted, firm, and unyielding subgrade. Where feasible, competent native soil exposed at the slab-on-grade subgrade level can likely be compacted in situ to the specifications of structural fill. Unstable or yielding areas of the subgrade should be recompacted, or overexcavated and replaced with suitable structural fill, before construction of the slab.

A capillary break consisting of a minimum of four inches of free-draining crushed rock or gravel should be placed below the slab. The free-draining material should have a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction). In areas where slab moisture is undesirable, the installation of a vapor barrier below the slab should be considered. If a vapor barrier is to be utilized, it should be a material specifically designed for use as a vapor barrier and should be installed in accordance with the specifications of the manufacturer.

Retaining Walls

Retaining walls must be designed to resist earth pressures and applicable surcharge loads. The following parameters may be used for the design:

- At-rest earth pressure (restrained condition)
 55 pcf
- Traffic surcharge (passenger vehicles) 70 psf (rectangular distribution)*
- Passive earth pressure
 300 pcf (equivalent fluid)
- Coefficient of friction 0.40
- Seismic surcharge
 8H psf**
- * Where applicable.
- ** Where H equals the retained height (in feet).

The above design parameters are based on a level backfill condition and level grade at the wall toe. Revised design values will be necessary if sloping grades are to be used above or below retaining walls. Additional surcharge loading from adjacent foundations, sloped backfill, or other relevant loads should be included in the retaining wall design.

Retaining walls should be backfilled with free-draining material that extends along the height of the wall and a distance of at least 18 inches behind the wall. The upper 12 inches of the wall backfill may consist of a less permeable soil if desired. A perforated drainpipe should be placed along the base of the wall and connected to an approved discharge location. A typical retaining wall drainage detail is provided on Plate 4. If drainage is not provided, hydrostatic pressures should be included in the wall design.

Drainage

Based on our field observations, isolated zones of perched groundwater seepage should be anticipated within site excavations depending on the time of year grading occurs. Temporary measures to control surface water runoff and groundwater seepage during construction would likely involve interceptor trenches and sumps. ESNW should be consulted during preliminary grading to identify areas of seepage and provide recommendations to reduce the potential for instability related to seepage effects.

Finish grades must be designed to direct surface drain water away from structures and slopes. Water must not be allowed to pond adjacent to structures or slopes. In our opinion, foundation drains should be installed along building perimeter footings. A typical foundation drain detail is provided on Plate 5.

Infiltration Feasibility Evaluation

Site subsurface conditions were initially explored in October 2017, May 2019, and January 2020 and indicated variability concerning soil types present and grain size distribution across the site. Per USDA testing methods and procedures, native soils are also classified as slightly gravelly sand, gravelly loamy coarse sand, very gravelly loamy sand, and loam. Fines contents were about 6 percent within the sands, 26 to 40 percent within the sandy loam, and 58 to 98 percent within the gravelly loam and loam, as indicated by the sieve results of representative samples. To further evaluate site infiltration potential, two small-scale pilot infiltration tests (PITs) were performed in January 2020. The following table depicts each infiltration test location, encountered soil type, test depth, measured rate, appropriate safety factors, and recommended design rate.

Location	Soil	Test Depth	Measured Rate	Correc	tion Fac	ctors	Recommended Design Rate
	Туре	(ft bgs) (in/hr)		CFv	CFt	CFm	(in/hr)
TP-201	ML	4.0	0	0.33	0.5	0.9	0
TP-202	ML	4.0	0	0.33	0.5	0.9	0

In accordance with our previous evaluations and recommendations, it is our opinion that infiltration be considered infeasible for the proposed project. Based on the soil and groundwater conditions exposed during each subsurface exploration, and the observed field infiltration rate of zero in/hr. at both PIT locations, it is our opinion that infiltration infeasibility has been sufficiently demonstrated.

Stormwater System

We understand that roof runoff will be collected and conveyed to individual lot dispersion/level spreader BMPs. The intent of this configuration is to reduce the potential for concentrated discharge and recharge the site wetland/pond areas to preserve functions and values of those features. In our opinion, this approach is acceptable from a geotechnical standpoint.

Utility Support and Trench Backfill

In our opinion, on-site soils will generally be suitable for the support of utilities. Remedial measures may be necessary for some areas to provide support for utilities, such as overexcavation and replacement with structural fill and/or placement of geotextile fabric. Groundwater seepage may be encountered within utility excavations, and caving of trench walls may occur where groundwater is encountered. Depending on the time of year and conditions encountered, dewatering, as well as temporary trench shoring, may be necessary during utility trench excavation and installation.

Successful use will depend on the soil's moisture content at the time of placement and compaction. The silt soils encountered at our test pit locations is not suitable for utility trench backfill. Moisture conditioning of the soils may be necessary at some locations before use as structural fill. Each section of the utility lines must be adequately supported in the bedding material. Utility trench backfill should consist of and be placed and compacted to the specifications of structural fill as previously detailed in this report, or to the applicable specifications of the governing jurisdiction or agency.

Preliminary Pavement Sections

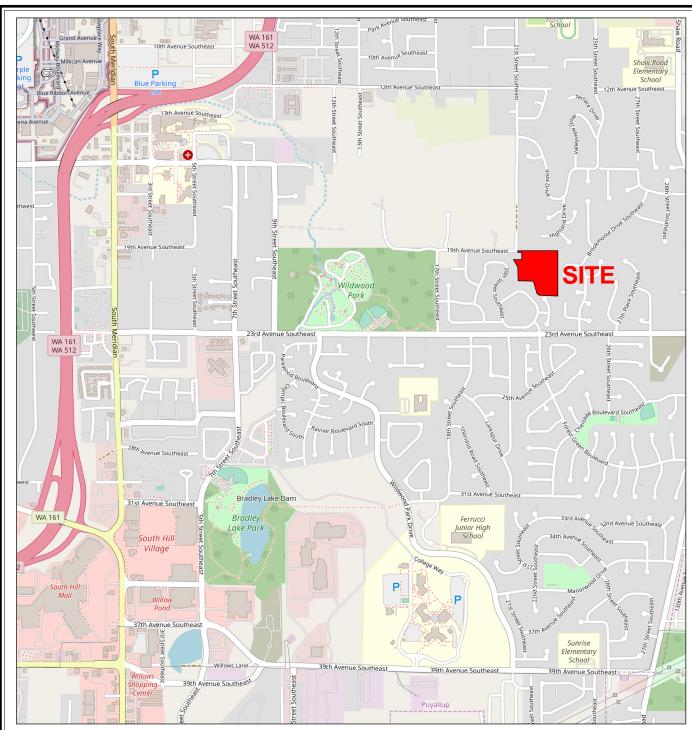
The performance of site pavements is largely related to the condition of the underlying subgrade. To ensure adequate pavement performance, the subgrade should be in a firm and unyielding condition when subjected to proofrolling with a loaded dump truck. Structural fill in pavement areas should be compacted to the specifications previously detailed in this report. Soft, wet, or otherwise unsuitable subgrade areas may still exist after base grading activities. Areas containing unsuitable or yielding subgrade conditions will require remedial measures, such as over-excavation and/or placement of thicker crushed rock or structural fill sections, before pavement.

We anticipate new pavement sections will be subjected primarily to passenger vehicle traffic. For lightly loaded pavement areas subjected primarily to passenger vehicles, the following preliminary pavement sections may be considered:

- A minimum of two inches of hot mix asphalt (HMA) placed over four inches of crushed rock base (CRB), or;
- A minimum of two inches of HMA placed over three inches of asphalt-treated base (ATB).

For heavy-loaded pavement areas such as main interior access roads and areas subject to occasional large commercial vehicle traffic, the following preliminary pavement sections may be considered:

- Three inches of HMA placed over six inches of CRB, or;
- Three inches of HMA placed over three inches of ATB.


The HMA, ATB, and CRB materials should conform to WSDOT specifications. All soil base material should be compacted to a relative compaction of 95 percent, based on the laboratory maximum dry density as determined by a modified proctor test (ASTM D1557). Final pavement design recommendations, including recommendations for heavy traffic areas, access roads, and frontage improvement areas, can be provided once final traffic loading has been determined. Road standards utilized by the governing jurisdiction may supersede the recommendations provided in this report. If the roadway will be constructed with an inverted crown, additional drainage recommendations may be necessary, as evaluated and recommended by ESNW at the time of construction.

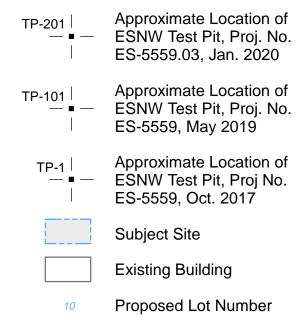
LIMITATIONS

The recommendations and conclusions provided in this study are professional opinions consistent with the level of care and skill that is typical of other members in the profession currently practicing under similar conditions in this area. A warranty is neither expressed nor implied. Variations in the soil and groundwater conditions observed at the test pit locations may exist and may not become evident until construction. ESNW should reevaluate the conclusions provided in this study if variations are encountered.

Additional Services

ESNW should have an opportunity to review final project plans with respect to the geotechnical recommendations provided in this report. ESNW should also be retained to provide testing and consultation services during construction.

Reference: Pierce County, Washington OpenStreetMap.org


NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

Vicinity Map Sunset Pointe Puyallup, Washington

Drwn. CAM	Date 04/05/2023	Proj. No. 5559
Checked CGH	Date April 2023	Plate 1

LEGEND

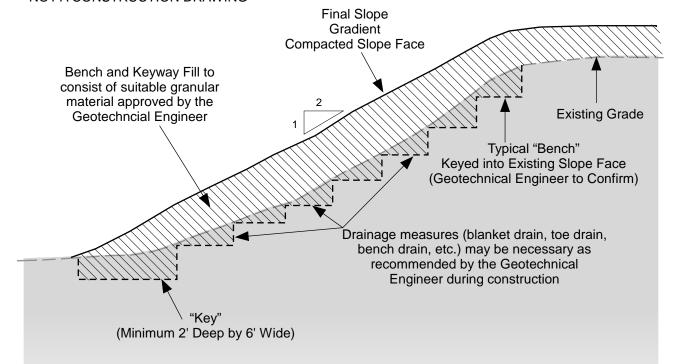
NOTE: The graphics shown on this plate are not intended for design purposes or precise scale measurements, but only to illustrate the approximate test locations relative to the approximate locations of existing and / or proposed site features. The information illustrated is largely based on data provided by the client at the time of our study. ESNW cannot be responsible for subsequent design changes or interpretation of the data by others.

NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

Test Pit Location Plan Sunset Pointe Puyallup, Washington

olutions NWLLC

Drwn. By CAM

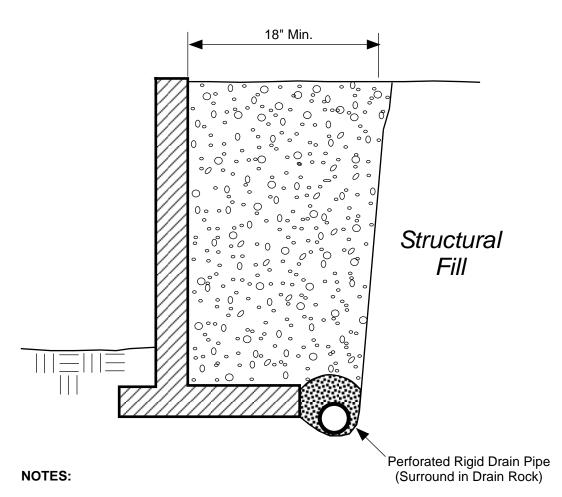

Checked By CGH

Date 05/26/2023

Proj. No. 5559

Plate 2

SCHEMATIC ONLY - NOT TO SCALE NOT A CONSTRUCTION DRAWING


NOTES:

- Slope should be stripped of topsoil and unsuitable materials prior to excavating Keyway or benches.
- Benches will typically be equal to a bulldozer blade width of approximately 8 feet but shall be at least 4 feet.
- Final slope gradient should be 2H: 1V.
- Final slope face should be densified by over-building with compacted fill and trimming back to shape or by compaction with a bulldozer or vibratory drum roller.
- Planting or hydroseeding slope face with a rapid growth deep-rooted vegetative mat will reduce erosion potential of slope area.
- Use of pegged-in-place jute matting or geotechnical fabric will help maintain the seed and mulch in place until the root system has an opportunity to germinate.

Structural fill should be placed in thin loose lifts not exceeding 12 inches in thickness. Each lift should be compacted to no less than the degree specified in the "Site Preparation and Earthwork" section of this report. No additional lift should be placed until compaction is achieved.

Drwn. MRS	Date 10/09/2018	Proj. No.	5559
Checked CGH	Date Oct. 2018	Plate	3

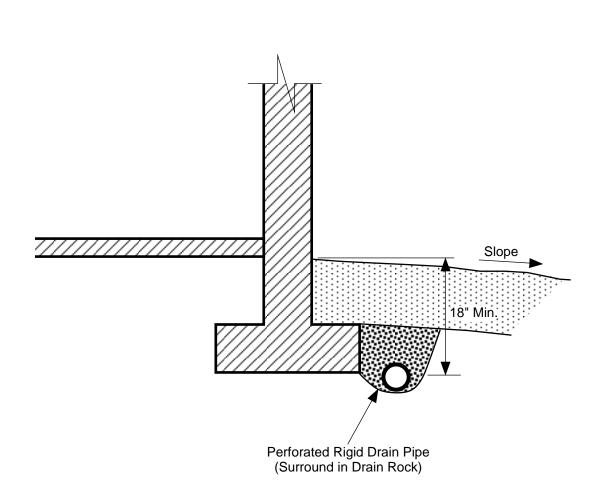
 Free-draining Backfill should consist of soil having less than 5 percent fines.
 Percent passing No. 4 sieve should be 25 to 75 percent.

 Sheet Drain may be feasible in lieu of Free-draining Backfill, per ESNW recommendations.

 Drain Pipe should consist of perforated, rigid PVC Pipe surrounded with 1-inch Drain Rock.

LEGEND:

Free-draining Structural Backfill


1-inch Drain Rock

SCHEMATIC ONLY - NOT TO SCALE NOT A CONSTRUCTION DRAWING

Retaining Wall Drainage Detail Sunset Pointe Puyallup, Washington

Drwn. MRS	Date 10/09/2018	Proj. No.	5559
Checked CGH	Date Oct. 2018	Plate	4

NOTES:

- Do NOT tie roof downspouts to Footing Drain.
- Surface Seal to consist of 12" of less permeable, suitable soil. Slope away from building.

LEGEND:

Surface Seal: native soil or other low-permeability material.

1-inch Drain Rock

SCHEMATIC ONLY - NOT TO SCALE NOT A CONSTRUCTION DRAWING

Footing Drain Detail Sunset Pointe Puyallup, Washington

Drwn. MRS	Date 10/09/2018	Proj. No.	5559
Checked CGH	Date Oct. 2018	Plate	5

Appendix A

Subsurface Exploration Test Pit Logs

ES-5559

Subsurface conditions at the subject site were explored by an ESNW representative on October 24, 2017, May 15, 2019, and January 22, 2020. A total of 25 test pits were excavated at accessible areas of the site using an operator and trackhoe retained by ESNW. The approximate locations of the test pits are illustrated on Plate 2 of this study. The test pits logs are provided in this Appendix. The test pits were excavated to a maximum depth of approximately 18 feet bgs.

The final logs represent the interpretations of the field logs and the results of laboratory analyses. The stratification lines on the logs represent the approximate boundaries between soil types. In actuality, the transitions may be more gradual.

	Coarse Sieve	္က	GW	Well-graded gravel with or without sand, little to	Moisture	Content	Symbols			
	₽4	0/110/g		no fines	Dry - Absence of m the touch	oisture, dusty, dry to	ATD = At time ✓ of drilling ATD = At time ✓ of drilling Bentonite			
200 Sieve	50% on No.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	GP	Poorly graded gravel with or without sand, little to no fines	Damp - Perceptible optimum MC	moisture, likely below	Static water Very level (date) Grout			
	Gravels - More Than 50% (Fraction Retained on No.		<u>)</u>	Silty gravel with or without	Moist - Damp but n at/near optimum M	o visible water, likely C	seal Filter pack with blank casing			
	- More	Fines	GM	sand	likely above optimu		section Screened casing or Hydrotip with			
Coarse-Grained Soils - More Than 50% Retained on No.	ravels -ractio	12%	GC	Clayey gravel with or without sand	Saturated/Water Be water, typically belo	earing - Visible free w groundwater table	filter pack			
Coarse-Grained 50% Retained	IS F			without sand	Terms Describing Relative Density and Consistency					
Gra			•	Well-graded sand with	Coarse-Graine	d Soils:	Test Symbols & Units			
rse- % R	rse	8	SW	or without gravel, little to	<u>Density</u>	SPT blows/foot	Fines = Fines Content (%)			
oal 50%	Coarse Sieve	5% Fine	•	no fines	Very Loose	< 4	MC = Moisture Content (%)			
a C	р 4	2%		Poorly graded sand with	Loose	4 to 9	DD = Dry Density (pcf)			
Ĕ		v	SP	or without gravel, little to	Medium Dense	10 to 29				
More	ands - 50% or More Fraction Passes No.			no fines	Dense Very Dense	30 to 49 ≥ 50	Str = Shear Strength (tsf) PID = Photoionization Detector (ppm)			
	% c Pas	ပ္သ	SM	Silty sand with or without		. "	,			
	- 50 ion I	Fine	SIVI	gravel	Fine-Grained Consistency	Soils: SPT blows/foot	OC = Organic Content (%) CEC = Cation Exchange Capacity (meg/100)			
	Sands - Fracti	%////			Very Soft	< 2	CEC = Cation Exchange Capacity (meq/100 g)			
	Sa	$\left \begin{array}{c} \\ \\ \end{array} \right / / / / /$	SC	Clayey sand with or without gravel	Soft	2 to 3	LL = Liquid Limit (%)			
				William graver	Medium Stiff	4 to 7	PL = Plastic Limit (%)			
	_			Silt with or without sand	Stiff	8 to 14	PI = Plasticity Index (%)			
	0.50		ML	or gravel; sandy or	Very Stiff	15 to 29				
	ys			gravelly silt	Hard	≥ 30				
ve	ilts and Clays			Clay of low to medium plasticity; lean clay with		Componen	t Definitions			
- 200 Sieve	and		CL	or without sand or gravel; sandy or gravelly lean clay	Descriptive Term	Size Range	e and Sieve Number			
200			1	Saridy of graverry learn clay	Boulders	Larger than	า 12"			
Soils No. 2	0, 5		OL	Organic clay or silt of	Cobbles	3" to 12"				
ned S	<u>.</u>			low plasticity	Gravel Coarse Gravel Fine Gravel	3" to No. 4 3" to 3/4" 3/4" to No.	(4.75 mm) 4 (4.75 mm)			
irai Pas		\Box		Elastic silt with or without	Sand		5 mm) to No. 200 (0.075 mm)			
Fine-Grained 50% or More Passes	/S More		MH	sand or gravel; sandy or gravelly elastic silt	Coarse Sand Medium Sand Fine Sand	No. 4 (4.75 mm) to No. 10 (2.00 mm) No. 10 (2.00 mm) to No. 40 (0.425 mm) No. 40 (0.425 mm) to No. 200 (0.075 mm)				
or N	Clay			Clay of high plasticity;	Silt and Clay	`	an No. 200 (0.075 mm)			
20%	Silts and Clays		СН	fat clay with or without sand or gravel; sandy or gravelly fat clay		Modifier I	Definitions			
	Silk				Percentage by Weight (Approx.)	Modifier				
	. <u>.</u>		ОН	Organic clay or silt of medium to high plasticity	< 5	Trace (san	d, silt, clay, gravel)			
	υ	<u> </u>	3		5 to 14	Slightly (sa	ndy, silty, clayey, gravelly)			
ghly	Organic Soils	717 717 717 71	PT	Peat, muck, and other	15 to 29	Sandy, silty	, clayey, gravelly			
Ī	Š	77 7		highly organic soils	≥ 30	Very (sand	y, silty, clayey, gravelly)			
	≣		FILL	Made Ground	field and/or laboratory obs plasticity estimates, and s	ervations, which include de hould not be construed to in tratory classification methor	as shown on the exploration logs are based on visual ensity/consistency, moisture condition, grain size, and mply field or laboratory testing unless presented hereinds of ASTM D2487 and D2488 were used as an System.			

Earth Solutions NWLLC

TEST PIT NUMBER TP-201

PROJ	ECT NUM	IBER ES-5559.03	3			PROJECT NAME Sunset Pointe		
DATE	STARTE	D 1/22/20	(COMP	LETED 1/22/20	GROUND ELEVATION 374 ft		
EXCA	VATION (CONTRACTOR N	W Exc	avatin	g	LATITUDE LONGITUDE		
LOGG	ED BY	CGH	(CHEC	KED BY SSR	GROUND WATER LEVEL:		
NOTE	S Depth	of Topsoil & Sod	6": gra	SS		$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
Ŭ			TPSL	71 V	_{0.5} Dark brown TOPS	OIL, root intrusions to 1'	373.5	
		MC = 20.7	ML		Tan SILT, medium -mottled texture	n dense, moist to wet		
		MC = 32.6 Fines = 88.9			4.5 [USDA Classificat	ion: LOAM]	369.5	
5		MC = 15.1	SP			d SAND, dense, moist to wet staining at contact, light groundwater seepage at 6'	368.0	
		MC = 30.7	ML		Gray SILT with sa	nd, dense, moist to wet staining throughout ion: slightly gravelly LOAM]		
		MC = 30.5 Fines = 78.7	 	1111	Test pit terminated	d at 8.0 feet below existing grade. Groundwater seepage encountered at exvation. No caving observed.	366.0	

TEST PIT NUMBER TP-202

PROJI	ECT NUM	IBER <u>ES-5559.03</u>	3		PROJECT NAME Sunset Pointe	
DATE	STARTE	D 1/22/20		COMP	_ETED <u>1/22/20</u> GROUND ELEVATION <u>388 ft</u>	
EXCA	VATION (CONTRACTOR N	W Exc	cavatin	gLATITUDELONGITUDE	
LOGG	ED BY	CGH		CHECI	KED BY SSR GROUND WATER LEVEL:	
NOTE	S Depth	of Topsoil & Sod	6": gra	ass	$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$	
SURF	ACE CON	IDITIONS			AFTER EXCAVATION	
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
			TPSL	<u>''</u> . <u>x' /z</u>	0.5 Dark brown TOPSOIL, root intrusions to 6"	387.5
			FILL		Crushed rock (Fill)	
			FILL		1.5 -light perched groundwater seepage	386.5
					Tan silty SAND, medium dense, moist	
		MC = 31.9	SM		~<8" sand lens	385.3
		100 01.0			Tan sandy SILT, dense, moist	
			ML		-becomes gray	
		MC = 19.4	IVIL			
		Fines = 58.7 MC = 31.8		1111	4.5 [USDA Classification: slightly gravelly LOAM]	383.5
5					Gray silty SAND, dense, moist	
					-light iron oxide staining	
			SM			
L -					-increased sand content	
		MC = 13.3 Fines = 39.9	 		8.0 [USDA Classification: slightly gravelly fine sandy LOAM] Test pit terminated at 8.0 feet below existing grade. Groundwater seepage encountered at 1.0 foot during excavation. No caving observed.	380.0

Earth Solutions NWLLC Earth School Redmon Telepho

GENERAL BH / TP / WELL - 5559.GPJ - GINT US.GDT - 4/5/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-101

PRO IF	ECT NUM	MBER <u>ES-5559</u>				PROJECT NAME Sunset Pointe	
						19/19 GROUND ELEVATION _383 ft	
						LATITUDE LONGITUDE	
						SR GROUND WATER LEVEL:	
	_					$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$	
		NDITIONS					
	111		\top				
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
0			TDOL	71 1× 1/2	Dar	rk brown TOPSOIL, root intrusions to 12"	
			IPSL	-1/. 1//	1.0		382.0
		MC = 13.8	SM			ay silty SAND with gravel, dense, moist (Fill)	
5					-sa 5.5	IIId lens ~12 thick	377.5
 		MC = 20.0				ay SILT, medium dense, moist (Fill)	
10		MC = 27.3 Fines = 90.0	ML			ecomes brown, increased fines SDA Classification: slightly gravelly LOAM]	370.0
_					Tar	n SILT, medium dense, wet	
15		MC = 31.9 Fines = 95.8	ML		[US	SDA Classification: LOAM]	368.0
		MC = 35.3	SM		Tar	n silty SAND, medium dense, wet to saturated inor iron oxide staining	000.0
		MC = 28.5			18.0	and lens 6"- 12" thick	365.0
		2010	,		Tes exc	st pit terminated at 18.0 feet below existing grade. No groundwater encountered during cavation. No caving observed.	

TEST PIT NUMBER TP-102

PAGE 1 OF 1

PROJE	ECT NUN	IBER <u>ES-5559</u>			PROJECT NAME Sunset Pointe	
DATE	STARTE	D 5/15/19	(COMPL	LETED <u>5/15/19</u> GROUND ELEVATION <u>376 ft</u>	
EXCA	/ATION (CONTRACTOR N	W Exc	avatin	g LATITUDE LONGITUDE	
LOGG	ED BY _	CGH	(CHECK	KED BY SSR GROUND WATER LEVEL:	
NOTES	S Depth	of Topsoil & Sod 1	12": he	avy br	ramble	
SURFA	ACE CON	IDITIONS			AFTER EXCAVATION	
о DЕРТН (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
			TDGI	<u>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</u>	Dark brown TOPSOIL, root intrusions to 2.25'	
			IFSL	1/ 1//	1.0	375.0
_			SM		Brown silty SAND, loose, moist	373.5
		MC = 25.4			Gray SILT, dense, moist	010.0
		Fines = 98.3			[USDA Classification: LOAM]	
 5					-heavy iron oxide staining	
		MC = 32.0 Fines = 92.5	ML		-becomes brown, wet	
					[USDA Classification: LOAM]	
					-becomes wet to saturated	
		MC = 35.2	Ь—		9.5	366.5
					Test pit terminated at 9.5 feet below existing grade. No groundwater encountered during excavation. No caving observed.	

Earth Solutions NWuc

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-103 PAGE 1 OF 1

PROJ	ECT NUN	MBER <u>ES-5559</u>				PROJECT NAME Sunset Pointe		
DATE	STARTE	D 5/15/19		COMPLETE	ED <u>5/15/19</u>	GROUND ELEVATION 384 ft	t	
EXCA	VATION	CONTRACTOR N	W Exc	cavating		_ LATITUDE	LONGITUDE	
LOGG	ED BY _	CGH	'	CHECKED	BY SSR	_ GROUND WATER LEVEL:		
NOTE	S Depth	n of Topsoil & Sod	8": hea	avy bush		$oxed{oxed}$ at time of exca	AVATION	
SURF	ACE CON	NDITIONS				_ AFTER EXCAVAT	ION	
о ОЕРТН (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCF	RIPTION	
			TPSL	0.6		SOIL, root intrusions to 6.25' (Fill)	•	383.4
5		MC = 11.3 MC = 10.4	SM		-asphalt debris	with gravel, medium dense to der	nse, moist (Fill)	
		MC = 11.7 MC = 20.2		11.0		eds	de. No groundwater encountered during	373.0
					excavation. No c		ae. No groundwater encountered during	

Earth Solutions NWuc

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-104

PROJEC	CT NUMBER ES-5	559			PROJECT NAME Sunset Pointe	
1					GROUND ELEVATION 383 ft	
EXCAV	ATION CONTRACTO	OR NW Exc	avating		LATITUDE LONGITUDE	
LOGGE	D BY CGH		CHECKED BY	SSR	_ GROUND WATER LEVEL:	
1	Depth of Topsoil 8					
SURFAC	CE CONDITIONS _				AFTER EXCAVATION	
DEPTH (ft)	SAMPLE TYPE NUMBER NUMBER SLSEL	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
0	SA_			Dark brown TOP	SOIL, root intrusions to 12"	
		TPSL	0.6		with gravel, medium dense to dense, moist	382.4
				Gray Silly SAND	with graver, medium dense to dense, moist	
	MC = 19	9.9 SM		-becomes brown -becomes gray		
				-heavy iron oxide	, etaining	
5	MC = 23	3.5	5.0	Gray SILT, loose		378.0
				-becomes brown	, wet	
 10		ML				
	MC = 29		11.0	[USDA Classifica	-	372.0
	\ Fines = 9	93.5		Test pit terminate excavation. No o	ed at 11.0 feet below existing grade. No groundwater encountered during caving observed.	
Т - 4/5/23						
OINT US.GD						
559.GPJ - C						
/ WELL - 5						
GENERAL BH / TP / WELL - 5559.GPJ - GINT US.GDT - 4/6/23						
GENER						

TEST PIT NUMBER TP-1

PAGE 1 OF 1

PROJ	ECT NUM	MBER <u>ES-5559</u>					PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17		COMP	LETED	10/24/17	GROUND ELEVATION
EXCA	VATION (CONTRACTOR N	W Ex	cavatin	g		LATITUDE LONGITUDE
LOGG	ED BY	CGH		CHEC	(ED BY	HTW	GROUND WATER LEVEL:
NOTE	S Depth	of Topsoil &Sod 1	"- 3":	grass			$ar{oxtime}$ at time of excavation
SURF	ACE CON	IDITIONS					AFTER EXCAVATION
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION
			Rock		0.5	Crushed Rock (Fill	,
			ML		1.0	Brown SILT, loose	•
5		MC = 7.4 Fines = 6.2 MC = 4.4	SP- SM				
		MC = 7.4			9.0	-increased cobbles	
		V - 1.4	,			Test pit terminated excavation. No ca	l at 9.0 feet below existing grade. No groundwater encountered during ving observed.

TEST PIT NUMBER TP-2

PAGE 1 OF 1

PROJI	ECT NUM	IBER ES-5559				PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17	с	OMPLETE	D 10/24/17	GROUND ELEVATION
EXCA	VATION (CONTRACTOR N	N Exca	vating		LATITUDE LONGITUDE
LOGG	ED BY _	CGH	c	HECKED F	BY HTW	GROUND WATER LEVEL:
NOTE	S Depth	of Topsoil & Sod 4	": brus	h		abla at time of excavation
SURF	ACE CON	IDITIONS				AFTER EXCAVATION
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS		GRAPHIC LOG		MATERIAL DESCRIPTION
				0.3		OIL (Fill), root intrusions to 7'
			Fill	1.0	Clean washed RC	. ,
 5		MC = 21.6	ML	5.0	Brown/tan sandy s	SILT, medium dense, moist aining 2'- 4'
		MC = 9.5	SP	6.5	Gray poorly grade	d SAND, medium dense to dense, moist
 			ML	8.0	,	d SAND with gravel, dense, moist
			SP	9.0	,, ,,	excavation activities
		MC = 4.8	<u>k</u>	19.0	Test pit terminated	d at 9.0 feet below existing grade. No groundwater seepage encountered Caving observed from 6.0 to 6.5 feet and 8.0 feet to BOH.

TEST PIT NUMBER TP-3

PAGE 1 OF 1

PROJE	ECT NUN	IBER <u>ES-5559</u>			PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17	(OMPL	ETED 10/24/17 GROUND ELEVATION
EXCA	VATION (CONTRACTOR N	W Exc	avatin <u>ç</u>	g LATITUDE LONGITUDE
					GROUND WATER LEVEL:
NOTES	S Depth	of Topsoil & Sod	18": br	ush	$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$
SURFA	ACE CON	IDITIONS			AFTER EXCAVATION
о ОЕРТН (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
			TPSL		Dark brown TOPSOIL (Fill), intrusions to 7'
				\bowtie	1.5
					Gray silty SAND with gravel, medium dense, moist (Fill)
					-clean washed rock ~4" thick
		MC = 8.9			-becomes brown dense
			SM		
5		MC = 8.1 Fines = 15.9			[USDA Classification: very gravelly loamy SAND]
					7.0
					Gray SILT with sand, medium dense, moist (Fill)
			ML		
		MC = 19.2			9.0 Test pit terminated at 9.0 feet below existing grade. No groundwater encountered during
					excavation. No caving observed

Earth Solutions NWLC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-4

EXCAN LOGG NOTES	VATION (ED BY _ S _Depth ACE CON	CONTRACTOR _N CGH n of Topsoil & Sod	NW Exc (2": bru	cavating CHECKI		LATITUDE LONGITUDE GROUND WATER LEVEL: AT TIME OF EXCAVATION	
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		
U					Brown silty SAND, loose to medium dense, moist (Fill)		
					-root intrusions to 9'		
			SM		-heavy perched groundwater seepage		
_ 5							
 		MC = 12.3		. <u></u>	Gray SILT with sand, loose to medium dense, wet (Fill) -trace organics -light iron oxide staining		
10		MC = 19.3	ML				
		MC = 22.1	ML	1	2.0 Brown sandy SILT, dense, moist -light iron oxide staining		
			***-				
15		MC = 27.4		1	5.0		
		VIIC - 21.4	J		Test pit terminated at 15.0 feet below existing grade. Groundwater encountered seep encountered at 4.0 feet during excavation. Caving observed from 0.0 to 9.0 feet.	age	

TEST PIT NUMBER TP-5

PAGE 1 OF 1

PROJ	ECT NUM	IBER ES-5559				PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17	(СОМРІ	_ETED <u>10/24/17</u>	GROUND ELEVATION
EXCA	VATION (CONTRACTOR N	N Exc	avatin	g	LATITUDE LONGITUDE
LOGG	ED BY	CGH	(CHECK	KED BY HTW	GROUND WATER LEVEL:
NOTE	S Depth	of Topsoil & Sod 1	2": br	ush		$ar{oxplus}$ at time of excavation
SURF	ACE CON	IDITIONS				AFTER EXCAVATION
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
			TPSL	7. 7.	Dark brown TOPS	OIL, root intrusions to 3'
 5		MC = 7.2	SM		Brown silty SAND -becomes tan, dar	, medium dense, moist mp to moist
		MC = 20.9			-becomes dense -light iron oxide sta -becomes gray, ve -moderate cement	
	,	MC = 12.4	,	1. 1 . 1		d at 9.5 feet below existing grade. No groundwater encountered during aving observed.

TEST PIT NUMBER TP-6

PAGE 1 OF 1

PROJE	ECT NUM	IBER <u>ES-5559</u>				PROJECT NAME Sunset Pointe	
DATE	STARTE	D 10/24/17	(COMPL	LETED _10/24/17	GROUND ELEVATION	
EXCA	/ATION (CONTRACTOR N	N Exc	avatin	g	LATITUDE	LONGITUDE
LOGG	ED BY _	CGH	(CHECK	KED BY _HTW	GROUND WATER LEVEL:	
NOTES	S Depth	of Topsoil & Sod 2	2"- 4":	grass		abla at time of excavation	ON
SURFA	ACE CON	IDITIONS				AFTER EXCAVATION _	
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIP	TION
					Brown silty SAND,	medium dense, moist (Fill)	
			SM		-root intrusions to	7'	
					2.5 Relic TOPSOIL Ho		
 5 		MC = 20.5 MC = 10.0	ML		Brown sandy SILT -minor brick debris -becomes gray 8.0	ed SAND, dense, moist	
10		MC = 31.7	SP		12.0 -becomes wet to s	aturated	
					excavation. No ca	d at 12.0 feet below existing grade. No ving observed.	groundwater encountered during

TEST PIT NUMBER TP-7

PAGE 1 OF 1

PROJECT NU	MBER ES-5559				PROJECT NAME Sunset Pointe
DATE START	ED 10/24/17	(СОМРІ	_ETED <u>10/24/17</u>	GROUND ELEVATION
EXCAVATION	CONTRACTOR N	W Exc	avatin	g	LATITUDE LONGITUDE
LOGGED BY	CGH	(CHECK	KED BY HTW	GROUND WATER LEVEL:
NOTES Dep	th of Topsoil & Sod 6	6"- 8":	brush		$ar{oxplus}$ at time of excavation
SURFACE CO	NDITIONS				AFTER EXCAVATION
O DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
		TPSL	7. 7.7		OIL, root intrusions to 7'
	MC = 9.5	SM		Brown silty SAND, -light to moderate -becomes gray, ve	· ·
	MC = 18.0			9.0 -becomes wet Test pit terminated excavation. No ca	d at 9.0 feet below existing grade. No groundwater encountered during living observed.

TEST PIT NUMBER TP-8

PAGE 1 OF 1

PROJI	ECT NUM	MBER ES-5559				PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17	(COMP	LETED 10/24/17	GROUND ELEVATION
EXCA	VATION (CONTRACTOR N	W Exc	cavatin	g	LATITUDE LONGITUDE
LOGG	ED BY _	CGH	(CHEC	KED BY HTW	GROUND WATER LEVEL:
NOTE	S Depth	of Topsoil & Sod	4": bru	sh		$oxtime ext{}^{owtie}$ at time of excavation
SURF	ACE CON	IDITIONS				AFTER EXCAVATION
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
			TPSL	71 1/2		OIL, root intrusions to 5'
		MC = 16.3				, medium dense, moist
5			SM		-becomes gray, de	ense
		MC = 17.8			8.0 Gray poorly grade	d SAND, dense, moist
			SP		Gray poorly grade	u Sand, uelise, ilioist
	,	MC = 3.2		1 - 1 - 1 -		d at 9.0 feet below existing grade. No groundwater encountered during aving observed.

