

PRELIMINARY STORMWATER REPORT

Normandy Heights

2007 Shaw Road Puyallup, WA 98374

Prepared for: RM Homes 2913 5th Ave. NE Suite 201 Puyallup, WA 98372

September 8, 2025

Our Job No. 12663

TABLE OF CONTENTS

1.0 PROJECT OVERVIEW

- Figure 1 Vicinity Map
- Figure 2 Soils Map
- Figure 3 Assessor Map
- Figure 4 FEMA Map
- Figure 5 Sensitive Areas Map

2.0 ANALYSIS OF THE MINIMUM REQUIREMENTS

3.0 EXISTING CONDITIONS

Figure 6 - Existing Conditions

4.0 OFFSITE ANALYSIS

- 4.1 Upstream Analysis
- 4.2 Downstream Analysis
 - Figure 7 Downstream Drainage Map
 - Figure 8 Downstream Conveyance Map
 - Figure 9 Mountlake Terrace Subbasin Map

5.0 PERMANENT STORMWATER CONTROL PLAN

- 5.1 Existing Site Hydrology
- 5.2 Developed Site Hydrology
- 5.3 Western Washington Hydrology Model (WWHM)
- 5.4 Water Quality Analysis
- 5.5 Conveyance System Analysis
 - Figure 10 Pre-Developed Basin Map
 - Figure 11 Post-Developed Basin Map

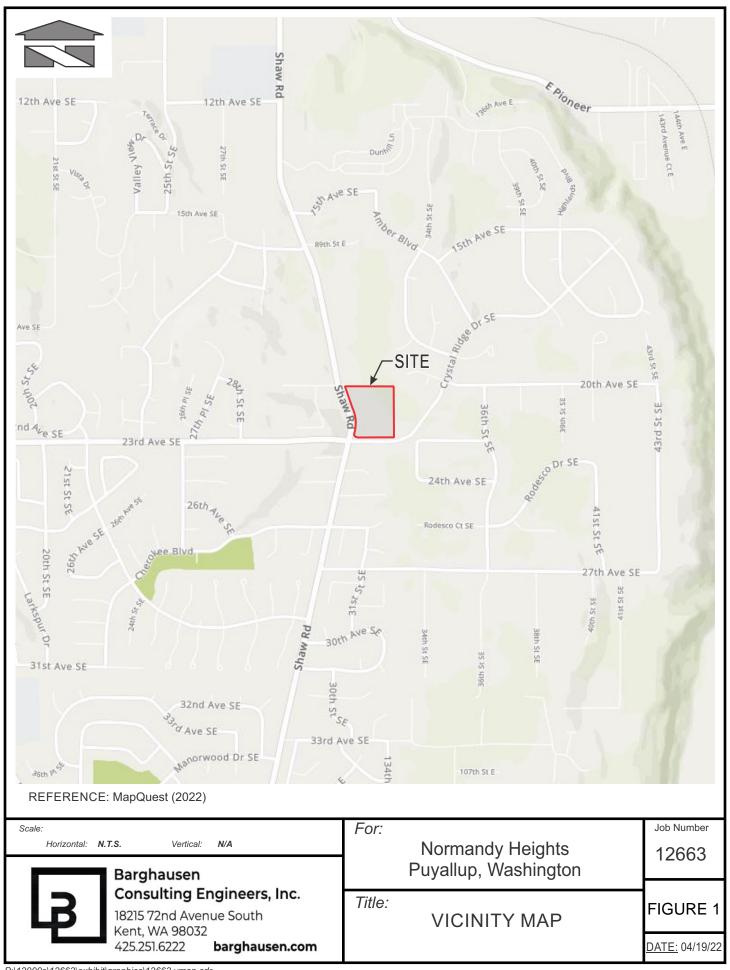
6.0 CONSTRUCTION STORMWATER POLLUTION PREVENTION PLAN

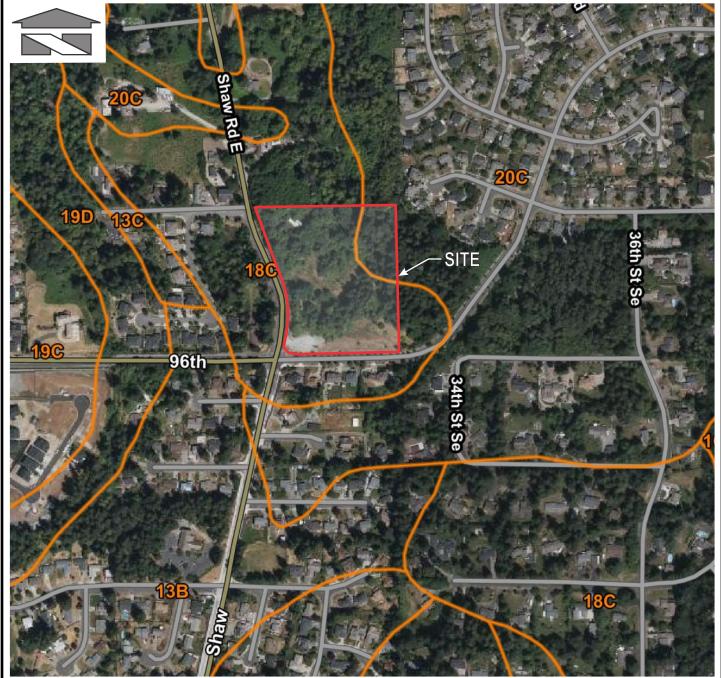
7.0 SPECIAL REPORTS AND STUDIES

- 7.1 "Geotechnical Engineering Study Proposed Normandy Heights" prepared by Earth Solutions NW LLC, Dated May 03, 2022
- 7.2 "Wetland and Fish and Wildlife Habitat Assessment Report" prepared by Soundview Consultants LLC, dated February 24, 2022
- 7.3 "Normandy Retention Tree Assessment" Prepared by Sound Urban Forestry LLC, dated May 16, 2022
- 7.4 "Groundwater Monitoring Program Results" prepared by Earth Solutions NW LLC, dated August 9, 2022
- 8.0 OTHER PERMITS
- 9.0 OPERATIONS AND MAINTENANCE MANUAL
- 10.0 CONSTRUCTION COST ESTIMATE

Tab 1.0

1.0 PROJECT OVERVIEW


The project site is located at the Northwest corner of the Shaw Road and Crystal Ridge Drive intersection at 2007 Shaw Road, within the City of Puyallup, WA; which is in the SW 1/4 of the SE 1/4 of Section 35, Township 20 N, Range 4 E, see Figure 1: Vicinity Map.


The project site currently consists of a single parcel totaling approximately 320,127 square feet (7.35 acres) as well as Shaw Road Improvements (0.47 acres) for a total project area of 7.82 acres. This site is currently zoned RS-10, low urban density, single family residential. The site currently contains a dilapidated single-family house with associated hardscapes and outbuildings, the remaining ground cover of the site consists of dense vegetation and moderate tree cover. All existing buildings and hardscapes are to be removed as a part of this project. Site topography is generally moderate to steep with 86 feet of vertical relief sloping from the southwest corner to the northeast corner at a grades ranging from 2 percent to 40 percent. Onsite elevations range from 368 to 282. The project site is bound by Shaw Road East to the west, Crystal Ridge Drive to the south, single family residences to the east and a wetland that partially crosses into the subject property and continues offsite to the north.

The NRCS classifies onsite soils as Indianola loamy sand, 5-15% slopes as seen in Figure 2: Soils Map. This is consistent with the findings of Earth Solutions Northwest which describe the site soils dense silty sand with gravel consistent with glacial till.

The proposal is to subdivide the parcel into 25 lots for single family residences. A new public road with temporary turnaround is proposed to access the site directly from the public right of way. The internal roads will be complete with asphalt pavement, cement concrete curb and gutter, and sidewalk on both sides. Supporting infrastructure including catch basins, sanitary sewer manholes, stormwater detention vault, water quality unit, and dry utilities will be installed with site development. Low Impact Development (LID) Best Management Practices (BMPs) were evaluated for this project, but none were determined to be feasible as described in Section 2 of this report.

Site drainage design is in accordance with the 2024 Department of Ecology Stormwater Management Manual for Western Washington (2024SWMMWW). Detention and water quality treatment facilities are proposed for mitigation of stormwater runoff from the site. Refer to Section 5.0 of this report for further information.

REFERENCE: USDA, Natural Resources Conservation Service

LEGEND: HSG

18C = Indianola loamy sand, 5-15% slopes A 20C = Kitsap silt loam, 8-15% slopes C/D

Scale:

Horizontal: N.T.S. Vertical: N/A

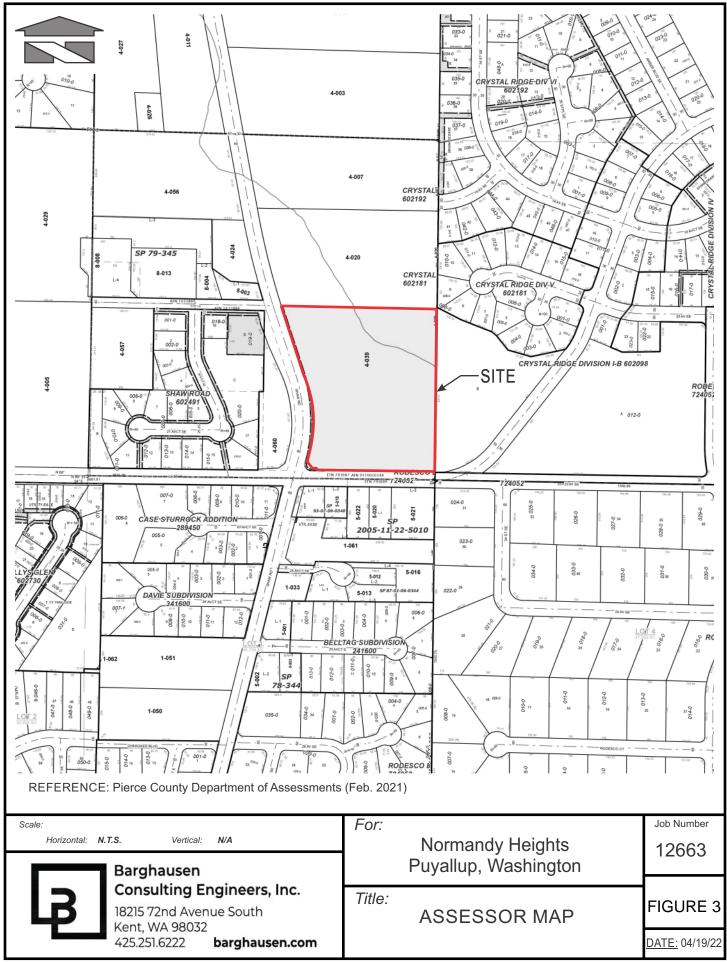
₽ P

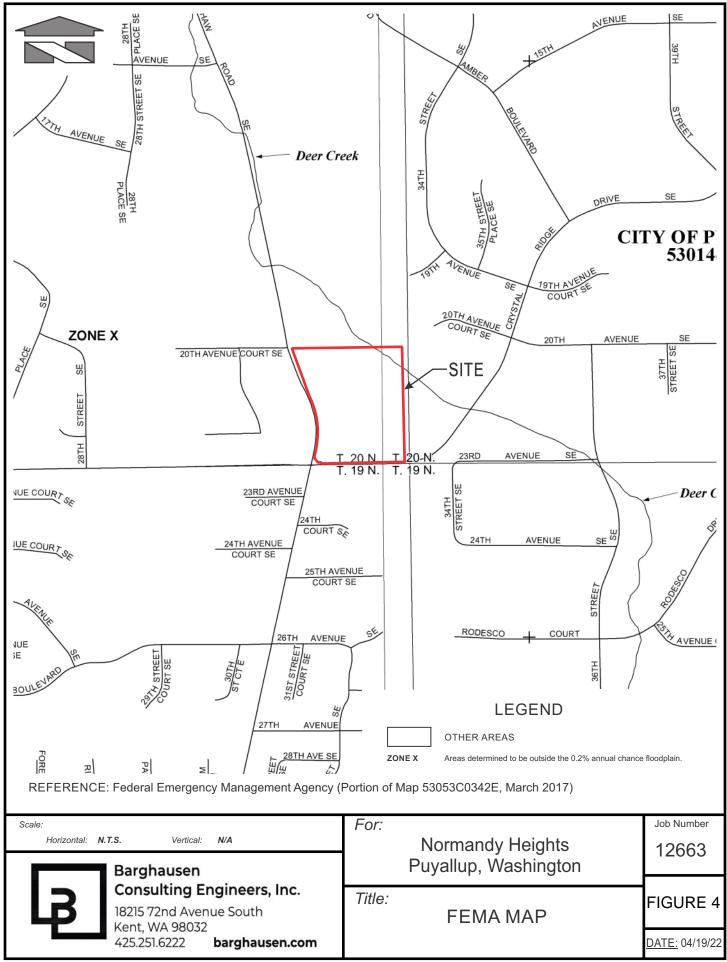
Barghausen Consulting Engineers, Inc.

18215 72nd Avenue South Kent, WA 98032 425.251.6222 **barghausen.com** For:

Normandy Heights
Puyallup, Washington

12663


Job Number


Title:

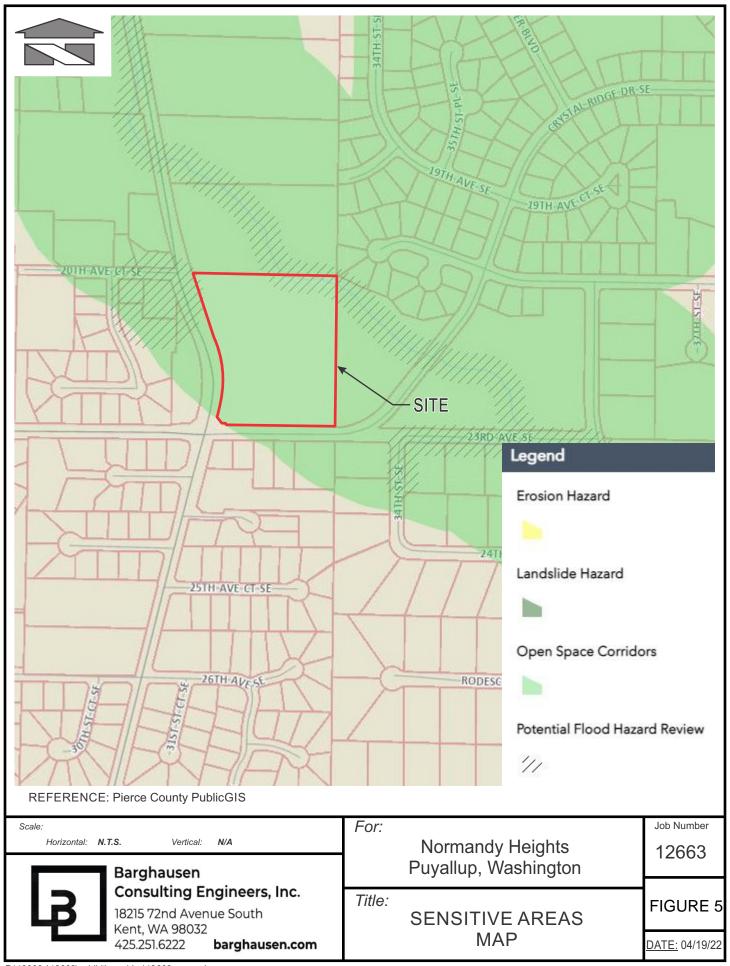
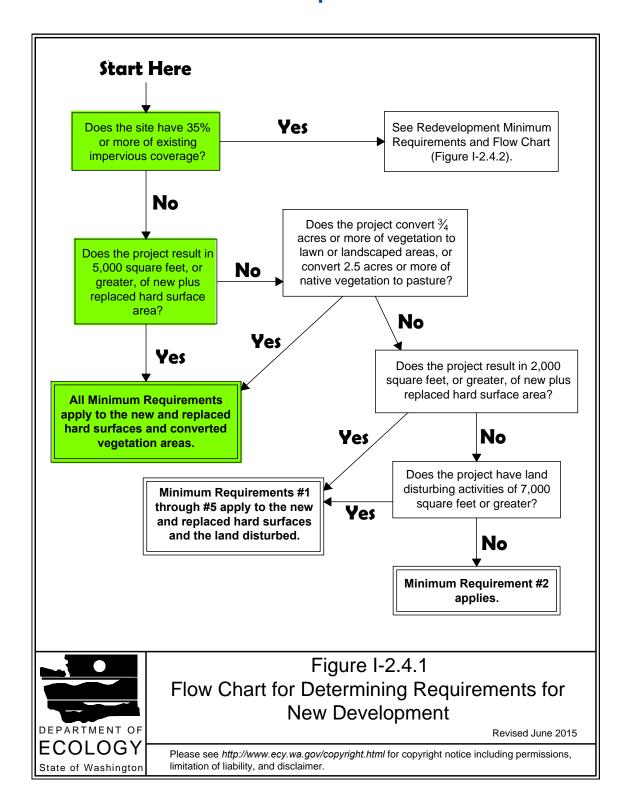

SOIL SURVEY MAP

FIGURE 2

DATE: 04/19/22



Tab 2.0

Figure I-2.4.1 Flow Chart for Determining Requirements for New Development

2.0 ANALYSIS OF THE MINIMUM REQUIREMENTS

Summary of compliance with Minimum Requirements of the 2024SWMMWW. The developed project will add over 5,000 square feet of new impervious surfacing, therefore minimum requirements #1-#9 apply.

Minimum Requirement No. 1: Preparation of Stormwater Site Plans.

Drainage Plan Description: Full drainage plans and drainage report will be provided during final engineering to satisfy Minimum Requirement No. 1.

Minimum Requirement No. 2: Construction Stormwater Pollution Prevention (SWPP)

A construction Stormwater Pollution Prevention Plan (SWPPP) will be prepared during final engineering and incorporated into the construction plans. Because the amount of land disturbance is larger than one acre, a NPDES permit is required for this project.

The following is a list of the 12 SWPPP elements and how they have been addressed for this project:

Element #1 - Preserve Vegetation / Mark Clearing Limits: Clearing Limits and tree protection fencing will be delineated on the engineering plans and will be flagged in the field.

Element #2 - Establish Construction Access: A stabilized gravel construction entrance will be shown on the engineering plans.

Element #3 - Control Flow Rates: A sediment pond or trap will be designed and detailed on the plans during final engineering.

Element #4 - Install Sediment Controls: Silt fence will be shown on the engineering plans for perimeter protection.

Element #5 - Stabilize Soils: Cover measures will be addressed in the TESC notes on the engineering plans.

Element #6 - Protect Slopes: Steep slopes exist on site and are proposed to be protected. Steep slope buffers will be flagged in the field and remain undisturbed.

Element #7 - Protect Permanent Drain Inlets: A detail for catch basin inserts will be shown on the final engineering plans along with a note specifying that they be installed once the permanent storm system is completed. A note will also be included that the contractor shall keep public roadways clear of dirt and debris.

Element #8 - Stabilize Channels and Outlets: T.E.S.C. facility outlets will be protected from erosion.

Element #9 - Control Pollutants: A note will be added to the engineering plans that the contractor shall dispose of all pollutants and waste materials in a safe and timely manner.

Element #10 - Control Dewatering: Turbid de-watering water will be routed to on site T.E.S.C. sedimentation facilities prior to release into the on-site wetland.

Element #11 - Maintain Best Management Practices: Once the engineering plans are completed the contractor shall maintain all erosion control measures in accordance with Department of Ecology and manufactures recommendations. In addition, the contractor shall maintain a stockpile of erosion control materials onsite.

Element #12 - Manage the Project: Once the engineering plans are completed, the clearing, grading, and seasonal work shall be performed in accordance with Department of Ecology. The contractor shall inspect, maintain, and repair all BMPs as needed to assure continued performance of their intended function.