TEST PIT NUMBER TP-9

PAGE 1 OF 1

PROJ	ECT NUM	IBER <u>ES-5559</u>			_	PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17	(COMP	LETED 10/24/17	GROUND ELEVATION
EXCA	VATION (CONTRACTOR N	W Exc	avatin	g	LATITUDE LONGITUDE
LOGG	SED BY _	CGH	(CHEC	KED BY HTW	GROUND WATER LEVEL:
NOTE	S Depth	of Topsoil & Sod 4	4": gra	SS		$ar{oxed}$ at time of excavation
SURFACE CONDITIONS						AFTER EXCAVATION
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
		1	TPSL	71 1	_{0.5} Dark brown TOPS	OIL, root intrusions to 3'
 _ 5		MC = 21.7 Fines = 81.2	ML		Brown SILT with sa [USDA Classificati -becomes gray -light iron oxide sta	•
		MC = 3.9	SP		6.5 Gray poorly graded	SAND, dense, moist
		\ NIC - 3.8	/		Test pit terminated excavation. No ca	at 6.5 feet below existing grade. No groundwater encountered during ving observed.

TEST PIT NUMBER TP-10

PAGE 1 OF 1

DATE STA EXCAVATI LOGGED E NOTES D	ON CONTRACTOR N	CON W Excava CHE ": grass	ating ECKED BY	_HTW		
O DEPTH (ft)	TESTS	U.S.C.S. GRAPHIC	F06		MATERIAL DESCRIPTION	
 - 5	MC = 12.4 MC = 18.7	SM TPSL	2.0	-root intrusions to	orizon , medium dense, moist	
	MC = 8.9		9.0	Test pit terminated excavation. No ca	d at 9.0 feet below existing grade. No groundwater encountered during aving observed.	J

TEST PIT NUMBER TP-11

PAGE 1 OF 1

PROJ	ECT NUM	IBER _ES-5559					PROJECT NAME Sunset Pointe		
DATE	STARTE	D 10/24/17	(COMPL	ETED _10/	/24/17	GROUND ELEVATION		
EXCA	VATION (CONTRACTOR N	W Exc	avatin	g		LATITUDE	LONGITUDE	
LOGG	ED BY	CGH	(CHECK	KED BY H	TW	GROUND WATER LEVEL:		
NOTE	S Depth	of Topsoil & Sod	6": gra	SS			abla at time of exc	CAVATION	
SURF	ACE CON	IDITIONS					AFTER EXCAVA	TION	
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DE	ESCRIPTION	
			TPSL	71 1/1			OIL, root intrusions to 4'		
						•	edium dense, moist		
5 10		MC = 21.1 MC = 20.1	SM		-int -be	termittent light i	ron oxide staining		
		MC = 16.0	,		Tes	st pit terminated cavation. No ca	l at 10.0 feet below existing graving observed.	ade. No groundwater encountered durir	ng

TEST PIT NUMBER TP-12

PAGE 1 OF 1

PROJ	ECT NUM	MBER ES-5559				PROJECT NAME Sunset Pointe
DATE	STARTE	D 10/24/17	(COMP	PLETED 10/24/17	GROUND ELEVATION
EXCA	VATION (CONTRACTOR N	W Exc	cavatir	ng	LATITUDE LONGITUDE
LOGG	ED BY _	CGH	(CHEC	KED BY HTW	GROUND WATER LEVEL:
NOTE	S Depth	of Topsoil & Sod 2	2": gra	SS		$ar{oxed}$ at time of excavation
SURF	ACE CON	NDITIONS				AFTER EXCAVATION
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
 5		MC = 15.2 Fines = 60.2	ML		Brown sandy SILT -root intrusions to -becomes gray [USDA Classification of the complex of the c	
	<u> </u>	MC = 17.3		1111		at 6.0 feet below existing grade. No groundwater encountered during ving observed.

TEST PIT NUMBER TP-13

PAGE 1 OF 1

PROJECT NU	MBER <u>ES-5559</u>				PROJECT NAME Sunset Pointe
DATE START	ED _10/24/17	(COMP	LETED 10/24/17	GROUND ELEVATION
EXCAVATION	CONTRACTOR N	W Exc	avatin	g	LATITUDE LONGITUDE
LOGGED BY	CGH	(CHEC	KED BY HTW	GROUND WATER LEVEL:
NOTES Dept	h of Topsoil & Sod 4	l": gra	ss		$ar{oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}}}$
SURFACE CO	NDITIONS				AFTER EXCAVATION
O DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
				Brown sandy SIL1	, loose to medium dense, moist
	MC = 27.3 MC = 23.9	ML		-becomes gray	
10	MC = 16.0	SP		10.0	d SAND with gravel, dense, wet
	10.0	•		Test pit terminate excavation. No ca	d at 10.0 feet below existing grade. No groundwater encountered during aving observed.

TEST PIT NUMBER TP-14

PAGE 1 OF 1

PROJ	ECT NUM	IBER ES-5559				PROJECT NAME Sunset Poin	te
DATE	STARTE	D 10/24/17	(COMPI	_ETED _10/24/17	GROUND ELEVATION	
EXCA	VATION (CONTRACTOR N	W Exc	cavatin			LONGITUDE
LOGG	ED BY	CGH	(CHEC	KED BY _HTW	GROUND WATER LEVEL:	
NOTE	S Depth	of Topsoil & Sod 6	6"- 8":	grass		abla at time of excav	/ATION
SURF	ACE CON	IDITIONS				AFTER EXCAVATION	ON
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESC	CRIPTION
			TPSL	7.7.7		IL, root intrusions to 3'	
 5 -		MC = 15.2	SM		-becomes gray, med		
		MC = 7.1	SP		7.0 Gray poorly graded	SAND, dense, moist	
_ 10 _		MC = 12.5	SM		Brown silty SAND, o	dense, moist	
		MC = 9.0		Militar	Test pit terminated	at 12.0 feet below existing grade	e. No groundwater encountered during
					excavation. No cav	ing observed.	_

Earth 153 Solutions Rec NWuc Tele

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-15

DATE	STARTE	D 10/24/17	(COMPLET	ED 10/24/17	GROUND ELEVATION
						LATITUDELONGITUDE
						GROUND WATER LEVEL:
	_					
J						
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION
						ID, loose, moist (Fill)
5		MC = 18.9			-trace to moderroot intrusions	ate organics throughout to 12'
10		MC = 91.3 Fines = 79.0	SM		[USDA Classific -becomes wet	cation: gravelly loamy coarse SAND]
15		√ MC = 28.6	ML	15.	₀ Gray sandy SIL	T, medium dense, moist
			_			ted at 16.0 feet below existing grade. No groundwater encountered during caving observed.

TEST PIT NUMBER TP-16

PAGE 1 OF 1

PROJECT	NUMBER ES-5559			GROUND ELEVATION LONGITUDE LONGITUDE GROUND WATER LEVEL: \[\sum_{\text{AT TIME OF EXCAVATION}} \]			
DATE STA	RTED 10/24/17	CON	IPLETED 10/24/17	GROUND ELEVATION			
EXCAVAT	ON CONTRACTOR N	W Excava	ting	LATITUDE LONGITUDE GROUND WATER LEVEL: AT TIME OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION Ty SAND, loose, wet			
LOGGED I	BY CGH	CHE	CKED BY HTW	GROUND ELEVATION LATITUDE LONGITUDE GROUND WATER LEVEL: AT TIME OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION SAND, loose, wet			
NOTES S	urface Conditions: brus	sh		GROUND ELEVATION LATITUDE LONGITUDE GROUND WATER LEVEL: AT TIME OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION SAND, loose, wet			
SURFACE	CONDITIONS			AFTER EXCAVATION			
O DEPTH (ft)	NOMBER TESTS	U.S.C.S. GRAPHIC					
	MC = 30.8 MC = 16.5	SM	-root intrusions to				
	MC = 7.9	<u> </u>	1.10.0	ed at 6.0 feet below existing grade. No groundwater encountered during			

excavation. No caving observed.

TEST PIT NUMBER TP-17

PAGE 1 OF 1

PROJ	ECT NUN	MBER <u>ES-5559</u>				PROJECT NAME Sunset Poi	nte		
DATE	STARTE	D 10/24/17		COMPLE	TED 10/24/17	GROUND ELEVATION			
EXCA	VATION	CONTRACTOR N	W Ex	cavating		GROUND ELEVATION LATITUDE LONGITUDE GROUND WATER LEVEL: AT TIME OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION ID, loose, wet (Fill)			
LOGG	ED BY _	CGH		CHECKE	D BY HTW	GROUND WATER LEVEL:			
NOTE	S Depth	n of Topsoil & Sod	4"։ brւ	ısh		GROUND ELEVATION LATITUDE LONGITUDE GROUND WATER LEVEL: AT TIME OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION AND, loose, wet (Fill)			
l						GROUND ELEVATION LATITUDE LONGITUDE GROUND WATER LEVEL: AT TIME OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION y SAND, loose, wet (Fill)			
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DES	SCRIPTION		
 5		MC = 24.1	SM	7.1	-root intrusions	to 7'			
		MC = 6.3	SM	7.	, ,	<u> </u>			
I			,		Test pit termina	ated at 7.5 feet below existing grade	 No groundwater encountered duri 	ina	

Test pit terminated at 7.5 feet below existing grade. No groundwater encountered during excavation. No caving observed.

TEST PIT NUMBER TP-18

PAGE 1 OF 1

PROJECT NUMBER ES-5559						PROJECT NAME Sunset Pointe				
DATE	STARTE	D 10/24/17		COMPI	LETED 10/24/17	GROUND ELEVATION				
EXCA	VATION	CONTRACTOR N	W Ex	cavatin	g	LATITUDE LONGITUDE				
LOGG	ED BY	CGH		CHECK	KED BY HTW	GROUND WATER LEVEL:				
NOTES Depth of Topsoil & Sod 2"- 3": brush						$ar{oldsymbol{ol}oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}}$				
SURF	ACE CON	NDITIONS				AFTER EXCAVATION				
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION				
		MC = 14.9	SM		,	, ,				
		MC = 6.3			Test pit terminated excavation. No car	at 6.0 feet below existing grade. No groundwater encountered during ving observed.				

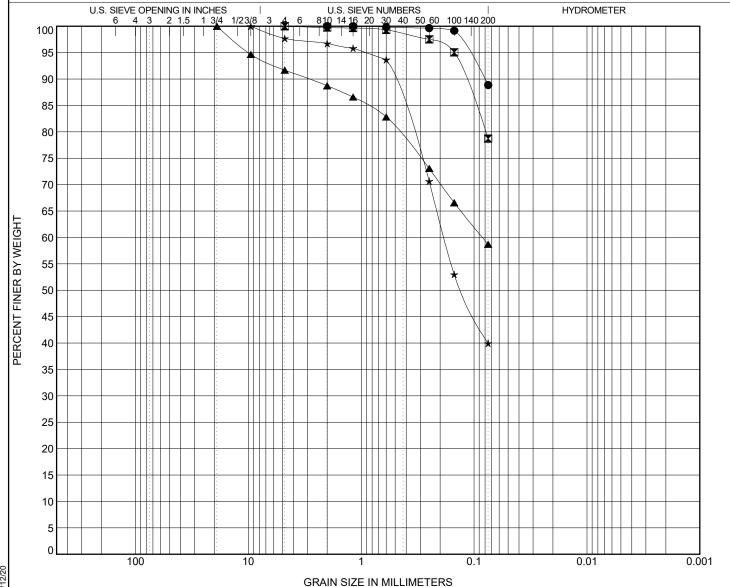
TEST PIT NUMBER TP-19

PAGE 1 OF 1

PROJ	ECT NUN	MBER <u>ES-5559</u>				PROJECT NAME Sunset Pointe					
DATE	STARTE	D 10/24/17	(OMPL	ETED 10/24/17	10/24/17 GROUND ELEVATION					
EXCA	VATION	CONTRACTOR N	W Exc	avating	9	LATITUDE	LONGITUDE				
LOGG	ED BY _	CGH	(CHECK	KED BY HTW	GROUND WATER LEVEL:					
NOTE	S Depth	of Topsoil & Sod	10": br	ush		$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$					
SURF	ACE CON	NDITIONS									
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DES	CRIPTION				
			TPSL	7 77 77 7	Dark brown TOPS	SOIL, root intrusions to 2'					
 5		MC = 13.0	SM		Gray silty SAND, -becomes dense	medium dense, moist					
		MC = 15.4	/	<u>1 14/14 . 1</u>	***		. No groundwater encountered during				

Appendix B Laboratory Test Results ES-5559

Earth Solutions NW_{LLC}


Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704

Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

PROJECT NUMBER ES-5559.03

CORRIES	GRA	VEL		SAND)	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

익ㄴ												
GINT US	Specimen Ide	entification		Classification								Cu
GPJ G	TP-201	4.00ft.		USDA: Tan Loam. USCS: ML.								
انیا	TP-201	8.00ft.		USDA: Gray Slightly Gravelly Loam. USCS: ML with Sand.								
NO A	TP-202	4.00ft.		USDA: Tan Slightly Gravelly Loam. USCS: Sandy ML.								
SUNSET	TP-202	8.00ft.		USDA: Gray Slightly Gravelly Fine Sandy Loam. USCS: SM.								
SUN												
5559.03	Specimen Ide	entification	D100	D60	D30	D10	LL PL PI %Silt					Clay
ES-55	TP-201	4.0ft.	2							88.9		
	TP-201	8.0ft.	4.75							78.7		
SIZE USDA	TP-202	4.0ft.	19	0.084						5	8.7	
N SIZ	TP-202	8.0ft.	9.5	0.184						3	9.9	
SRAIN ,			·								•	

Earth Solutions **NWite**

TP-104

TP-101

TP-101

TP-102

TP-102

TP-104

 \mathbf{x}

0

Specimen Identification

11.00ft.

10.0ft.

14.0ft.

3.0ft.

6.0ft.

11.0ft.

D100

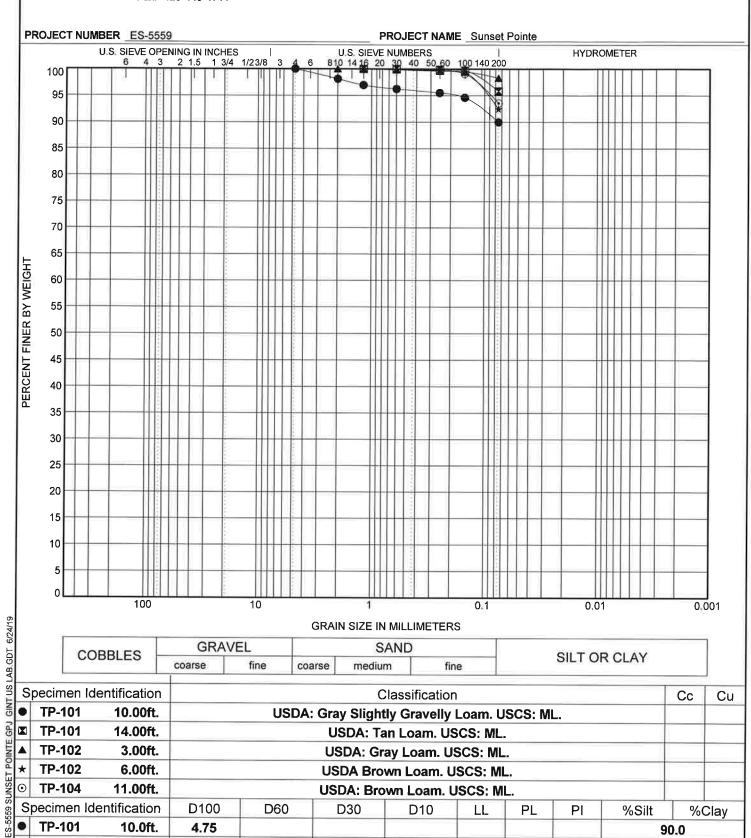
4.75

1.18

2

1.18

1.18


D60

D30

Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005

Telephone: 425-449-4704 Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

USDA: Brown Loam. USCS: ML.

D10

LL

PL

Ы

%Silt

90.0

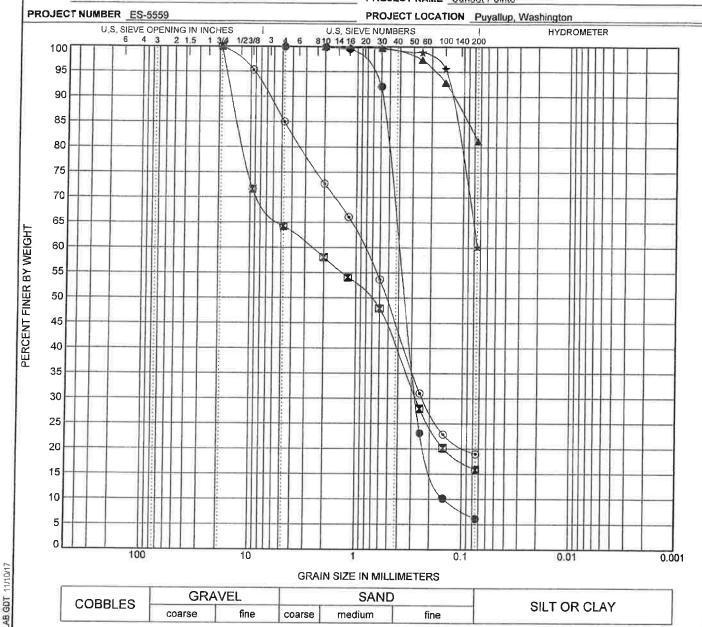
95.8

98.3

92.5

93.5

%Clay


Earth Solutions NWm

Earth Solutions NW, LLC 1805 - 136th PL N.E., Suite 201 Bellevue, WA 98005 Telephone: 425-449-4704 Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

CLIENT Peter Chen

PROJECT NAME Sunset Pointe

COBBLES	GRA	VEL		SAND		CUTODOLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

	Specimen Identification Classification										Сс	Cu	
0	TP-01	3.00ft.		USDA: Brown Slightly Gravelly Sand. USCS: SP-SM.									
I	TP-03	5.00ft.	US	USDA: Brown Very Gravelly Loamy Sand. USCS: SM with Gravel.									
A	TP-09	2.50ft.		USDA: Gray Loam. USCS: ML with Sand.									
*	TP-12	4.00ft.		USDA: Brown Loam. USCS: Sandy ML.									
0	TP-15	10.50ft.	USD	USDA: Brown Gravelly Loamy Coarse Sand. USCS: SM with Gravel.									
S	pecimen la	entification	D100	D60	D30	D10	LL	PL	PI	%Silt	%(Clay	
	TP-01	3.0ft.	4.75	0.399	0.273	0.146					6.2		
5 S	TP-03	5.0ft.	19	2.638	0.273					15.9			
	TP-09	2.5ft.	2							81.2			
*	TP-12	4.0ft.	2							60.2			
× ⊙	TP-15	10.5ft.	19	0.847	0.234					19.0			

Report Distribution

ES-5559

EMAIL ONLY Peter Chen

4709 Memory Lane West

University Place, Washington 98488

EMAIL ONLY CES NW, Inc.

429 – 29th Street Northeast, Suite D

Puyallup, Washington 98372

Attention: Fred Brown, P.E.

CRITICAL AREA ASSESSMENT

CRITICAL AREAS ASSESSMENT

SUNSET POINTE RESIDENTIAL COMMUNITY PARCELS 0420353026 and 0420353027 2100 - 19th Avenue SE, City of Puyallup, Washington

This report has been revised to incorporate review comments provided by the City of Puyallup Environmental Review Team

prepared for

Ms. Jennifer Caldwell, Senior Planner @ CES NW Inc. 310 - 29th Street NE, Suite 101 Puyallup, Washington 98372

prepared by

P.O. Box 1088
Puyallup, Washington 98371-1088
253-845-5119

January 19, 2018

REVISED SEPTEMBER 21, 2018

Table of Contents

INTRODUCTION	1
PROJECT SITE DESCRIPTION	1
BACKGROUND INFORMATION	2
NATIONAL WETLAND INVENTORY STATE OF WASHINGTON PRIORITY HABITATS AND SPECIES STATE OF WASHINGTON DEPARTMENT OF FISH AND WILDLIFE STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES CITY OF PUYALLUP MAPPING SOILS MAPPING	
ONSITE ANALYSIS	3
CRITERIA FOR CRITICAL AREAS IDENTIFICATION Wetlands Fish and Wildlife Habitat Areas STUDY METHODS FIELD OBSERVATION Onsite Plant Communities Hydrology Patterns Soils Wildlife	
CRITICAL AREAS DETERMINATION	9
WETLANDS Wetland D Wetland E FISH AND WILDLIFE HABITAT AREAS Stream B	1 <i>0</i> 1 <i>1</i> 11
INTENTIONALLY CREATED MAN-MADE FEATURES	12
EXCAVATED PONDS	12
SELECTED DEVELOPMENT ACTION	12
STANDARD OF CARE	13
FIGURES	14
REFERENCE AND BACKGROUND LIST	15
APPENDIX A – FIELD DATA FORMS	17
APPENDIX R - WETLAND RATING WORKSHEETS	18

INTRODUCTION

This document details the culmination of activities and onsite evaluations undertaken to complete a critical areas (i.e. wetlands, streams, fish and wildlife habitats) assessment for the proposed **Sunset Pointe Residential Community - Parcels 0420353026 and 0420353027 (project site).** Initial planning for this residential community also included two independent parcel to the north of 19th Avenue SE (Parcels 0420353009 and 0420157011). However, these two northern parcels have been removed for this residential community following a series of discussions with the City of Puyallup Environmental Review Team.

The project site was located at 2100 - 19th Avenue SE within the eastern portion of the City of Puyallup, Pierce County, Washington (part of Section 35, Township 20 North, Range 04 East, W.M.) (Figure 1). The evaluation and characterization of onsite and adjacent critical areas is a vital element in land use planning. The goal of this approach is to ensure that present and future proposed planned site development, to include the establishment of protective buffers, does not result in adverse environmental impacts to identified critical areas, their associated buffer, or adversely impact local water quality.

The assessment and delineation of specific critical areas within and immediately adjacent to the project site followed the methods and procedures defined in the *Corps of Engineers Wetland Delineation Manual* (United States Army Corps of Engineers, 1987) with the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region* (United States Army Corps of Engineers, 2010); the Washington State *Wetland Rating System for Western Washington* (Hruby, 2014), the State of Washington Department of Natural Resources (WDNR) Forest Practice Rules (WAC 222-16-030), and the City of Puyallup Chapter 21. This document was designed to accommodate site planning and potential regulatory actions and is suitable for submittal to federal, state, and local authorities for potential critical areas verification and permitting actions.

PROJECT SITE DESCRIPTION

The project site was irregular in shape and approximately 9.45-acres in size. The project site was accessed along the northwestern boundary via 19th Avenue SE. The project site was surrounded by existing development to the west, east, and south. A vacant parcel was located to the north. The project site had undergone a number of land use manipulations over the past several decades. These manipulations have included forest harvest; clearing and grading; excavation, creation, and maintenance of a series of ornamental ponds; the development and management of pastures; perimeter and internal fencing; the development of internal roadways; the development and demolition of prior homesites and associated outbuildings, the development of a new single-family home; the manipulation of seasonal surface water runoff within the watershed; and the development of adjacent parcels and public roadways.

Legal Description - Parcel 0420353026: Section 35 Township 20 Range 04 Quarter 33: PARCEL `C` 0F DBLR 95-07-17-0491 DESC AS FOLL COM AT SW COR OF SW TH N ALG W LI SD SW 1387.82 FT TO NW COR OF SW OF SW TH E ALG N LI SD SUBD 1260.60 FT TO POB TH CONT E 81.25 FT TH S 51 DEG 21 MIN 11 SEC E

Legal Description - Parcel 0420353027: Section 35 Township 20 Range 04 Quarter 34: PARCEL `D` OF DBLR 95-05-17-0491 DESC AS FOLL COM AT SW COR OF SW TH E ALG S LI SD SW 1974.60 FT TH N 01 DEG 06 MIN 54 SEC W 615.92 FT TO POB TH N 87 DEG 01 MIN 41 SEC W 292.30 FT TH N 61 DEG 33 MIN 32 SEC W 4

Directions to Project Site: From Meridian Avenue South through the center of the City of Puyallup turn east onto 23rd Avenue SE. Continue easterly on 23rd Avenue SE to 19th Street SE. Turn north onto 19rd Street SE and continue to 21st Avenue SE. Turn east onto 21st Avenue SE and continue to 2100 - 21st Avenue SE (project site).

BACKGROUND INFORMATION

NATIONAL WETLAND INVENTORY

The National Wetland Inventory (NWI) Mapping completed by the U.S. Fish and Wildlife Service was reviewed as a part of this assessment. This mapping resource identified an excavated pond within the central portion of the project site. This excavated pond was identified as palustrine, unconsolidated bottom, permanently flooded, excavated (PUBHx) (Figure 2). This mapping resource also identified an excavated pond directly to the south of the southwestern corner of the project site. The adjacent excavated pond to the south was identified as palustrine, unconsolidated bottom, permanently flooded, excavated (PUBHx).

STATE OF WASHINGTON PRIORITY HABITATS AND SPECIES

The State of Washington *Priority Habitats and Species (PHS) Mapping* was reviewed as a part of this assessment (Figure 3). This mapping resource did not identify any priority habitats or species within or immediately adjacent to the project site. This mapping resource did identify an offsite wetland to the southwest of the project site separated by existing residential development.

STATE OF WASHINGTON DEPARTMENT OF FISH AND WILDLIFE

The State of Washington Department of Fish and Wildlife (WDFW) SalmonScape Mapping was reviewed as a part of this assessment (Figure 4). This mapping resource did not identify any drainage corridors within or immediately adjacent to the project site.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

The State of Washington Department of Natural Resources (WDNR) *Water Type Mapping* was reviewed as a part of this assessment (Figure 5). This mapping resource did not identify any wetlands or drainage corridors within or immediately adjacent to the project site.

CITY OF PUYALLUP MAPPING

The City of Puyallup *Inventory Mapping* was reviewed as a part of this assessment (Figure 6). This mapping resource identified a stream entering the southwestern portion of the project site. This stream then crossed through the project site to the east/northeast existing along the eastern boundary of the project site. This mapping resource also noted an offsite wetland to the west of 21st Avenue SE to the west of the project site.

SOILS MAPPING

The soil mapping prepared by the *Natural Resource Conservation Service* was reviewed as a part of this assessment (Figure 5). This mapping resource identified the northern portion of the project site was dominated by Kitsap silt loam (#20B and #20C). The Kitsap soil series consists of moderately well drained soil that formed in glacial lake sediments on remnant terraces along Puget Sound. This mapping resource also identified the southern portion of the project site to contain Everett gravelly sandy loam (#13C). The Everett soil series is noted as somewhat excessively drained and formed in gravelly glacial outwash. The Everett soil series is not listed as a "hydric" soil.

ONSITE ANALYSIS

CRITERIA FOR CRITICAL AREAS IDENTIFICATION

The City of Puyallup defines "critical areas" to include wetlands, fish and wildlife habitat areas, critical aquifer recharge areas, geologically hazardous areas, and frequently flooded areas. The critical areas assessment reported in this document has been limited to address wetlands and fish and wildlife habitat areas.

Wetlands: The City of Puyallup has defined "wetlands" as areas that are inundated or saturated by surface water or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas. Wetlands do not include those artificial wetlands intentionally created from nonwetland sites, including, but not limited to, irrigation and drainage ditches, grass-lined swales, canals, detention facilities, retention facilities, wastewater treatment facilities, farm ponds, and landscape amenities, or those wetlands created after July 1, 1990, that were unintentionally created as a result of the construction of a road, street, or highway.

Wetlands exhibit three essential characteristics, all of which must be present for an area to meet the established criteria (United States Army Corps of Engineers, 1987 and United States Army Corps of Engineers, 2010). These essential characteristics are:

- 1. Hydrophytic Vegetation: The assemblage of macrophytes that occurs in areas where inundation or soil saturation is either permanent or of sufficient frequency and duration to influence plan occurrence. Hydrophytic vegetation is present when the plant community is dominated by species that require or can tolerate prolonged inundation or soil saturation during the growing season.
- 2. Hydric Soil: A soil that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper parts. Most hydric soils exhibit characteristic morphologies that result from repented periods of saturation or inundation. These processes result in distinctive characteristics that persist in the soil during both wet and dry periods.
- 3. Wetland Hydrology: Permanent or periodic inundation, or surface soil saturation, at least seasonally. Wetland hydrology indicators are used in combination with indicators of hydric soil and hydrophytic vegetation to define the area. Wetland hydrology indications provide evidence that the site has a continuing wetland hydrology regime. Where hydrology has not been altered vegetation and soils provide strong evidence that wetland hydrology is present.

Fish and Wildlife Habitat Areas: The City of Puyallup has defined "fish and wildlife habitat areas" to include those areas necessary for maintaining species in suitable habitats within their natural geographic distribution so that isolated subpopulations are not created as designated by WAC 365-190-080. These areas include:

- (a) Areas with which state or federally designated endangered, threatened, and sensitive species have a primary association;
- (b) Habitats of local importance, including but not limited to areas designated as priority habitat by the Department of Fish and Wildlife;
- (c) Streams and surface waters within the jurisdiction of the state of Washington; and

(d) Land essential for preserving connections between habitats and open spaces.

STUDY METHODS

Habitat Technologies completed a series of onsite assessments from September through early December 2017. In addition, Habitat Technologies has completed similar assessments for parcels located within the general area of the project site over the past several decades. The objective of this evaluation was to define and delineate potential critical areas (wetlands; drainage corridors; and fish and wildlife habitats) that may be present within or immediately adjacent to the project area. Onsite activities were completed in accordance with criteria and procedures established in the *Corps of Engineers Wetland Delineation Manual* (United States Army Corps of Engineers, 1987) with the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region* (United States Army Corps of Engineers, 2010); the Washington State *Wetland Rating System for Western Washington* (Hruby, 2014), the State of Washington Department of Natural Resources (WDNR) Forest Practice Rules (WAC 222-16-030), and the City of Puyallup Chapter 21.

FIELD OBSERVATION

The project site was accessed via 19th Street SE along the northwestern boundary of the project site. The project site had historically been managed as a single-family home associated with the production of livestock and for the production of hay crops. These activities appeared to have stopped around 2008. The phased demolition of the historic single-family home and associated outbuildings appeared to have begun in 2011. A new single-family home appeared to have been constructed in 2014 and was located at 2100 - 19th Avenue SE (along the western boundary of the project site).

The project site had undergone a number of land use manipulations over the past several decades. These manipulations have included forest harvest; clearing and grading; excavation, creation, and maintenance of a series of ornamental ponds; the development and management of pastures; perimeter and internal fencing; the development of internal roadways; the development and demolition of prior homesites and associated outbuildings, the development of a new single-family home; the manipulation of seasonal surface water runoff within the watershed; and the development of adjacent parcels and public roadways.

The project site was generally slightly sloped to the north/northeast. A ravine crossed through the site from the western boundary to the eastern boundary. This ravine was identified to contain a seasonal stream that originated offsite to the south. Onsite this ravine had undergone prior development actions to include the excavation and creation of three (3) ornamental ponds. These ponds appeared to have been created through the excavation of material within the ravine and through the placement of material to establish two (2) internal roadways corridors crossing the ravine generally north to south. Hydrology

control structures and culverts had been installed to intentionally control surface water ponding within these ornamental features.

Onsite Plant Communities

The plant communities throughout the entire project site had been altered by prior and ongoing land use actions. The plant community within the very southwestern portion of the project site adjacent with the drainage corridor was dominated by a mixed forest that included a number of mature trees. Observed tree species included Douglas fir (Pseudotsuga menziesii), Western red cedar (Thuja plicata), big leaf maple (Acer macrophyllum), red alder (Alnus rubra), Western hemlock (Tsuga heterophylla), Hawthorne (Crataegus monogyna), and black cottonwood (Populus trichocarpa). The understory within this forested area included hazelnut (Corylus cornuta), vine maple (Acer circinatum), Scot's broom (Cytisus scoparius), Himalayan blackberry (Rubus procera), evergreen blackberry (Rubus laciniatus), trailing blackberry (Rubus ursinus), Oregon grape (Berberis nervosa and Berberis aquifolium), snowberry (Symphoricarpus albus), salmonberry (Rubus spectabilis), wild rose (Rosa gymnocarpa), Indian plum (Oemleria cerasiformis), sword fern (Polystichum munitum), bracken fern (Pteridium aquilium), salal (Gaultheria shallon), holly (Ilex spp.), Pacific red elderberry (Sambucus racemosa), geranium (Geranium spp.), smooth cats ear (Hypochaeris glabra), nettle (Urtica dioica), and buttercup (Ranunculus repens). This plant community was identified as nonhydrophytic in character (i.e. typical of non-wetlands).

The plant community associated with the drainage corridor and intentionally excavated ornamental ponds within the southern portion of the project site included a mixture of mature trees, dense shrubs, grasses, herbs, and aquatic plants. Observed species included red alder, Western red cedar, black cottonwood, salmonberry, Douglas spiraea (Spiraea douglasii), red osier dogwood (Cornus stolonifera), twinberry (Lonicera involucrata), nettle, buttercup, skunk cabbage (Lysichitum americanum), softrush (Juncus effusus), slough sedge (Carex obnupta), reed canarygrass (Phalaris arundinacea), reed managrass (Glyceria grandis), common cattail (Typha latifolia), water parsley (Oenanthe sarmentosa), speedwell (Veronica spp.), lady fern (Athyrium filix-femina), small fruited bulrush (Scirpus microcarpus), and horsetail (Equisetum spp.). This plant community appeared to have formed following the creation of the three (3) excavated ponds within the drainage corridor. This plant community was identified as hydrophytic in character (i.e. typical of wetlands).

Hydrology Patterns

Onsite hydrology appeared to be the result of seasonal stormwater runoff from onsite and offsite areas, concentration of surface flows within identified drainage corridor, and the series of onsite hillside seeps. The majority of the project site appeared to drain moderately well and did not exhibit field indicators associated with the movement of seasonal surface water runoff.

A surface water drainage corridor was identified entering near the southwestern corner of the project site. This drainage corridor extended through the project site generally to the east/northeast within a well-defined ravine. This ravine had undergone prior development actions to include the intentional creation of three (3) excavated ornamental ponds. These ornamental ponds appeared to have been created through the excavation of material within the ravine and through the placement of material to establish two (2) internal roadways corridors crossing the ravine generally north to south. Hydrology control structures and culverts had been installed to intentionally control surface water ponding within these ornamental features. At the property boundary the surface water within this drainage corridor was captured within a buried drainage system installed as a part of the development of the adjacent residential community. This drainage appeared to be an eventual tributary to the Deer Creek System located well offsite to the northeast. The lower reaches of Deer Creek well offsite have been identified to meet the criteria for designation as a City of Puyallup Category II Stream with salmonids.

Soils

As documented at several sample plots the project site was dominated by soil that exhibited a silty loam texture and coloration typical of the Kitsap soil series. The majority of the onsite soil appeared to drain moderately well and did not exhibit prominent redoximorphic features. In addition, prior land use actions appeared to have dramatically altered the surface soil profile. Within many areas the surface soil appeared to have been removed by prior grading. Throughout the project site the surface soil had been compacted by the historic livestock usage.

A drainage corridor was identified entering the project site near the southwestern boundary and continued through the project site through a series of intentionally excavated ornamental ponds to the eastern boundary. The surface soil within these intentionally excavated ponds was black to very dark gray (10YR 2/1 to 10YR 3/1) to a depth of 8 to 20 inches. The subsoil to a depth of 20 to 24 inches was very dark gray to gray (10YR 3/1 to 10YR 4/2) and exhibited prominent redoximorphic features and oxidized root channels. The soil within these intentionally excavated ponds exhibited a surface layer of generally soft captured alluvial sandy silty loam to silty loam with a high organic content as a result of intentionally ponded seasonal surface water.

Wildlife

Wildlife species observed onsite, observed within the general area during prior assessments, and that would be reasonably expected to utilize the habitats provided within or adjacent to the project site would include red tailed hawk (*Buteo jamaicensis*), great blue heron (*Ardea herodias*), American crow (*Corvus brachynchos*), American robin (*Turdus migratorius*), black capped chickadee (*Parus atricapillus*), dark eyed junco (*Junco hyemalis*), rufous hummingbird (*Selasphorus rufus*), merlin (*Falco columbarius*), pileated

woodpecker (Dryocopus pileatus), rock dove (Columbia livia), evening grosbeak (Hesperiphona vespertina), black-headed grosbeak (Pheucticus melanocephalus), mourning dove (Zenaida macroura), red winged blackbird (Agelaius phoenisues), brewers blackbird (Euphagus cyanocephalus), golden crowned sparrow (Zonotrichia atricapilla), song sparrow (Melospiza melodia), white crowned sparrow (Zonotrichia leucophrys), house sparrow, house finch (Carpodacus mexicanus), starling (Sturnus vulgaris), American goldfinch (Carduelis tristis), purple finch (Carpodacus purpureus), violet green swallow (Tachycineta thallassina), tree swallow (Tachycineta bicolor), barn swallow (Hirundo rustica), song sparrow (Melospiza melodia), Steller's jay (Cyanocitta stelleri), starling (Sturnus vulgaris), black capped chickadee (Parus atricapillus), Northern flicker (Colaptes auratus), house sparrow (Passer domesticus), rufous-sided towhee (Pipilo erythrophthalmus), American goldfinch (Carduelis tristis), marsh wren (Cistothorus palustirs), killdeer (Charadrius vociferus), common mallard (Anas platyrhynchos), Canadian goose (Branta canadensis), black tailed deer (Odocoileus hemionus), coyote (Canis latrans), raccoon (Procyon lotor), striped skunk (Mephitis mephitis), opossum (Didelphis virginianus), eastern gray squirrel (Sciurus carolinensis), deer mouse (Peromyscus maniculatus), shrew (Sorex spp.), Townsend mole (Scapanus townsendii), voles (Microtus spp.), Norway rat (Rattus norvegicus), bats (Myotis spp.), common garter snake (Thamnophis sirtalis).

The project site provided suitable spawning and rearing habitats for Pacific treefrog (*Hyla regilla*), red-legged frog (*Rana aurora*), and salamander (*Ambystoma* spp). Common garter snake (*Thamnophis sirtalis*) was also present across the project site.

The project site did **not** provide direct habitats for fish species.

Wildlife Movement Corridors: The project site was within a well urbanized area. As identified by onsite wildlife trials, small and medium sized mammals appeared to be moving throughout the project site. The project site is also within the general area of the migratory movement of passerine birds.

State Priority Species: Several species identified by the State of Washington as "Priority Species" were observed onsite or potentially may utilize the project site. Priority species require protective measures for their survival due to their population status, sensitivity to habitat alteration, and/or recreational, commercial, or tribal importance.

Game Species: "Game species" are regulated by the State of Washington through recreational hunting bag limits, harvest seasons, and harvest area restrictions. Observed or documented "game species" within and adjacent to the project site included black tailed deer, common mallard, Canada goose, and mourning dove.

State Monitored: State Monitored species are native to Washington but require habitat that has limited availability, are indicators of environmental quality, require further assessment, have unresolved taxonomy, may be competing with other species of concern, or have significant popular appeal. One State Monitored

species – great blue heron - was observed within the excavated pond in the southern portion of the project site.

State Candidate: State Candidate species are presently under review by the State of Washington Department of Fish and Wildlife (WDFW) for possible listing as endangered, threatened, or sensitive. One State Candidate species - pileated woodpecker – was not observed to use the habitats associated with the project site but has been identified during prior assessments to use the habitats associated with Wildwood Park located offsite to the west.

State Sensitive: State Sensitive species are native to Washington and is vulnerable to declining and is likely to become endangered or threatened throughout a significant portion of its range without cooperative management or removal of threats. No State Sensitive species were observed or have been documented to use the habitats associated with the project site.

State Threatened: State Threatened species means any wildlife species native to the state of Washington that is likely to become an endangered species within the foreseeable future throughout a significant portion of its range within the state without cooperative management or removal of threats. The project site did not appear and has not been documented to provide direct critical habitats for State Listed Threatened species.

State Endangered: State endangered species means any species native to the state of Washington that is seriously threatened with extinction throughout all or a significant portion of its range within the state. The project site did not appear and has not been documented to provide direct critical habitats for State Listed Endangered species.

Federally Listed Species: The project site has not been documented to provide critical habitats for federally listed Endangered, Threatened, or Sensitive species. A single, federally listed species of concern – bald eagle – has been documented to use the offsite habitats associated with the Puyallup River Corridor and the Clarks Creek Corridor.

CRITICAL AREAS DETERMINATION

WETLANDS

Wetland determination was based on observations of hydrophytic vegetation, hydric soils, and wetland hydrology in accordance with the *Corps of Engineers Wetland Delineation Manual* (United States Army Corps of Engineers, 1987) with the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region* (United States Army Corps of Engineers, 2010). Based on these methods

no area within the project site was identified within the project site to exhibit all three of the established wetland criteria. Two (2) areas within the vicinity of the project site were identified to exhibit all three of the established wetland criteria.

WETLAND	CLASSIFICATION (USFWS)	CITY OF PUYALLUP CATEGORY	WDOE RATING SCORE	WDOE HABITAT SCORE	BUFFER WIDTH (High Intensity)
D	PFOEx/PSSEx	III	17	6	150 feet
E	PSSE/PEME	III	16	5	150 feet

Wetland D: Wetland D was identified offsite to the north of the eastern portion of the of the project site. This wetland was within a ravine associated with hillside seeps and a seasonal surface water drainage corridor. Hydrology for this wetland appeared to be provided primarily by the hillside seeps and seasonal surface water runoff from the local area. Wetland D had undergone prior land use manipulations to include clearing, grading, the intentional excavation of small livestock ponds, the installation of culverts, and the creation of internal roadways. Wetland D was dominated by a mixed forest plant community. The understory was limited as a result of the prior livestock grazing. The movement of surface water through this wetland was intermittent and controlled in part by prior ditch excavation. However, this movement did not form a continuous defined channel or swale. Surface flow within Wetland D was captured along the eastern parcel boundary and conveyed offsite via a buried storm drainage system.

Wetland D met the U.S. Fish and Wildlife Service (USFWS) criteria for classification as palustrine, forested, seasonally flooded/saturated, excavated (PFOEx); and palustrine, scrub-shrub, seasonally flooded/saturated, excavated (PEMEx). Following a series of discussions with City of Puyallup Environmental Review Team Wetland D was best defined to meet the criteria for designation as a City of Puyallup Category III Wetland. Wetland D achieved a total functions score of 17 points utilizing the Washington State Department of Ecology (WDOE) Wetland Rating Form for Western Washington (Hruby 2014) (Appendix B).

Wetland E: Wetland E was identified offsite to the north of the western portion of the project site within a swale adjacent to 21st Street SE. Hydrology appeared provided primarily from hillside seeps and seasonal sheetflow from adjacent upland areas. Wetland E was dominated by blackberries and included areas of buttercup, slough sedge, soft rush, and reed canary grass. Wetland E had undergone prior land use manipulations associated with livestock usage. The development of 21st Street SE also appeared to have been completed without the placement of a culvert to allow for the movement of seasonal surface water runoff to the northwest as existing topography would suggest.

This wetland met the USFWS criteria for classification as palustrine, emergent, seasonally flooded/saturated (PEME). Following a series of discussions with City of Puyallup Environmental Review Team Wetland E appeared best defined to meet the criteria for designation as a City of Puyallup Category III Wetland. Wetland E achieved a total functions score of 16 points utilizing the WDOE Wetland Rating Form for Western Washington (Hruby 2014) (Appendix B).

FISH AND WILDLIFE HABITAT AREAS

This onsite assessment and discussions with the City of Puyallup Environmental Review Team identified two (2) City of Puyallup designated "fish and wildlife habitat areas." These areas were identified within and immediately adjacent to the project site and were defined as "streams" within the jurisdiction of the State of Washington. No state or federally designated endangered, threatened, and sensitive species have been documented to have a primary association within the habitats onsite; no portion of the project site has been defined as a "habitat of local importance;" and no lands essential for preserving connections between habitats and open spaces have been identified or documented within the project site.

Stream A: Stream A was identified entering near the southwestern corner of the project site. This drainage corridor extended through the project site generally to the east/northeast within a well-defined ravine. This ravine had undergone prior development actions to include the intentional creation of three (3) excavated ornamental ponds. These ornamental ponds appeared to have been created through the excavation of material within the ravine and through the placement of material to establish two (2) internal roadways corridors crossing the ravine generally north to south. Hydrology control structures and culverts had been installed to intentionally control surface water ponding within these ornamental features. At the property boundary the surface water within this drainage corridor was captured within a buried drainage system installed as a part of the development of the adjacent residential community. This drainage appeared to be an eventual tributary to the Deer Creek System located well offsite to the northeast.

As discussed with the City of Puyallup Environmental Review Team Stream A meet the criteria for designation as a City of Puyallup Type III Stream within the project site. A Type III Stream is defined to exhibit perennial or intermittent flow and as not used by anadromous fish. The standard buffer for a Type III Stream is 50 feet in width as measured perpendicular from the ordinary high water mark (OHWM).

Stream B: Stream B was identified offsite to the north of the eastern portion of project site and as associated with offsite Wetland D. This stream commenced from a series of hillside seeps then flowed generally to the north/northeast. Hydrology was collected in a drainage system along the western boundary of the adjacent housing development. Further to the north, hydrology appeared to infiltrate within the historic pasture area. Stream B had undergone prior development activities to include to creation of excavated livestock ponds, ditching, internal road crossing, and culvert installation within the project site.

Stream B appeared to meet the criteria for designation as a City of Puyallup Type III Stream. A Type III Stream is defined to exhibit perennial or intermittent flow and as not used by anadromous fish. The standard buffer for a Type III Stream is 50 feet in width as measured perpendicular from the OHWM.

INTENTIONALLY CREATED MAN-MADE FEATURES

EXCAVATED PONDS

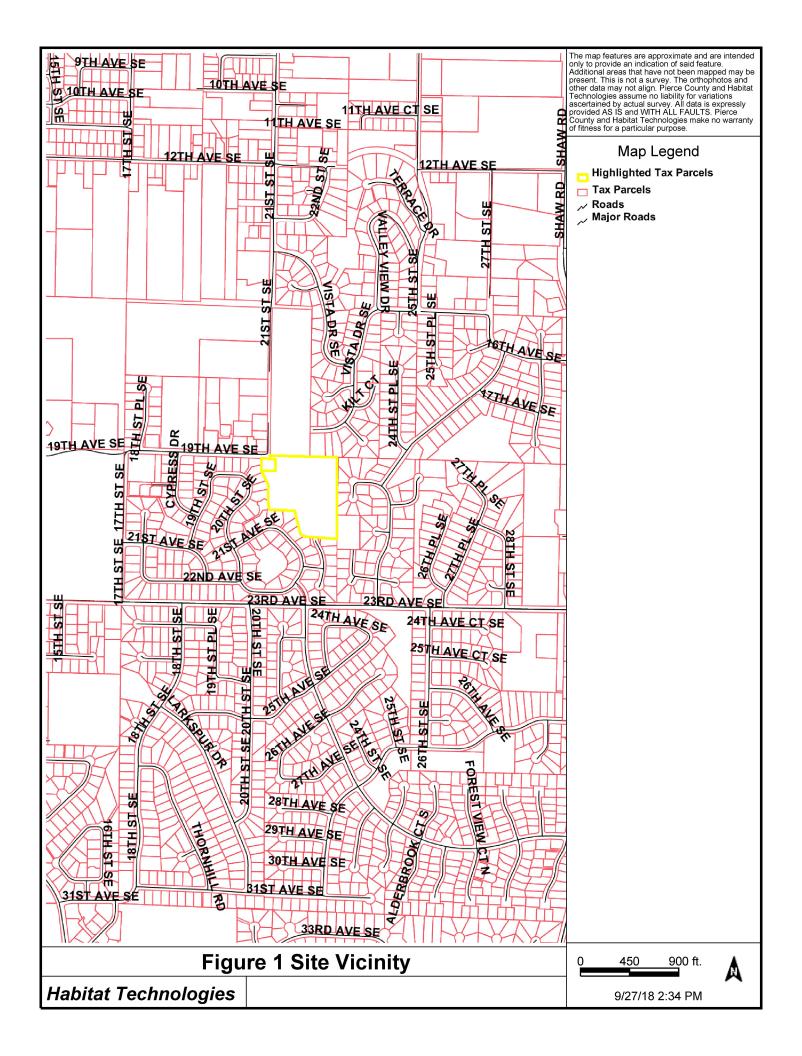
Three intentionally excavated ponds were identified associated with Stream A in the southern portion of the project site. These excavated ponds had been created in a topographic ravine that contained Stream A which entered the site near the southwestern boundary and continued through the site generally to the east/northeast. These ponds appeared best defined as intentionally created through the excavation of material within the Stream A ravine and through the placement of material to establish two (2) internal roadways corridors crossing the ravine generally north to south. Hydrology control structures and culverts had also been installed and maintained to provide hydrology within the ponds and to control seasonal high storage levels. These excavated ponds had been historically created as a part of the site development activities associated with the use by livestock and irrigation of the project site.

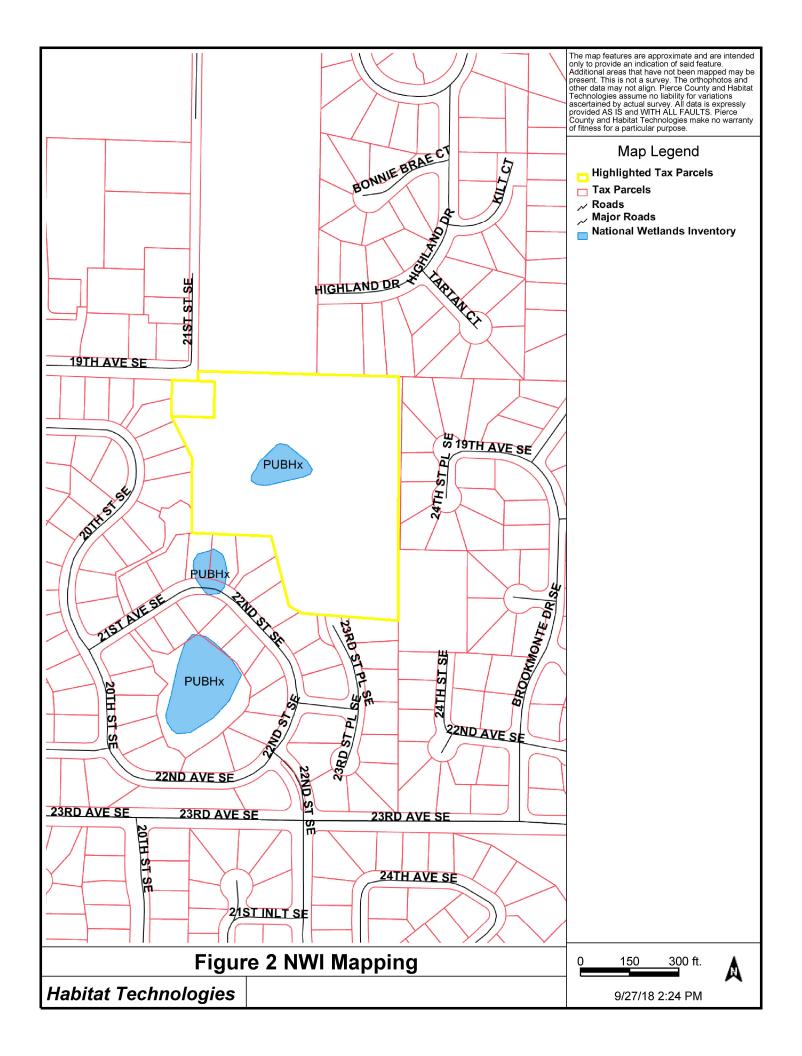
These intentionally excavated ponds appeared to meet the criteria within the City of Puyallup Title 21.06.210 Definitions section:

(21.06.210.75) "Intentionally created wetland or surface water systems" means wetlands or surface water systems created through purposeful human action, such as irrigation and drainage ditches, grass-lined swales, canals, farm ponds, detention/retention facilities, and landscape/ornamental amenities. Purposeful creation must be demonstrated through documentation, photographs, statements and/or other evidence. Intentionally created wetlands or surface water systems do not include areas or systems created as mitigation.

SELECTED DEVELOPMENT ACTION

The Selected Development Action for the project site for the project site focuses on the creation of a number of new parcels suitable for single-family homesite development. The final creation of new homesite parcels would be consistent with the City of Puyallup Comprehensive Plan, local zoning, and the City's Critical Areas Ordinance. As presently identified within the initial site plan and as discussed with the City of Puyallup Environmental Review Team, the final site plan would establish a protective stream buffer as measured from the top edge of the excavated ponds associated with Stream A within the project site. Protective buffers associated with Wetlands D and E located offsite to the north would not be expected to encroach into the project site. The proposed development of this residential community would avoid potential adverse impacts to identified streams and wetlands within the project site and adjacent area.


STANDARD OF CARE


This document has been completed by Habitat Technologies for use by **CES NW Inc**. Prior to extensive site planning the findings documented in this document should be reviewed and verified by the City of Puyallup. Habitat Technologies has provided professional services that are in accordance with the degree of care and skill generally accepted in the nature of the work accomplished. No other warranties are expressed or implied. Habitat Technologies is not responsible for design costs incurred before this document is approved by the appropriate resource and permitting agencies.

Bryan W. Peck

Bryan W. Peck Wetland Biologist Thomas D. Deming Thomas D. Deming, PWS Habitat Technologies

FIGURES

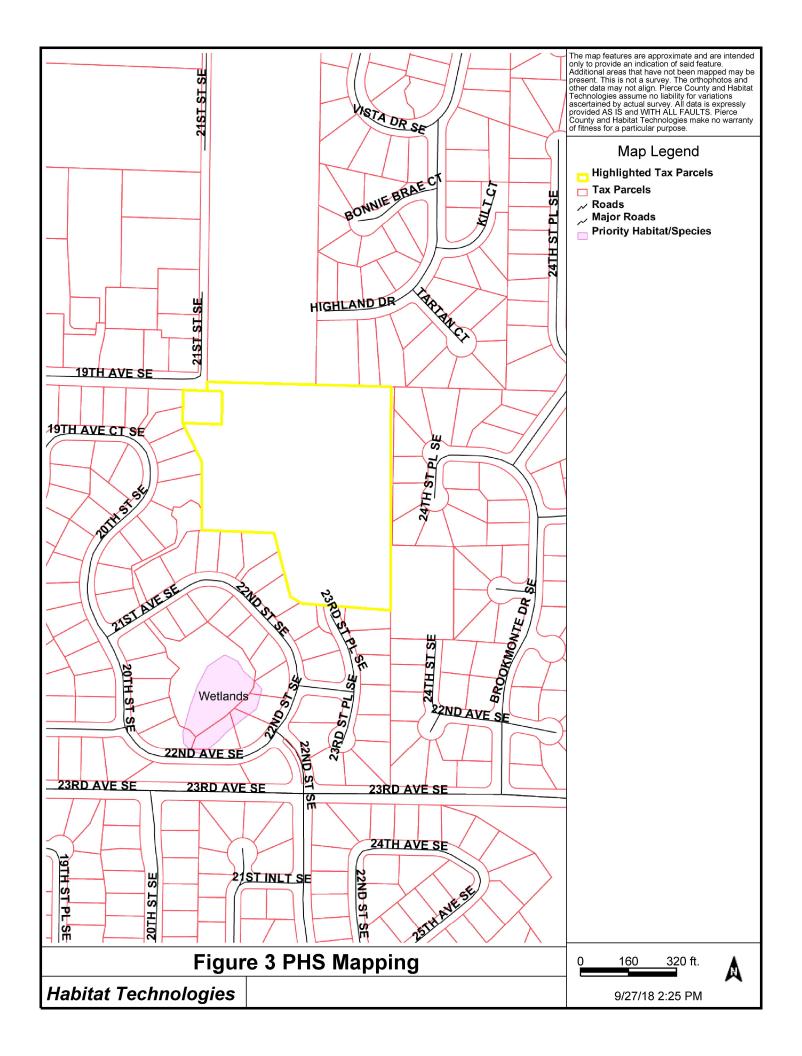
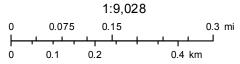
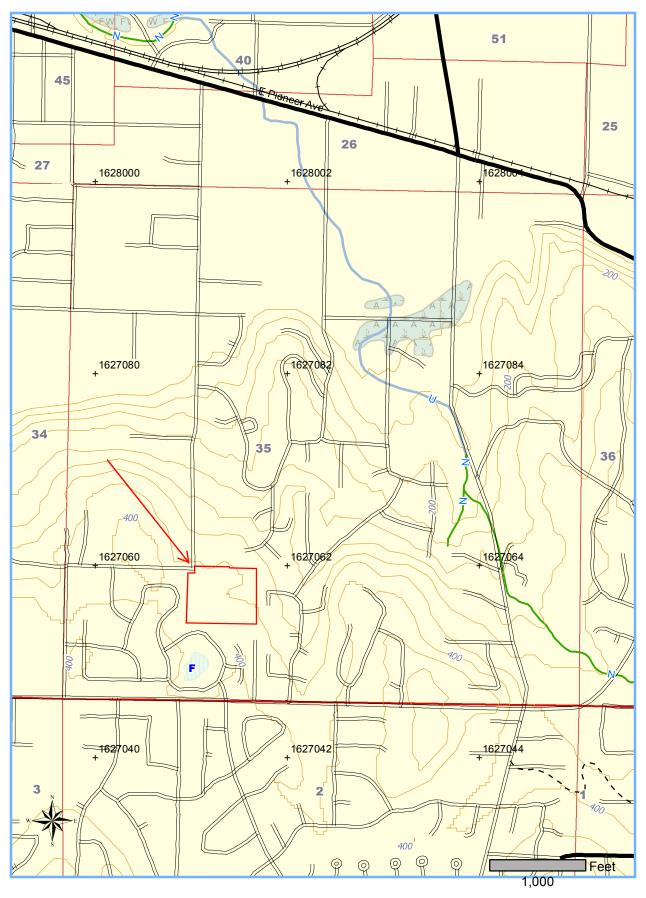



Figure 4 WDFW Mapping

September 27, 2018

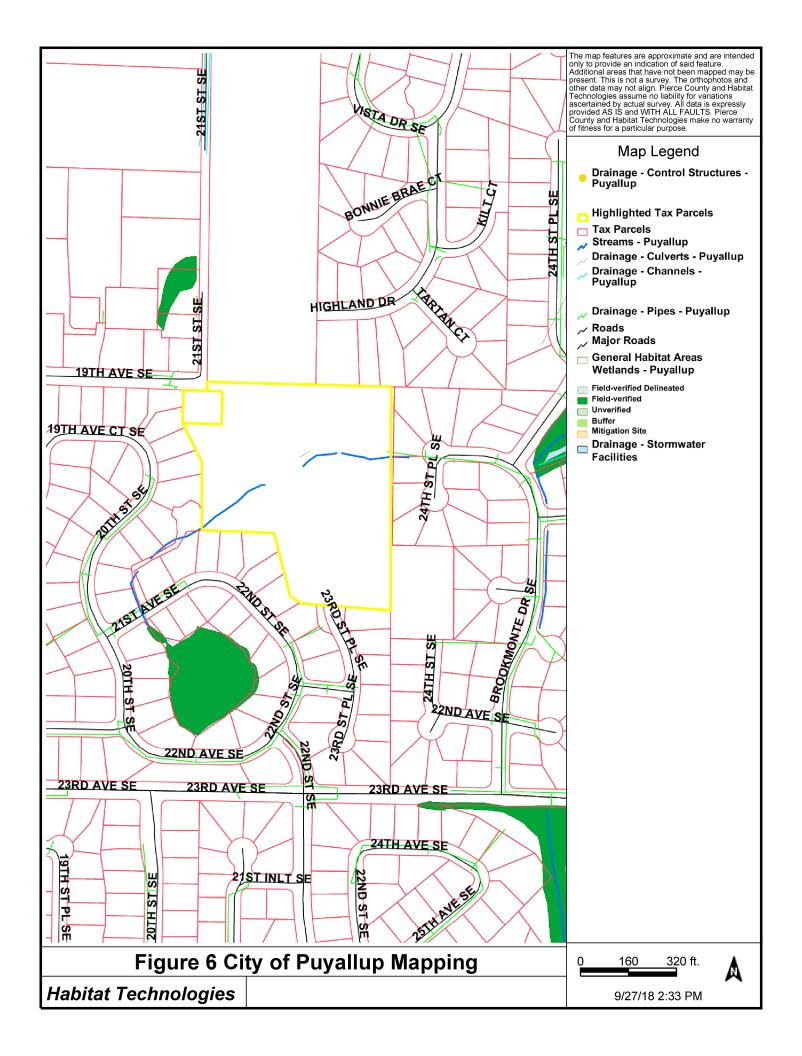
— All SalmonScape Species

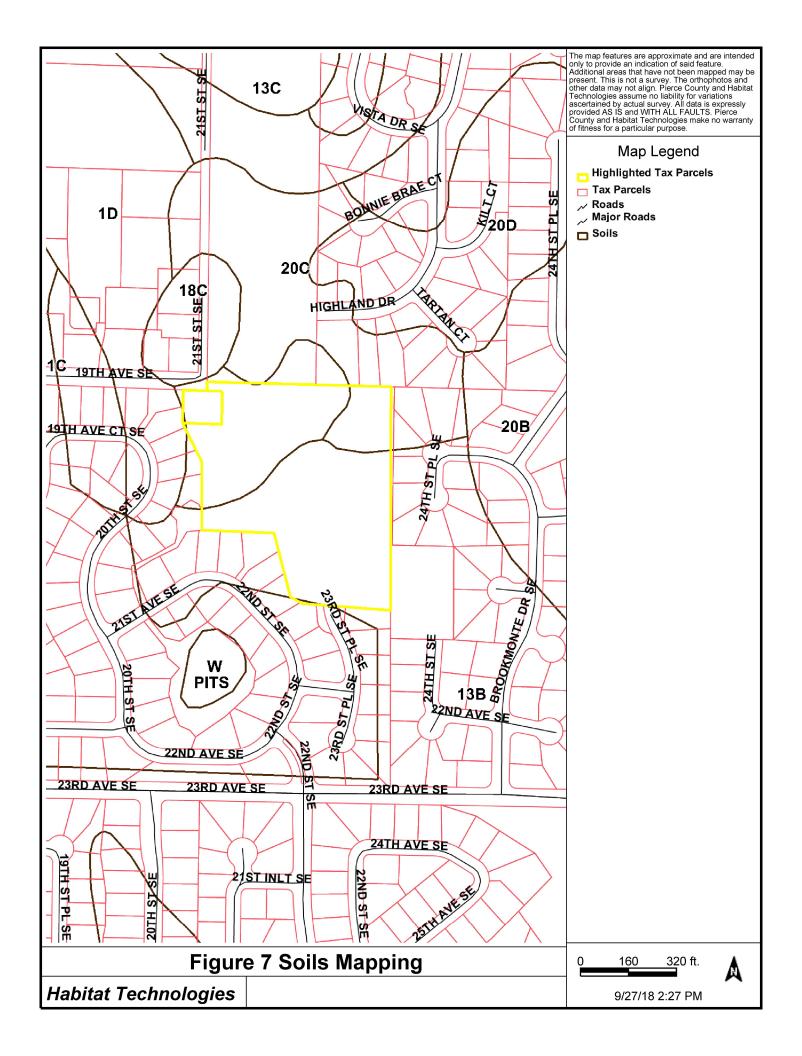


USGS/NHD
Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS user community
Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus
DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Figure 5 FOREST PRACTICE WATER TYPE MAP

TOWNSHIP 20 NORTH HALF 0, RANGE 04 EAST (W.M.) HALF 0, SECTION 35


Application #:



Date: 10/31/2017 Time: 10:43:11 AM

NAD 83

Contour Interval: 40 Feet

REFERENCE AND BACKGROUND LIST

Adamus, P.R., E.J. Clairain Jr., R.D. Smith, and R.E. Young. 1987. Wetland Evaluation Technique (WET); Volume II: Methodology, Operational Draft Technical Report Y-87, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

Cowardin, Lewis M. et al, 1979. Classification of Wetlands and Deepwater Habitats of the United States. Office of Biological Services, U.S. Fish and Wildlife Service, U.S. Department of the Interior, FWS/OBS-79/31.

Hitchcock, C.L., A. Cronquist. 1977. Flora of the Pacific Northwest. University of Washington Press. Seattle, Washington.

Hruby, T. 2008. Washington State Wetland Rating System for Western Washington: 2008 Update. Publication #08-06-029. Olympia, WA: Washington Department of Ecology.

Hruby, T. 2014. Washington State Wetland Rating System for Western Washington: 2014 Update. Publication #14-06-029. Olympia, WA: Washington Department of Ecology.

Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The National Wetlands Plant List: 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X. http://wetland-plands. Usace.army.mil/

Reppert, R.T., W. Sigleo, E. Stakhiv, L. Messman, and C. Meyers. 1979. Wetland Values - Concepts and Methods for Wetland Evaluation. Research Report 79-R1, U.S. Army Corps of Engineers, Institute for Water Resources, Fort Belvoir, Virginia.

United States Army Corps of Engineers, 1987. Wetlands Delineation Manual. Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. March 1987.

United States Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), Environmental Laboratory ERDC/EL TR-08-13.

US Climate Data, 2015 http://www.usclimatedata.com/climate/tacoma/washington/united-states/ uswa0441/0441/2014/1

USDA Natural Resource Conservation Service Plants Database, 2015 (for hydrophytic plan classification): http://plants.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. Web Soil Survey. 2016 http://vewsoilsurvey.nrcs.usda.gov/app/newfeatures.2.3.htm.

US Fish and Wildlife Service National Wetland Inventory Mapper, 2016 (for NWI wetland mapping): http://www.fws.gov/wetlands/Data/Mapper.html.

Washington State Department of Ecology. 1997. Washington State Wetlands Identification and Delineation Manual. Publication Number 96-94.

Washington State Department of Fish and Wildlife Priority Habitats and Species Maps 2016 http://wdfw.wa.gov/mapping/phs/

Washington State Department of Fish and Wildlife SalmonScape Mapping System, 2016 (for fish presence): http://apps.wdfw.wa.gov/salmonscape/map.html

Washington State Department of Natural Resources FPARS Mapping System, 2016 (for stream typing): http://fortess.wa.gov/dnr/app1/fpars/viewer.htm

APPENDIX A – Field Data Forms

Project/Site: Sunset Pointe	C	ity/County: Puy	_ Sampling Date:03 OCT 2017		
Applicant/Owner:			State: Washington	n Sampling Point: <u>SPB-1</u>	
Investigator(s): Habitat Technologies		Secti	on, Township, Range: <u>S35,</u>	T20, R4E	
Landform (hillslope, terrace, etc.):		Local relief (cor	ncave, convex, none):	Slope (%):	
Subregion (LRR): A					
Soil Map Unit Name: <u>Kitsap silt loam</u>					
Are climatic / hydrologic conditions on the site typical for					
Are Vegetation, Soil, or Hydrology s	-		، "Normal Circumstances" ا		
Are Vegetation, Soil, or Hydrology n			f needed, explain any answei		
SUMMARY OF FINDINGS – Attach site ma			•	,	
Lindranbutia Variation Durant?					
Hydrophytic Vegetation Present? Yes ⊠ No Hydric Soil Present? Yes ⊠ No	=	Is the S	ampled Area		
Wetland Hydrology Present? Yes ⊠ No	_	within a	Wetland? Yes	⊠ No □	
Remarks: Wetland D.					
VEGETATION – Use scientific names of pla	ants.				
Trop Stratum (Diet size) 45ft radius)	Absolute	Dominant Inc		worksheet:	
<u>Tree Stratum</u> (Plot size: <u>15ft radius</u>) 1. <u>Alnus rubra</u>		Species? S yes FA	— Number of Domina		
2.					
3.			Total Namber of B		
4.				(b)	
		= Total Cove	I Percent of Domina		
Sapling/Shrub Stratum (Plot size: 15ft radius)	· 		That Are ODE, I AC	(AB)	
1. Cornus stolonifera	20	<u>yes</u> <u>FA</u>			
2				of: Multiply by:	
3				x 1 =	
4				x 2 =	
5				x 3 =	
Herb Stratum (Plot size: 15ft radius)	<u>20</u>	= Total Cove		x 4 = x 5 =	
1. Lysichitum americanum	30	yes OE	N .	(A) (B)	
2. Equisetum arvense				(A) (B)	
3				ndex = B/A =	
4				etation Indicators:	
5			 '	Hydrophytic Vegetation	
6					
7					
8		·		Adaptations ¹ (Provide supporting marks or on a separate sheet)	
9			— ☐ Wetland Non-V	· · · · · · · · · · · · · · · · · · ·	
10		·	—	ydrophytic Vegetation¹ (Explain)	
11		· _	Indicators of hydri	c soil and wetland hydrology must	
Woody Vine Stratum (Plot size: 15ft radius)	<u>50</u>	= Total Cove		disturbed or problematic.	
1. Rubus procera	40	<u>yes FA</u>	vC		
2.		· 	Hydrophytic Vegetation		
	40	= Total Cove	_ ~	Yes ⊠ No □	
% Bare Ground in Herb Stratum 40	· <u> </u>	•			
Remarks:					