In addition to the engineering plans the contractor will be required to follow and maintain the Construction SWPPP which will be prepared in accordance with Department of Ecology requirements. For further detail please refer to Section 6 of this report.

Minimum Requirement No. 3: Water Pollution Source Control for New Development.

There are no identified source control activities that will need to be addressed as a part of this project. However, this report will include long-term preventive maintenance and good housekeeping practices aimed at minimizing the potential for stormwater to come into contact with pollutants. These practices will help reduce the frequency of maintenance for the drainage system and ensure its continued effectiveness.

Applicable Source Control BMPs for this site include, but are not limited to: spill prevention, employee training, monthly site inspection, record keeping, proper procedures for potable water line flushing and hydrant testing, and landscaping and vegetation management practices.

Additional information on operational BMPs related to stormwater drainage system maintenance can be found in Volume IV of the 2024SWMMWW.

Minimum Requirement No. 4: Preservation of natural drainage systems and outfalls, and provisions of off-site mitigation.

The developed site will be installing a detention facility to match developed discharge durations to pre-developed durations for the range of pre-developed discharge rates from 50% of the 2-year peak flow up to the full 50-year peak flow. The pre-developed condition to be matched is the forested land cover. The detention facility will drain to the on-site wetland.

The downstream combination point between stormwater runoff from Basin A and the Bypass Basin is within a quarter mile of the subject property, these basins are not separate threshold discharge areas and can be combined into a single basin for modelling purposes. Per Sec I-2.5.7 of the 2024SWMMWW pre-developed conditions are to be modeled as forested.

Minimum Requirement No. 5: On-site Stormwater Management.

The project is providing a detention facility to fulfill flow control requirements. It has been determined through soils testing that the project cannot feasibly infiltrate stormwater runoff or provide dispersion systems due to the developed constraints of the site. See Minimum Requirement No. 7: Flow Control. See chart below and recommendation found in the Geotechnical Report attached in Section 7.1.

Table 2.1: Normandy Heights BMP Evaluation

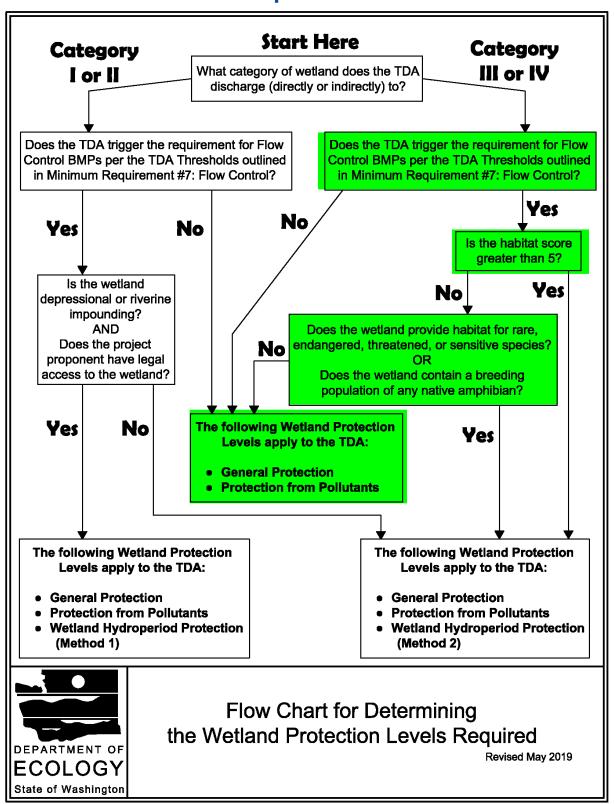
rable 2111 Normandy Holgine 2111 Evaluation							
BMP	Feasible?	Infeasibility Criteria					
T5.13: Post-Construction							
Soil Quality and Depth	Yes	Post construction soils will implement this BMP.					
T5.10A: Downspout Full		Due to the nature of the soils, downspout					
Infiltration	No	infiltration is not feasible.					
		Due to the constrained nature of the site, a 50 ft.					
T5.10B: Downspout		vegetated flow path is infeasible. Page 906 of the					
Dispersion Systems	No	2024SWMMWW					
		Detention is provided and downspout attachment					
T5.10C: Perforated Stub-		to the stormwater conveyance system will be via					
out Connections	Yes	perforated stub-out connections.					
		Due to the constrained nature of the site, a 50 ft.					
T5.11: Concentrated Flow		vegetated flow path is infeasible. Page 906 of the					
Dispersion	No	2024SWMMWW					
		Due to the constrained nature of the site, 12' of					
T5.12: Sheet Flow		runout adjacent to the drive isles is infeasible.					
Dispersion	No	Page 908 of the 2024SWMMWW					
T5.15: Permeable		Due to the nature of the soils, permeable					
Pavements	No	pavement is not feasible for this site.					
		Due to the constrained nature of the site, the					
		required native vegetated flow path is not					
T5.30: Full Dispersion	No	feasible.					
T7.30: Bioretention Cells,							
Swales, and Planter		Lack of usable space, Page 966 of the					
Boxes	No	2024SWMMWW					

Minimum Requirement No. 6: Run-off Treatment Requirements.

The project is a residential project creating more than 5,000 square feet of pollution generating hard surfaces and is not subject to phosphorous control. The project is releasing to a waterbody known to contain aquatic life and therefore enhanced water quality treatment is required.

Minimum Requirement No. 7: Flow Control.

Per the 2024SWMMWW, Volume I, Sec I-2.5.7, the project is subject to flow control requirements. The project will be providing a detention facility to match developed discharge durations to pre-developed durations for the range of pre-developed discharge rates from 50% of the 2-year peak flow up to the full 50-year peak flow. The pre-developed condition to be matched is the forested land cover.


Minimum Requirement No. 8: Wetlands Protection.

Wetlands will be hydrologically protected in accordance with the provisions of Minimum Requirement No. 8. The pre-developed condition to be matched is the forested land cover. See flow chart next page.

Minimum Requirement No. 9: Operations and Maintenance Manual.

Operations and Maintenance manuals will be included during final engineering for the various stormwater elements in Section 9.0

Figure I-3.5: Flow Chart for Determining Wetland Protection Level Requirements

Tab 3.0

3.0 EXISTING CONDITIONS

The project site currently consists of a single parcel totaling approximately 320,127 square feet (7.35 acres) as well as Shaw Road Improvements (0.61 acres) for a total project area of 7.83 acres. The parcel area is currently zoned RS-10, low urban density, single family residential. The site currently contains a dilapidated single-family house with associated hardscapes and outbuildings, the remaining ground cover of the site consists of dense vegetation and moderate tree cover. Approximately 10,700 square feet gravel parking lot exists on the SW corner of the subject property. No stormwater features or facilities are observable adjacent to the parking lot or structures. All existing buildings and hardscapes are to be removed as a part of this project.

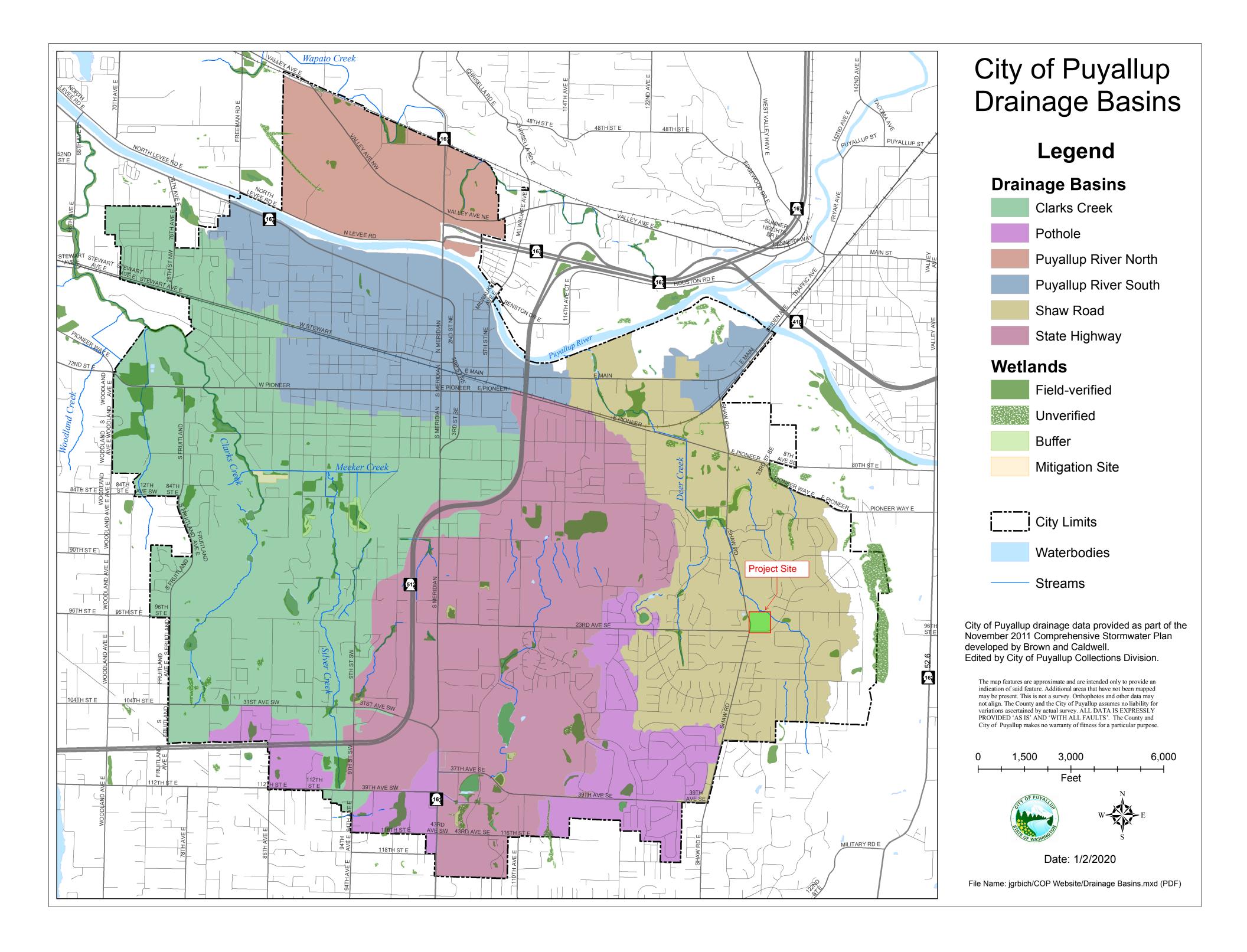
Site topography is generally moderate to steep with 86 feet of vertical relief sloping from the southwest corner to the northeast corner at grades ranging from 2% to 40%. Onsite elevations range from 368 to 282. The project site is bounded by Shaw Road East to the west, Crystal Ridge Drive to the south, single family residences to the east and a Category III wetland that partially crosses into to the subject property and continues offsite to the north. The Category III wetland is associated with Upper Deer Creek, which partially crosses into the subject property at the NE corner before continuing offsite.