Depth (inches) Color (moist) 0-4 10YR 2/1 4-20 10YR 4/2	100	Redox Features		
0-4 10YR 2/1	100			
<u> </u>		lor (moist) % Type	Loc ²	Texture Remarks
4-20 10YR 4/2	_ 80 10			<u>L</u>
	_ <u> </u>	YR 4/6 20 C	М	Gcl
		<u> </u>		
				
				
		educed Matrix, CS=Covered or Co	ated Sand Gra	rains. ² Location: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators: (Appli	cable to all LR	Rs, unless otherwise noted.)		Indicators for Problematic Hydric Soils ³ :
☐ Histosol (A1)		Sandy Redox (S5)		☐ 2 cm Muck (A10)
☐ Histic Epipedon (A2)		Stripped Matrix (S6)		☐ Red Parent Material (TF2)
☐ Black Histic (A3)		Loamy Mucky Mineral (F1) (exce	pt MLRA 1)	☐ Very Shallow Dark Surface (TF12)
Hydrogen Sulfide (A4)		Loamy Gleyed Matrix (F2)		☐ Other (Explain in Remarks)
Depleted Below Dark Surface		Depleted Matrix (F3)		31m diagram of hardware backs and the
☐ Thick Dark Surface (A12)	_	Redox Dark Surface (F6)		³ Indicators of hydrophytic vegetation and
☐ Sandy Mucky Mineral (S1)☐ Sandy Gleyed Matrix (S4)		Depleted Dark Surface (F7) Redox Depressions (F8)		wetland hydrology must be present, unless disturbed or problematic.
Restrictive Layer (if present):		Redox Depressions (10)		unless disturbed of problematic.
Type:				
Depth (inches):				Hydric Soil Present? Yes ⊠ No □
Remarks:		_		Hydric Soil Present? Yes ⊠ No □
'DROLOGY				
Wetland Hydrology Indicators	5 :			
Primary Indicators (minimum of	one required; c	heck all that apply)		Secondary Indicators (2 or more required)
☐ Surface Water (A1)		☐ Water-Stained Leaves (B9)	(except MLR.	RA Water-Stained Leaves (B9) (MLRA 1, 2
⊠ High Water Table (A2)		1, 2, 4A, and 4B)		4A, and 4B)
		☐ Salt Crust (B11)		☐ Drainage Patterns (B10)
Saturation (A3)		☐ Aquatic Invertebrates (B13)		_
Saturation (A3) Water Marks (B1)		☐ Hydrogen Sulfide Odor (C1)		□ Dry-Season Water Table (C2)
		_ , ,)	☐ Dry-Season Water Table (C2)☐ Saturation Visible on Aerial Imagery (C9)
☐ Water Marks (B1)		Oxidized Rhizospheres alor		☐ Saturation Visible on Aerial Imagery (CS
☐ Water Marks (B1) ☐ Sediment Deposits (B2)			ng Living Roots	☐ Saturation Visible on Aerial Imagery (CS
Water Marks (B1) ☐ Sediment Deposits (B2) ☐ Drift Deposits (B3)		Oxidized Rhizospheres alor	ng Living Roots C4)	☐ Saturation Visible on Aerial Imagery (Csts (C3) ☐ Geomorphic Position (D2) ☐ Shallow Aquitard (D3)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)		☐ Oxidized Rhizospheres alor☐ Presence of Reduced Iron (ng Living Roots C4) Iled Soils (C6)	□ Saturation Visible on Aerial Imagery (CSts (C3) □ Geomorphic Position (D2) □ Shallow Aquitard (D3) □ FAC-Neutral Test (D5)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	Imagery (B7)	☐ Oxidized Rhizospheres alor☐ Presence of Reduced Iron (☐ Recent Iron Reduction in Til	ng Living Roots C4) Iled Soils (C6)	□ Saturation Visible on Aerial Imagery (CSts (C3) □ Geomorphic Position (D2) □ Shallow Aquitard (D3) □ FAC-Neutral Test (D5)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6)		 □ Oxidized Rhizospheres alor □ Presence of Reduced Iron (□ Recent Iron Reduction in Til □ Stunted or Stressed Plants 	ng Living Roots C4) Iled Soils (C6)	□ Saturation Visible on Aerial Imagery (CSts (C3) □ Geomorphic Position (D2) □ Shallow Aquitard (D3) □ FAC-Neutral Test (D5) □ Raised Ant Mounds (D6) (LRR A)
Water Marks (B1) Sediment Deposits (B2) □ Drift Deposits (B3) □ Algal Mat or Crust (B4) □ Iron Deposits (B5) □ Surface Soil Cracks (B6) □ Inundation Visible on Aerial		 □ Oxidized Rhizospheres alor □ Presence of Reduced Iron (□ Recent Iron Reduction in Til □ Stunted or Stressed Plants 	ng Living Roots C4) Iled Soils (C6)	□ Saturation Visible on Aerial Imagery (CSts (C3) □ Geomorphic Position (D2) □ Shallow Aquitard (D3) □ FAC-Neutral Test (D5) □ Raised Ant Mounds (D6) (LRR A)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Sparsely Vegetated Concav		 □ Oxidized Rhizospheres alor □ Presence of Reduced Iron (□ Recent Iron Reduction in Til □ Stunted or Stressed Plants □ Other (Explain in Remarks) 	ng Living Roots C4) Iled Soils (C6)	□ Saturation Visible on Aerial Imagery (CSts (C3) □ Geomorphic Position (D2) □ Shallow Aquitard (D3) □ FAC-Neutral Test (D5) □ Raised Ant Mounds (D6) (LRR A)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Sparsely Vegetated Concaverield Observations: Surface Water Present?	ve Surface (B8)	☐ Oxidized Rhizospheres alor ☐ Presence of Reduced Iron (☐ Recent Iron Reduction in Til ☐ Stunted or Stressed Plants ☐ Other (Explain in Remarks) ☐ Depth (inches):	ng Living Roots C4) Iled Soils (C6)	□ Saturation Visible on Aerial Imagery (CSts (C3) □ Geomorphic Position (D2) □ Shallow Aquitard (D3) □ FAC-Neutral Test (D5) □ Raised Ant Mounds (D6) (LRR A)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Sparsely Vegetated Concav Field Observations: Surface Water Present? Water Table Present?	ve Surface (B8) Yes □ No ⊠	☐ Oxidized Rhizospheres alor ☐ Presence of Reduced Iron (☐ Recent Iron Reduction in Til ☐ Stunted or Stressed Plants ☐ Other (Explain in Remarks) ☐ Depth (inches): Depth (inches): 2	ng Living Roots C4) Illed Soils (C6) (D1) (LRR A)	□ Saturation Visible on Aerial Imagery (CSts (C3) □ Geomorphic Position (D2) □ Shallow Aquitard (D3) □ FAC-Neutral Test (D5) □ Raised Ant Mounds (D6) (LRR A)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Sparsely Vegetated Concave Field Observations: Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe)	ye Surface (B8) Yes □ No ☒ Yes ☒ No □ Yes ☒ No □	☐ Oxidized Rhizospheres alor ☐ Presence of Reduced Iron (☐ Recent Iron Reduction in Til ☐ Stunted or Stressed Plants ☐ Other (Explain in Remarks) ☐ Depth (inches): Depth (inches): 2	ng Living Roots C4) Illed Soils (C6) (D1) (LRR A)	□ Saturation Visible on Aerial Imagery (CSts (C3) □ Geomorphic Position (D2) □ Shallow Aquitard (D3) □ FAC-Neutral Test (D5) □ Raised Ant Mounds (D6) (LRR A) □ Frost-Heave Hummocks (D7) and Hydrology Present? Yes ☑ No □
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Sparsely Vegetated Concav Field Observations: Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe) Describe Recorded Data (strear	ye Surface (B8) Yes □ No ☒ Yes ☒ No □ Yes ☒ No □	☐ Oxidized Rhizospheres alor ☐ Presence of Reduced Iron (☐ Recent Iron Reduction in Til ☐ Stunted or Stressed Plants ☐ Other (Explain in Remarks) ☐ Depth (inches): ☐ Depth (inches): 2 ☐ Depth (inches): 0	ng Living Roots C4) Illed Soils (C6) (D1) (LRR A)	□ Saturation Visible on Aerial Imagery (CSts (C3) □ Geomorphic Position (D2) □ Shallow Aquitard (D3) □ FAC-Neutral Test (D5) □ Raised Ant Mounds (D6) (LRR A) □ Frost-Heave Hummocks (D7) and Hydrology Present? Yes ☑ No □
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Sparsely Vegetated Concave Field Observations: Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe)	ye Surface (B8) Yes □ No ☒ Yes ☒ No □ Yes ☒ No □	☐ Oxidized Rhizospheres alor ☐ Presence of Reduced Iron (☐ Recent Iron Reduction in Til ☐ Stunted or Stressed Plants ☐ Other (Explain in Remarks) ☐ Depth (inches): ☐ Depth (inches): 2 ☐ Depth (inches): 0	ng Living Roots C4) Illed Soils (C6) (D1) (LRR A)	□ Saturation Visible on Aerial Imagery (CSts (C3) □ Geomorphic Position (D2) □ Shallow Aquitard (D3) □ FAC-Neutral Test (D5) □ Raised Ant Mounds (D6) (LRR A) □ Frost-Heave Hummocks (D7) and Hydrology Present? Yes ☑ No □
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Sparsely Vegetated Concav Field Observations: Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe) Describe Recorded Data (strear	ye Surface (B8) Yes □ No ☒ Yes ☒ No □ Yes ☒ No □	☐ Oxidized Rhizospheres alor ☐ Presence of Reduced Iron (☐ Recent Iron Reduction in Til ☐ Stunted or Stressed Plants ☐ Other (Explain in Remarks) ☐ Depth (inches): ☐ Depth (inches): 2 ☐ Depth (inches): 0	ng Living Roots C4) Illed Soils (C6) (D1) (LRR A)	□ Saturation Visible on Aerial Imagery (CSts (C3) □ Geomorphic Position (D2) □ Shallow Aquitard (D3) □ FAC-Neutral Test (D5) □ Raised Ant Mounds (D6) (LRR A) □ Frost-Heave Hummocks (D7) and Hydrology Present? Yes ☑ No □

		nty/ Courn	_ Sampling Date:03 OCT 2017			
Applicant/Owner:				Sampling Point: SPB-2		
Investigator(s): Habitat Technologies			Section, Tow	vnship, Range: <u>S35, T20</u>), R4E	
Landform (hillslope, terrace, etc.):		Local reli	ef (concave, o	convex, none):	Slope	(%):
Subregion (LRR): <u>A</u>					Datum:	
Soil Map Unit Name: <u>Kitsap silt loam</u>						
Are climatic / hydrologic conditions on the site typical for this						
	-		•	mal Circumstances" pre		П
Are Vegetation, Soil, or Hydrology sign				·		Ш
Are Vegetation, Soil, or Hydrology natur SUMMARY OF FINDINGS – Attach site map s			`	d, explain any answers in cations, transects	,	ures, etc.
		i	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Hydrophytic Vegetation Present? Yes ☐ No ☒ Hydric Soil Present? Yes ☐ No ☒		Is	the Sampled	l Area		
Wetland Hydrology Present? Yes ☐ No ☒		wi	ithin a Wetlar	nd? Yes 🗌	No 🖾	
Remarks: Upland						
The state of the s						
VEGETATION – Use scientific names of plant	s.					
Tree Stratum (Plot size: 15ft radius)	Absolute		int Indicator	Dominance Test wor		
Pseudotsuga menziesii			s? Status FACU	Number of Dominant : That Are OBL, FACW		(A)
0. 01	00		FACU	That Ale Obl., I AOW	, 011 AO. <u>1</u>	(^)
Crataegus monogyna 3		-		Total Number of Domi Species Across All Str		(B)
4				Species Across Air Sti	ata. <u>1</u>	(Б)
T	65			Percent of Dominant S That Are OBL, FACW		(A/D)
Sapling/Shrub Stratum (Plot size: 15ft radius)	<u> </u>			That Ale OBL, FACW	, 01 FAC. <u>14</u>	(A/b)
Oemleria cerasiformis	10	yes	<u>FACU</u>	Prevalence Index wo	orksheet:	
2. Sambucus racemosa	10	yes	FACU	Total % Cover of:	Multiply	by:
3				OBL species		
4				FACW species		
5				FAC species		
Horb Stratum (Diot aizo: 15ff radius)	20	_ = Total	Cover	FACU species		
Herb Stratum (Plot size: 15ft radius) 1. Polystichum munitum	30	VAS	<u>FACU</u>	UPL species		
Polystichum munitum 2				Column Totals:	(A)	(B)
3				Prevalence Inde	ex = B/A =	
4				Hydrophytic Vegetat		
5				☐ Rapid Test for Hy		
6.				☐ Dominance Test is	s >50%	
7				☐ Prevalence Index	is ≤3.0 ¹	
8.				☐ Morphological Ada		
9.					ks or on a separate s	sheet)
10				☐ Wetland Non-Vas		
11				Problematic Hydro	, , , ,	' '
Woody Vine Stratum (Plot size: 15ft radius)	30		Cover	¹ Indicators of hydric so be present, unless dis		
1. Rubus procera	40	yes	<u>FAC</u>			
2. Rubus ursinus			FACU	Hydrophytic Vegetation		
	90	= Total			es □ No ⊠	

Depth (inches)	Color (moist)	%_	_ <u>Col</u>	or (moist)	%Type ¹	Loc ²	<u>l exture</u>	<u> </u>		Remarks	
)-4	10YR 3/2	100					L				
l-20	10YR 3/3	100					Sal				
-20	1011(3/3						<u>ogi</u>				
					<u></u> -	_					
									-		
	-		- —			_					
	oncentration, D=D					ated Sand C				Pore Lining,	
-	Indicators: (App	licable to								olematic Hyd	dric Soils*:
Histosol	· ·			Sandy Redox (S	·				Muck (A10	,	
	pipedon (A2)			Stripped Matrix	. ,	mt MI DA 4				erial (TF2)	TE40\
☐ Black His	n Sulfide (A4)			Loamy Gleyed I	Mineral (F1) (exce	PLIVILKAT)	-		ark Surface (n Remarks)	1 - 12)
	l Below Dark Surf	ace (A11)		Depleted Matrix				Othe	i (Explaiii i	ii itelliaiks)	
	ark Surface (A12)	200 (7111)		Redox Dark Sur			3Inc	dicato	rs of hvdro	phytic vegeta	ation and
	lucky Mineral (S1))		Depleted Dark S	` '					gy must be p	
-	leyed Matrix (S4)			Redox Depress	ions (F8)					or problema	
Restrictive	Layer (if present)):									
Depth (in	ches):			_			Hydric	Soil	Present?	Yes 🗌 🛚 I	No ⊠
	SY .										
DROLOG	SY drology Indicato	rs:									
DROLOG				eck all that appl	y)			Secon	dary Indica	ators (2 or m	ore required)
DROLOG Wetland Hy	drology Indicato		يired; ch		y) ned Leaves (B9)	(except ML			•	•	
DROLOG Wetland Hy Primary India	drology Indicato		uired; ch	☐ Water-Stai		(except ML			•	d Leaves (B	
DROLOG Wetland Hy Primary India Surface High Wa	drology Indicato cators (minimum o Water (A1) ter Table (A2)		uired; ch	☐ Water-Stai	ned Leaves (B9) A, and 4B)	(except ML	_RA [□ Wa	ater-Staine 4A , and 4	d Leaves (B	
DROLOG Wetland Hy Primary India Surface ' High Wa Saturatic	drology Indicato cators (minimum o Water (A1) ter Table (A2) on (A3)		uired; ch	☐ Water-Stai 1, 2, 4/ ☐ Salt Crust	ned Leaves (B9) A, and 4B)		_ RA [□ Wa	ater-Staine 4A , and 4 ainage Pat	d Leaves (B	9) (MLRA 1, 2
DROLOG Wetland Hy Primary India Surface High Wa Saturatic Water M	drology Indicato cators (minimum o Water (A1) ter Table (A2) on (A3)		uired; ch	☐ Water-Stai 1, 2, 44 ☐ Salt Crust ☐ Aquatic Inv	ned Leaves (B9) A, and 4B) (B11)		_ RA [□ Wa	ater-Staine 4A, and 4 ainage Pat y-Season \	d Leaves (B IB) terns (B10) Water Table	9) (MLRA 1, 2 (C2)
DROLOG Wetland Hyderimary India Surface ' High Wa Saturation Water M Sedimen	drology Indicato cators (minimum o Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2)		ired; ch	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13)		_ RA [☐ Wa	ater-Staine 4A, and 4 ainage Pat y-Season \ uturation Vi	d Leaves (B IB) terns (B10) Water Table	9) (MLRA 1, 2 (C2) al Imagery (C
Primary India Surface High Wa Saturatic Water M Sedimen Drift Dep	drology Indicato cators (minimum o Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2)		uired; ch	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1)	ng Living Ro	LRA [☐ Wa	ater-Staine 4A, and 4 ainage Pat y-Season \ uturation Vi	d Leaves (B IB) terns (B10) Water Table sible on Aeri Position (D2	9) (MLRA 1, 2 (C2) al Imagery (C
DROLOG Wetland Hy Primary India Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma	drology Indicato cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) posits (B3) at or Crust (B4)		uired; ch	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) thizospheres alon	ng Living Ro C4)	LRA [☐ Wa ☐ Dra ☐ Dra ☐ Sa ☐ Ge ☐ Sh	ater-Staine 4A, and 4 ainage Pate y-Season Visteration Visteration	d Leaves (B IB) terns (B10) Water Table sible on Aeri Position (D2) tard (D3)	9) (MLRA 1, 2 (C2) al Imagery (C
DROLOG Wetland Hy Primary India Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma	drology Indicato cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) posits (B3) at or Crust (B4)		uired; ch	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence o	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) thizospheres alon of Reduced Iron (ng Living Ro C4) led Soils (C		☐ Wa ☐ Dri ☐ Dri ☐ Sa ☐ Ge ☐ Sh ☐ FA	ater-Staine 4A, and 4 ainage Pat y-Season \ ituration Vis eomorphic iallow Aqui	d Leaves (B IB) terns (B10) Water Table sible on Aeri Position (D2) tard (D3)	9) (MLRA 1, 2 (C2) al Imagery (C
Metland Hyderimary India Surface Metland Mater M	drology Indicato cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) posits (B3) at or Crust (B4) osits (B5)	of one requ		Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iron Stunted or	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) thizospheres alon of Reduced Iron (in Reduction in Til	ng Living Ro C4) led Soils (C		☐ Wa ☐ Dr. ☐ Dr. ☐ Sa ☐ Ge ☐ Sh ☐ FA	ater-Staine 4A, and 4 ainage Pat y-Season \ aturation Vis comorphic allow Aqui aC-Neutral	d Leaves (Bill) terns (B10) Water Table sible on Aeri Position (D2) tard (D3) Test (D5)	9) (MLRA 1, 2 (C2) al Imagery (C
Primary India Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma Iron Dep Surface Inundatic	drology Indicato cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) sosits (B3) at or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aeria	of one requ	r (B7)	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iron Stunted or	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) thizospheres alor of Reduced Iron (in Reduction in Till Stressed Plants (ng Living Ro C4) led Soils (C		☐ Wa ☐ Dr. ☐ Dr. ☐ Sa ☐ Ge ☐ Sh ☐ FA	ater-Staine 4A, and 4 ainage Pat y-Season \ aturation Vis comorphic allow Aqui aC-Neutral	d Leaves (Bilb) terns (B10) Water Table sible on Aeri Position (D2) tard (D3) Test (D5) lounds (D6)	9) (MLRA 1, 2 (C2) al Imagery (C
TDROLOG Wetland Hy Primary India Surface S High Wa Saturatio Water M Sedimen Drift Dep Algal Ma Iron Dep Surface S Inundatio	drology Indicato cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) sosits (B3) at or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aeria	of one requ	r (B7)	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence o Recent Iron Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) thizospheres alon of Reduced Iron (in n Reduction in Til Stressed Plants olain in Remarks)	ng Living Ro C4) led Soils (C		☐ Wa ☐ Dr. ☐ Dr. ☐ Sa ☐ Ge ☐ Sh ☐ FA	ater-Staine 4A, and 4 ainage Pat y-Season \ aturation Vis comorphic allow Aqui aC-Neutral	d Leaves (Bilb) terns (B10) Water Table sible on Aeri Position (D2) tard (D3) Test (D5) lounds (D6)	9) (MLRA 1, 2 (C2) al Imagery (C3)
Primary India Surface High Wa Saturatio Water M Sedimen Drift Dep Algal Ma Iron Dep Surface Inundatio Sparsely	drology Indicato cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) sosits (B3) at or Crust (B4) sosits (B5) Soil Cracks (B6) on Visible on Aeria vegetated Concavations:	of one requ	r (B7)	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence o Recent Iron Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) thizospheres alor of Reduced Iron (in Reduction in Till Stressed Plants (ng Living Ro C4) led Soils (C		☐ Wa ☐ Dr. ☐ Dr. ☐ Sa ☐ Ge ☐ Sh ☐ FA	ater-Staine 4A, and 4 ainage Pat y-Season \ aturation Vis comorphic allow Aqui aC-Neutral	d Leaves (Bilb) terns (B10) Water Table sible on Aeri Position (D2) tard (D3) Test (D5) lounds (D6)	9) (MLRA 1, 2 (C2) al Imagery (C3)
Primary India Surface High Wa Saturatio Water M Sedimen Drift Dep Algal Ma Iron Dep Surface Inundation	drology Indicato cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) sosits (B3) at or Crust (B4) sosits (B5) Soil Cracks (B6) on Visible on Aeria of Vegetated Concavations: er Present?	of one requ al Imagery ave Surfac	r (B7) ce (B8)	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iron Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) thizospheres alon of Reduced Iron (in n Reduction in Til Stressed Plants olain in Remarks)	ng Living Ro C4) led Soils (C (D1) (LRR <i>J</i>		☐ Wa ☐ Dr. ☐ Dr. ☐ Sa ☐ Ge ☐ Sh ☐ FA	ater-Staine 4A, and 4 ainage Pat y-Season \ aturation Vis comorphic allow Aqui aC-Neutral	d Leaves (Bilb) terns (B10) Water Table sible on Aeri Position (D2) tard (D3) Test (D5) lounds (D6)	9) (MLRA 1, 2 (C2) al Imagery (C3)
Metland Hyderimary India Surface Metland Hyderimary India Surface Metland Mater Methods Sediment Drift Deptor Surface Methods Inundation Sparsely Field Observator Table Seturation Perpending Methods	drology Indicato cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) osits (B3) at or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aeria of Vegetated Conca vations: er Present? Present?	of one requ al Imagery ave Surfac	e (B7) ce (B8) No 🖂	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iron Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) thizospheres alon of Reduced Iron (in Reduction in Til Stressed Plants (illain in Remarks)	ng Living Ro C4) led Soils (C (D1) (LRR /		☐ Wa ☐ Dra ☐ Dra ☐ Sa ☐ Ge ☐ Sh ☐ FA	ater-Staine 4A, and 4 ainage Pat y-Season \ ituration Vis comorphic allow Aqui iC-Neutral aised Ant M ost-Heave	d Leaves (B IB) terns (B10) Water Table sible on Aeri Position (D2) tard (D3) Test (D5) lounds (D6) Hummocks (9) (MLRA 1, 2 (C2) al Imagery (C
Primary India Surface	drology Indicato cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) osits (B3) at or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aeria vegetated Concavations: er Present? Present? resent? pillary fringe)	al Imagery ave Surface Yes Yes Yes Yes Yes	No 🖂 No 🖂	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iron Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) thizospheres alon of Reduced Iron (in Reduction in Til Stressed Plants (in Remarks) s):	ng Living Ro C4) led Soils (C (D1) (LRR A		☐ Wa ☐ Dr. ☐ Dr. ☐ Sa ☐ Ge ☐ Sh ☐ FA ☐ Ra ☐ Fre	ater-Staine 4A, and 4 ainage Pat y-Season \ ituration Vis comorphic allow Aqui iC-Neutral aised Ant M ost-Heave	d Leaves (Bill) terns (B10) Water Table sible on Aeri Position (D2) tard (D3) Test (D5) dounds (D6) Hummocks (9) (MLRA 1, 2 (C2) al Imagery (C) (LRR A) D7)
Primary India Surface	drology Indicato cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) osits (B3) at or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aeria of Vegetated Conca vations: er Present? Present?	al Imagery ave Surface Yes Yes Yes Yes Yes	No 🖂 No 🖂	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iron Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) thizospheres alon of Reduced Iron (in Reduction in Til Stressed Plants (in Remarks) s):	ng Living Ro C4) led Soils (C (D1) (LRR A		☐ Wa ☐ Dr. ☐ Dr. ☐ Sa ☐ Ge ☐ Sh ☐ FA ☐ Ra ☐ Fre	ater-Staine 4A, and 4 ainage Pat y-Season \ ituration Vis comorphic allow Aqui iC-Neutral aised Ant M ost-Heave	d Leaves (Bill) terns (B10) Water Table sible on Aeri Position (D2) tard (D3) Test (D5) dounds (D6) Hummocks (9) (MLRA 1, 2 (C2) al Imagery (C) (LRR A) D7)
Primary India Primary India Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma Iron Dep Surface Inundatic Sparsely Field Obser Surface Water Table Saturation P includes cap Describe Re	drology Indicato cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) osits (B3) at or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aeria vegetated Concavations: er Present? Present? resent? pillary fringe)	al Imagery ave Surface Yes Yes Yes Yes Yes	No 🖂 No 🖂	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iron Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) thizospheres alon of Reduced Iron (in Reduction in Til Stressed Plants (in Remarks) s):	ng Living Ro C4) led Soils (C (D1) (LRR A		☐ Wa ☐ Dr. ☐ Dr. ☐ Sa ☐ Ge ☐ Sh ☐ FA ☐ Ra ☐ Fre	ater-Staine 4A, and 4 ainage Pat y-Season \ ituration Vis comorphic allow Aqui iC-Neutral aised Ant M ost-Heave	d Leaves (Bill) terns (B10) Water Table sible on Aeri Position (D2) tard (D3) Test (D5) dounds (D6) Hummocks (9) (MLRA 1, 2 (C2) al Imagery (C) (LRR A) D7)
Primary India Surface High Wa Saturatio Water M Sedimen Drift Dep Algal Ma Iron Dep Surface Inundatio Sparsely Field Obser Surface Wat Water Table Saturation P includes cal	drology Indicato cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) at Deposits (B2) osits (B3) at or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aeria vegetated Concavations: er Present? Present? resent? pillary fringe)	al Imagery ave Surface Yes Yes Yes Yes Yes	No 🖂 No 🖂	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iron Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) thizospheres alon of Reduced Iron (in Reduction in Til Stressed Plants (in Remarks) s):	ng Living Ro C4) led Soils (C (D1) (LRR A		☐ Wa ☐ Dr. ☐ Dr. ☐ Sa ☐ Ge ☐ Sh ☐ FA ☐ Ra ☐ Fre	ater-Staine 4A, and 4 ainage Pat y-Season \ ituration Vis comorphic allow Aqui iC-Neutral aised Ant M ost-Heave	d Leaves (Bill) terns (B10) Water Table sible on Aeri Position (D2) tard (D3) Test (D5) dounds (D6) Hummocks ((C2) (C2) (al Imagery (C) (LRR A) (D7)

Project/Site: Sunset Pointe	C	ity/County: <u>Puyallup /</u>	Sampling Date:03 OCT 2017		
Applicant/Owner:			Sampling Point: <u>SPB-3</u>		
Investigator(s): Habitat Technologies		Section, To	wnship, Range: <u>S35, T20</u>), R4E	
Landform (hillslope, terrace, etc.):		Local relief (concave,	convex, none):	Slope (%):	
		· ·	Long: Datum:		
Soil Map Unit Name: <u>Kitsap silt loam</u>					
Are climatic / hydrologic conditions on the site typical for					
Are Vegetation, Soil, or Hydrology	-	•	rmal Circumstances" pre		
Are Vegetation, Soil, or Hydrology			ed, explain any answers i		
SUMMARY OF FINDINGS – Attach site m				,	
Hydrophytic Vegetation Present? Yes ☐ 1	ulo M		<u> </u>	· · · · · · · · · · · · · · · · · · ·	
Hydric Soil Present? Yes \(\)		Is the Sample			
Wetland Hydrology Present? Yes ☐ 1	_	within a Wetla	nd? Yes □	No ⊠	
Remarks: Upland					
VEGETATION – Use scientific names of p	olants.				
<u>Tree Stratum</u> (Plot size: <u>15ft radius</u>)	Absolute % Cover	Dominant Indicator Species? Status	Dominance Test wo		
1. Pseudotsuga menziesii	· · · · · · · · · · · · · · · · · · ·	yes FACU	Number of Dominant That Are OBL, FACW		
2.					
3			Total Number of Dom Species Across All St		
4			Percent of Dominant		
Sapling/Shrub Stratum (Plot size: 15ft radius)	<u>50</u>	= Total Cover		, or FAC: <u>20</u> (A/B)	
1. Sambucus racemosa	30	yes FACU	Prevalence Index wo	orksheet:	
2.	· · · · · · · · · · · · · · · · · · ·		Total % Cover of:	Multiply by:	
3			OBL species	x 1 =	
4			FACW species	x 2 =	
5				x 3 =	
Harb Otracking (Dietains 455 and inc.)	30	= Total Cover		x 4 =	
Herb Stratum (Plot size: 15ft radius) 1. Polystichum munitum	20	<u>yes FACU</u>		x 5 =	
2.			Column Totals:	(A) (B)	
3.			Prevalence Inde	ex = B/A =	
4.			Hydrophytic Vegetat		
5.			☐ Rapid Test for Hy		
6.			☐ Dominance Test i	s >50%	
7.			☐ Prevalence Index	is ≤3.0 ¹	
8				aptations ¹ (Provide supporting	
9			□ Wetland Non-Vas	ks or on a separate sheet)	
10				ophytic Vegetation¹ (Explain)	
11			-	oil and wetland hydrology must	
Woody Vine Stratum (Plot size: 15ft radius)	20	= Total Cover		sturbed or problematic.	
1. Rubus procera	100	yes FAC			
2. Rubus ursinus	<u>30</u>	yes FACU	Hydrophytic Vegetation		
	100	= Total Cover		es □ No ⊠	
% Bare Ground in Herb Stratum 0					
Remarks:					

Depth (inches)	Color (moist)	%	_ <u>Cor</u>	or (moist)	%Type	Loc ²	<u>Texture</u>	- -		Remarks	
)-4	10YR 3/2	100					L				
 l-18	10YR 3/3	100				_	- Sal				
-10	1011070					_	<u>ogi</u>				
						_					
						_					
	oncentration, D=[ated Sand (ore Lining, M=Ma	
-	Indicators: (App	ilicable to								ematic Hydric S	olis".
☐ Histosol	` '			Sandy Redox (S	•				Muck (A10)		
Histic Ep Black His	oipedon (A2)			Stripped Matrix	(ວ _{ຽ)} ⁄lineral (F1) (exc e	ont MI DA 1			Parent Mate	riai (1F2) k Surface (TF12)	
	n Sulfide (A4)			Loamy Gleyed I	, , ,	primerva i	',	-	er (Explain in		
	d Below Dark Surf	ace (A11)		Depleted Matrix				Otilo	i (Explain in	rtomarto)	
	ark Surface (A12)	(/		Redox Dark Su			³ ln	dicato	ors of hydroph	nytic vegetation a	nd
☐ Sandy M	lucky Mineral (S1)		Depleted Dark S	Surface (F7)					must be present	
☐ Sandy G	Gleyed Matrix (S4)			Redox Depress	ions (F8)			unles	s disturbed o	or problematic.	
	Layer (if present										
Depth (in	ches):			_			Hydri	c Soil	Present?	Yes ☐ No ⊠	
	SY										
DROLOG	SY drology Indicato	rs:									
DROLOG				eck all that appl	y)			Secor	ndary Indicato	ors (2 or more rec	quired)
DROLOG Wetland Hy	drology Indicato		ıired; ch		y) ned Leaves (B9)	(except MI			•	ors (2 or more red Leaves (B9) (ML	
DROLOG Wetland Hy Primary India	drology Indicato		uired; ch	☐ Water-Stai		(except MI			•	Leaves (B9) (ML	
DROLOG Wetland Hy Primary India Surface High Wa	drology Indicato cators (minimum o Water (A1) tter Table (A2)		uired; ch	☐ Water-Stai	ned Leaves (B9) A, and 4B)	(except MI	LRA	□ w	ater-Stained	Leaves (B9) (ML	
DROLOG Wetland Hy Primary India Surface High Wa Saturatic	drology Indicato cators (minimum o Water (A1) ter Table (A2) on (A3)		ired; ch	☐ Water-Stai 1, 2, 4	ned Leaves (B9) A, and 4B)		LRA	W	ater-Stained 4A, and 4E rainage Patte	Leaves (B9) (ML	
DROLOG Wetland Hy Primary India Surface High Wa Saturatic Water M	drology Indicato cators (minimum o Water (A1) ter Table (A2) on (A3)		ired; ch	☐ Water-Stai 1, 2, 4/ ☐ Salt Crust ☐ Aquatic Inv	ned Leaves (B9) A, and 4B) (B11)		LRA	W Di Di	ater-Stained 4A, and 4E rainage Patte ry-Season W	Leaves (B9) (ML B) erns (B10)	.RA 1, 2
DROLOG Wetland Hyderimary India Surface ' High Wa Saturation Water M Sedimen	drology Indicato cators (minimum of Water (A1) ster Table (A2) on (A3) arks (B1) at Deposits (B2)		uired; ch	Water-Stai 1, 2, 4,/ Salt Crust Aquatic Inv Hydrogen	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13))	LRA	☐ W ☐ Di ☐ Di ☐ Si	ater-Stained 4A, and 4E rainage Patte ry-Season W	Leaves (B9) (ML 3) erns (B10) ater Table (C2) ble on Aerial Ima	.RA 1, 2
Primary India Surface High Wa Saturatic Water M Sedimen Drift Dep	drology Indicato cators (minimum of Water (A1) ster Table (A2) on (A3) arks (B1) at Deposits (B2)		uired; ch	Water-Stai 1, 2, 4,4 Salt Crust Aquatic Inv Hydrogen Oxidized F	ned Leaves (B9) A, and 4B) (B11) /ertebrates (B13) Sulfide Odor (C1)) ng Living Ro	Doots (C3)	☐ W ☐ Di ☐ Di ☐ Si ☐ Gi	ater-Stained 4A, and 4E rainage Patte ry-Season Waturation Visil	Leaves (B9) (ML 3) erns (B10) ater Table (C2) ble on Aerial Ima osition (D2)	.RA 1, 2
Primary India Surface High Wa Saturatic Water M Sedimen Drift Dep	drology Indicato cators (minimum of Water (A1) tter Table (A2) on (A3) arks (B1) at Deposits (B2) posits (B3) at or Crust (B4)		uired; ch	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized F	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) ng Living Ro (C4)	Doots (C3)	☐ W ☐ Di ☐ Di ☐ Si ☐ Gi	dater-Stained 4A, and 4E rainage Patte ry-Season W aturation Visil	Leaves (B9) (ML 3) erns (B10) ater Table (C2) ble on Aerial Ima osition (D2) ard (D3)	.RA 1, 2
DROLOG Wetland Hy Primary India Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma	drology Indicato cators (minimum of Water (A1) tter Table (A2) on (A3) arks (B1) at Deposits (B2) posits (B3) at or Crust (B4)		uired; ch	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iro Stunted or	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1 thizospheres alor of Reduced Iron (n Reduction in Ti Stressed Plants) ng Living Ro (C4) Iled Soils (C	Doots (C3)	W Di Di Si Gi Si F/	rater-Stained 4A, and 4E rainage Patte ry-Season W aturation Visit eomorphic Po hallow Aquita AC-Neutral To	Leaves (B9) (ML 3) erns (B10) ater Table (C2) ble on Aerial Ima osition (D2) ard (D3)	RA 1, 2
Primary India Surface High Wa Saturatio Water M Sedimen Drift Dep Algal Ma Iron Dep Surface	drology Indicato cators (minimum of Water (A1) ster Table (A2) on (A3) arks (B1) at Deposits (B2) cosits (B3) at or Crust (B4) cosits (B5) Soil Cracks (B6) on Visible on Aeria	of one requ	r (B7)	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iro Stunted or	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1 thizospheres alor of Reduced Iron (n Reduction in Ti) ng Living Ro (C4) Iled Soils (C	Doots (C3)	Di Di Di Si Si Si F/	rater-Stained 4A, and 4E rainage Patte ry-Season W aturation Visil eomorphic Po hallow Aquita AC-Neutral To aised Ant Mo	Leaves (B9) (ML B) erns (B10) ater Table (C2) ble on Aerial Ima osition (D2) ard (D3) est (D5)	RA 1, 2
Primary India Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma Iron Dep Surface Inundatic	drology Indicato cators (minimum of Water (A1) ster Table (A2) on (A3) arks (B1) at Deposits (B2) sosits (B3) at or Crust (B4) sosits (B5) Soil Cracks (B6) on Visible on Aeria	of one requ	r (B7)	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iro Stunted or	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1 thizospheres alor of Reduced Iron (n Reduction in Ti Stressed Plants) ng Living Ro (C4) Iled Soils (C	Doots (C3)	Di Di Di Si Si Si F/	rater-Stained 4A, and 4E rainage Patte ry-Season W aturation Visil eomorphic Po hallow Aquita AC-Neutral To aised Ant Mo	Leaves (B9) (ML B) erns (B10) ater Table (C2) ble on Aerial Ima osition (D2) ard (D3) est (D5) unds (D6) (LRR	RA 1, 2
Primary India Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma Iron Dep Surface Inundatic	drology Indicato cators (minimum of Water (A1) ster Table (A2) on (A3) arks (B1) at Deposits (B2) sosits (B3) at or Crust (B4) sosits (B5) Soil Cracks (B6) on Visible on Aeria	of one requ	r (B7)	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence o Recent Iro Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1 thizospheres alor of Reduced Iron (n Reduction in Ti Stressed Plants clain in Remarks)) ng Living Ro (C4) Iled Soils (C	Doots (C3)	Di Di Di Si Si Si F/	rater-Stained 4A, and 4E rainage Patte ry-Season W aturation Visil eomorphic Po hallow Aquita AC-Neutral To aised Ant Mo	Leaves (B9) (ML B) erns (B10) ater Table (C2) ble on Aerial Ima osition (D2) ard (D3) est (D5) unds (D6) (LRR	RA 1, 2
Primary India Surface High Wa Saturatic Water M Sedimen Drift Dep Algal Ma Iron Dep Surface Inundatic Sparsely	drology Indicato cators (minimum of Water (A1) ther Table (A2) on (A3) arks (B1) at Deposits (B2) posits (B3) at or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aeric vegetated Concervations:	of one requ	r (B7)	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence o Recent Iro Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1 thizospheres alor of Reduced Iron (n Reduction in Ti Stressed Plants) ng Living Ro (C4) Iled Soils (C	Doots (C3)	Di Di Di Si Si Si F/	rater-Stained 4A, and 4E rainage Patte ry-Season W aturation Visil eomorphic Po hallow Aquita AC-Neutral To aised Ant Mo	Leaves (B9) (ML B) erns (B10) ater Table (C2) ble on Aerial Ima osition (D2) ard (D3) est (D5) unds (D6) (LRR	RA 1, 2
Metland Hyderimary India Surface Metland Warface Metland Metla	drology Indicato cators (minimum of Water (A1) Iter Table (A2) on (A3) arks (B1) Int Deposits (B2) posits (B3) Int or Crust (B4) posits (B5) Soil Cracks (B6) on Visible on Aeria of Vegetated Concavations:	of one requ al Imagery ave Surfac	r (B7) ce (B8)	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iro Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1 thizospheres alor of Reduced Iron (n Reduction in Ti Stressed Plants clain in Remarks)) ng Living Ro C4) Iled Soils (C (D1) (LRR)	Doots (C3)	Di Di Di Si Si Si F/	rater-Stained 4A, and 4E rainage Patte ry-Season W aturation Visil eomorphic Po hallow Aquita AC-Neutral To aised Ant Mo	Leaves (B9) (ML B) erns (B10) ater Table (C2) ble on Aerial Ima osition (D2) ard (D3) est (D5) unds (D6) (LRR	RA 1, 2
Primary India Surface High Wa Saturatio Water M Sedimen Drift Dep Algal Ma Iron Dep Surface Inundatio Sparsely Field Obser Surface Wat Water Table Saturation P	drology Indicato cators (minimum of Water (A1) Inter Table (A2) Inter Table (A2) Inter Table (B1) Inter Table (B2) Inter Table (B3) Inter Table (B4) Inter Table (B6) Inter Trust (B6) Inter Table (B6) Inter Tabl	of one requal Imagery ave Surface Yes □	e (B7) ce (B8) No 🖂	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized F Presence of Recent Iro Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1 thizospheres alor of Reduced Iron (n Reduction in Ti Stressed Plants clain in Remarks)) ng Living Ro (C4) Illed Soils (C (D1) (LRR	Doots (C3) C6) A)	W Di Si Si Si Si Si Si Si Si	rater-Stained 4A, and 4E rainage Patte ry-Season W aturation Visil eomorphic Po hallow Aquita AC-Neutral To aised Ant Mo	Leaves (B9) (ML 3) erns (B10) ater Table (C2) ble on Aerial Ima osition (D2) ard (D3) est (D5) aunds (D6) (LRR ummocks (D7)	RA 1, 2
Primary India Surface	drology Indicato cators (minimum of Water (A1) Iter Table (A2) In (A3)	al Imagery ave Surfac Yes Yes Yes Yes Yes	No 🖂 No 🖂	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iro Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1 thizospheres alor of Reduced Iron (n Reduction in Ti Stressed Plants clain in Remarks) s): s):) ng Living Ro C4) Iled Soils (0 (D1) (LRR)	pots (C3) C6) A)	W Di Di Si Si Si Si F/F Fr	dater-Stained 4A, and 4E rainage Patte ry-Season W aturation Visil eomorphic Po hallow Aquita AC-Neutral To aised Ant Mo rost-Heave H	Leaves (B9) (ML 3) erns (B10) ater Table (C2) ble on Aerial Ima osition (D2) ard (D3) est (D5) aunds (D6) (LRR ummocks (D7)	RA 1, 2
Primary India Surface	drology Indicato cators (minimum of Water (A1) Inter Table (A2) Inter Table (A2) Inter Table (B1) Inter Table (B2) Inter Table (B3) Inter Table (B4) Inter Table (B6) Inter Trust (B6) Inter Table (B6) Inter Tabl	al Imagery ave Surfac Yes Yes Yes Yes Yes	No 🖂 No 🖂	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iro Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1 thizospheres alor of Reduced Iron (n Reduction in Ti Stressed Plants clain in Remarks) s): s):) ng Living Ro C4) Iled Soils (0 (D1) (LRR)	pots (C3) C6) A)	W Di Di Si Si Si Si F/F Fr	dater-Stained 4A, and 4E rainage Patte ry-Season W aturation Visil eomorphic Po hallow Aquita AC-Neutral To aised Ant Mo rost-Heave H	Leaves (B9) (ML 3) erns (B10) ater Table (C2) ble on Aerial Ima osition (D2) ard (D3) est (D5) aunds (D6) (LRR ummocks (D7)	RA 1, 2
Wetland Hy Primary India Surface High Wa Saturatio Water M Sedimen Drift Dep Algal Ma Iron Dep Surface Inundatio Sparsely Field Obser Surface Water Table Saturation P Includes cap Describe Re	drology Indicato cators (minimum of Water (A1) Iter Table (A2) In (A3)	al Imagery ave Surfac Yes Yes Yes Yes Yes	No 🖂 No 🖂	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iro Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1 thizospheres alor of Reduced Iron (n Reduction in Ti Stressed Plants clain in Remarks) s): s):) ng Living Ro C4) Iled Soils (0 (D1) (LRR)	pots (C3) C6) A)	W Di Di Si Si Si Si F/F Fr	dater-Stained 4A, and 4E rainage Patte ry-Season W aturation Visil eomorphic Po hallow Aquita AC-Neutral To aised Ant Mo rost-Heave H	Leaves (B9) (ML 3) erns (B10) ater Table (C2) ble on Aerial Ima osition (D2) ard (D3) est (D5) aunds (D6) (LRR ummocks (D7)	RA 1, 2
Primary India Surface High Wa Saturatio Water M Sedimen Drift Dep Algal Ma Iron Dep Surface Inundatio Sparsely Field Obser Surface Wat Water Table Saturation P includes cal	drology Indicato cators (minimum of Water (A1) Iter Table (A2) In (A3)	al Imagery ave Surfac Yes Yes Yes Yes Yes	No 🖂 No 🖂	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iro Stunted or Other (Exp	ned Leaves (B9) A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1 thizospheres alor of Reduced Iron (n Reduction in Ti Stressed Plants clain in Remarks) s): s):) ng Living Ro C4) Iled Soils (0 (D1) (LRR)	pots (C3) C6) A)	W Di Di Si Si Si Si F/F Fr	dater-Stained 4A, and 4E rainage Patte ry-Season W aturation Visil eomorphic Po hallow Aquita AC-Neutral To aised Ant Mo rost-Heave H	Leaves (B9) (ML 3) erns (B10) ater Table (C2) ble on Aerial Ima osition (D2) ard (D3) est (D5) aunds (D6) (LRR ummocks (D7)	RA 1, 2