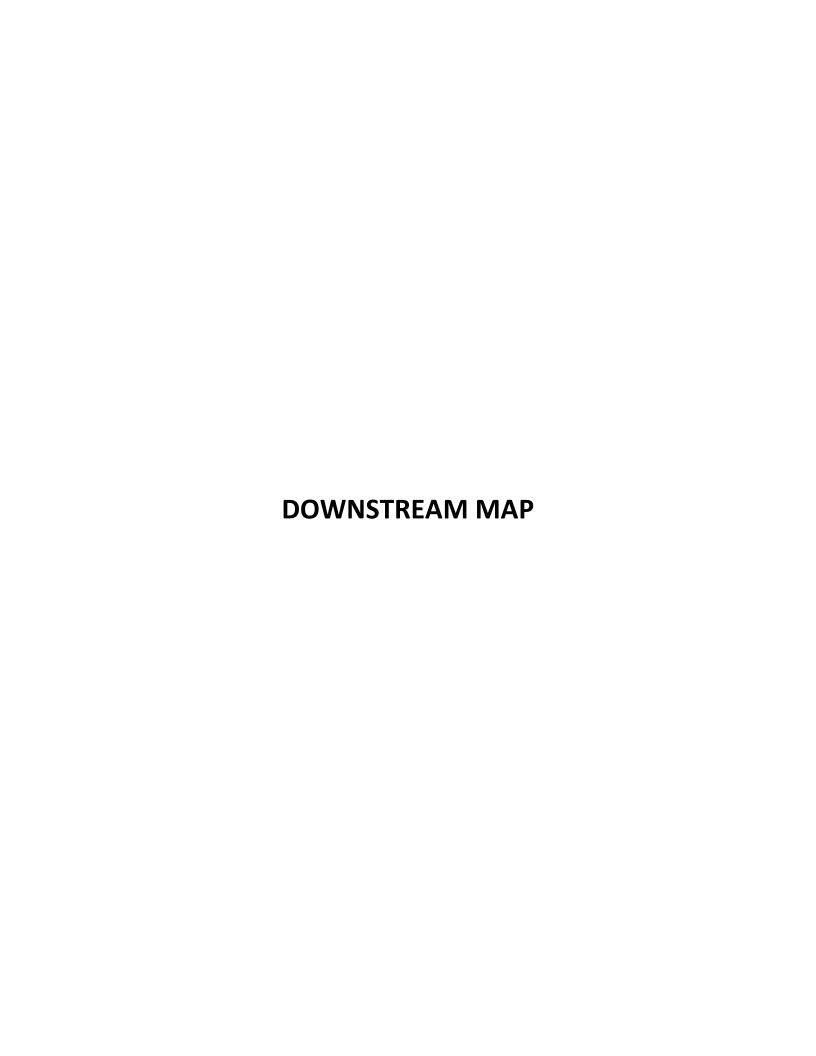
The National Resource Conservation Service (NRCS) Web Soil Survey identifies onsite soils as Indianola loamy sand, 5 to 15 percent slopes (Map Unit 18C) and Kitsap silt loam, 8 to 15 percent slopes (Map Unit 20C) which are consistent with soil conditions encountered during geotechnical fieldwork. Test pits generally encountered approximately 7-12 inches of topsoil underlain by a layer of medium dense, poorly graded sand and gravel. Several test sites were further underlain by dense silty sand with gravel glacial till deposits. Groundwater seepage was not observed at the time of fieldwork.

Tab 4.0

4.0 OFFSITE ANALYSIS

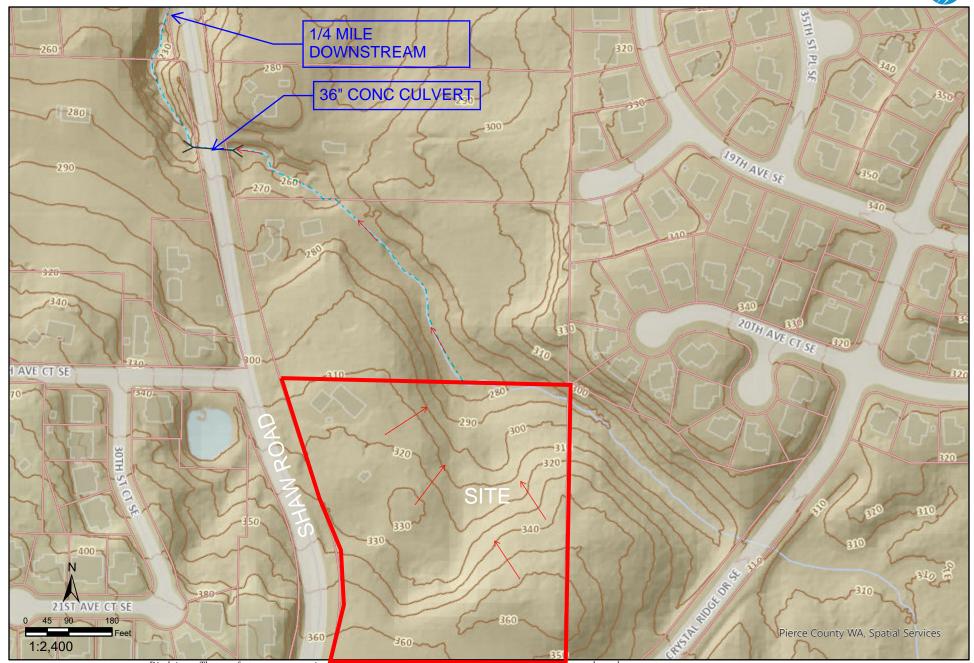
4.1 Upstream Analysis


The project site does not appear to receive notable stormwater runoff from any off-site upstream drainage areas based on the topographic survey prepared for the project and Pierce County GIS with the exception of the eastern half of Shaw Road, which currently drains into the subject site and subsequently into the on-site wetland. This will change in post developed conditions, as Shaw Road will no longer drain onto the site.


Crystal Ridge Drive contains a conveyance system within the roadway which captures stormwater runoff, all other abutting properties are either down gradient of the subject site or graded away from the subject site.

4.2 Downstream Analysis

The project lies within the Shaw Road Drainage Basin, a drainage basin of the White / Puyallup Watershed as delineated by the City of Puyallup. The City of Puyallup Drainage Basin Map has been added in the following pages.


Stormwater runoff of the site discharges from the site as sheet flow to the on-site wetland in the northeast section of the project site, whereupon stormwater immediately enters Upper Deer Creek. Upper Deer Creek meanders northerly roughly following Shaw Road through green space and man-made ditches for approximately two miles before reaching the Puyallup River. See the Downstream Conveyance Exhibit in the following pages.

Normandy Heights Downstream Map

Disclaimer: The map features are approximate and nave not been surveyed. Additional features not yet mapped may be present.

Pierce County assumes no liability for variations ascertained by formal survey.

Tab 5.0

5.0 PERMANENT STORMWATER CONTROL PLAN

The proposed development includes the construction of a 28-foot-wide public road, two public access tracts, Shaw Road improvements, 25 single family residences, a stormwater detention vault, and a water quality unit. Frontage improvements are not proposed as a part of this project, however, a 10-foot right of way dedication is proposed along Shaw Rd East. A stormwater conveyance system located within the right of way and access tracts of the plat will collect and convey stormwater runoff to an on-site stormwater detention vault. Roof drainage will be tight lined to this stormwater conveyance system.

The proposed development creates a total effective impervious surface area of over 10,000 square feet, per Sec. I-2.5.7 of the 2024SWMMWW the Standard Flow Control Requirement must be met. The standard flow control requirement dictates that stormwater discharges shall match developed discharge durations to pre-developed durations for the range of pre-developed discharge rates from 50% of the 2-year peak flow up to the full 50-year peak flow.

The project will be providing a stormwater detention vault with an appropriately sized control structure to meet the Standard Flow Control Requirement. The detention facility and control structure were sized using WWHM2012.

Please refer to the post developed drainage basin map and WWHM2012 Hydrology calculations attached at the end of this section.

5.1 Existing Site Hydrology

The Flow Control Performance Standard, per Sec I-3.4.7 of the 2024SWMMWW, the pre-developed condition to be matched shall be a forested land cover.

Site topography suggests a ridge line in the SE quadrant of the project site divides the site into two subbasins. Basin 1 is approximately 6.89 acres and contains the majority of the site to be developed, as well as the Shaw Road improvements. Basin 1 sheet flows to the NE quadrant of the project site to the Category III wetland and Upper Deer Creek.

Basin 2 is approximately 0.94 ac and is located in the SE quadrant of the project site. This basin sheet flows to the east into a green space tract of the Crystal Ridge plat. Stormwater runoff entering this tract then sheet flows northerly before reaching Upper Deer Creek, which is the discharge point of Basin 1. As the downstream combination point between stormwater runoff from Basin 1 and Basin 2 is within a quarter mile of the subject property, these basins are not separate threshold discharge areas and will be modeled as a single basin in post development.

The east shoulder area adjacent to the site along Shaw Road East is modeled as forested in the predeveloped conditions, as this area currently sheet flows onto the site.

5.2 Developed Site Hydrology

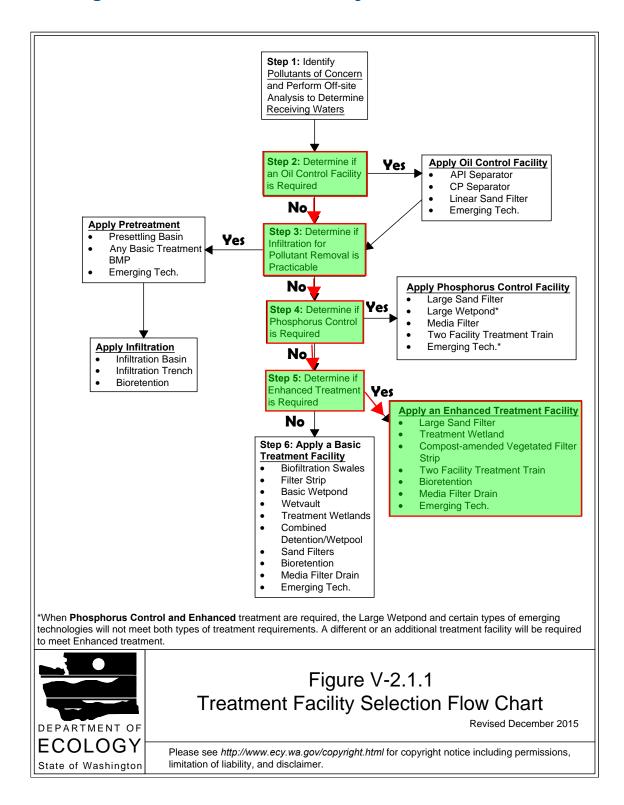
The completed Normandy Heights project will create 25 new single-family residences. New impervious surfaces will include roadways, sidewalks, driveways, patios and roof areas. The project will provide landscaped pervious areas, open space and a single drainage facility. The existing Category III wetland is proposed to remain undisturbed.

A conveyance system consisting of catch basins and storm pipes will be constructed in the roadways to collect drainage from impervious surfaces and lots, and will direct stormwater runoff to the detention facility in Tract D. After detention, runoff will be routed to a water quality unit that will also provide enhanced treatment.

Post treatment, stormwater will be released via a flow spreader into the Category III wetland and Upper Deer Creek.

5.3 Western Washington Hydrology Model (WWHM)

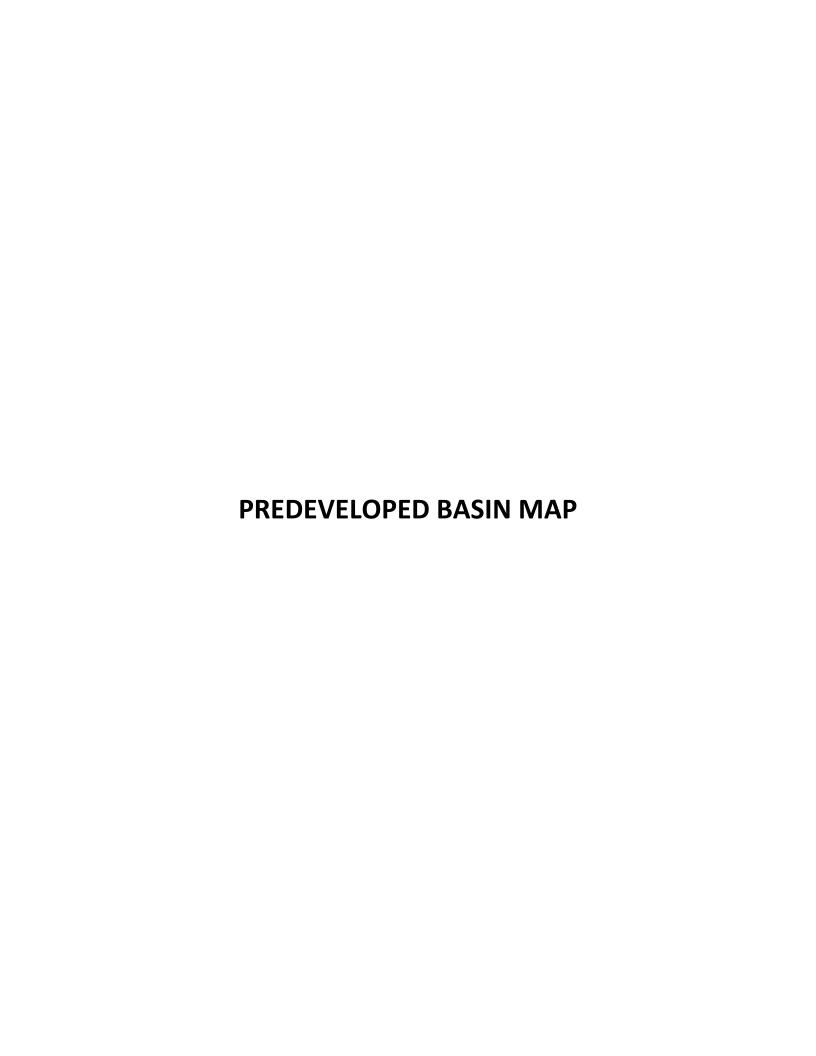
Each lot is assumed to have 3,000 sf impervious surface. Per the Geotechnical Report attached in Sec 7.1 and The National Resource Conservation Service (NRCS) Web Soil Survey, on site soils are consistent with hydrologic soil group C, till. Lawns are modeled as till grass. The proposed Shaw Road improvements have been identified as tributary area. The Shaw Road improvements, North ROW dedication, and Tract D were identified to be bypassed.

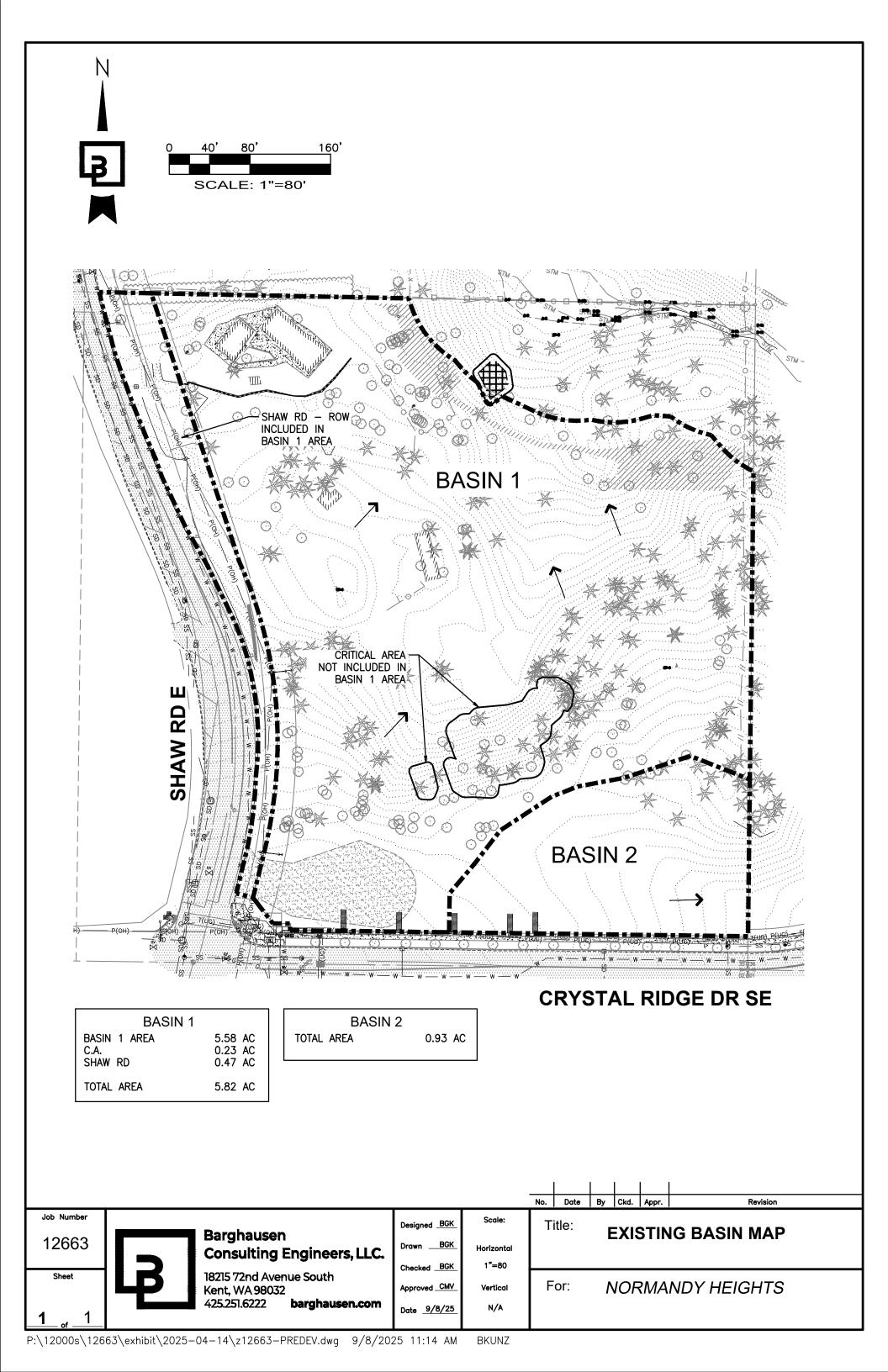

5.4 Water Quality Analysis

This project generates greater than 5,000 square feet of pollution generating hard surfaces (PGHS) and is therefore required to construct a stormwater treatment facility. The project is not a high use site subject to oil control and does not discharge to a waterbody regulated for phosphorus control. However, the site discharges to a waterbody known to contain aquatic life and is therefore subject to enhanced treatment. Please see the treatment facility flow chart on the following page.