State: Washington Sampling Point: SPB-10 on, Township, Range: S35, T20, R4E cave, convex, none): Slope (%): State: State: Slope (%): State: St
ncave, convex, none): Slope (%):
Long
Long: Datum:
NWI classification:
☐ (If no, explain in Remarks.)
re "Normal Circumstances" present? Yes ⊠ No □
needed, explain any answers in Remarks.)
int locations, transects, important features, etc.
ampled Area Wetland? Yes ⊠ No □
welland: 165 🖾 140 🖂
icator Dominance Test worksheet: tatus Number of Dominant Species
Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
Total Number of Dominant
Species Across All Strata: 3 (B)
Percent of Dominant Species
That Are OBL, FACW, or FAC: 100 (A/B)
Prevalence Index worksheet:
Total % Cover of: Multiply by:
OBL species x 1 =
FACW species x 2 =
FACU species x 4 =
UPL species x 5 =
C Column Totals: (A) (B)
Prevalence Index = B/A =
Hydrophytic Vegetation Indicators:
Rapid Test for Hydrophytic Vegetation
☐ Dominance Test is >50%
Prevalence Index is ≤3.0¹
Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
Wetland Non-Vascular Plants ¹
Problematic Hydrophytic Vegetation¹ (Explain)
¹Indicators of hydric soil and wetland hydrology must
be present, unless disturbed or problematic.
<u>c </u>
Hydrophytic Vegetation
Present? Yes 🗵 No 🗌

Depth	<u>Matri</u>			Redox Feat	ures _	. 2	- .	
(inches)	Color (moist)	%	Color (mois	<u>%</u>	Iype'	Loc ²		Remarks
0-8	10YR 4/2	100					<u>SI</u>	
8-18	10YR 4/1	80	10YR 4/6	20	<u>C</u>	M	SI	
			_					
							· ——	
							. <u> </u>	
			_					
Tvpe: C=0	Concentration, D=l	Depletion. R	M=Reduced M	latrix. CS=Cove	ered or Coat	ed Sand 0	Grains. 2	Location: PL=Pore Lining, M=Matrix.
	I Indicators: (Ap							ators for Problematic Hydric Soils ³ :
☐ Histoso	I (A1)		☐ Sandy	Redox (S5)			□ 2	cm Muck (A10)
☐ Histic E	pipedon (A2)		☐ Strippe	d Matrix (S6)				Red Parent Material (TF2)
☐ Black H	, ,		-	Mucky Mineral		t MLRA 1	•	ery Shallow Dark Surface (TF12)
	en Sulfide (A4)		-	Gleyed Matrix (F2)			Other (Explain in Remarks)
	ed Below Dark Sur			ed Matrix (F3)	-0)		2	
	ark Surface (A12)			Dark Surface (F	•			cators of hydrophytic vegetation and
-	Mucky Mineral (S1 Gleyed Matrix (S4	•	•	ed Dark Surface Depressions (F				etland hydrology must be present, nless disturbed or problematic.
	Layer (if present		□ IVedOX	popi casiona (F	o,		ui	noss disturbed of problematic.
Type:	Layer (ii present	•						
· ·	nches):						Hydric 9	Soil Present? Yes ⊠ No ⊠
Remarks:	,						Tiyane c	on Fresent: Tes 🖂 No 🖂
DROLO	GY ydrology Indicato	ors.						
·	licators (minimum		ired check all	that apply)			Se	econdary Indicators (2 or more required)
•	· Water (A1)	<u> </u>		ater-Stained Le	aves (B9) (except ML		Water-Stained Leaves (B9) (MLRA 1, 2
	ater Table (A2)		_ ···	1, 2, 4A, and		oxoopt iii E		4A, and 4B)
Saturat Saturat			□ Sa	alt Crust (B11)	,		П	Drainage Patterns (B10)
	Marks (B1)			uatic Invertebra	ates (B13)		ī	Dry-Season Water Table (C2)
_	ent Deposits (B2)			∕drogen Sulfide	, ,			Saturation Visible on Aerial Imagery (CS
	posits (B3)			kidized Rhizosp		Living Ro		Geomorphic Position (D2)
	at or Crust (B4)			esence of Redu	_	_	` _	Shallow Aquitard (D3)
	posits (B5)			ecent Iron Redu	-	-	6)	FAC-Neutral Test (D5)
	Soil Cracks (B6)		☐ St	unted or Stress	ed Plants ([)1) (LRR <i>A</i>	-	Raised Ant Mounds (D6) (LRR A)
☐ Inundat	ion Visible on Aer	ial Imagery		her (Explain in	-			Frost-Heave Hummocks (D7)
Sparse	y Vegetated Cond	ave Surface						
Field Obse	rvations:							
Surface Wa	ater Present?	Yes 🗌	No 🛛 Dept	h (inches):				
Water Table	e Present?	Yes 🛛	No 🗌 Dept	h (inches): 3	_			
Saturation I		Yes ⊠	No 🗌 Dept	h (inches): <u>0</u>	-	We	tland Hydro	logy Present? Yes 🗵 No 🗌
	apillary fringe) ecorded Data (stre	eam gauge,	monitoring we	I, aerial photos,	, previous in	spections)), if available:	
Remarks:								

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Project/Site: Sunset Pointe	ty/County: <u>Puyallup /</u>	Pierce	Sampling Date:03 OCT 2017			
Applicant/Owner:			State: Washington	_ Sampling Point: SPB-11		
Investigator(s): Habitat Technologies		Section, Tov	vnship, Range: <u>S35, T20</u>), R4E		
Landform (hillslope, terrace, etc.):	L	ocal relief (concave,	convex, none):	Slope (%):		
Subregion (LRR): A						
Soil Map Unit Name: <u>Kitsap silt loam</u>			-			
Are climatic / hydrologic conditions on the site typica						
Are Vegetation, Soil, or Hydrology	•	•	mal Circumstances" pre			
Are Vegetation, Soil, or Hydrology			d, explain any answers i			
SUMMARY OF FINDINGS – Attach site			, ,	,		
Hydrophytic Vegetation Present? Yes ⊠	No 🗌	In the Complete	I Area			
Hydric Soil Present? Yes ⊠	No 🗌	Is the Sampled within a Wetlan		No 🗆		
Wetland Hydrology Present? Yes ⊠	No 🗌	within a wella	iid: Tes 🖂	No 🗆		
Remarks: Wetland						
VEGETATION – Use scientific names of	f plants.					
<u>Tree Stratum</u> (Plot size: <u>15ft radius</u>) 1	% Cover	Dominant Indicator Species? Status	Dominance Test wor Number of Dominant S That Are OBL, FACW	Species		
2			Total Number of Domi Species Across All Str	inant		
4Sapling/Shrub Stratum (Plot size: 15ft radius)		= Total Cover	Percent of Dominant S That Are OBL, FACW			
1			Prevalence Index wo Total % Cover of:	orksheet: Multiply by:		
3			*	x 1 = x 2 =		
5				x 3 =		
Herb Stratum (Plot size: 15ft radius)	0	= Total Cover		x 4 =		
1				x 5 =		
2.			Column Totals:	(A) (B)		
3.			Prevalence Inde	x = B/A =		
4			Hydrophytic Vegetat	ion Indicators:		
5			☐ Rapid Test for Hyd	drophytic Vegetation		
6			□ Dominance Test is	s >50%		
7			☐ Prevalence Index			
8				aptations¹ (Provide supporting ks or on a separate sheet)		
9			☐ Wetland Non-Vase	' '		
10			☐ Problematic Hydro	ophytic Vegetation¹ (Explain)		
11	0	= Total Cover	¹ Indicators of hydric so be present, unless dis	oil and wetland hydrology must turbed or problematic.		
1. Rubus procera 2.		yes FAC	Hydrophytic Vegetation			
% Bare Ground in Herb Stratum <u>0</u>	100	= Total Cover		es 🗵 No 🗌		
Remarks:						

Depth	Matrix				ox Feature							
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²		Texture		<u>Remarks</u>	
0-6	10YR 4/2	100			_			\$	<u>SI</u>			
3-18	10YR 4/1	70	10YR 4	1/6	30	<u>C</u>	M	\$	SI			
	-											
	-		-		_							
	-				_							
	-											
	Concentration, D=D						ed Sanc	d Gra		ation: PL=P		
-	Indicators: (App	licable to a				.ea.)				rs for Proble	ematic Hydri	ic Solis":
Histoso	, ,			ndy Redox (S						Muck (A10)	:-! (TEO)	
	pipedon (A2)			ipped Matrix amy Mucky N		1) (avaan	4 MI DA	. 4\		Parent Mater Shallow Dar	, ,	E12\
☐ Black H	en Sulfide (A4)			amy Gleyed	•		IVILKA	(1)	•	er (Explain in	,	-12)
	d Below Dark Surfa	ace (A11)		pleted Matrix)				i (Explain in	i (Ciliai K5)	
•	ark Surface (A12)	200 (/ 11 1)		dox Dark Su					3Indicato	rs of hydroph	vtic vegetati	on and
	Mucky Mineral (S1)			pleted Dark	, ,					nd hydrology	-	
	Gleyed Matrix (S4)		Re	dox Depress	ions (F8)	,				s disturbed o		
Restrictive	Layer (if present)	:										
Type:												
Depth (ii	nches):								Hydric Soil	Present?	Yes 🛛 No	×
Remarks:												
DROLO	ک ۲ drology Indicatoر	'S'										
	icators (minimum c		red: check	call that app	lv)				Secor	ndary Indicate	ors (2 or more	e required)
	Water (A1)	r ono roqui] Water-Sta	•	es (B9) (e	except N	MLRA		ater-Stained	•	
	ater Table (A2)		_		A, and 4B		жоор			4A, and 4E		(
⊒gti ⊠ Saturati			Г	., <u>-</u> ,] Salt Crust		,			□ Dr	rainage Patte	•	
☑ Water N	,] Aquatic In		s (B13)				y-Season W		:2)
	nt Deposits (B2)] Hydrogen		` ,				aturation Visil	•	,
	posits (B3)			Oxidized F			Livina F	Roots		eomorphic Po		imagory (Oc
	at or Crust (B4)			Presence	•	·	•	10013		nallow Aquita		
	posits (B5)			Recent Iro				(C6)		AC-Neutral To		
	Soil Cracks (B6)			Stunted or						aised Ant Mo	,	RR A)
	ion Visible on Aeria	ıl Imagery (Other (Exp			., (=: **	•)		ost-Heave H		•
	y Vegetated Conca	0 , (_						۰۰ ت	- 2 10010 11		- /
ield Obse			()									
	ter Present?	Yes 🗌	No 🛛 🏻 [Depth (inche	s).							
Nater Table				Depth (inche								
Saturation F				Depth (inche:	-		l w	Vetlaı	nd Hydrology	v Present?	Yes⊠ No	o 🗆
(includes ca	pillary fringe)									, , , , , , , , , , , , , , , , , , , ,		_
Describe R	ecorded Data (strea	am gauge,	monitoring	g well, aerial	photos, pr	evious in	spection	ns), if	available:			
Remarks:												

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Project/Site: Sunset Pointe	City	//County: <u>Puyallup / I</u>	_ Sampling Date:03 OCT 2017			
Applicant/Owner:			State: Washington	_ Sampling Point: SPB-12		
Investigator(s): <u>Habitat Technologies</u>		Section, Tov	vnship, Range: <u>S35, T20</u>	, R4E		
Landform (hillslope, terrace, etc.):	Lo	ocal relief (concave, o	convex, none):	Slope (%):		
Subregion (LRR): A	Lat:		Long:	Datum:		
Soil Map Unit Name: <u>Kitsap silt loam</u>						
Are climatic / hydrologic conditions on the site typical for thi						
Are Vegetation, Soil, or Hydrology sig	•	•	rmal Circumstances" pre			
Are Vegetation, Soil, or Hydrology nati			d, explain any answers ir			
SUMMARY OF FINDINGS – Attach site map			•	•		
Hydrophytic Vegetation Present? Yes ⊠ No [
Hydric Soil Present? Yes ☐ No ☐		Is the Sampled				
Wetland Hydrology Present? Yes ☐ No ☑		within a Wetlar	nd? Yes □	No ⊠		
Remarks: Upland		I				
│ VEGETATION – Use scientific names of plar	nts					
VEGETATION - 636 Scientific flames of plan		Dominant Indicator	Dominance Test wor	ksheet:		
<u>Tree Stratum</u> (Plot size: <u>15ft radius</u>) 1		Species? Status	Number of Dominant S That Are OBL, FACW			
2			Total Number of Domi	nant		
3			Species Across All Str			
4			Percent of Dominant S	Species		
Sapling/Shrub Stratum (Plot size: 15ft radius)	0	= Total Cover	That Are OBL, FACW			
1			Prevalence Index wo	rksheet:		
2.				Multiply by:		
3.			OBL species	x 1 =		
4.			FACW species	x 2 =		
5			FAC species	x 3 =		
	0	= Total Cover	FACU species	x 4 =		
Herb Stratum (Plot size: 15ft radius)			UPL species	x 5 =		
1	<u> </u>		Column Totals:	(A) (B)		
2			Prevalence Inde	x = B/A =		
3 4			Hydrophytic Vegetat			
5			☐ Rapid Test for Hyd			
6			☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐			
7.			☐ Prevalence Index	is ≤3.0¹		
8				aptations¹ (Provide supporting ks or on a separate sheet)		
9			☐ Wetland Non-Vaso	cular Plants¹		
10			☐ Problematic Hydro	phytic Vegetation¹ (Explain)		
11 Woody Vine Stratum (Plot size: 15ft radius)		= Total Cover	¹ Indicators of hydric so be present, unless dis	oil and wetland hydrology must turbed or problematic.		
1. Rubus procera	<u>100</u>	yes <u>FAC</u>				
2			Hydrophytic Vegetation			
% Bare Ground in Herb Stratum <u>0</u>		= Total Cover		es 🛛 No 🗌		

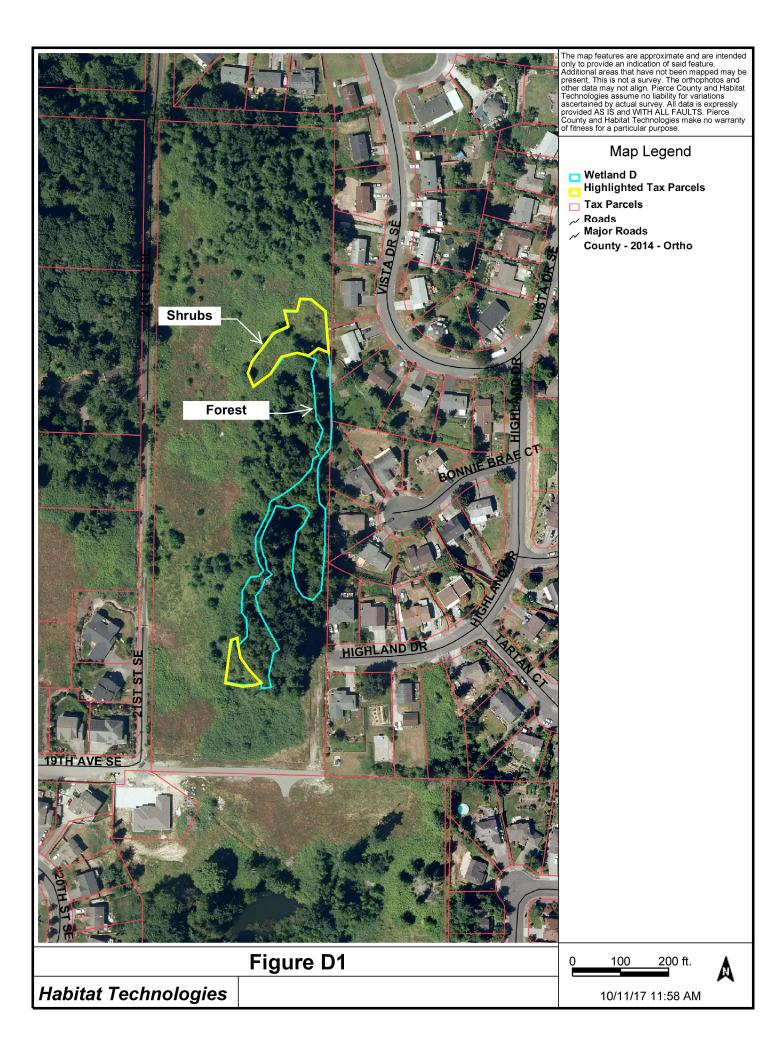
Profile Description: (Descri								
Depth Matri				<u>x Feature</u>				
(inches) Color (moist)	%	Color (mo	oist)	%	Type ¹	Loc ²		re Remarks
0-12 <u>10YR 3/3</u>	<u>100</u>						<u>SI</u>	
12-18 <u>10YR 4/2</u>	<u>95</u>	10YR 4/6	i	5	<u>C</u>	M	SI	
		= (
				_				
		_					_	
		_		_				
		_						
¹ Type: C=Concentration, D=[ed Sand (² Location: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators: (App	olicable to				ea.)			dicators for Problematic Hydric Soils ³ :
Histosol (A1)			y Redox (S				Ļ]2 cm Muck (A10)]Red Parent Material (TF2)
☐ Histic Epipedon (A2)☐ Black Histic (A3)			oed Matrix ny Mucky N) (except	MI DA 1		Very Shallow Dark Surface (TF12)
☐ Hydrogen Sulfide (A4)			ry Mucky N ry Gleyed I			WILIXA	')	Other (Explain in Remarks)
☐ Depleted Below Dark Surf	face (A11)		eted Matrix		'		_	Graner (Explain in Fremanie)
☐ Thick Dark Surface (A12)	. ,		x Dark Su				3	ndicators of hydrophytic vegetation and
☐ Sandy Mucky Mineral (S1)	☐ Deple	eted Dark	Surface (F	7)			wetland hydrology must be present,
☐ Sandy Gleyed Matrix (S4))	☐ Redo	x Depress	ions (F8)				unless disturbed or problematic.
Restrictive Layer (if present	:):							
Type:								
Depth (inches):							Hydr	ic Soil Present? Yes □ No ⊠
Remarks:								
Remarks:	ors:							
Remarks: 'DROLOGY Wetland Hydrology Indicato			III that appl	lv)				
Primary Indicators (minimum		ired; check a		• /	es (B9) (e	xcept M	I RA	Secondary Indicators (2 or more required)
Primary Indicators (minimum Grands) Note: The second of		ired; check a	Water-Stai	ined Leave		xcept M	LRA	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2,
Primary Indicators (minimum of Surface Water (A1) High Water Table (A2)		ired; check a	Water-Stai	ined Leave A, and 4B		xcept MI	LRA	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)
Primary Indicators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3)		ired; check a	Water-Stai 1, 2, 4 Salt Crust	ined Leave A, and 4B (B11))	xcept Mi	LRA	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10)
Primary Indicators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)		ired; check a	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv	ined Leave A, and 4B (B11) vertebrates) s (B13)	xcept Mi	LRA	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
YDROLOGY Wetland Hydrology Indicator Primary Indicators (minimum of the content		ired; check a	Water-Stai 1, 2, 4, Salt Crust Aquatic In Hydrogen	ined Leave A, and 4B (B11) vertebrates Sulfide Oc) s (B13) lor (C1)			Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9)
Primary Indicators (minimum of Surface Water (A1) ☐ High Water Table (A2) ☐ Saturation (A3) ☐ Water Marks (B1) ☐ Sediment Deposits (B2) ☐ Drift Deposits (B3)		ired; check a	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F	ined Leave A, and 4B (B11) vertebrates Sulfide Oc	s (B13) lor (C1) res along	Living Ro		Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2)
Primary Indicators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)		ired; check a	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence	ined Leave A, and 4B (B11) vertebrates Sulfide Oc Rhizospher of Reduce	s (B13) lor (C1) res along d Iron (C ²	Living Ro	oots (C3)	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3)
Primary Indicators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)		ired; check a	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence of Recent Iro	A, and 4B (B11) vertebrates Sulfide Oc Rhizospher of Reduce	s (B13) lor (C1) res along d Iron (C4 on in Tille	Living Ro 1) d Soils (C	oots (C3)	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
Primary Indicators (minimum of the primary Indicato	of one requi	ired; check a	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence of Recent Iro Stunted or	A, and 4B (B11) vertebrate: Sulfide Oc Rhizospher of Reduce n Reductio Stressed	s (B13) lor (C1) res along d Iron (C ² on in Tiller Plants (D	Living Ro 1) d Soils (C	oots (C3)	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Primary Indicators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	<u>of one requi</u>	ired; check a	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence of Recent Iro	A, and 4B (B11) vertebrate: Sulfide Oc Rhizospher of Reduce n Reductio Stressed	s (B13) lor (C1) res along d Iron (C ² on in Tiller Plants (D	Living Ro 1) d Soils (C	oots (C3)	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
Primary Indicators (minimum of the primary Indicato	<u>of one requi</u>	ired; check a	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence of Recent Iro Stunted or	A, and 4B (B11) vertebrate: Sulfide Oc Rhizospher of Reduce n Reductio Stressed	s (B13) lor (C1) res along d Iron (C ² on in Tiller Plants (D	Living Ro 1) d Soils (C	oots (C3)	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Primary Indicators (minimum of the control of the c	of one requi	(B7) (B8)	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence Recent Iro Stunted or Other (Exp	A, and 4B (B11) vertebrates Sulfide Oc Rhizospher of Reduce n Reduction Stressed	s (B13) lor (C1) res along d Iron (C ² on in Tille Plants (D marks)	Living Ro 1) d Soils (C	oots (C3)	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Primary Indicators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc	of one requi al Imagery (ave Surface Yes □	ired; check a	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence of Recent Iro Stunted or Other (Exp	ined Leave A, and 4B (B11) vertebrates Sulfide Oc Rhizospher of Reduce n Reductic Stressed blain in Re	s (B13) lor (C1) res along d Iron (C4 on in Tilled Plants (D marks)	Living Ro 1) d Soils (C	oots (C3)	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Primary Indicators (minimum of the state of	al Imagery (ave Surface Yes Yes Yes	ired; check a	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence of Recent Iro Stunted or Other (Exp	ined Leave A, and 4B (B11) vertebrate: Sulfide Oc Rhizospher of Reduce n Reductic Stressed blain in Re s):s;	s (B13) lor (C1) res along d Iron (C4 on in Tilled Plants (D marks)	Living Ro	oots (C3) C6) A)	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Primary Indicators (minimum of the primary of the primary Indicators (minimum of the primary of the primary of the primary Indicators (minimum of the primary of the	al Imagery (ave Surface Yes Yes Yes Yes Yes Yes	ired; check a	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence of Recent Iro Stunted or Other (Exp pth (inches pth (inches	ined Leave A, and 4B (B11) vertebrates Sulfide Oc Rhizospher of Reduce n Reductic Stressed blain in Res s):s s):s	s (B13) lor (C1) res along d Iron (C4 on in Tille Plants (D marks)	Living Ro	oots (C3) C6) A)	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Primary Indicators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conce Field Observations: Surface Water Present? Water Table Present? Saturation Present?	al Imagery (ave Surface Yes Yes Yes Yes Yes Yes	ired; check a	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence of Recent Iro Stunted or Other (Exp pth (inches pth (inches	ined Leave A, and 4B (B11) vertebrates Sulfide Oc Rhizospher of Reduce n Reductic Stressed blain in Res s):s s):s	s (B13) lor (C1) res along d Iron (C4 on in Tille Plants (D marks)	Living Ro	oots (C3) C6) A)	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Primary Indicators (minimum of Surface Water (A1) ☐ High Water Table (A2) ☐ Saturation (A3) ☐ Water Marks (B1) ☐ Sediment Deposits (B2) ☐ Drift Deposits (B3) ☐ Algal Mat or Crust (B4) ☐ Iron Deposits (B5) ☐ Surface Soil Cracks (B6) ☐ Inundation Visible on Aeri ☐ Sparsely Vegetated Conce Field Observations: Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe) Describe Recorded Data (street	al Imagery (ave Surface Yes Yes Yes Yes Yes Yes	ired; check a	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence of Recent Iro Stunted or Other (Exp pth (inches pth (inches	ined Leave A, and 4B (B11) vertebrates Sulfide Oc Rhizospher of Reduce n Reductic Stressed blain in Res s):s s):s	s (B13) lor (C1) res along d Iron (C4 on in Tille Plants (D marks)	Living Ro	oots (C3) C6) A)	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Primary Indicators (minimum of the primary of the primary Indicators (minimum of the primary of the primary of the primary Indicators (minimum of the primary of the	al Imagery (ave Surface Yes Yes Yes Yes Yes Yes	ired; check a	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence of Recent Iro Stunted or Other (Exp pth (inches pth (inches	ined Leave A, and 4B (B11) vertebrates Sulfide Oc Rhizospher of Reduce n Reductic Stressed blain in Res s):s s):s	s (B13) lor (C1) res along d Iron (C4 on in Tille Plants (D marks)	Living Ro	oots (C3) C6) A)	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Primary Indicators (minimum of Surface Water (A1) ☐ High Water Table (A2) ☐ Saturation (A3) ☐ Water Marks (B1) ☐ Sediment Deposits (B2) ☐ Drift Deposits (B3) ☐ Algal Mat or Crust (B4) ☐ Iron Deposits (B5) ☐ Surface Soil Cracks (B6) ☐ Inundation Visible on Aeri ☐ Sparsely Vegetated Conce Field Observations: Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe) Describe Recorded Data (street	al Imagery (ave Surface Yes Yes Yes Yes Yes Yes	ired; check a	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence of Recent Iro Stunted or Other (Exp pth (inches pth (inches	ined Leave A, and 4B (B11) vertebrates Sulfide Oc Rhizospher of Reduce n Reductic Stressed blain in Res s):s s):s	s (B13) lor (C1) res along d Iron (C4 on in Tille Plants (D marks)	Living Ro	oots (C3) C6) A)	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

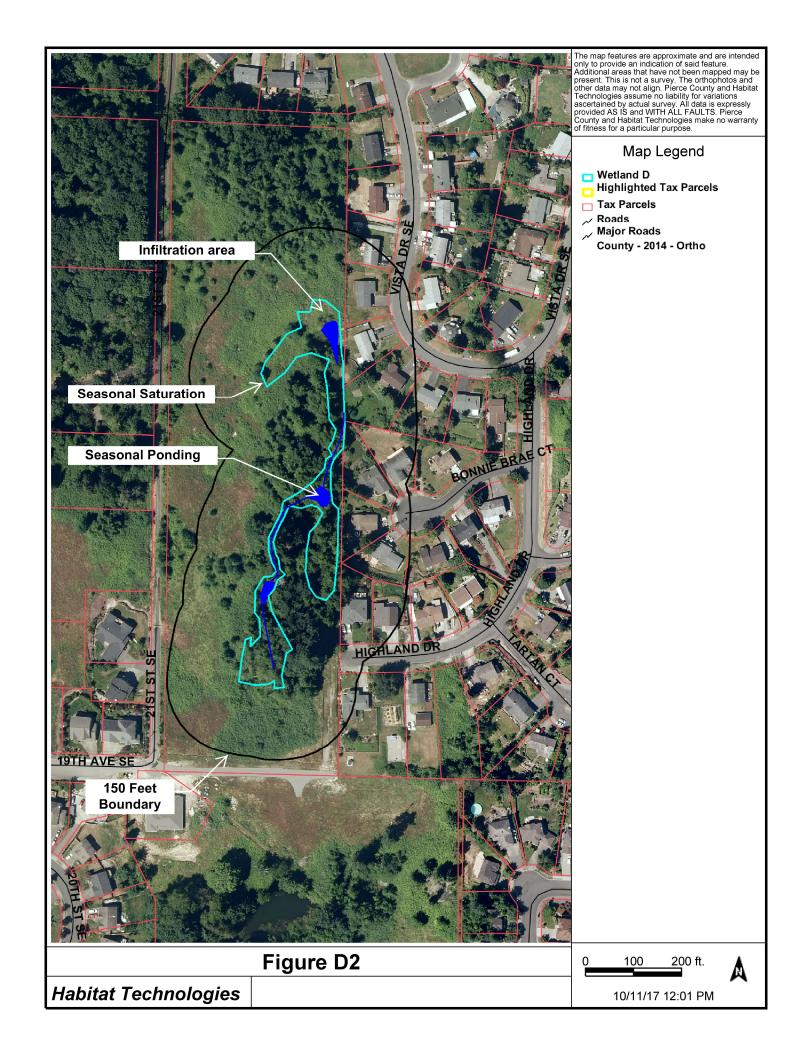
Project/Site: Sunset Pointe	C	ity/County: <u>Puyallup /</u>	Pierce	Sampling Date: <u>03 OCT 2017</u>
Applicant/Owner:			State: Washington	Sampling Point: SPB-16
Investigator(s): Habitat Technologies		Section, To	wnship, Range: <u>S35, T20</u>), R4E
Landform (hillslope, terrace, etc.):		Local relief (concave,	convex, none):	Slope (%):
Subregion (LRR): A				
Soil Map Unit Name: <u>Kitsap silt loam</u>			_	
Are climatic / hydrologic conditions on the site typical for				
Are Vegetation, Soil, or Hydrology	-	•	rmal Circumstances" pre	
Are Vegetation, Soil, or Hydrology			ed, explain any answers i	
SUMMARY OF FINDINGS – Attach site m		·		•
Hydrophytic Vegetation Present? Yes ⊠ I	No \square			
Hydric Soil Present? Yes 1	=	Is the Sample		
Wetland Hydrology Present? Yes ☐ 1	 No ⊠	within a Wetla	nd? Yes □	No ⊠
Remarks: Upland				
VEGETATION – Use scientific names of p	olants.			
Tree Stratum (Plot size: 15ft radius)	Absolute % Cover	Dominant Indicator Species? Status	Dominance Test wor	
1. Alnus rubra		ves FAC	Number of Dominant That Are OBL, FACW	
2.				
3.			Total Number of Dom Species Across All St	
4.			'	
Sapling/Shrub Stratum (Plot size: 15ft radius)		= Total Cover	Percent of Dominant S That Are OBL, FACW	
1			Prevalence Index wo	orksheet
2.				Multiply by:
3				x 1 =
4.				x 2 =
5.			FAC species	x 3 =
	0	= Total Cover	FACU species	x 4 =
Herb Stratum (Plot size: 15ft radius)			UPL species	x 5 =
Equisetum arvense			Column Totals:	(A) (B)
2			Prevalence Inde	ex = B/A =
3 4			Hydrophytic Vegetat	
5			☐ Rapid Test for Hy	
6.			☑ Dominance Test is	· · ·
7.			☐ Prevalence Index	is ≤3.0¹
8.				aptations ¹ (Provide supporting ks or on a separate sheet)
9			☐ Wetland Non-Vas	•
10		·	-	ophytic Vegetation¹ (Explain)
11			¹Indicators of hydric s	oil and wetland hydrology must
Woody Vine Stratum (Plot size: 15ft radius)	<u>30</u>	= Total Cover	be present, unless dis	turbed or problematic.
1. Rubus procera	100	yes FAC		
2.			Hydrophytic Vegetation	
	100	= Total Cover		es ⊠ No □
% Bare Ground in Herb Stratum <u>0</u>				
Remarks:				

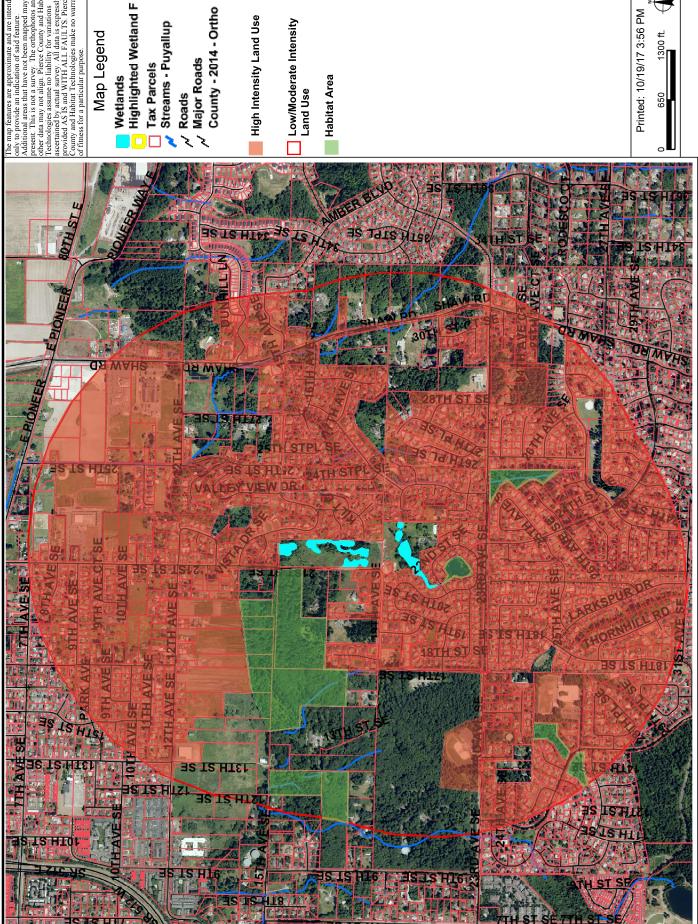
Depth (inches)	Color (moist)	%_	_ Cold	or (moist)	%Type ¹	Loc ²	_Texture	<u> </u>	Remarks Programme Remarks
)-18	10YR 3/3	100	_				SI		
						· ——	-		
	-					·			
								<u> </u>	
					S=Covered or Coa	ted Sand G			PL=Pore Lining, M=Matrix.
-	Indicators: (Appl	iicabie to							roblematic Hydric Soils ³ :
☐ Histosol	(A1) pipedon (A2)			Sandy Redox (Stripped Matrix	· ·			2 cm Muck (A Red Parent N	
Histic Ep Black Hi					(ຣຣ) Mineral (F1) (exce p	MIRA 1			Dark Surface (TF12)
	en Sulfide (A4)			Loamy Gleyed		I WILKA I)		Other (Explai	
	d Below Dark Surfa	ace (A11)		Depleted Matrix				Other (Explai	iii iii rtoilialitoj
	ark Surface (A12)	,		Redox Dark Su			3In	idicators of hyd	drophytic vegetation and
	Mucky Mineral (S1)			Depleted Dark	٠,,				logy must be present,
☐ Sandy G	Bleyed Matrix (S4)			Redox Depress	sions (F8)			unless disturb	ed or problematic.
Restrictive	Layer (if present)	:							
Depth (in	iches):			_			Hydric	c Soil Present	!? Yes □ No ⊠
	3Y						1		
Remarks: DROLOC Wetland Hy	SY drology Indicator	s:							
DROLO(uired; ch	eck all that app	ly)			Secondary Ind	licators (2 or more required)
DROLOC Wetland Hy Primary Indi	drology Indicator		uired; ch		•,	except ML			licators (2 or more required) ined Leaves (B9) (MLRA 1, 2
DROLOG Vetland Hy Primary Indi	drology Indicator		uired; ch	☐ Water-Sta	l <u>y)</u> ined Leaves (B9) (A, and 4B)	except ML			ined Leaves (B9) (MLRA 1, 2
DROLOG Vetland Hy Primary Indi	rdrology Indicator cators (minimum o Water (A1) ater Table (A2)		uired; ch	☐ Water-Sta	ined Leaves (B9) (A, and 4B)	except ML	RA	☐ Water-Stai	ined Leaves (B9) (MLRA 1, 2 d 4B)
DROLOC Wetland Hy Primary Indi Surface High Wa Saturatio	rdrology Indicator cators (minimum o Water (A1) ater Table (A2) on (A3)		uired; ch	☐ Water-Sta 1, 2, 4	ined Leaves (B9) (A, and 4B)	except ML	RA	Water-Stai 4A, an Drainage F	ined Leaves (B9) (MLRA 1, 2 d 4B)
DROLOC Wetland Hy Primary Indi Surface High Wa Saturatic Water M	rdrology Indicator cators (minimum o Water (A1) ater Table (A2) on (A3)		uired; ch	☐ Water-Sta 1, 2, 4. ☐ Salt Crust ☐ Aquatic In	ined Leaves (B9) (A, and 4B) (B11)	except ML	RA	Water-Stai 4A, an Drainage F Dry-Seaso	ined Leaves (B9) (MLRA 1, 2 d 4B) Patterns (B10)
DROLOC Wetland Hy Primary Indi Surface High Wa Saturatio Water M	rdrology Indicator cators (minimum o Water (A1) ater Table (A2) on (A3) larks (B1)		uired; ch	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen	ined Leaves (B9) (A, and 4B) (B11) vertebrates (B13)		RA	Water-Stai 4A, an Drainage F Dry-Seaso Saturation	ined Leaves (B9) (MLRA 1, 2 d 4B) Patterns (B10) on Water Table (C2)
DROLOC Wetland Hy Primary Indi Surface High Wa Saturatic Water M Sedimer Drift Dep	cators (minimum o Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2)		uired; ch	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized F	ined Leaves (B9) (A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1)	g Living Roo	RA ots (C3)	Water-Stai 4A, an Drainage F Dry-Seaso Saturation	ined Leaves (B9) (MLRA 1, 2 d 4B) Patterns (B10) on Water Table (C2) Visible on Aerial Imagery (Ca ic Position (D2)
DROLOC Vetland Hy Primary Indi Surface High Wa Saturatic Water M Sedimer Drift Dep Algal Ma	rdrology Indicator cators (minimum o Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3)		uired; ch	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized F Presence	ined Leaves (B9) (A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along	g Living Roo (4)	exa ots (C3)	Water-Stai 4A, an Drainage F Dry-Seaso Saturation Geomorph	ined Leaves (B9) (MLRA 1, 2 d 4B) Patterns (B10) In Water Table (C2) Visible on Aerial Imagery (Calic Position (D2) quitard (D3)
DROLOC Wetland Hy Primary Indi Surface High Wa Saturati Water M Sedimer Drift Dep Algal Ma	rdrology Indicator cators (minimum o Water (A1) ater Table (A2) on (A3) darks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)		uired; ch	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro	ined Leaves (B9) (A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C	g Living Roo (4) ed Soils (C6	era (C3)	Water-Stai 4A, an Drainage F Dry-Seaso Saturation Geomorph Shallow Ac FAC-Neutr	ined Leaves (B9) (MLRA 1, 2 d 4B) Patterns (B10) In Water Table (C2) Visible on Aerial Imagery (Calic Position (D2) quitard (D3)
DROLOC Wetland Hy Primary Indi Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep	rdrology Indicator cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)	f one requ		Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro	ined Leaves (B9) (A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con Reduction in Tille	g Living Roo (4) ed Soils (C6	era (C3)	Water-Stai 4A, an Drainage F Dry-Seaso Saturation Geomorph Shallow Ac FAC-Neutr Raised An	ined Leaves (B9) (MLRA 1, 2 d 4B) Patterns (B10) In Water Table (C2) Visible on Aerial Imagery (Citic Position (D2) quitard (D3) ral Test (D5)
DROLOC Wetland Hy Primary Indi Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Surface	rdrology Indicator cators (minimum of Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) cosits (B3) at or Crust (B4) cosits (B5) Soil Cracks (B6)	f one requ	(B7)	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro	ined Leaves (B9) (A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con Reduction in Tille Stressed Plants (I	g Living Roo (4) ed Soils (C6	era (C3)	Water-Stai 4A, an Drainage F Dry-Seaso Saturation Geomorph Shallow Ac FAC-Neutr Raised An	ined Leaves (B9) (MLRA 1, 2 d 4B) Patterns (B10) In Water Table (C2) Visible on Aerial Imagery (Citic Position (D2) quitard (D3) Iral Test (D5) It Mounds (D6) (LRR A)
DROLOC Wetland Hy Primary Indi Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Surface	rdrology Indicator cators (minimum o Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) cosits (B3) at or Crust (B4) cosits (B5) Soil Cracks (B6) on Visible on Aeria y Vegetated Conca	f one requ	(B7)	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized F Presence Recent Iro	ined Leaves (B9) (A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con Reduction in Tille Stressed Plants (I	g Living Roo (4) ed Soils (C6	era (C3)	Water-Stai 4A, an Drainage F Dry-Seaso Saturation Geomorph Shallow Ac FAC-Neutr Raised An	ined Leaves (B9) (MLRA 1, 2 d 4B) Patterns (B10) In Water Table (C2) Visible on Aerial Imagery (Citic Position (D2) quitard (D3) Iral Test (D5) It Mounds (D6) (LRR A)
DROLOG Vetland Hy Primary Indi Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundati Sparsely	rdrology Indicator cators (minimum o Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) cosits (B3) at or Crust (B4) cosits (B5) Soil Cracks (B6) on Visible on Aeria y Vegetated Conca	f one requ	(B7)	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized F Presence Recent Irc Stunted or	ined Leaves (B9) (A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con Reduction in Tille Stressed Plants (I	g Living Roo (4) ed Soils (C6	era (C3)	Water-Stai 4A, an Drainage F Dry-Seaso Saturation Geomorph Shallow Ac FAC-Neutr Raised An	ined Leaves (B9) (MLRA 1, 2 d 4B) Patterns (B10) In Water Table (C2) Visible on Aerial Imagery (Citic Position (D2) quitard (D3) Iral Test (D5) It Mounds (D6) (LRR A)
DROLOG Vetland Hy Primary Indi Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundati Sparsely	rdrology Indicator cators (minimum of Water (A1)) after Table (A2) on (A3) after Table (B2) on (B3) after Table (B2) on (B3) after Table (B4) on (B4) on (B5) Soil Cracks (B6) on Visible on Aerially Vegetated Concarvations:	l Imagery ve Surfac	(B7) e (B8)	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized F Presence Recent Irc Stunted or Other (Exp	ined Leaves (B9) (A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con Reduction in Tille Stressed Plants (Interpretation of Remarks)	g Living Roo (4) ed Soils (C6	era (C3)	Water-Stai 4A, an Drainage F Dry-Seaso Saturation Geomorph Shallow Ac FAC-Neutr Raised An	ined Leaves (B9) (MLRA 1, 2 d 4B) Patterns (B10) In Water Table (C2) Visible on Aerial Imagery (Citic Position (D2) quitard (D3) Iral Test (D5) It Mounds (D6) (LRR A)
DROLOG Wetland Hy Primary Indi Surface High Wa Saturatio Water M Sedimer Algal Ma Iron Dep Surface Inundati Sparsely Field Obser Surface Water Table Saturation F	rdrology Indicator cators (minimum of Water (A1)) after Table (A2) on (A3) after Table (B2) on (B3) after Table (B2) on (B3) after Table (B4) on (B4) on (B5) after Table (B5) after Table (B6) on Visible on Aeria of Vegetated Concarvations: ter Present? Present?	l Imagery ve Surfac	(B7) ne (B8) No ⊠	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized F Presence Recent Irc Stunted or Other (Exp	ined Leaves (B9) (A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con Reduction in Tille Stressed Plants (I blain in Remarks)	g Living Roo (4) ed Soils (Co (21) (LRR A	ots (C3)	Water-Stai 4A, an Drainage F Dry-Seaso Saturation Geomorph Shallow Ac FAC-Neutr Raised An Frost-Heav	ined Leaves (B9) (MLRA 1, 2 d 4B) Patterns (B10) In Water Table (C2) Visible on Aerial Imagery (Citic Position (D2) quitard (D3) Iral Test (D5) It Mounds (D6) (LRR A)
DROLOG Wetland Hy Primary Indi Surface High Wa Saturation Water M Sedimer Algal Ma Iron Dep Surface Inundati Sparsely Field Obser Surface Water Table Saturation Fincludes ca	rdrology Indicator cators (minimum of Water (A1)) after Table (A2) on (A3) after Table (B2) on (A3) after Table (B2) on (B3) after Table (B4) on (B4) on (B5) after Crust (B4) on Visible on Aeria of Vegetated Concarvations: ter Present? Present? Present? pillary fringe)	I Imagery ve Surface Yes Yes Yes Yes Yes	(B7) ne (B8) No ⊠ No ⊠ No ⊠	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized F Presence Recent Irc Stunted or Other (Exp	ined Leaves (B9) (A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con Reduction in Tille Stressed Plants (I blain in Remarks) s):s:s:s:	g Living Roo (4) ed Soils (C6 (1) (LRR A	ets (C3)	Water-Stai 4A, an Drainage F Dry-Seaso Saturation Geomorph Shallow Ac FAC-Neutr Raised An Frost-Heav	ined Leaves (B9) (MLRA 1, 2 d 4B) Patterns (B10) In Water Table (C2) Visible on Aerial Imagery (Calic Position (D2) quitard (D3) It Mounds (D6) (LRR A) Ive Hummocks (D7)
DROLOG Wetland Hy Primary Indi Surface High Wa Saturation Water M Sedimer Algal Ma Iron Dep Surface Inundati Sparsely Field Obser Surface Water Table Saturation Fincludes ca	rdrology Indicator cators (minimum of Water (A1)) after Table (A2) on (A3) after Table (B2) on (A3) after Table (B2) on (B3) after Table (B4) on (B4) on (B5) after Crust (B4) on Visible on Aeria of Vegetated Concarvations: ter Present? Present? Present? pillary fringe)	I Imagery ve Surface Yes Yes Yes Yes Yes	(B7) ne (B8) No ⊠ No ⊠ No ⊠	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized F Presence Recent Irc Stunted or Other (Exp	ined Leaves (B9) (A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con Reduced Iron (Con Reduction in Tille Stressed Plants (Ionia Remarks) s):s:	g Living Roo (4) ed Soils (C6 (1) (LRR A	ets (C3)	Water-Stai 4A, an Drainage F Dry-Seaso Saturation Geomorph Shallow Ac FAC-Neutr Raised An Frost-Heav	ined Leaves (B9) (MLRA 1, 2 d 4B) Patterns (B10) In Water Table (C2) Visible on Aerial Imagery (Calic Position (D2) quitard (D3) It Mounds (D6) (LRR A) Ive Hummocks (D7)
DROLOG Wetland Hy Primary Indi Surface High Wa Saturation Water M Sedimer Algal Ma Iron Dep Surface Inundati Sparsely Field Obser Surface Water Table Saturation Fincludes ca	rdrology Indicator cators (minimum of Water (A1)) after Table (A2) on (A3) after Table (B2) on (A3) after Table (B2) on (B3) after Table (B4) on (B4) on (B5) after Crust (B4) on Visible on Aeria of Vegetated Concarvations: ter Present? Present? Present? pillary fringe)	I Imagery ve Surface Yes Yes Yes Yes Yes	(B7) ne (B8) No ⊠ No ⊠ No ⊠	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized F Presence Recent Irc Stunted or Other (Exp	ined Leaves (B9) (A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con Reduction in Tille Stressed Plants (I blain in Remarks) s):s:s:s:	g Living Roo (4) ed Soils (C6 (1) (LRR A	ets (C3)	Water-Stai 4A, an Drainage F Dry-Seaso Saturation Geomorph Shallow Ac FAC-Neutr Raised An Frost-Heav	ined Leaves (B9) (MLRA 1, 2 d 4B) Patterns (B10) In Water Table (C2) Visible on Aerial Imagery (Calic Position (D2) quitard (D3) It Mounds (D6) (LRR A) Ive Hummocks (D7)
DROLOG Wetland Hy Primary Indi Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma Iron Dep Surface Inundati Sparsely Field Obser Surface Water Table Saturation F includes ca	rdrology Indicator cators (minimum of Water (A1)) after Table (A2) on (A3) after Table (B2) on (A3) after Table (B2) on (B3) after Table (B4) on (B4) on (B5) after Crust (B4) on Visible on Aeria of Vegetated Concarvations: ter Present? Present? Present? pillary fringe)	I Imagery ve Surface Yes Yes Yes Yes Yes	(B7) ne (B8) No ⊠ No ⊠ No ⊠	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized F Presence Recent Irc Stunted or Other (Exp	ined Leaves (B9) (A, and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con Reduction in Tille Stressed Plants (I blain in Remarks) s):s:s:s:	g Living Roo (4) ed Soils (C6 (1) (LRR A	ets (C3)	Water-Stai 4A, an Drainage F Dry-Seaso Saturation Geomorph Shallow Ac FAC-Neutr Raised An Frost-Heav	ined Leaves (B9) (MLRA 1, 2 d 4B) Patterns (B10) In Water Table (C2) Visible on Aerial Imagery (Calic Position (D2) quitard (D3) It Mounds (D6) (LRR A) Ive Hummocks (D7)

WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

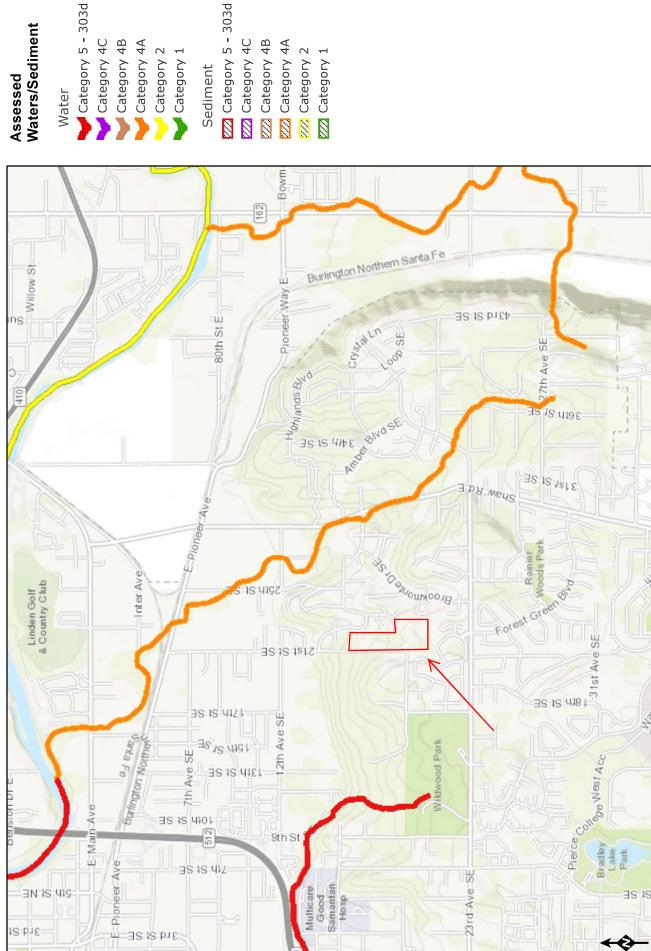
Project/Site: Sunset Pointe		City/County: <u>Puyallup /</u>	Sampling Date: 03 OCT 2017		
Applicant/Owner:	State: Washington		State: Washington	Sampling Point: SPB-18	
Investigator(s): Habitat Technologies					
Landform (hillslope, terrace, etc.):		Local relief (concave,	convex, none):	Slope (%):	
Subregion (LRR): A					
Soil Map Unit Name: <u>Kitsap silt loam</u>					
Are climatic / hydrologic conditions on the site typica					
Are Vegetation, Soil, or Hydrology	-	•	rmal Circumstances" pre		
Are Vegetation, Soil, or Hydrology			ed, explain any answers i		
SUMMARY OF FINDINGS – Attach site				,	
Hydrophytic Vegetation Present? Yes ⊠	No □	la tha Camania	d A		
Hydric Soil Present? Yes ⊠	No □	Is the Sampled within a Wetla		No □	
, ,,	No □	within a wetta	iiu: Tes 🖂	NO [
Remarks: Wetland					
VECETATION Lies esignifica nomes e					
VEGETATION – Use scientific names o	Absolute	Dominant Indicator	Dominance Test wor	uka ba a ti	
Tree Stratum (Plot size: 15ft radius)		Dominant Indicator Species? Status	Number of Dominant		
1. Alnus rubra	40	yes FAC	That Are OBL, FACW		
2			Total Number of Dom	inant	
3			Species Across All St		
4			Percent of Dominant S	Species	
Sapling/Shrub Stratum (Plot size: 15ft radius)	<u>40</u>	_ = Total Cover	That Are OBL, FACW	, or FAC: <u>100</u> (A/B)	
1			Prevalence Index wo	orksheet:	
2.			Total % Cover of:	Multiply by:	
3			OBL species	x 1 =	
4			*	x 2 =	
5				x 3 =	
Herb Stratum (Plot size: 15ft radius)	0	_ = Total Cover		x 4 =	
1. Juncus effusus	20	yes FACW		x 5 = (A)	
2. Equisetum arvense		yes FAC	Column rotals.	(A) (B)	
3. Athyrium filix-femina		yes FAC	Prevalence Inde	ex = B/A =	
4. Ranunculus repens	20	yes <u>FAC</u>	Hydrophytic Vegetat		
5			Rapid Test for Hy	1 , 0	
6			☐ Dominance Test is		
7			☐ Prevalence Index		
8				aptations¹ (Provide supporting ks or on a separate sheet)	
9			☐ Wetland Non-Vas	cular Plants ¹	
10			☐ Problematic Hydro	ophytic Vegetation¹ (Explain)	
11	100	= Total Cover		oil and wetland hydrology must	
Woody Vine Stratum (Plot size: 15ft radius)	100	_ = 10tal 00vcl	be present, unless dis	sturbed or problematic.	
1. Rubus procera	<u>30</u>	yes FAC	Hydrophytic		
2			Vegetation		
0/ Para Cround in Harb Stratum 0	30	_ = Total Cover	Present? Y	es ⊠ No □	
% Bare Ground in Herb Stratum <u>0</u> Remarks:					
Remarks:					


Profile Description: (Descri	ne to the (•									
Depth Matri	<u>(</u>			x Features							
(inches) Color (moist)	%	_ <u>Color</u>	(moist)		Type ¹	Loc ²	<u>Textur</u>	<u>e</u>		<u>Remarks</u>	
0-4 <u>10YR 4/2</u>	100						SI				
4-20 <u>10YR 4/1</u>	80	10YR	: 4/6	20	<u>c</u>	<u>M</u>	SI				
¹ Type: C=Concentration, D=[ed Sand G				ore Lining, M	
Hydric Soil Indicators: (App	licable to				a.)					ematic Hydric	: Soils":
Histosol (A1)			andy Redox (S						luck (A10)	: I (TEO)	
Histic Epipedon (A2)			tripped Matrix	. ,	/	MIDAA		=	arent Mater	` '	40)
☐ Black Histic (A3) ☐ Hydrogen Sulfide (A4)			oamy Mucky N oamy Gleyed I		(except	WILKA 1)	-	nallow Dar Explain in	k Surface (TF Pomarks)	12)
☐ Hydrogen Sunde (A4) ☐ Depleted Below Dark Surf	ace (A11)		epleted Matrix				L) Other (<u> схріані ін</u>	Remarks)	
☐ Thick Dark Surface (A12)	ace (ATT)		edox Dark Su				3 r	ndicators	of hydronh	ytic vegetatio	n and
☐ Sandy Mucky Mineral (S1)		epleted Dark S	, ,)					must be pres	
☐ Sandy Gleyed Matrix (S4)			edox Depress	•	,					r problematic.	
Restrictive Layer (if present			<u> </u>	()						•	
Type:											
							Hydri	c Sail Di	resent?	Yes ⊠ No	
Depth (inches):Remarks:								C 3011 F1			
Depth (inches):Remarks:								C 30II FI		_	
Depth (inches):	rs:										
Depth (inches):	rs:	uired; chec		•				Seconda	ary Indicato	ors (2 or more	required)
Depth (inches):	rs:	uired; chec	☐ Water-Stai	ined Leaves	s (B9) (e	xcept ML		Seconda	ary Indicato er-Stained	ors (2 or more Leaves (B9) (required)
Depth (inches):	rs:	uired; ched	☐ Water-Stai	ined Leaves A, and 4B)	s (B9) (e	xcept ML		Seconda ☐ Wate	ary Indicato er-Stained IA, and 4B	ors (2 or more Leaves (B9) (required)
Depth (inches):	rs:	uired; chec	□ Water-Stai 1, 2, 4, □ Salt Crust	ined Leaves A, and 4B) (B11)	, , ,	xcept ML		Seconda Wate	ary Indicato er-Stained IA, and 4B nage Patte	ors (2 or more Leaves (B9) (i) rns (B10)	required) MLRA 1, 2
Depth (inches):	rs:	uired; chec	☐ Water-Stai 1, 2, 4/ ☐ Salt Crust ☐ Aquatic Inv	ined Leaves A, and 4B) (B11) vertebrates	(B13)	xcept ML		Seconda Wate Drain Dry-	ary Indicato er-Stained IA, and 4B nage Patte Season Wa	ors (2 or more Leaves (B9) (i) rns (B10) ater Table (C2	required) MLRA 1, 2
Depth (inches):	rs:	uired; chec	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen	ined Leaves A, and 4B) (B11) vertebrates Sulfide Odd	(B13) or (C1)		.RA	Seconda Wate Drain Dry- Satu	ary Indicato er-Stained I A, and 4B nage Patte Season Wa iration Visit	ors (2 or more Leaves (B9) (3) rns (B10) ater Table (C2 ole on Aerial I	required) MLRA 1, 2
Depth (inches):	rs:	uired; chec	Water-Stai 1, 2, 4, 4 Salt Crust Aquatic Inv Hydrogen Oxidized F	ined Leaves A, and 4B) (B11) vertebrates Sulfide Odd	(B13) or (C1) es along	Living Ro	.RA	Seconda	ary Indicato er-Stained IA, and 4B nage Patte Season Wa iration Visil morphic Po	ors (2 or more Leaves (B9) (3) rns (B10) ater Table (C2 ole on Aerial I osition (D2)	required) MLRA 1, 2
Depth (inches):	rs:	uired; chec	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence of	A, and 4B) (B11) vertebrates Sulfide Odo Rhizosphere of Reduced	(B13) or (C1) es along Iron (C4	Living Ro	.RA	Seconda Wate Drain Dry- Satu Geo Shal	ary Indicato er-Stained IA, and 4B nage Patte Season Wa Iration Visit morphic Po low Aquita	ors (2 or more Leaves (B9) (3) rns (B10) ater Table (C2 ble on Aerial I osition (D2) rd (D3)	required) MLRA 1, 2
Depth (inches):	rs:	uired; chec	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence o Recent Iro	ined Leaves A, and 4B) (B11) vertebrates Sulfide Odc Rhizosphere of Reduced n Reductior	(B13) or (C1) es along Iron (C4	Living Ro	.RA ots (C3)	Seconda Wate Drain Dry- Satu Geo Shal	ary Indicato er-Stained IA, and 4B nage Patte Season Waration Visit morphic Po low Aquita -Neutral Te	ors (2 or more Leaves (B9) (i) rns (B10) ater Table (C2 ble on Aerial I osition (D2) rd (D3) est (D5)	required) MLRA 1, 2 2) magery (CS
Depth (inches):	rs: of one requ	uired; chec [[[[[Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized F Presence o Recent Iro Stunted or	ined Leaves A, and 4B) (B11) vertebrates Sulfide Odo Rhizosphere of Reduced n Reductior Stressed P	(B13) or (C1) es along Iron (C4 n in Tille	Living Ro	.RA ots (C3)	Seconda	ary Indicato er-Stained IA, and 4B nage Patte Season Wa Iration Visil morphic Po low Aquita -Neutral Te ed Ant Mo	ors (2 or more Leaves (B9) (i) rns (B10) ater Table (C2 ole on Aerial I osition (D2) rd (D3) est (D5) unds (D6) (LF	required) (MLRA 1, 2 2) magery (CS
Depth (inches):	rs: of one requ	uired; chec [[[[[[(B7) [Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized F Presence o Recent Iro Stunted or	ined Leaves A, and 4B) (B11) vertebrates Sulfide Odc Rhizosphere of Reduced n Reductior	(B13) or (C1) es along Iron (C4 n in Tille	Living Ro	.RA ots (C3)	Seconda	ary Indicato er-Stained IA, and 4B nage Patte Season Wa Iration Visil morphic Po low Aquita -Neutral Te ed Ant Mo	ors (2 or more Leaves (B9) (i) rns (B10) ater Table (C2 ble on Aerial I osition (D2) rd (D3) est (D5)	required) (MLRA 1, 2 2) magery (CS
Depth (inches):	rs: of one requ	uired; chec [[[[[[(B7) [Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized F Presence o Recent Iro Stunted or	ined Leaves A, and 4B) (B11) vertebrates Sulfide Odo Rhizosphere of Reduced n Reductior Stressed P	(B13) or (C1) es along Iron (C4 n in Tille	Living Ro	.RA ots (C3)	Seconda	ary Indicato er-Stained IA, and 4B nage Patte Season Wa Iration Visil morphic Po low Aquita -Neutral Te ed Ant Mo	ors (2 or more Leaves (B9) (i) rns (B10) ater Table (C2 ole on Aerial I osition (D2) rd (D3) est (D5) unds (D6) (LF	required) (MLRA 1, 2 2) magery (CS
Depth (inches):	rs: of one requ	uired; chec [[[[[[(B7) [Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized F Presence o Recent Iro Stunted or	ined Leaves A, and 4B) (B11) vertebrates Sulfide Odo Rhizosphere of Reduced n Reductior Stressed P	(B13) or (C1) es along Iron (C4 n in Tille	Living Ro	.RA ots (C3)	Seconda	ary Indicato er-Stained IA, and 4B nage Patte Season Wa Iration Visil morphic Po low Aquita -Neutral Te ed Ant Mo	ors (2 or more Leaves (B9) (i) rns (B10) ater Table (C2 ole on Aerial I osition (D2) rd (D3) est (D5) unds (D6) (LF	required) (MLRA 1, 2) (MLRA 1, 2) (MLRA 1, 2) (MLRA 1, 2)
Depth (inches):	rs: of one requ	uired; chec [[[[[[(B7) [Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized F Presence o Recent Iro Stunted or	ined Leaves A, and 4B) (B11) vertebrates Sulfide Odc Rhizosphere of Reduced n Reductior Stressed P blain in Rem	(B13) or (C1) es along Iron (C4 n in Tille	Living Ro	.RA ots (C3)	Seconda	ary Indicato er-Stained IA, and 4B nage Patte Season Wa Iration Visil morphic Po low Aquita -Neutral Te ed Ant Mo	ors (2 or more Leaves (B9) (i) rns (B10) ater Table (C2 ole on Aerial I osition (D2) rd (D3) est (D5) unds (D6) (LF	required) (MLRA 1, 2, 2) magery (C9
Depth (inches):	rs: of one requ	uired; chec [[[[[(B7) [se (B8)	Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence o Recent Iro Stunted or Other (Exp	ined Leaves A, and 4B) (B11) vertebrates Sulfide Odc Rhizosphere of Reduced in Reductior Stressed P blain in Rem s):	(B13) or (C1) es along Iron (C4 n in Tille	Living Ro	.RA ots (C3)	Seconda	ary Indicato er-Stained IA, and 4B nage Patte Season Wa Iration Visil morphic Po low Aquita -Neutral Te ed Ant Mo	ors (2 or more Leaves (B9) (i) rns (B10) ater Table (C2 ole on Aerial I osition (D2) rd (D3) est (D5) unds (D6) (LF	required) (MLRA 1, 2) (MLRA 1, 2) (MLRA 1, 2) (MLRA 1, 2)
Depth (inches): Remarks: TDROLOGY Wetland Hydrology Indicator Primary Indicators (minimum of the content of	rs: of one requal Imagery ave Surface	uired; chec [[[[[(B7) [ee (B8)	Water-Stai 1, 2, 4/ Salt Crust Aquatic Inv Hydrogen Oxidized R Presence of Recent Iro Stunted or Other (Exp	ined Leaves A, and 4B) (B11) vertebrates Sulfide Odo Rhizosphere of Reduced n Reductior Stressed P blain in Rem s):s):s): 4	(B13) or (C1) es along Iron (C4 n in Tille	Living Ro	.RA ots (C3) 6)	Seconda Wate Drain Dry- Satu Geo Shal FAC Rais Fros	ary Indicato er-Stained IA, and 4B nage Patte Season Wa Iration Visit morphic Po low Aquita -Neutral Te ed Ant Mor t-Heave Hu	ors (2 or more Leaves (B9) (i) rns (B10) ater Table (C2 ole on Aerial I osition (D2) rd (D3) est (D5) unds (D6) (LF	required) MLRA 1, 2 2) magery (C9
Depth (inches):	rs: of one requal lmagery ave Surface Yes Yes Yes Yes Yes Yes	uired; chec [Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence o Recent Iro Stunted or Other (Exp Depth (inches	ined Leaves A, and 4B) (B11) vertebrates Sulfide Odc Rhizosphere of Reduced in Reductior Stressed Polain in Rem s): s): 4 s): 0	(B13) or (C1) es along Iron (C4 n in Tille Plants (D narks)	Living Ro	.RA ots (C3) 6) A)	Seconda Wate Drain Dry- Satu Geo Shal FAC Rais Fros	ary Indicato er-Stained IA, and 4B nage Patte Season Wa Iration Visit morphic Po low Aquita -Neutral Te ed Ant Mor t-Heave Hu	ors (2 or more Leaves (B9) (3) rns (B10) ater Table (C2 ole on Aerial I osition (D2) rd (D3) est (D5) unds (D6) (LF ummocks (D7	required) MLRA 1, 2 2) magery (C9
Depth (inches): Remarks: TDROLOGY Wetland Hydrology Indicator Primary Indicators (minimum of the content of	rs: of one requal lmagery ave Surface Yes Yes Yes Yes Yes Yes	uired; chec [Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence o Recent Iro Stunted or Other (Exp Depth (inches	ined Leaves A, and 4B) (B11) vertebrates Sulfide Odc Rhizosphere of Reduced in Reductior Stressed Polain in Rem s): s): 4 s): 0	(B13) or (C1) es along Iron (C4 n in Tille Plants (D narks)	Living Ro	.RA ots (C3) 6) A)	Seconda Wate Drain Dry- Satu Geo Shal FAC Rais Fros	ary Indicato er-Stained IA, and 4B nage Patte Season Wa Iration Visit morphic Po low Aquita -Neutral Te ed Ant Mor t-Heave Hu	ors (2 or more Leaves (B9) (3) rns (B10) ater Table (C2 ole on Aerial I osition (D2) rd (D3) est (D5) unds (D6) (LF ummocks (D7	required) MLRA 1, 2 2) magery (C9
Depth (inches): Remarks: PROLOGY Wetland Hydrology Indicator Primary Indicators (minimum of the primary Indicators (Max) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Inguity Indicators (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aericators (B1) Sparsely Vegetated Concentric (Sparsely Vegetated Concentric (B1) Sparsely Vegetated Concentric (B2) Saturation Present? Water Table Present? Saturation Present? Saturation Present? (Includes capillary fringe) Describe Recorded Data (street)	rs: of one requal lmagery ave Surface Yes Yes Yes Yes Yes Yes	uired; chec [Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence o Recent Iro Stunted or Other (Exp Depth (inches	ined Leaves A, and 4B) (B11) vertebrates Sulfide Odc Rhizosphere of Reduced in Reductior Stressed Polain in Rem s): s): 4 s): 0	(B13) or (C1) es along Iron (C4 n in Tille Plants (D narks)	Living Ro	.RA ots (C3) 6) A)	Seconda Wate Drain Dry- Satu Geo Shal FAC Rais Fros	ary Indicato er-Stained IA, and 4B nage Patte Season Wa Iration Visit morphic Po low Aquita -Neutral Te ed Ant Mor t-Heave Hu	ors (2 or more Leaves (B9) (3) rns (B10) ater Table (C2 ole on Aerial I osition (D2) rd (D3) est (D5) unds (D6) (LF ummocks (D7	required) MLRA 1, 2, 2) magery (C9
Depth (inches):	rs: of one requal lmagery ave Surface Yes Yes Yes Yes Yes Yes	uired; chec [Water-Stai 1, 2, 4, Salt Crust Aquatic Inv Hydrogen Oxidized F Presence o Recent Iro Stunted or Other (Exp Depth (inches	ined Leaves A, and 4B) (B11) vertebrates Sulfide Odc Rhizosphere of Reduced in Reductior Stressed Polain in Rem s): s): 4 s): 0	(B13) or (C1) es along Iron (C4 n in Tille Plants (D narks)	Living Ro	.RA ots (C3) 6) A)	Seconda Wate Drain Dry- Satu Geo Shal FAC Rais Fros	ary Indicato er-Stained IA, and 4B nage Patte Season Wa Iration Visit morphic Po low Aquita -Neutral Te ed Ant Mor t-Heave Hu	ors (2 or more Leaves (B9) (3) rns (B10) ater Table (C2 ole on Aerial I osition (D2) rd (D3) est (D5) unds (D6) (LF ummocks (D7	required) MLRA 1, 2 2) magery (CS


WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region


Project/Site: Sunset Pointe			City/County: Puyallup / Pierce					_ Sampling Date:03 OCT 2017			17
Applicant/Owner:	State: Wash		State: Washington	_ Sam	pling Point: <u>SF</u>	² B-24					
Investigator(s): Habitat Technologies					_ Se	ction, Tov	vnship, Range: <u>S35, T20</u>), R4E			
Landform (hillslope, terrace, etc.):				Local re	elief (d	concave, c	convex, none):		Slope	(%):	
Subregion (LRR): <u>A</u>											
Soil Map Unit Name: <u>Kitsap silt loam</u>											
Are climatic / hydrologic conditions on the si											
Are Vegetation, Soil, or Hydro			-		_	•	mal Circumstances" pre		Yes⊠ No	П	
Are Vegetation, Soil, or Hydro							d, explain any answers i			_	
SUMMARY OF FINDINGS - Attac						`			,	ures, e	tc.
Hydrophytic Vegetation Present?	Yes ⊠	No □			- 41	0	1.4				
Hydric Soil Present?	Yes 🖂	No 🗌				Sampled n a Wetlai		No \square			
Wetland Hydrology Present?	Yes ⊠	No 🗌		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VILIIII	ı a vvellai	iiu! Tes 🖂	NO 🗀			
Remarks: Wetland.											
VECETATION Line asigntific no		nlonte									
VEGETATION – Use scientific na	mes or	piants		Domin	nant.	Indicator	Dominance Test we	ulca baa	4.		
<u>Tree Stratum</u> (Plot size: <u>15ft radius</u>)			Absolute <u>% Cover</u>			Indicator Status	Number of Dominant				
1. Alnus rubra			30	yes	!	FAC	That Are OBL, FACW			(A	4)
2				- ——			Total Number of Dom	inant			
3							Species Across All St		5	(B)	6)
4							Percent of Dominant	Species	s		
Sapling/Shrub Stratum (Plot size: 15ft r	adius)		30	_ = Tota	al Co	ver	That Are OBL, FACW			(A	/B)
1. Rubus spectabilis			20	ves		FAC	Prevalence Index wo	orkshe	 et:		
2							Total % Cover of	<u>. </u>	Multiply	by:	
3.							OBL species				
4.							FACW species		x 2 =		
5							FAC species		_ x 3 =		
			20	_ = Tota	al Co	ver	FACU species		_ x 4 =		
Herb Stratum (Plot size: 15ft radius)			00			E 4 O 4 /	UPL species				
Lysichitum americanum Gruinetum anvenee			80	-		FACW_ FAC	Column Totals:		_ (A)	((B)
Equisetum arvense Athyrium filix-femina							Prevalence Inde	ex = B/.	A =		
4							Hydrophytic Vegeta				
5							☐ Rapid Test for Hy				
6.							□ Dominance Test i	s >50%))		
7.							☐ Prevalence Index	is ≤3.0	,1		
8							☐ Morphological Ad				3
9				- ——			data in Remar ☐ Wetland Non-Vas		•	sneet)	
10				- ——			Problematic Hydro			Evolain)	
11				- —			¹ Indicators of hydric s	. ,	•	' '	
Woody Vine Stratum (Plot size: 15ft rad	liue)		<u>100</u>	_ = Tota	al Co	ver	be present, unless dis				J.
1											
2.					_		Hydrophytic				
			0	= Tota	— · al Co	ver	Vegetation Present? Y	'es ⊠	No 🗌		
% Bare Ground in Herb Stratum <u>0</u>											
% Bare Ground in Herb Stratum <u>0</u> Remarks:			0	_ = Tota	al Co	ver	Present? Y	es 🖂	NO [

Profile Description: (Descri						
Depth Matri (inches) Color (moist)	x	Color (moist)	Redox FeaturesType¹	L 00 ²	Toyturo	Remarks
0-18 <u>10YR 3/1</u>	100	-			Sil	
		_				
		_				
		_				
					-	
		-				
		_				
		_				
¹ Type: C=Concentration, D=I	Depletion, R	M=Reduced Matri	x, CS=Covered or Coat	ed Sand G	rains. ² Loc	cation: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators: (App	olicable to	all LRRs, unless o	otherwise noted.)		Indicato	rs for Problematic Hydric Soils ³ :
☐ Histosol (A1)		☐ Sandy Red	ox (S5)		☐ 2 cm	Muck (A10)
☐ Histic Epipedon (A2)		☐ Stripped Ma				Parent Material (TF2)
☐ Black Histic (A3)		•	cky Mineral (F1) (excep	t MLRA 1)	•	Shallow Dark Surface (TF12)
☐ Hydrogen Sulfide (A4)	. (844)	Loamy Gley			∐ Othe	er (Explain in Remarks)
☐ Depleted Below Dark Sur		☐ Depleted M☐ Redox Dark			3lp diocto	are of budroubutio vegetation and
☑ Thick Dark Surface (A12)☑ Sandy Mucky Mineral (S1			ark Surface (F6)			ors of hydrophytic vegetation and nd hydrology must be present,
☐ Sandy Midcky Milleral (S1) ☐ Sandy Gleyed Matrix (S4)	,	☐ Redox Dep	. ,			is disturbed or problematic.
Restrictive Layer (if present					1	
Type:	•					
Depth (inches):					Hydric Soil	Present? Yes ⊠ No □
Remarks:					Tryunc 30ii	
					Tiyunc 30ii	
Remarks:	ors:		apply)			ndary Indicators (2 or more required)
Remarks: 'DROLOGY Wetland Hydrology Indicato	ors:	ired; check all that	apply) -Stained Leaves (B9) (¢	xcept ML	Secon	
Primary Indicators (minimum	ors:	ired; check all that □ Water		xcept MLI	Secon	ndary Indicators (2 or more required)
Primary Indicators (minimum Surface Water (A1)	ors:	ired; check all that □ Water	-Stained Leaves (B9) (6 2, 4A, and 4B)	xcept MLI	Secor	ndary Indicators (2 or more required) ater-Stained Leaves (B9) (MLRA 1, 2,
Primary Indicators (minimum Surface Water (A1) High Water Table (A2)	ors:	i <u>red; check all that</u> □ Water 1, □ Salt C	-Stained Leaves (B9) (6 2, 4A, and 4B)	xcept MLI	Secor	ndary Indicators (2 or more required) later-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3)	ors:	ired; check all that □ Water 1, □ Salt C □ Aquati	-Stained Leaves (B9) (6 2, 4A, and 4B) rust (B11)	xcept MLI	Secor	ndary Indicators (2 or more required) fater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2)
TDROLOGY Wetland Hydrology Indicator Primary Indicators (minimum □ Surface Water (A1) □ High Water Table (A2) □ Saturation (A3) □ Water Marks (B1)	ors:	ired; check all that Water 1, Salt C Aquati	-Stained Leaves (B9) (c 2, 4A, and 4B) rust (B11) ic Invertebrates (B13)		Secon RA	ndary Indicators (2 or more required) later-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	ors:	ired; check all that Water 1, Salt C Aquati Hydro	-Stained Leaves (B9) (c 2, 4A, and 4B) rust (B11) ic Invertebrates (B13) gen Sulfide Odor (C1)	Living Roc	Secor RA	ndary Indicators (2 or more required) later-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3)	ors:	ired; check all that Water 1, Salt C Aquati Hydro	-Stained Leaves (B9) (c 2, 4A, and 4B) rust (B11) ic Invertebrates (B13) gen Sulfide Odor (C1) ed Rhizospheres along	Living Roo 1)	Secor RA	ndary Indicators (2 or more required) later-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) aturation Visible on Aerial Imagery (C9) eomorphic Position (D2)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)	ors:	ired; check all that Water 1, Salt C Aquati Hydro Oxidiz Preset	-Stained Leaves (B9) (c 2, 4A, and 4B) rust (B11) ic Invertebrates (B13) gen Sulfide Odor (C1) red Rhizospheres along nce of Reduced Iron (C-	Living Roc 4) d Soils (C6	Secor RA	ndary Indicators (2 or more required) rater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) raturation Visible on Aerial Imagery (C9) reomorphic Position (D2) rallow Aquitard (D3)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri	ors: of one requi	ired; check all that Water 1, Salt C Aquati Hydro Oxidiz Presel Recer Stunte (B7) Other	-Stained Leaves (B9) (e 2, 4A, and 4B) rust (B11) ic Invertebrates (B13) gen Sulfide Odor (C1) red Rhizospheres along nce of Reduced Iron (Continuo Reduction in Tille	Living Roc 4) d Soils (C6	Secon W Di Sa Si Si Si F F F Si Si	ndary Indicators (2 or more required) Fater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Fatinage Patterns (B10) Fry-Season Water Table (C2) Faturation Visible on Aerial Imagery (C9) Feomorphic Position (D2) Fatinal Research (D3) Factorial Test (D5)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri	ors: of one requi	ired; check all that Water 1, Salt C Aquati Hydro Oxidiz Presel Recer Stunte (B7) Other	-Stained Leaves (B9) (e 2, 4A, and 4B) rust (B11) ic Invertebrates (B13) gen Sulfide Odor (C1) ed Rhizospheres along nce of Reduced Iron (Cat It Iron Reduction in Tille	Living Roc 4) d Soils (C6	Secon W Di Sa Si Si Si F F F Si Si	ndary Indicators (2 or more required) (ater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) (C9) (aturation Visible on Aerial Imagery (C9) (C9) (C9) (C9) (C9) (C9) (C9) (C9)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conc	ors: of one requi	ired; check all that Water 1, Salt C Aquati Hydro Oxidiz Prese Recer Stunte (B7) Other	-Stained Leaves (B9) (e 2, 4A, and 4B) rust (B11) ic Invertebrates (B13) gen Sulfide Odor (C1) led Rhizospheres along nice of Reduced Iron (Ci at Iron Reduction in Tille ed or Stressed Plants (E (Explain in Remarks)	Living Roc 4) d Soils (C6	Secon W Di Sa Si Si Si F F F Si Si	ndary Indicators (2 or more required) fater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) faturation Visible on Aerial Imagery (C9) feomorphic Position (D2) fallow Aquitard (D3) fac-Neutral Test (D5) faised Ant Mounds (D6) (LRR A)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Concertical	ors: of one requi	ired; check all that Water 1, Salt C Aquati Hydro Oxidiz Presel Recer Stunte (B7) Other e (B8)	-Stained Leaves (B9) (e 2, 4A, and 4B) rust (B11) ic Invertebrates (B13) gen Sulfide Odor (C1) ed Rhizospheres along nce of Reduced Iron (Cat Iron Reduction in Tille ed or Stressed Plants (D (Explain in Remarks)	Living Roc 4) d Soils (C6	Secon W Di Sa Si Si Si F F F Si Si	ndary Indicators (2 or more required) fater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) faturation Visible on Aerial Imagery (C9) feomorphic Position (D2) fallow Aquitard (D3) fac-Neutral Test (D5) faised Ant Mounds (D6) (LRR A)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conce Field Observations: Surface Water Present?	al Imagery (ave Surface Yes □ Yes ⊠	ired; check all that Water 1, Salt C Aquati Hydro Oxidiz Prese Recen Stunte (B7) Other (B8)	-Stained Leaves (B9) (c 2, 4A, and 4B) rust (B11) ic Invertebrates (B13) gen Sulfide Odor (C1) ded Rhizospheres along nce of Reduced Iron (C- at Iron Reduction in Tille ded or Stressed Plants (E (Explain in Remarks)	Living Roo 4) d Soils (C6 1) (LRR A	Secor RA	adary Indicators (2 or more required) (ater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) (arainage Patterns (B10) (ater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) (arainage Patterns (B10) (arainag
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conce Field Observations: Surface Water Present? Water Table Present? Saturation Present?	al Imagery (ave Surface Yes □ Yes ⊠	ired; check all that Water 1, Salt C Aquati Hydro Oxidiz Prese Recen Stunte (B7) Other (B8)	-Stained Leaves (B9) (e 2, 4A, and 4B) rust (B11) ic Invertebrates (B13) gen Sulfide Odor (C1) ed Rhizospheres along nce of Reduced Iron (Cat Iron Reduction in Tille ed or Stressed Plants (D (Explain in Remarks)	Living Roo 4) d Soils (C6 1) (LRR A	Secor RA	ndary Indicators (2 or more required) fater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) rainage Patterns (B10) ry-Season Water Table (C2) faturation Visible on Aerial Imagery (C9) feomorphic Position (D2) fallow Aquitard (D3) fac-Neutral Test (D5) faised Ant Mounds (D6) (LRR A)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conce Field Observations: Surface Water Present?	al Imagery of ave Surface Yes Yes Yes Yes Yes Yes Yes	ired; check all that Water 1, Salt C Aquati Hydron Oxidiz Presen Recen Stunte (B7) Other e (B8) No Depth (in	-Stained Leaves (B9) (e 2, 4A, and 4B) rust (B11) ic Invertebrates (B13) gen Sulfide Odor (C1) ed Rhizospheres along nce of Reduced Iron (Cat Iron Reduction in Tille ed or Stressed Plants (E (Explain in Remarks) aches):	Living Roo 4) d Soils (C6 1) (LRR A	Secon	adary Indicators (2 or more required) (ater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) (arainage Patterns (B10) (ater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) (arainage Patterns (B10) (arainag
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conce Field Observations: Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe) Describe Recorded Data (streen	al Imagery of ave Surface Yes Yes Yes Yes Yes Yes Yes	ired; check all that Water 1, Salt C Aquati Hydron Oxidiz Presen Recen Stunte (B7) Other e (B8) No Depth (in	-Stained Leaves (B9) (e 2, 4A, and 4B) rust (B11) ic Invertebrates (B13) gen Sulfide Odor (C1) ed Rhizospheres along nce of Reduced Iron (Cat Iron Reduction in Tille ed or Stressed Plants (E (Explain in Remarks) aches):	Living Roo 4) d Soils (C6 1) (LRR A	Secon	adary Indicators (2 or more required) (ater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) (arainage Patterns (B10) (ater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) (arainage Patterns (B10) (arainag
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Concerts Field Observations: Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe)	al Imagery of ave Surface Yes Yes Yes Yes Yes Yes Yes	ired; check all that Water 1, Salt C Aquati Hydron Oxidiz Presen Recen Stunte (B7) Other e (B8) No Depth (in	-Stained Leaves (B9) (e 2, 4A, and 4B) rust (B11) ic Invertebrates (B13) gen Sulfide Odor (C1) ed Rhizospheres along nce of Reduced Iron (Cat Iron Reduction in Tille ed or Stressed Plants (E (Explain in Remarks) aches):	Living Roo 4) d Soils (C6 1) (LRR A	Secon	adary Indicators (2 or more required) (ater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) (arainage Patterns (B10) (ater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) (arainage Patterns (B10) (arainag
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aeri Sparsely Vegetated Conce Field Observations: Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe) Describe Recorded Data (streen	al Imagery of ave Surface Yes Yes Yes Yes Yes Yes Yes	ired; check all that Water 1, Salt C Aquati Hydro Oxidiz Presei Recer Stunte (B7) Other e (B8) No Depth (in	-Stained Leaves (B9) (e 2, 4A, and 4B) rust (B11) ic Invertebrates (B13) gen Sulfide Odor (C1) ed Rhizospheres along nce of Reduced Iron (Cat Iron Reduction in Tille ed or Stressed Plants (E (Explain in Remarks) aches):	Living Roo 4) d Soils (C6 1) (LRR A	Secon	adary Indicators (2 or more required) (ater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) (arainage Patterns (B10) (ater-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) (arainage Patterns (B10) (arainag


APPENDIX B – Wetland Rating Worksheets

Habitat Technologies

Waters/Sediment Assessed

722 Category 5 - 303d Category 4A ZZZ Category 4C ZZZ Category 4B ZZZ Category 4A Category 2 ZZZ Category 2 Category 1 ZZZ Category 1 Sediment

0.5

0.25

Miles _____

Custom Search

Search

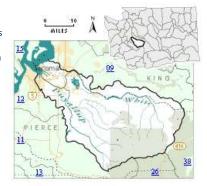
About us | Contact us

Home

Water Quality & Supply

Waste & Toxics

Air & Climate


Cleanup & Spills

Water Quality Improvement Projects (TMDLs)

Water Quality Improvement > Water Quality Improvement Projects by WRIA > WRIA 10: Puyallup-White

WRIA 10: Puyallup-White

The following table lists overview information for water quality improvement projects (also known as total maximum daily loads, or TMDLs) for this water resource inventory area (WRIA). Please use links (where available) for more information on a project.

Counties

- King County
- Pierce County

Waterbody Name	Pollutant	Status**	TMDL Leads
Clarks Creek Meeker Creek	<u>Dissolved Oxygen</u> Sediment	Approved by EPA Has an implementation plan	<u>Donovan Gray</u> 360-407-6407
	<u>Fecal Coliform</u>	Approved by EPA Has an implementation plan	
Commencement Bay	Dioxin	Approved by EPA	<u>Donovan Gray</u> 360-407-6407
Puyallup River Watershed	Fecal Coliform	Approved by EPA	<u>Donovan Gray</u>
	Multi-parameter Ammonia-N BOD (5-day)	Approved by EPA	360-407-6407
	White River Watershed Upper White: • Sediment • Temperature Lower White	Approved by EPA Under Development	
	• pH		
South Prairie Creek Tributary: Wilkeson/Gale Creek	Fecal Coliform Temperature	Approved by EPA Has an implementation plan	<u>Donovan Gray</u> 360-407-6407

^{**} Status will be listed as one of the following: Approved by EPA, Under Development or Implementation

For more information about WRIA 10:

- Waterbodies in WRIA 10 using the Water Quality Assessment Query Tool
- Watershed Information for WRIA 10
- * The Department of Ecology and other state resource agencies frequently use a system of 62 "Water Resource Inventory Areas" or "WRIAs" to refer to the state's major watershed basins.

Back to top of page

Last updated October 2016

Feedback?

RATING SUMMARY – Western Washington

Name of wetland (or ID #): Sunset Pointe	Date of site visit: 11 OCT 2017
Rated by <u>Habitat Technologies</u>	Trained by Ecology? \underline{x} Yes $\underline{\hspace{0.3cm}}$ No Date of training $\underline{2014}$
HGM Class used for rating Slope	Wetland has multiple HGM classes? Y x N
NOTE: Form is not complete without Source of base aerial photo/map	ut the figures requested (figures can be combined). Pierce County GIS
OVERALL WETLAND CATEGORY	(based on functions or special characteristics)
1. Category of wetland based on FL	INCTIONS

	Category I — Total score = 23 - 27
	Category II - Total score = 20 - 22
	Category III - Total score = 16 - 19
X	Category IV — Total score = 9 - 15

FUNCTION	Improving Water Quality		Hydrologic			Habitat				
					Circle	the ap	propi	riate ro	atings	
Site Potential	Н	М	L	Н	М	L	Н	М	L	
Landscape Potential	Н	М	L	Н	М		Н	М	L	
Value	Н	М	L	Н	М	L	Н	М	L	TOTAL
Score Based on Ratings		5			5			4		14

Score for each function based on three ratings (order of ratings is not important) 9 = H,H,H8 = H,H,M7 = H,H,L 7 = H,M,M6 = H,M,L6 = M,M,M5 = H,L,L 5 = M,M,L4 = M, L, L3 = L, L, L

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CATEGORY	
Estuarine	I	II
Wetland of High Conservation Value	I	
Bog	I	
Mature Forest	I	
Old Growth Forest	I	
Coastal Lagoon	I	II
Interdunal	I II II	I IV
None of the above	Х	

Maps and figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	N/A
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	V

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	N/A
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	•

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	N/A
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	V

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	D1
Hydroperiods	H 1.2	D2
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	D1
Plant cover of dense , rigid trees, shrubs, and herbaceous plants	S 4.1	
(can be added to figure above)		D1
Boundary of 150 ft buffer (can be added to another figure)	S 2.1, S 5.1	D2
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		W4
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	W5
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	W6

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides except during floods?

NO – go to 2

YES – the wetland class is **Tidal Fringe** – go to 1.1

1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?

NO - Saltwater Tidal Fringe (Estuarine)

YES - Freshwater Tidal Fringe

If your wetland can be classified as a Freshwater Tidal Fringe use the forms for **Riverine** wetlands. If it is Saltwater Tidal Fringe it is an **Estuarine** wetland and is not scored. This method **cannot** be used to score functions for estuarine wetlands.

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

NO – go to 3

YES - The wetland class is Flats

If your wetland can be classified as a Flats wetland, use the form for **Depressional** wetlands.

- 3. Does the entire wetland unit **meet all** of the following criteria?
 - __The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size;
 - __At least 30% of the open water area is deeper than 6.6 ft (2 m).

NO – go to 4

YES - The wetland class is **Lake Fringe** (Lacustrine Fringe)

- 4. Does the entire wetland unit **meet all** of the following criteria?
 - X The wetland is on a slope (*slope can be very gradual*),
 - <u>x</u> The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks,
 - X The water leaves the wetland **without being impounded**.

NO - go to 5

YES - The wetland class is **Slope**

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

- 5. Does the entire wetland unit **meet all** of the following criteria?
 - ____The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river,
 - ___The overbank flooding occurs at least once every 2 years.

Wetland name or number D

NO – go to 6

YES – The wetland class is **Riverine**

NOTE: The Riverine unit can contain depressions that are filled with water when the river is not flooding

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.*

NO – go to 7

YES – The wetland class is **Depressional**

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

NO – go to 8

YES – The wetland class is **Depressional**

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit	HGM class to
being rated	use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

SLOPE WETLANDS Water Quality Functions - Indicators that the site functions to improve water quality	
S 1.0. Does the site have the potential to improve water quality?	
S 1.1. Characteristics of the average slope of the wetland: (a 1% slope has a 1 ft vertical drop in elevation for every 100 ft of horizontal distance) Slope is 1% or less points = 3 Slope is > 1%-2% points = 2 Slope is > 2%-5% points = 1 Slope is greater than 5% points = 0	0
S 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic (use NRCS definitions): Yes = 3 No = 0	0
S 1.3. Characteristics of the plants in the wetland that trap sediments and pollutants: Choose the points appropriate for the description that best fits the plants in the wetland. Dense means you have trouble seeing the soil surface (>75% cover), and uncut means not grazed or mowed and plants are higher than 6 in. Dense, uncut, herbaceous plants > 90% of the wetland area points = 6 Dense, uncut, herbaceous plants > ½ of area points = 3 Dense, woody, plants > ½ of area points = 2 Dense, uncut, herbaceous plants > ¼ of area points = 1 Does not meet any of the criteria above for plants	3
Total for S 1 Add the points in the boxes above	3

Rating of Site Potential If score is: 12 = H 6-11 = M X 0-5 = L

Record the rating on the first page

S 2.0. Does the landscape have the potential to support the water quality function of the site?	
S 2.1. Is > 10% of the area within 150 ft on the uphill side of the wetland in land uses that generate pollutants? Yes = 1 No = 0	1
S 2.2. Are there other sources of pollutants coming into the wetland that are not listed in question S 2.1? Other sources Yes = 1 No = 0	0
Total for S 2 Add the points in the boxes above	1

Rating of Landscape Potential If score is: X 1-2 = M ___0 = L

Record the rating on the first page

S 3.0. Is the water quality improvement provided by the site valuable to society?	
S 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the 303(d) list? Yes = 1 No = 0	0
S 3.2. Is the wetland in a basin or sub-basin where water quality is an issue? At least one aquatic resource in the basin is on the 303(d) list. Yes = 1 No = 0	0
S 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality? <i>Answer YES</i> if there is a TMDL for the basin in which unit is found. Yes = 2 No = 0	1
Total for S 3 Add the points in the boxes above	1

Rating of Value If score is: ____2-4 = H ___X __1 = M ____0 = L

Record the rating on the first page

SLOPE WETLANDS	
Hydrologic Functions - Indicators that the site functions to reduce flooding and stream eros	ion
S 4.0. Does the site have the potential to reduce flooding and stream erosion?	
S 4.1. Characteristics of plants that reduce the velocity of surface flows during storms: Choose the points appropriate for the description that best fits conditions in the wetland. Stems of plants should be thick enough (usually > \frac{1}{8} in), or dense enough, to remain erect during surface flows. Dense, uncut, rigid plants cover > 90% of the area of the wetland All other conditions points = 0	1

Rating of Site Potential If score is: $\chi 1 = M = 0 = L$

Record the rating on the first page

S 5.0. Does the landscape have the potential to support the hydrologic functions of the site?	
S 5.1. Is more than 25% of the area within 150 ft upslope of wetland in land uses or cover that generate excess surface runoff? Yes = 1 No = 0	0
Surface fulfor:	

Rating of Landscape Potential If score is: $_{1} = M _{X} 0 = L$

Record the rating on the first page

S 6.0. Are the hydrologic functions provided by the site valuable to society?	
S 6.1. Distance to the nearest areas downstream that have flooding problems: The sub-basin immediately down-gradient of site has flooding problems that result in damage to human or natural resources (e.g., houses or salmon redds) Surface flooding problems are in a sub-basin farther down-gradient No flooding problems anywhere downstream points = 0	0
S 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan? Yes = 2 No = 0	
Total for S 6 Add the points in the boxes above	0

Rating of Value If score is: ____2-4 = H ____1 = M ___X_0 = L

Record the rating on the first page

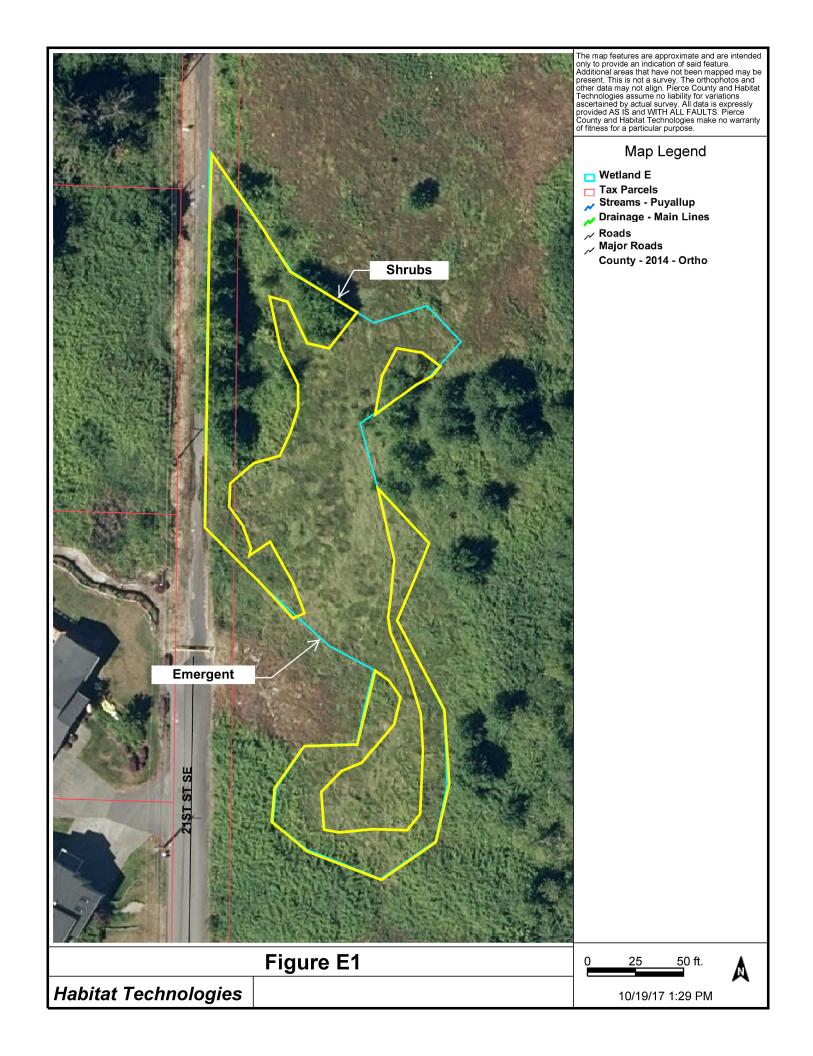
NOTES and FIELD OBSERVATIONS:

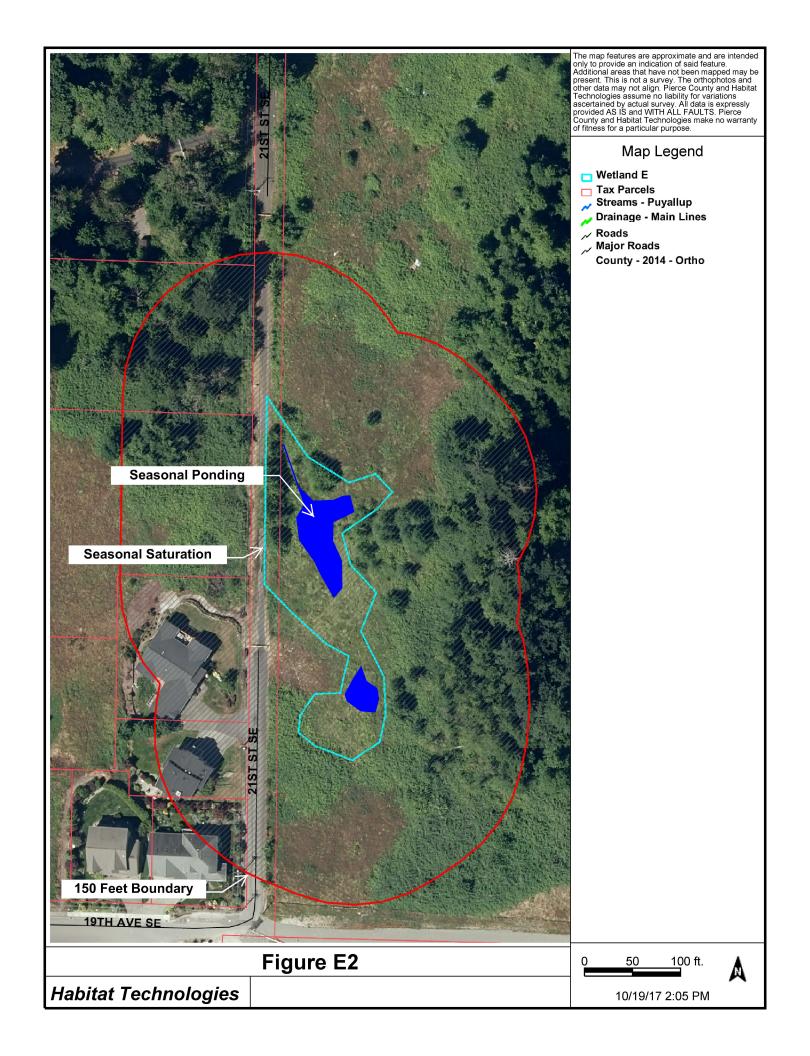
These questions apply to wetlands of all HGM classes. **HABITAT FUNCTIONS** - Indicators that site functions to provide important habitat H 1.0. Does the site have the potential to provide habitat? H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked. Aquatic bed 4 structures or more: points = 4 __Emergent 3 structures: points = 2 2 X Scrub-shrub (areas where shrubs have > 30% cover) 2 structures: points = 1 X Forested (areas where trees have > 30% cover) 1 structure: points = 0 If the unit has a Forested class, check if: X The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the Forested polygon H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see text for descriptions of hydroperiods). Permanently flooded or inundated 4 or more types present: points = 3 X Seasonally flooded or inundated 3 types present: points = 2 2 Occasionally flooded or inundated 2 types present: points = 1 X Saturated only 1 type present: points = 0 ___Permanently flowing stream or river in, or adjacent to, the wetland X Seasonally flowing stream in, or adjacent to, the wetland Lake Fringe wetland 2 points Freshwater tidal wetland 2 points H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft². Different patches of the same species can be combined to meet the size threshold and you do not have to name 1 the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle If you counted: > 19 species points = 2 5 - 19 species points = 1 points = 0 < 5 species H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. If you have four or more plant classes or three classes and open water, the rating is always high. None = 0 points Moderate = 2 points Low = 1 point All three diagrams in this row are **HIGH** = 3points

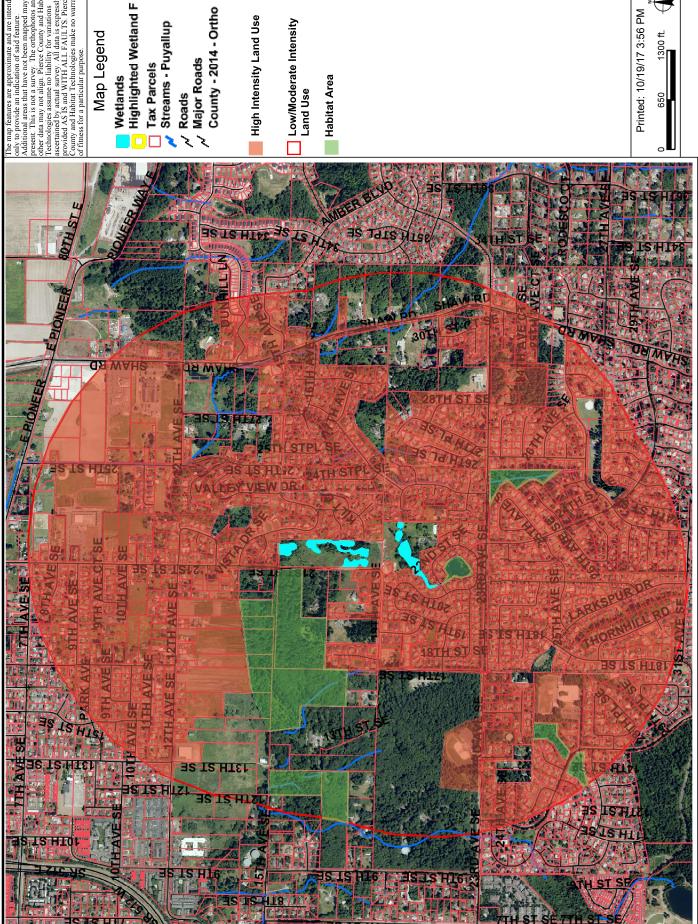
wedand name of number	
Check the habitat features that are present in the wetland. The number of checks is the number of points. X Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long). X Standing snags (dbh > 4 in) within the wetland X Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends at least 3.3 ft (1 m) over a stream (or ditch) in, or contiguous with the wetland, for at least 33 ft (10 m) Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet weathered where wood is exposed) At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas that are permanently or seasonally inundated (structures for egg-laying by amphibians) Invasive plants cover less than 25% of the wetland area in every stratum of plants (see H 1.1 for list of strata)	3
Total for H 1 Add the points in the boxes above	9
Rating of Site Potential If score is: 15-18 = H X 7-14 = M 0-6 = L Record the rating on the	he first page
H 2.0. Does the landscape have the potential to support the habitat functions of the site?	
H 2.1. Accessible habitat (include only habitat that directly abuts wetland unit). Calculate: % undisturbed habitat 5 + [(% moderate and low intensity land uses)/2] 3 = 8 % If total accessible habitat is: > $^1/_3$ (33.3%) of 1 km Polygon points = 3 20-33% of 1 km Polygon points = 2 10-19% of 1 km Polygon points = 1 < 10% of 1 km Polygon	0
H 2.2. Undisturbed habitat in 1 km Polygon around the wetland. Calculate: % undisturbed habitat 12 + [(% moderate and low intensity land uses)/2] 20 = 32 % Undisturbed habitat > 50% of Polygon points = 3 Undisturbed habitat 10-50% and in 1-3 patches points = 2 Undisturbed habitat 10-50% and > 3 patches points = 1 Undisturbed habitat < 10% of 1 km Polygon points = 0 H 2.3. Land use intensity in 1 km Polygon: If > 50% of 1 km Polygon is high intensity land use points = (-2)	(-2)
≤ 50% of 1 km Polygon is high intensity points = 0	
Total for H 2 Add the points in the boxes above	0
Rating of Landscape Potential If score is:4-6 = H1-3 = MX < 1 = L	e first page
H 3.0. Is the habitat provided by the site valuable to society?	
H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies? Choose only the highest score that applies to the wetland being rated. Site meets ANY of the following criteria: points = 2 — It has 3 or more priority habitats within 100 m (see next page) — It provides habitat for Threatened or Endangered species (any plant or animal on the state or federal lists) — It is mapped as a location for an individual WDFW priority species — It is a Wetland of High Conservation Value as determined by the Department of Natural Resources — It has been categorized as an important habitat site in a local or regional comprehensive plan, in a Shoreline Master Plan, or in a watershed plan Site has 1 or 2 priority habitats (listed on next page) within 100 m Points = 0	0

Rating of Value If score is: 2 = H 1 = M χ 0 = L

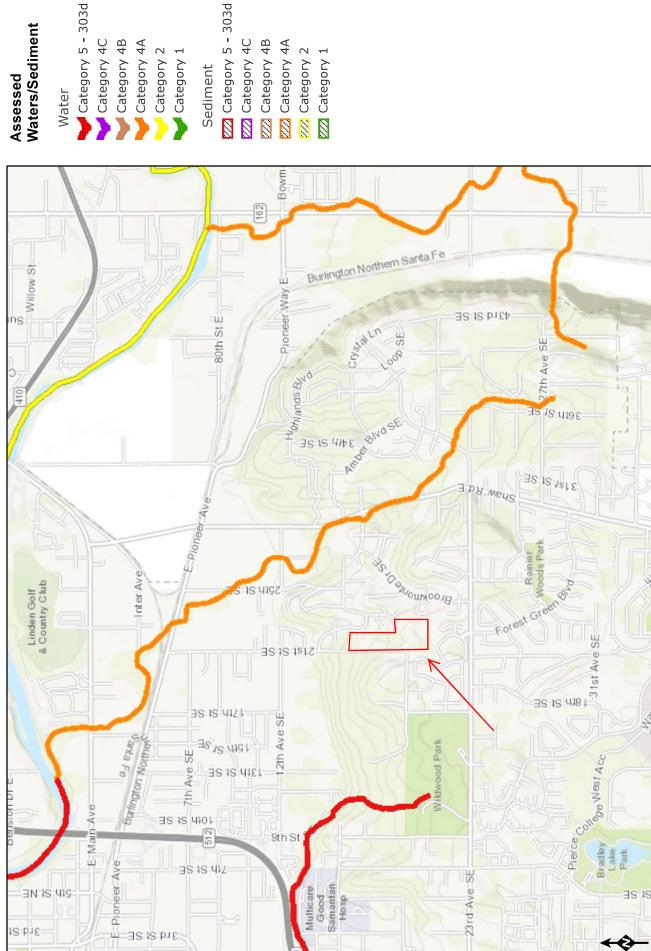
Record the rating on the first page


WDFW Priority Habitats


<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. http://wdfw.wa.gov/publications/00165/wdfw00165.pdf or access the list from here: http://wdfw.wa.gov/conservation/phs/list/)


Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: *NOTE:* This question is independent of the land use between the wetland unit and the priority habitat.