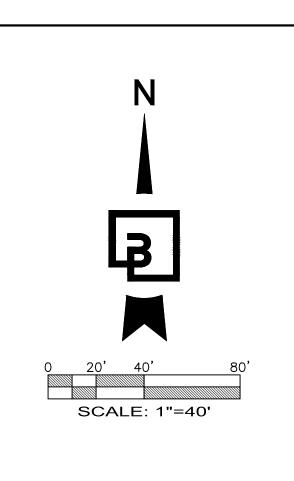
Per the City of Puyallup Comprehensive Storm Drainage Plan and Department of Ecology 303d listings attached in Section 7.3 of this report, Deer Creek regularly exceeds the Total Maximum Daily Load (TMDL) of fecal coliforms. As this project does not propose the installation of septic drain fields, the TMLD of fecal coliforms to Deer Creek is not expected to be impacted as a result of this project.

A proprietary water quality treatment facility has been selected to provide treatment for stormwater runoff post detention.

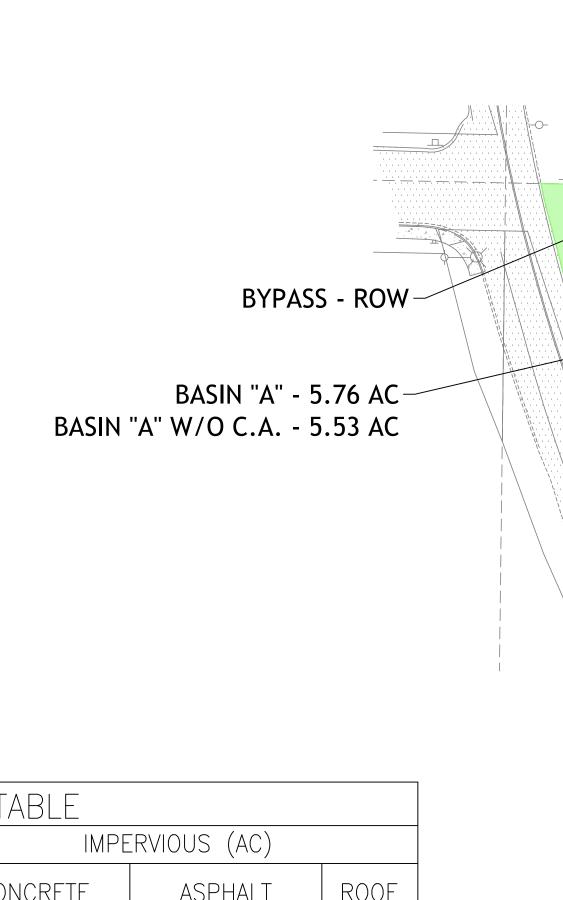

Figure V-2.1.1 Treatment Facility Selection Flow Chart



5.5 Conveyance System Analysis

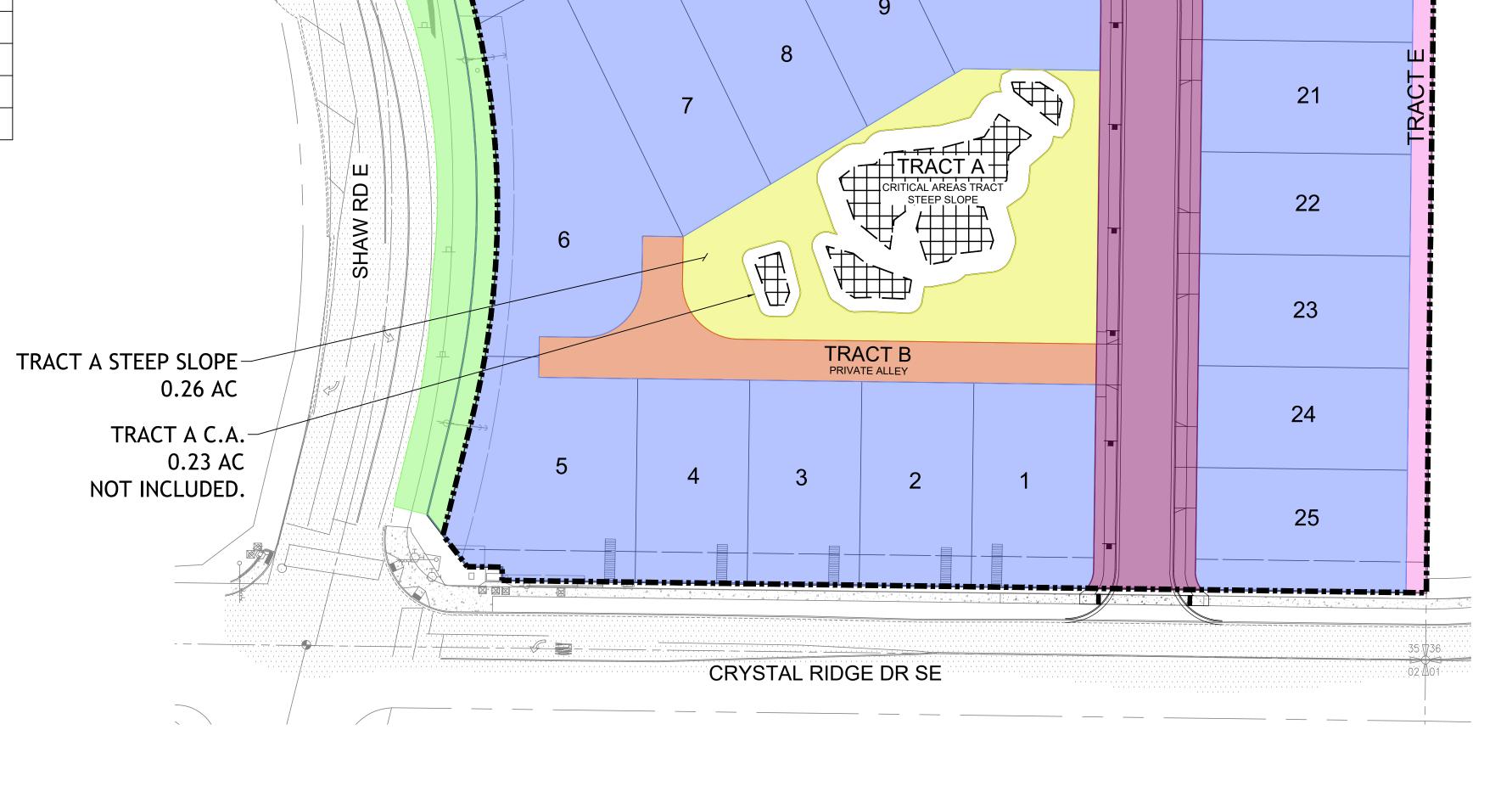

The project will be collecting the developed drainage from the roadway and rooftops in catch basins and convey the flows directly to the detention vault. The conveyance system for this project site are sized that the 25-year storm evernt must fully be conveyed. Conveyance was modeled using the Rational Method.

(Calculations will be provided with the final version of this report prior to construction plan approval.)


POSTDEVELOPED BASIN MAP EXHIBIT

BYPASS - TRACT C \neg

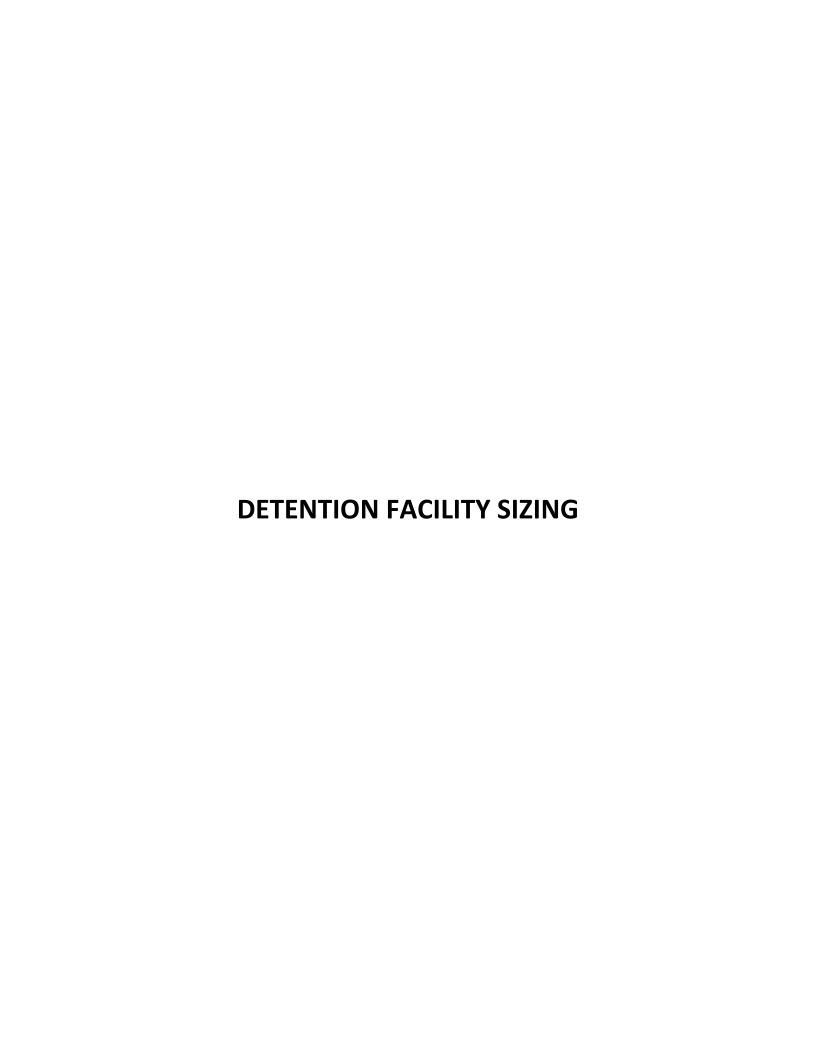
15


13

16

BASIN "A" WWHM INPUT TABLE										
AREA NAME COLOR			PERVIOUS (AC)			IMPERVIOUS (AC)				
	AREA (AC)	PASTURE			CONCRETE		ASPHALT		ROOF	
			FLAT	MOD.	STEEP	FLAT	MOD.	FLAT	MOD.	FLAT
TRACT A		0.26	0.02	0.09	0.15	_	_	_	_	_
TRACT B		0.15	_	_	_	_	_	0.11	0.04	_
TRACT E		0.10	0.01	0.00	0.09	_	_	_	_	_
ROADS		1.03	0.04	0.09	0.02	0.06	0.12	0.26	0.44	_
LOTS		3.99	1.32	0.23	0.72	_	_	_	_	1.72
TOTAL		5.53	1.39	0.41	0.98	0.06	0.12	0.37	0.48	1.72

	BYPASS	BASIN	WWHN	1 INPL	JT TAB	LE	
AREA NAME	COLOR	AREA (AC)	PEF	RVIOUS (IMPERVIOUS (AC)		
				PASTURE	ASPHALT		
			FLAT	MOD.	STEEP	FLAT	MOD.
TRACT D		0.51	0.21	0.04	0.22	0.02	0.02
ROW		0.71	0.12	0.33	0.14	0.12	_
TOTAL		1.22	0.33	0.37	0.36	0.14	0.02


TRACT C
CRITICAL AREAS TRACT

TRACT D
OPEN SPACE/STORMWATER

19

20

12663

WWHM2012 PROJECT REPORT

General Model Information

WWHM2012 Project Name: Normandy Vault

Site Name: Normandy Heights

Site Address:

City:

 Report Date:
 9/8/2025

 Gage:
 42 IN EAST

 Data Start:
 10/01/1901

 Data End:
 09/30/2059

Timestep: 15 Minute

Precip Scale: 0.000 (adjusted)

Version Date: 2025/05/13

Version: 4.3.2

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Normandy Vault 9/8/2025 11:50:40 AM Page 2

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre C, Forest, Flat 0.73 C, Forest, Mod 2.81 C, Forest, Steep 3.21

Pervious Total 0

Impervious Land Use acre

Impervious Total 0

Basin Total 0

Element Flow Componants: Surface Interflow

Componant Flows To:

POC 1 POC 1

Groundwater

Mitigated Land Use

Basin 1

Bypass: No GroundWater: No Pervious Land Use acre C, Forest, Flat 1.39 C, Forest, Mod C, Forest, Steep 0.41 0.98 Pervious Total 2.78 Impervious Land Use acre **ROADS FLAT** 0.37 **ROADS MOD** 0.48 **ROOF TOPS FLAT** 1.72 SIDEWALKS FLAT 0.06 SIDEWALKS MOD 0.12 Impervious Total 2.75 **Basin Total** 5.53

Element Flow Componants: Surface Interflow Componant Flows To:

Vault 1 Vault 1 Groundwater

9/8/2025 11:50:40 AM Page 4 Normandy Vault

Basin 2

Basin Total

Bypass:	Yes
GroundWater:	No
Pervious Land Use C, Forest, Flat C, Forest, Mod C, Forest, Steep	acre 0.33 0.37 0.36
Pervious Total	1.06
Impervious Land Use ROADS FLAT ROADS MOD	acre 0.14 0.02
Impervious Total	0.16

Element Flow Componants:
Surface Interflow
Componant Flows To:
POC 1 POC 1

1.22

Groundwater

Routing Elements Predeveloped Routing

Mitigated Routing

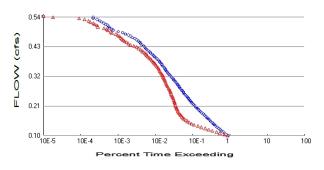
Vault 1

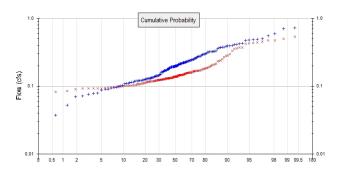
Width: 17.5 ft. Length: 240 ft. Depth: Discharge Structure 15 ft.

Riser Height: 14.5 ft. Riser Diameter: 18 in.

Orifice 1 Diameter: 1.100 in. Elevation:0 ft. Orifice 2 Diameter: 0.300 in. Elevation:2.1 ft. Orifice 3 Diameter: 2.680 in. Elevation:10 ft.

Element Outlets:


Outlet 1 Outlet 2


Outlet Flows To:

Vault Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs)	
0.0000	0.096	0.000	0.000	0.000
0.1667 0.3333	0.096 0.096	0.016 0.032	0.013 0.019	0.000 0.000
0.5000	0.096	0.032	0.023	0.000
0.6667	0.096	0.064	0.026	0.000
0.8333	0.096	0.080	0.030	0.000
1.0000	0.096	0.096	0.032	0.000
1.1667	0.096	0.112	0.035	0.000
1.3333	0.096	0.128	0.037	0.000
1.5000	0.096	0.144	0.040	0.000
1.6667	0.096	0.160	0.042	0.000
1.8333	0.096	0.176	0.044	0.000
2.0000	0.096	0.192	0.046	0.000
2.1667	0.096	0.208	0.049	0.000
2.3333	0.096	0.225	0.051	0.000
2.5000	0.096	0.241	0.053	0.000
2.6667	0.096	0.257	0.055	0.000
2.8333 3.0000	0.096 0.096	0.273 0.289	0.057 0.059	0.000 0.000
3.1667	0.096	0.305	0.061	0.000
3.3333	0.096	0.321	0.062	0.000
3.5000	0.096	0.337	0.064	0.000
3.6667	0.096	0.353	0.065	0.000
3.8333	0.096	0.369	0.067	0.000
4.0000	0.096	0.385	0.069	0.000
4.1667	0.096	0.401	0.070	0.000
4.3333	0.096	0.417	0.072	0.000
4.5000	0.096	0.433	0.073	0.000
4.6667	0.096	0.450	0.074	0.000
4.8333	0.096	0.466	0.076	0.000
5.0000	0.096	0.482	0.077	0.000
5.1667	0.096	0.498	0.078	0.000
5.3333	0.096	0.514	0.080	0.000
5.5000 5.6667	0.096 0.096	0.530 0.546	0.081 0.082	0.000 0.000
5.8333	0.096	0.562	0.084	0.000
6.0000	0.096	0.578	0.085	0.000
0.0000	0.090	0.576	0.065	0.000

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse Totals for POC #1

Total Pervious Area: 6.75 Total Impervious Area: 0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 3.84 Total Impervious Area: 2.91

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.198928

 5 year
 0.30647

 10 year
 0.378525

 25 year
 0.468988

 50 year
 0.535472

 100 year
 0.600957

Flow Frequency Return Periods for Mitigated. POC #1

 Return Period
 Flow(cfs)

 2 year
 0.142246

 5 year
 0.207194

 10 year
 0.261741

 25 year
 0.345866

 50 year
 0.421047

 100 year
 0.508302

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1902	0.199 ·	0.140
1903	0.121	0.116
1904	0.271	0.172
1905	0.110	0.123
1906	0.070	0.085
1907	0.325	0.177
1908	0.221	0.121
1909	0.221	0.125
1910	0.318	0.167
1911	0.194	0.125

1943 0.134 0.130 1944 0.356 0.238 1945 0.223 0.146 1946 0.142 0.123 1947 0.108 0.096 1948 0.428 0.194 1949 0.377 0.298 1950 0.120 0.100 1951 0.144 0.116 1952 0.552 0.450 1953 0.486 0.436 1954 0.191 0.130 1955 0.160 0.104	1944 0.356 0.238 1945 0.223 0.146 1946 0.142 0.123 1947 0.108 0.096 1948 0.428 0.194 1949 0.377 0.298 1950 0.120 0.100 1951 0.144 0.116 1952 0.552 0.450 1953 0.486 0.436 1954 0.191 0.130	1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942	0.727 0.286 0.076 0.135 0.192 0.078 0.187 0.160 0.200 0.214 0.223 0.173 0.102 0.123 0.195 0.164 0.150 0.322 0.195 0.196 0.160 0.170 0.387 0.193 0.193 0.184 0.297 0.170 0.025 0.178 0.131 0.277	0.268 0.173 0.233 0.130 0.132 0.076 0.150 0.150 0.159 0.152 0.129 0.112 0.102 0.139 0.106 0.121 0.171 0.127 0.126 0.120 0.147 0.356 0.139 0.134 0.177 0.124 0.106 0.145 0.118 0.374
	1957 0.248 0.145 1958 0.483 0.499 1959 0.305 0.442 1960 0.094 0.103 1961 0.331 0.279 1962 0.202 0.133 1963 0.095 0.090 1964 0.122 0.158	1949 1950 1951 1952 1953 1954 1955	0.377 0.120 0.144 0.552 0.486 0.191 0.160	0.298 0.100 0.116 0.450 0.436 0.130 0.104

0.113

2028

0.092

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1

Rank

Predeveloped Mitigated

Rank	Predeveloped	Mitigated
1	0.7266	0.5382
2	0.7048	0.4995
3 4	0.5960	0.4762
4	0.5523	0.4754
5	0.5001	0.4501
6	0.4944	0.4421
7	0.4864	0.4362
8	0.4828	0.4285
9	0.4751	0.4199
10	0.4278	0.3739
11	0.4212	0.3732
12	0.4154	0.3598
13	0.4118	0.3565
14	0.3999	0.3301
15	0.3931	0.2979
16	0.3912	0.2830
17	0.3873	0.2792
18	0.3783	0.2678
19	0.3768	0.2504
20	0.3724	0.2400
21	0.3687	0.2377
22	0.3557	0.2334