- **Aspen Stands:** Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- **Herbaceous Balds:** Variable size patches of grass and forbs on shallow soils over bedrock.
- Old-growth/Mature forests: Old-growth west of Cascade crest Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. Mature forests Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- **Oregon White Oak:** Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- **Westside Prairies:** Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- **Instream:** The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- **Nearshore**: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report see web link on previous page*).
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- **Talus:** Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- **Snags and Logs:** Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.


Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

Habitat Technologies

Waters/Sediment Assessed

722 Category 5 - 303d Category 4A ZZZ Category 4C ZZZ Category 4B ZZZ Category 4A Category 2 ZZZ Category 2 Category 1 ZZZ Category 1 Sediment

0.5

0.25

Miles _____

Custom Search

Search

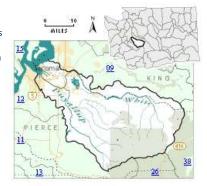
About us | Contact us

Home

Water Quality & Supply

Waste & Toxics

Air & Climate


Cleanup & Spills

Water Quality Improvement Projects (TMDLs)

Water Quality Improvement > Water Quality Improvement Projects by WRIA > WRIA 10: Puyallup-White

WRIA 10: Puyallup-White

The following table lists overview information for water quality improvement projects (also known as total maximum daily loads, or TMDLs) for this water resource inventory area (WRIA). Please use links (where available) for more information on a project.

Counties

- King County
- Pierce County

Waterbody Name	Pollutant	Status**	TMDL Leads
Clarks Creek Meeker Creek	<u>Dissolved Oxygen</u> Sediment	Approved by EPA Has an implementation plan	<u>Donovan Gray</u> 360-407-6407
	<u>Fecal Coliform</u>	Approved by EPA Has an implementation plan	
Commencement Bay	Dioxin	Approved by EPA	<u>Donovan Gray</u> 360-407-6407
Puyallup River Watershed	Fecal Coliform	Approved by EPA	<u>Donovan Gray</u>
	Multi-parameter Ammonia-N BOD (5-day)	Approved by EPA	360-407-6407
	White River Watershed Upper White: • Sediment • Temperature Lower White	Approved by EPA Under Development	
	• pH		
South Prairie Creek Tributary: Wilkeson/Gale Creek	Fecal Coliform Temperature	Approved by EPA Has an implementation plan	<u>Donovan Gray</u> 360-407-6407

^{**} Status will be listed as one of the following: Approved by EPA, Under Development or Implementation

For more information about WRIA 10:

- Waterbodies in WRIA 10 using the Water Quality Assessment Query Tool
- Watershed Information for WRIA 10
- * The Department of Ecology and other state resource agencies frequently use a system of 62 "Water Resource Inventory Areas" or "WRIAs" to refer to the state's major watershed basins.

Back to top of page

Last updated October 2016

Feedback?

RATING SUMMARY – Western Washington

Name of wetland (or ID #): Sunset Pointe	Date of site visit: 11 OCT 2017
Rated by <u>Habitat Technologies</u>	Trained by Ecology? \underline{x} Yes $\underline{\hspace{0.3cm}}$ No Date of training $\underline{2014}$
HGM Class used for rating Slope	Wetland has multiple HGM classes? Y x N
NOTE: Form is not complete without Source of base aerial photo/map	ut the figures requested (figures can be combined). Pierce County GIS
OVERALL WETLAND CATEGORY	(based on functions or special characteristics)
1. Category of wetland based on FL	INCTIONS

	Category I — Total score = 23 - 27
	Category II – Total score = 20 - 22
	Category III - Total score = 16 - 19
X	Category IV — Total score = 9 - 15

FUNCTION	Improving Water Quality		H	ydrolo	ologic		Habitat			
Circle the appropriate ratings										
Site Potential	Н	М	L	Н	М	L	Н	М	L	
Landscape Potential	Н	М	L	Н	М		Н	М	L	
Value	Н	M	L	Н	M	L	Н	М	L	TOTAL
Score Based on Ratings		5			5			3		13

Score for each function based on three ratings (order of ratings is not important) 9 = H,H,H8 = H,H,M7 = H,H,L 7 = H,M,M6 = H,M,L6 = M,M,M5 = H,L,L 5 = M,M,L4 = M, L, L3 = L, L, L

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CATEGORY		
Estuarine	I	II	
Wetland of High Conservation Value		I	
Bog		I	
Mature Forest		I	
Old Growth Forest		I	
Coastal Lagoon	I	II	
Interdunal	I II	III IV	
None of the above	×	(

Maps and figures required to answer questions correctly for Western Washington

<u>Depressional Wetlands</u>

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	N/A
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	V

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	N/A
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	Ψ

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	N/A
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	V

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	E1
Hydroperiods	H 1.2	E2
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	E1
Plant cover of dense , rigid trees, shrubs, and herbaceous plants	S 4.1	
(can be added to figure above)		E1
Boundary of 150 ft buffer (can be added to another figure)	S 2.1, S 5.1	E2
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		W4
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	W5
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	W6

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides except during floods?

NO – go to 2

YES – the wetland class is **Tidal Fringe** – go to 1.1

1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?

NO - Saltwater Tidal Fringe (Estuarine)

YES - Freshwater Tidal Fringe

If your wetland can be classified as a Freshwater Tidal Fringe use the forms for **Riverine** wetlands. If it is Saltwater Tidal Fringe it is an **Estuarine** wetland and is not scored. This method **cannot** be used to score functions for estuarine wetlands.

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

NO – go to 3

YES - The wetland class is Flats

If your wetland can be classified as a Flats wetland, use the form for **Depressional** wetlands.

- 3. Does the entire wetland unit **meet all** of the following criteria?
 - __The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size;
 - __At least 30% of the open water area is deeper than 6.6 ft (2 m).

NO – go to 4

YES - The wetland class is **Lake Fringe** (Lacustrine Fringe)

- 4. Does the entire wetland unit **meet all** of the following criteria?
 - X The wetland is on a slope (*slope can be very gradual*),
 - <u>x</u> The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks,
 - X The water leaves the wetland **without being impounded**.

NO - go to 5

YES - The wetland class is **Slope**

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

- 5. Does the entire wetland unit **meet all** of the following criteria?
 - ____The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river,
 - ___The overbank flooding occurs at least once every 2 years.

Wetland name or number E

NO – go to 6

YES – The wetland class is **Riverine**

NOTE: The Riverine unit can contain depressions that are filled with water when the river is not flooding

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.*

NO – go to 7

YES – The wetland class is **Depressional**

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

NO – go to 8

YES – The wetland class is **Depressional**

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit	HGM class to
being rated	use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

SLOPE WETLANDS Water Quality Functions - Indicators that the site functions to improve water quality	
S 1.0. Does the site have the potential to improve water quality?	
S 1.1. Characteristics of the average slope of the wetland: (a 1% slope has a 1 ft vertical drop in elevation for every 100 ft of horizontal distance) Slope is 1% or less Slope is > 1%-2% Slope is > 2%-5% Slope is greater than 5% points = 1 points = 0	0
S 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic (use NRCS definitions): Yes = 3 No = 0	0
S 1.3. Characteristics of the plants in the wetland that trap sediments and pollutants: Choose the points appropriate for the description that best fits the plants in the wetland. Dense means you have trouble seeing the soil surface (>75% cover), and uncut means not grazed or mowed and plants are higher than 6 in.	
Dense, uncut, herbaceous plants > 90% of the wetland area Dense, uncut, herbaceous plants > ½ of area Dense, woody, plants > ½ of area Dense, uncut, herbaceous plants > ¼ of area Does not meet any of the criteria above for plants points = 0	3
Total for S 1 Add the points in the boxes above	3

Rating of Site Potential If score is: 12 = H 6-11 = M X 0-5 = L

Record the rating on the first page

S 2.0. Does the landscape have the potential to support the water quality function of the site?	
S 2.1. Is > 10% of the area within 150 ft on the uphill side of the wetland in land uses that generate pollutants? Yes = 1 No = 0	1
S 2.2. Are there other sources of pollutants coming into the wetland that are not listed in question S 2.1? Other sources Yes = 1 No = 0	0
Total for S 2 Add the points in the boxes above	1

Rating of Landscape Potential If score is: X 1-2 = M ___0 = L

Record the rating on the first page

S 3.0. Is the water quality improvement provided by the site valuable to society?	
S 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the 303(d) list? Yes = 1 No = 0	0
S 3.2. Is the wetland in a basin or sub-basin where water quality is an issue? At least one aquatic resource in the basin is on the $303(d)$ list. Yes = 1 No = 0	0
S 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality? <i>Answer YES</i> if there is a TMDL for the basin in which unit is found. Yes = 2 No = 0	1
Total for S 3 Add the points in the boxes above	1

Rating of Value If score is: ____2-4 = H __X __1 = M ____0 = L

Record the rating on the first page

SLOPE WETLANDS	
Hydrologic Functions - Indicators that the site functions to reduce flooding and stream eros	ion
S 4.0. Does the site have the potential to reduce flooding and stream erosion?	
S 4.1. Characteristics of plants that reduce the velocity of surface flows during storms: Choose the points appropriate for the description that best fits conditions in the wetland. Stems of plants should be thick enough (usually > \frac{1}{8} in), or dense enough, to remain erect during surface flows. Dense, uncut, rigid plants cover > 90% of the area of the wetland All other conditions points = 0	1

Rating of Site Potential If score is: $\chi 1 = M = 0 = L$

Record the rating on the first page

S 5.0. Does the landscape have the potential to support the hydrologic functions of the site?	
S 5.1. Is more than 25% of the area within 150 ft upslope of wetland in land uses or cover that generate excess	0
surface runoff? Yes = 1 No = 0	

Rating of Landscape Potential If score is: $_{1} = M _{X} 0 = L$

Record the rating on the first page

S 6.0. Are the hydrologic functions provided by the site valuable to society?	
S 6.1. Distance to the nearest areas downstream that have flooding problems: The sub-basin immediately down-gradient of site has flooding problems that result in damage to human or natural resources (e.g., houses or salmon redds) Surface flooding problems are in a sub-basin farther down-gradient No flooding problems anywhere downstream points = 0	1
S 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan? Yes = 2 No = 0	0
Total for S 6 Add the points in the boxes above	1

Rating of Value If score is: $2-4 = H \times 1 = M = 0 = L$

Record the rating on the first page

NOTES and FIELD OBSERVATIONS:

These questions apply to wetlands of all HGM classes. **HABITAT FUNCTIONS** - Indicators that site functions to provide important habitat H 1.0. Does the site have the potential to provide habitat? H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked. Aquatic bed 4 structures or more: points = 4 X Emergent 3 structures: points = 2 1 X Scrub-shrub (areas where shrubs have > 30% cover) 2 structures: points = 1 Forested (areas where trees have > 30% cover) 1 structure: points = 0 If the unit has a Forested class, check if: The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the Forested polygon H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see text for descriptions of hydroperiods). Permanently flooded or inundated 4 or more types present: points = 3 x Seasonally flooded or inundated 3 types present: points = 2 1 Occasionally flooded or inundated 2 types present: points = 1 X Saturated only 1 type present: points = 0 Permanently flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream in, or adjacent to, the wetland Lake Fringe wetland 2 points Freshwater tidal wetland 2 points H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft². Different patches of the same species can be combined to meet the size threshold and you do not have to name 1 the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle If you counted: > 19 species points = 2 5 - 19 species points = 1 points = 0 < 5 species H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. If you have four or more plant classes or three classes and open water, the rating is always high. None = 0 points Moderate = 2 points Low = 1 point All three diagrams in this row are **HIGH** = 3points

H 1.5. Special habitat features:	
Check the habitat features that are present in the wetland. The number of checks is the number of points.	
<u>X</u> Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long).	
Standing snags (dbh > 4 in) within the wetland	
Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends at least 3.3 ft (1	m)
over a stream (or ditch) in, or contiguous with the wetland, for at least 33 ft (10 m)	
Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree	1 1
slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet weathered	'
where wood is exposed)	
At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas that are	
permanently or seasonally inundated (structures for egg-laying by amphibians)	
Invasive plants cover less than 25% of the wetland area in every stratum of plants (see H 1.1 for list of	
Strata) Total for H 1 Add the points in the boxes above	re 5
· · · · · · · · · · · · · · · · · · ·	g on the first page
H 2.0. Does the landscape have the potential to support the habitat functions of the site?	
H 2.1. Accessible habitat (include <i>only habitat that directly abuts wetland unit</i>).	
	%
If total accessible habitat is:	_
$> \frac{1}{3}$ (33.3%) of 1 km Polygon points =	1 0 1
20-33% of 1 km Polygon points =	
10-19% of 1 km Polygon points =	
< 10% of 1 km Polygon points =	0
H 2.2. Undisturbed habitat in 1 km Polygon around the wetland.	,
Calculate: % undisturbed habitat $12 + [(\% \text{ moderate and low intensity land uses})/2] = 32$	
Undisturbed habitat > 50% of Polygon points =	I I
Undisturbed habitat 10-50% and in 1-3 patches points =	1 4 1
Undisturbed habitat 10-50% and > 3 patches points =	
Undisturbed habitat < 10% of 1 km Polygon points =	0
H 2.3. Land use intensity in 1 km Polygon: If	,
> 50% of 1 km Polygon is high intensity land use points = (-1	
≤ 50% of 1 km Polygon is high intensity points =	
Total for H 2 Add the points in the boxes above	<u> </u>
Rating of Landscape Potential If score is:4-6 = H1-3 = MX < 1 = L	on the first page
H 3.0. Is the habitat provided by the site valuable to society?	
H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies? Choose only the highest sco	re
that applies to the wetland being rated.	
Site meets ANY of the following criteria: points =	2
 It has 3 or more priority habitats within 100 m (see next page) 	
— It provides habitat for Threatened or Endangered species (any plant or animal on the state or federal list	rs) 0
It is mapped as a location for an individual WDFW priority species	
— It is a Wetland of High Conservation Value as determined by the Department of Natural Resources	
It has been categorized as an important habitat site in a local or regional comprehensive plan, in a Shareling Master Plan, or in a watershed plan.	
Shoreline Master Plan, or in a watershed plan Site has 1 or 2 priority habitats (listed on next page) within 100 m	1
Site does not meet any of the criteria above points = Rating of Value If score is: 2 = H 1 = M X 0 = L Record the ratin	g on the first page

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

Wetland name or number __E___

WDFW Priority Habitats

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. http://wdfw.wa.gov/publications/00165/wdfw00165.pdf or access the list from here: http://wdfw.wa.gov/conservation/phs/list/)

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: *NOTE:* This question is independent of the land use between the wetland unit and the priority habitat.

- **Aspen Stands:** Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- **Herbaceous Balds:** Variable size patches of grass and forbs on shallow soils over bedrock.
- Old-growth/Mature forests: Old-growth west of Cascade crest Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. Mature forests Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- **Oregon White Oak:** Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- **Westside Prairies:** Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- **Instream:** The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- **Nearshore**: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report see web link on previous page*).
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- **Talus:** Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- **Snags and Logs:** Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

HABITAT TECHNOLOGIES

May 17, 2023

CES NW Inc.
Mr. Craig Deaver
429 29th Street NE, Suite D
Puyallup, Washington 98372
e-mail cdeaver@cesnwinc.com

RE: Sunset Pointe Residential Community (P-18-0040) City of Puyallup, Pierce County, Washington

Dear Mr. Deaver,

As outlined in the revised report by Habitat Technologies dated September 21, 2018, the excavated ponds within the southern portion of the project site were defined as intentionally created features. As viewed in the 1970 historical aerial photo, no ponds or drainage corridor were evident in the southern portion of the project site (See Photos). The easternmost pond (Pond C) only become evident in and after the 1985 aerial photo. In the 1995 aerial photo along with subsequent photos, two (2) additional excavated ponds are present (Ponds A and B) southwesterly of Pond C. The 1998 aerial color photo has the best resolution and clearly shows all three ponds.

As such, it is the opinion of Habitat Technologies that all three ponds in the southern portion of the project site were created within an area that did <u>not</u> exhibit wetland or drainage corridor characteristics prior to excavation and that these areas meet the City of Puyallup definition of an "intentionally created wetland or surface water systems."

(21.06.210.75) "Intentionally created wetland or surface water systems" means wetlands or surface water systems created through purposeful human action, such as irrigation and drainage ditches, grass-lined swales, canals, farm ponds, detention/retention facilities, and landscape/ornamental amenities. Purposeful creation must be demonstrated through documentation, photographs, statements and/or other evidence. Intentionally created wetlands or surface water systems do not include areas or systems created as mitigation.

Sincerely,

Bryan W Peck Bryan W. Peck

Senior Wetland Biologist

Thomas \mathcal{D} \mathcal{D} eming Thomas D. Deming, SPWS Habitat Technologies

wetlands, streams, fisheries, wildlife – mitigation and permitting solutions
P.O. Box 1088, Puyallup, Washington 98371
253-845-5119 contact@habitattechnologies.net

PHOTOS

Photo 1: 1970 Aerial photo with no excavated ponds present.

Photo 2: 1985 Aerial photo with eastern most pond no excavated ponds present.

Photo 3: 1995 Aerial photo with three (3) excavated ponds present.

Photo 4: 1998 Aerial photo (color) with three (3) excavated ponds present.

APPENDIX E

Maintenance Schedules

Catch Basins Checklist

			Da	ate				
Frequency	Drainage System Feature	✓	✓	✓	✓	Problem	Conditions to Check For	Conditions That Should Exist
A	General					"Dump no pollutants " Stencil or stamp not visible	Stencil or stamp should be visible and easily read	Warning signs (e.g., "Dump No Waste- Drains to Stream") shall be painted or embossed on or adjacent to all storm drain inlets.
M,S	General					Trash & Debris	Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the basin by more than 10%.	No trash or debris located immediately in front of catch basin or on grate opening.
М	General					Trash & Debris	Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the catch basin.
М	General					Trash & Debris	Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.
М	General					Trash & Debris	Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within the catch basin.
М	General					Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin
А	General					Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch (Intent is to make sure no material is running into basin).	Top slab is free of holes and cracks.

Catch Basins Checklist (Continued)

			Da	ite				
Frequency	Drainage System Feature	✓	✓	✓	✓	Problem	Conditions to Check For	Conditions That Should Exist
А	General					Structure Damage to Frame and/or Top Slab	Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached.	Frame is sitting flush on the riser rings or top slab and firmly attached.
А	General					Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.
А	General					Fractures or Cracks in Basin Walls/ Bottom	Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	Pipe is re-grouted and secure at basin wall.
А	General					Settlement / Misalignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.
М	General					Vegetation	Vegetation growing across and blocking more than 10% of the basin opening.	No vegetation blocking opening to basin.
М	General					Vegetation	Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.	No vegetation or root growth present.
М	General					Contamination and Pollution	Any evidence of oil, gasoline, contaminants, or other pollutants (Coordinate removal/cleanup with local water quality response agency).	No contaminants or pollutants present.
A	Catch Basin Cover					Cover Not in Place	Cover is missing or only partially in place.	Any open catch basin requires maintenance. Catch basin cover is closed
А	Catch Basin Cover					Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.
А	Catch Basin Cover					Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. (Intent is to keep cover from sealing off access to maintenance.)	Cover can be removed by one maintenance person.

Catch Basins Checklist (Continued)

			Da	ite				
Frequency	Drainage System Feature	✓	✓	✓	✓	Problem	Conditions to Check For	Conditions That Should Exist
A	Ladder					Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, not securely attached to basin wall, misalignment, rust, cracks, or sharp edges.	Ladder meets design standards and allows maintenance person safe access.
	Grates					Grate opening Unsafe	Grate with opening wider than 7/8 inch.	Grate opening meets design standards.
M,S	Grates					Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
А	Grates					Damaged or Missing.	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

- (M) Monthly from November through April.(A) Once in late summer (preferable September)(S) After any major storm (use 1-inch in 24 hours as a guideline).

Debris Barriers (e.g. Trash Racks) Checklist

			Da	ate				
Frequency	Drainage System Feature	√	1	√	√	Problem	Conditions to Check For	Conditions That Should Exist
M,S	General					Trash and Debris	Trash or debris that is plugging more than 20% of the openings in the barrier.	Barrier cleared to design flow capacity.
А	General					Damaged/Missing Bars.	Bars are bent out of shape more than 3 inches.	Bars in place with no bends more than 3/4 inch.
А	General					Damaged/Missing Bars.	Bars are missing or entire barrier missing.	Bars in place according to design.
А	General					Damaged/Missing Bars.	Bars are loose and rust is causing 50% deterioration to any part of barrier.	Barrier replaced or repaired to design standards.
А	General					Inlet/Outlet Pipe	Debris barrier missing or not attached to pipe.	Barrier firmly attached to pipe.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

- (M) Monthly from November through April.
- (A) Once in late summer (preferable September)(S) After any major storm (use 1-inch in 24 hours as a guideline).

Energy Dissipaters Checklist

			Da	ate				
Frequency	Drainage System Feature	✓	1	1	✓	Problem	Conditions to Check For	Conditions That Should Exist
External:								
М	Rock Pad					Missing or Moved Rock	Only one layer of rock exists above native soil in area five square feet or larger, or any exposure of native soil.	Rock pad replaced to design standards.
М	Rock Pad					Erosion	Soil erosion in or adjacent to rock pad.	Rock pad replaced to design standards.
М	Dispersion Trench					Pipe Plugged with Sediment	Accumulated sediment that exceeds 20% of the design depth.	Pipe cleaned/flushed so that it matches design.
М	Dispersion Trench					Not Discharging Water Properly	Visual evidence of water discharging at concentrated points along trench (normal condition is a "sheet flow" of water along trench). Intent is to prevent erosion damage.	Trench redesigned or rebuilt to standards.
М	Dispersion Trench					Perforations Plugged.	Over 1/2 of perforations in pipe are plugged with debris and sediment.	Perforated pipe cleaned or replaced.
М	Dispersion Trench					Water Flows Out Top of "Distributor" Catch Basin.	Maintenance person observes or receives credible report of water flowing out during any storm less than the design storm or its causing or appears likely to cause damage.	Facility rebuilt or redesigned to standards.
М	Dispersion Trench					Receiving Area Over-Saturated	Water in receiving area is causing or has potential of causing landslide problems.	No danger of landslides.
Internal:								
М	Manhole/ Chamber					Worn or Damaged Post, Baffles, Side of Chamber	Structure dissipating flow deteriorates to 1/2 of original size or any concentrated worn spot exceeding one square foot which would make structure unsound.	Structure replaced to design standards.
М	Manhole/ Chamber					Trash& Debris	Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the catch basin.
М	Manhole/ Chamber					Trash& Debris	Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.
М	Manhole/ Chamber					Trash& Debris	Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within the catch basin.

Energy Dissipaters Checklist (Continued)

			Da	ate				
Frequency	Drainage System Feature	1	✓	✓	1	Problem	Conditions to Check For	Conditions That Should Exist
Internal (Co	ntinued):							
М	Manhole/ Chamber					Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe. There shall be a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin
A	Manhole/ Chamber					Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch (Intent is to make sure no material is running into basin).	Top slab is free of holes and cracks.
A	Manhole/ Chamber					Structure Damage to Frame and/or Top Slab	Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached	Frame is sitting flush on the riser rings or top slab and firmly attached.
А	Manhole/ Chamber					Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.
Α	Manhole/ Chamber					Fractures or Cracks in Basin Walls/ Bottom	Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	Pipe is re-grouted and secure at basin wall.
А	Manhole/ Chamber					Settlement / Misalignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.
М	Manhole/ Chamber					Contamination and Pollution	Any evidence of oil, gasoline, contaminants, or other pollutants (Coordinate removal/cleanup with local water quality response agency).	No contaminants or pollutants present.
А	Catch Basin Cover					Cover Not in Place	Cover is missing or only partially in place.	Any open catch basin requires maintenance. Catch basin cover is closed

Energy Dissipaters Checklist (Continued)

			Da	ate				
Frequency	Drainage System Feature	√	1	1	1	Problem	Conditions to Check For	Conditions That Should Exist
Internal (Co	ntinued):							
A	Catch Basin Cover					Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.
А	Catch Basin Cover					Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure. (Intent is to keep cover from sealing off access to maintenance.)	Cover can be removed by one maintenance person.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

- (M) Monthly from November through April.
 (A) Once in late summer (preferable September)
 (S) After any major storm (use 1-inch in 24 hours as a guideline).

Stormfilter® Cast-In-Place, Precast, Linear Stormfilter Units and Catch Basin Units Checklist

			Da	ate				
Frequency	Drainage System Feature	✓	✓	✓	✓	Problem	Conditions to Check For	Conditions That Should Exist
М	Media filter vault					Sediment accumulation on top of filter cartridges	Sediment accumulation exceeds 0.25 inches on top of cartridges.	No sediment deposits on top of cartridges. Sediment on cartridges likely indicates that cartridges are plugged and require maintenance.
М	Media filter vault					Sediment accumulation in vault	Sediment accumulation in vault exceeds 2 inches. Look for other indicators of clogged cartridges or overflow.	Sediment in vault should be removed. Cartridges should be checked and replaced or serviced as needed.
М	Media filter vault					Trash and floatable debris accumulation	Trash and floatable debris accumulation in vault.	No trash or other floatable debris in filter vault.
s	Media filter vault					Filter cartridges submerged	Filter vault does not drain within 24 hours following storm. Look for evidence of submergence due to backwater or excessive hydrocarbon loading.	Filter media checked and replaced if needed. If cartridges are plugged with oil additional treatment or source control BMP may be needed.
М	Forebay					Sediment accumulation	Sediment accumulation exceeds 6 inches or 1/3 of available sump.	Sediment accumulation less than 6 inches.
М	Forebay					Trash and floatable debris accumulation	Trash and/or floatable debris accumulation.	Trash and/or floatable debris should be removed during monthly inspections. Significant oil accumulation may indicate the need for additional treatment or source control.
A	Below ground vault					Access cover Damaged/ Not working	One maintenance person cannot remove lid after applying 80 pounds of lift, corrosion of deformation of cover.	Cover repaired to proper working specifications or replaced.
A	Below ground vault					Damaged Pipes	Any part of the pipes are crushed or damaged due to corrosion and/or settlement.	Pipe repaired or replaced.
Α	Below ground vault					Vault structure has cracks in wall, bottom, and damage to frame and/or top slab.	Cracks wider than ½ inch or evidence of soil particles entering the structure through the cracks, or maintenance/inspection personnel determine that the vault is not structurally sound.	Vault repaired or replaced so that vaults meets design specifications and is structurally sound.
А	Below ground vault					Vault structure has cracks in wall, bottom, and damage to frame and/or top slab.	Cracks wider than 0.5 inch at the joint of any inlet/outlet pipe or evidence of soil particles entering through the cracks	Vault repaired so that no cracks exist wider than 0.25 inch at the joint of inlet/outlet pipe.

Stormfilter[®] Cast-In-Place, Precast, Linear Stormfilter Units and Catch Basin Units Checklist (Continued)

			Da	ate				
Frequency	Drainage System Feature	√	√	1	√	Problem	Conditions to Check For	Conditions That Should Exist
А	Below ground vault					Baffles	Baffles corroding, cracking, warping, and/or showing signs of failure as determined by maintenance/inspection person.	Baffles repaired or replaced to design specifications.
А	Below ground vault					Ladder rungs unsafe	Maintenance person judges that ladder is unsafe due to missing rungs, misalignment, rust, or cracks. Ladder must be fixed or secured immediately.	Ladder meets design standards and allows maintenance persons safe access.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

- (M) Monthly from November through April.
- (A) Once in late summer (preferable September)
- (S) After any major storm (use 1-inch in 24 hours as a guideline).

3.19 Fencing/Shrubbery Screen/Other Landscaping

Fencing and shrubbery screen are provided around open stormwater management facilities to limit unauthorized access for safety purposes and to minimize the visual impact of the facility.

Fencing/Shrubbery Screen/Other Landscaping Checklist

			Da	te				
Frequency	Drainage System Feature	1	✓	✓	✓	Problem	Conditions to Check For	Conditions That Should Exist
М	General					Missing or broken parts/dead shrubbery	Any defect in the fence or screen that permits easy entry to a facility.	Fence is mended or shrubs replaced to form a solid barrier to entry.
M,S	General					Erosion	Erosion has resulted in an opening under a fence that allows entry by people or pets.	Replace soil under fence so that no opening exceeds 4 inches in height.
М	General					Unruly vegetation	Shrubbery is growing out of control or is infested with weeds.	Shrubbery is trimmed and weeded to provide appealing aesthetics. Do not use chemicals to control weeds.
А	Fences					Damaged parts	Posts out of plumb more than 6 inches.	Posts plumb to within 1-1/2 inches of plumb.
А	Fences					Damaged parts	Top rails bent more than 6 inches.	Top rail free of bends greater than 1 inch.
А	Fences					Damaged parts	Any part of fence (including posts, top rails, and fabric) more than 1 foot out of design alignment.	Fence is aligned and meets design standards.
А	Fences					Damaged parts	Missing or loose tension wire.	Tension wire in place and holding fabric.
А	Fences					Damaged parts	Missing or loose barbed wire that is sagging more than 2-1/2 inches between posts.	Barbed wire in place with less than 3/4-inch sag between posts.
А	Fences					Damaged parts	Extension arm missing, broken, or bent out of shape more than 1-1/2 inches.	Extension arm in place with no bends larger than 3/4 inch.
А	Fences					Deteriorated paint or protective coating	Part or parts that have a rusting or scaling condition that has affected structural adequacy.	Structurally adequate posts or parts with a uniform protective coating.
М	Fences					Openings in fabric	Openings in fabric are such that an 8-inch diameter ball could fit through.	No openings in fabric.

If you are unsure whether a problem exists, please contact a Professional Engineer.

- (M) Monthly from November through April.
- (A) Once in late summer (preferable September)
- (S) After any major storm (use 1-inch in 24 hours as a guideline).

3.21 Grounds (Landscaping)

Landscaping is an essential component of stormwater management. Bare soil areas generate higher levels of stormwater runoff and sedimentation in stormwater facilities. The following check list gives some general guidance for landscape management.

Grounds (Landscaping) Checklist

			Da	ate				
Frequency	Drainage System Feature	1	1	1	1	Problem	Conditions to Check For	Conditions That Should Exist
М	General					Weeds (nonpoisonous)	Weeds growing in more than 20% of the landscaped area (trees and shrubs only).	Weeds present in less than 5% of the landscaped area.
М	General					Insect hazard	Any presence of poison ivy or other poisonous vegetation or insect nests.	No poisonous vegetation or insect nests present in landscaped area.
M,S	General					Trash or litter	See Ponds Checklist.	See Ponds Checklist.
M,S	General					Erosion of Ground Surface	Noticeable rills are seen in landscaped areas.	Causes of erosion are identified and steps taken to slow down/spread out the water. Eroded areas are filled, contoured, and seeded.
А	Trees and shrubs					Damage	Limbs or parts of trees or shrubs that are split or broken which affect more than 25% of the total foliage of the tree or shrub.	Trim trees/shrubs to restore shape. Replace trees/shrubs with severe damage.
М	Trees and shrubs					Damage	Trees or shrubs that have been blown down or knocked over.	Replant tree, inspecting for injury to stem or roots. Replace if severely damaged.
А	Trees and shrubs					Damage	Trees or shrubs which are not adequately supported or are leaning over, causing exposure of the roots.	Place stakes and rubber- coated ties around young trees/shrubs for support.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

- (M) Monthly from November through April.
- (A) Once in late summer (preferable September)
- (S) After any major storm (use 1-inch in 24 hours as a guideline).

Field Inlet Checklist

			Da	ate				
Frequency	Drainage System Feature	1	√	√	✓	Problem	Conditions to Check For	Conditions That Should Exist
M,S	General					Trash & Debris	Trash or debris which is located immediately in front of the catch basin opening or is blocking inletting capacity of the basin by more than 10%.	No Trash or debris located immediately in front of catch basin or on grate opening.
M,S	General					Trash & Debris	Trash or debris (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of six inches clearance from the debris surface to the invert of the lowest pipe.	No trash or debris in the catch basin.
M,S	General					Trash & Debris	Trash or debris in any inlet or outlet pipe blocking more than 1/3 of its height.	Inlet and outlet pipes free of trash or debris.
M,S	General					Trash & Debris	Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within the catch basin.
М	General					Sediment	Sediment (in the basin) that exceeds 60 percent of the sump depth as measured from the bottom of basin to invert of the lowest pipe into or out of the basin, but in no case less than a minimum of 6 inches clearance from the sediment surface to the invert of the lowest pipe.	No sediment in the catch basin.
М	General					Structure Damage to Frame and/or Top Slab	Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch. (Intent is to make sure no material is running into basin).	Top slab is free of holes and cracks.
М	General					Structure Damage to Frame and/or Top Slab	Frame not sitting flush on top slab, i.e., separation of more than 3/4 inch of the frame from the top slab. Frame not securely attached.	Frame is sitting flush on the riser rings or top slab and firmly attached.
А	General					Fractures or Cracks in Basin Walls/ Bottom	Maintenance person judges that structure is unsound.	Basin replaced or repaired to design standards.
А	General					Fractures or Cracks in Basin Walls/ Bottom	Grout fillet has separated or cracked wider than 1/2 inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	Pipe is regrouted and secure at basin wall.
М	General					Settlement/ Misalignment	If failure of basin has created a safety, function, or design problem.	Basin replaced or repaired to design standards.

Field Inlet Checklist (Continued)

			Da	ate				
Frequency	Drainage System Feature	✓	1	✓	✓	Problem	Conditions to Check For	Conditions That Should Exist
М	General					Vegetation	Vegetation growing across and blocking more than 10% of the basin opening.	No vegetation blocking opening to basin.
М	General					Vegetation	Vegetation growing in inlet/outlet pipe joints that is more than six inches tall and less than six inches apart.	No vegetation or root growth present.
М	General					Contaminants and Pollution	Any evidence of oil, gasoline, contaminants or other pollutants. (Coordinate removal/cleanup with local water quality response agency).	No contaminants or pollutants present.
М	Field Inlet Cover					Cover Not in Place	Cover is missing or only partially in place. Any open catch basin requires maintenance.	Catch basin cover is closed.
М	Field Inlet Cover					Locking Mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts into frame have less than 1/2 inch of thread.	Mechanism opens with proper tools.
М	Field Inlet Cover					Cover Difficult to Remove	One maintenance person cannot remove lid after applying normal lifting pressure (Intent is to keep cover from sealing off access to maintenance).	Cover can be removed by one maintenance person.
А	Ladder					Ladder Rungs Unsafe	Ladder is unsafe due to missing rungs, not securely attached to basin wall, misalignment, rust, cracks, or sharp edges.	Ladder meets design standards and allows maintenance person safe access.
М	Metal Grates (If Applicable)					Grate opening Unsafe	Grate with opening wider than 7/8 inch.	Grate opening meets design standards.
M,S	Metal Grates (If Applicable)					Trash and Debris	Trash and debris that is blocking more than 20% of grate surface inletting capacity.	Grate free of trash and debris.
М	Metal Grates (If Applicable)					Damaged or Missing.	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.

If you are unsure whether a problem exists, please contact a Professional Engineer.

Comments:

- (A) Annual (March or April preferred)
 (M) Monthly (see schedule)
- (S) After major storms (use 1-inch in 24 hours as a guideline).