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 66 67 67 67 77 77 77 77	0.3308 0.3262 0.3248 0.3240 0.3214 0.3176 0.3175 0.3053 0.3020 0.2975 0.2946 0.2905 0.2770 0.2765 0.2749 0.2713 0.2645 0.2581 0.2485 0.2479 0.2467 0.2467 0.2453 0.2467 0.2334 0.2334 0.2334 0.2334 0.2334 0.2334 0.23354 0.2358 0.2210 0.2293 0.2258 0.2215 0.2210 0.2293 0.2215 0.2210 0.2228 0.2215 0.2145 0.2145 0.2145 0.2145 0.2142 0.2145 0.2142 0.21437 0.2143 0.2145 0.2145 0.2142 0.2147 0.2143 0.2145 0.2145 0.2145 0.2149 0.2145 0.2149 0.2145 0.2149 0.2145 0.2149 0.2165 0.2149 0.2165 0.2149 0.2165 0.2149 0.2165 0.2149 0.2165 0.2149 0.2165 0.2149 0.2165 0.2149 0.2165 0.2149 0.2165 0.2149 0.2165 0.2149 0.2165 0.2149	0.2145 0.2107 0.2084 0.2039 0.1984 0.1938 0.1914 0.1868 0.1867 0.1826 0.1775 0.1769 0.1775 0.1769 0.1772 0.1684 0.1681 0.1672 0.1662 0.1650 0.1630 0.1622 0.1594 0.1593 0.1591 0.1578 0.1576 0.1572 0.1566 0.1560 0.1572 0.1567 0.1566 0.1572 0.1567 0.1560 0.1572 0.1567 0.1572 0.1567 0.1572 0.1573 0.1499 0.1453 0.1453 0.1453 0.1453 0.1453 0.1453 0.1453 0.1453 0.1453 0.1453 0.1453 0.1453
76 77 78 79 80	0.2002 0.1998 0.1985 0.1960 0.1958	

81 82 83 84 85 87 89 91 92 93 94 95 97 98 99 101 102 103 104 105 107 108 109 110 111 112 113 114 115 116 117 118 119 119 119 119 119 119 119 119 119	0.1957 0.1949 0.1946 0.1943 0.1941 0.1935 0.1919 0.1910 0.1886 0.1873 0.1780 0.1775 0.1771 0.1733 0.1708 0.1701 0.1698 0.1680 0.1602 0.1601 0.1601 0.1498 0.1485 0.1437 0.1436 0.1414 0.1410 0.1389 0.1371 0.1348 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1340 0.1320 0.1306 0.1302 0.1297 0.1292 0.1291 0.1265 0.1250 0.1232 0.1223 0.1223 0.1223 0.1223 0.1223 0.1220 0.1214 0.1137	0.1374 0.1369 0.1356 0.1343 0.1343 0.1335 0.1326 0.1321 0.1319 0.1318 0.1314 0.1298 0.1298 0.1297 0.1295 0.1294 0.1292 0.1292 0.1259 0.1254 0.1252 0.1254 0.1252 0.1254 0.1252 0.1254 0.1252 0.1254 0.1252 0.1254 0.1252 0.1254 0.1252 0.1254 0.1252 0.1254 0.1252 0.1254 0.1252 0.1254 0.1252 0.1254 0.1252 0.1254 0.1252 0.1254 0.1252 0.1266 0.1166 0.1177 0.1173 0.1166 0.1163 0.1166 0.1163 0.1162 0.1166 0.1118 0.1116 0.1103 0.1093 0.1093 0.1093 0.1093 0.1093 0.1093 0.1019
136	0.1144	0.1028

139	0.1099	0.1013
140	0.1097	0.1011
141	0.1084	0.1006
142	0.1025	0.1000
143	0.1008	0.0998
144	0.0982	0.0992
145	0.0960	0.0976
146	0.0950	0.0963
147	0.0936	0.0957
148	0.0906	0.0951
149	0.0900	0.0940
150	0.0869	0.0927
151	0.0793	0.0924
152	0.0782	0.0923
153	0.0760	0.0922
154	0.0721	0.0919
155	0.0701	0.0901
156	0.0521	0.0848
157	0.0375	0.0831
158	0.0252	0.0759

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0995	48647	47118	96	Pass
0.1039	44326	38625	87	Pass
0.1083	39656	29850	75	Pass
0.1127	36326	24138	66	Pass
0.1171	32659	18471	56	Pass
0.1171	29983	14892	49	Pass
	29963 27645		43	
0.1259		12066 9357	43 37	Pass
0.1303 0.1347	24969 23069	7612	32	Pass Pass
0.1391	21074	6033	32 28	Pass
0.1435	19640	5173	26	Pass
0.1479	18338	4514	24	Pass
0.1523	16858	3954	23	Pass
0.1523	15684	3616	23	Pass
0.1611	14371	3240	22	Pass
0.1655	13429	3014	22	Pass
0.1699	12532	2803	22	Pass
0.1743	11485	2624	22	Pass
	10659		23	
0.1787 0.1831	9751	2497 2360	23 24	Pass Pass
0.1875	9080	2272	25 25	Pass
		2212	26	
0.1920	8476	2112	26 27	Pass
0.1964	7762 7257	2049	28	Pass
0.2008 0.2052	6709		29	Pass
0.2052	6271	1982 1934	30	Pass
0.2140	5884	1891	32	Pass Pass
0.2184	5436	1843	33	Pass
0.2228	5100	1811	35 35	Pass
0.2272	4762	1772	37	Pass
0.2316	4511	1731	38	Pass
0.2360	4296	1678	39	Pass
0.2404	4002	1618	40	Pass
0.2448	3776	1582	41	Pass
0.2492	3505	1530	43	Pass
0.2536	3343	1482	44	Pass
0.2580	3148	1430	45	Pass
0.2624	2995	1387	46	Pass
0.2668	2848	1353	47	Pass
0.2712	2666	1294	48	Pass
0.2756	2526	1248	49	Pass
0.2800	2379	1187	49	Pass
0.2844	2255	1141	50	Pass
0.2888	2156	1105	51	Pass
0.2932	2016	1067	52	Pass
0.2976	1923	1037	53	Pass
0.3021	1789	1002	56	Pass
0.3065	1698	973	57	Pass
0.3109	1611	946	58	Pass
0.3153	1481	908	61	Pass
0.3197	1402	878	62	Pass
0.3241	1298	837	64	Pass
0.3285	1224	802	65	Pass

0.3329 1163 0.3373 1103 0.3417 1047 0.3461 989 0.3505 948 0.3549 897 0.3593 841 0.3637 798 0.3681 750 0.3725 712 0.3769 674 0.3813 614 0.3857 573 0.3901 525 0.3945 488 0.3989 456 0.4078 387 0.4122 352 0.4166 328 0.4210 309 0.4254 286 0.4298 261 0.4342 238 0.4342 238 0.4343 213 0.4474 194 0.4562 156 0.4694 104 0.4738 87 0.4782 73 0.4826 57 0.4870 41 0.4914 38 0.4958 33 <th>772 736 707 677 650 609 570 541 508 477 446 413 379 350 331 242 224 199 175 148 104 93 82 76 70 64 59 54 48 35 27 23 16 15 13 12 10 10 10 10 10 10 10 10 10 10 10 10 10</th> <th>66 67 68 67 67 67 66 67 66 67 68 68 64 61 50 43 44 47 48 51 55 50 51 50 50 41 8</th> <th>Pass Pass Pass Pass Pass Pass Pass Pass</th>	772 736 707 677 650 609 570 541 508 477 446 413 379 350 331 242 224 199 175 148 104 93 82 76 70 64 59 54 48 35 27 23 16 15 13 12 10 10 10 10 10 10 10 10 10 10 10 10 10	66 67 68 67 67 67 66 67 66 67 68 68 64 61 50 43 44 47 48 51 55 50 51 50 50 41 8	Pass Pass Pass Pass Pass Pass Pass Pass
---	---	---	---

Water Quality

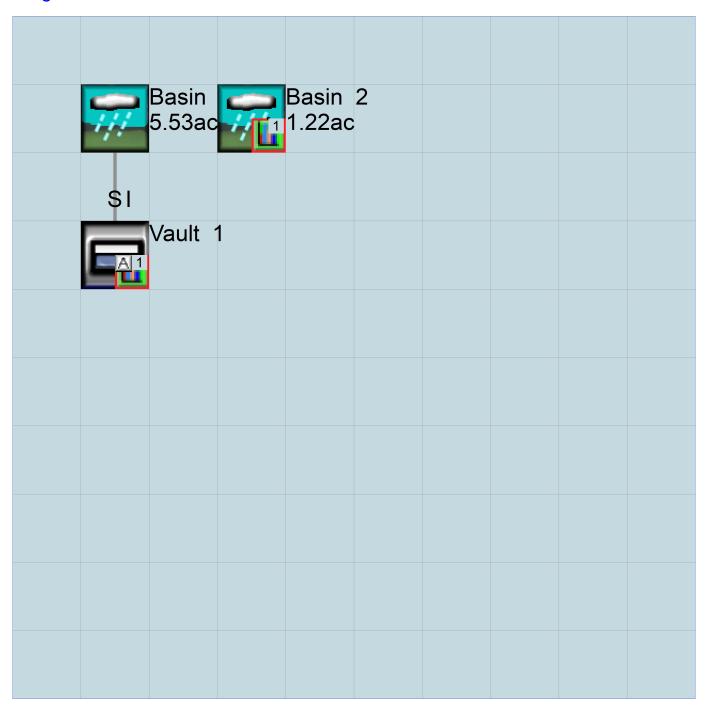
Water Quality
Water Quality BMP Flow and Volume for POC #1
On-line facility volume: 0.3685 acre-feet
On-line facility target flow: 0.4367 cfs.
Adjusted for 15 min: 0.4367 cfs.
Off-line facility target flow: 0.2519 cfs.
Adjusted for 15 min: 0.2519 cfs.

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.


IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

	帰	Basin 6.75ac	1			

Mitigated Schematic

Predeveloped UCI File

```
RUN
```

```
GLOBAL
 WWHM4 model simulation
                        END
                    END 3 0
                            2059 09 30
 START 1901 10 01
 RUN INTERP OUTPUT LEVEL
 RESUME 0 RUN 1
                                 UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
           <---->***
<-ID->
WDM
        26
           Normandy Vault.wdm
MESSU
        25
            PreNormandy Vault.MES
        27
            PreNormandy Vault.L61
            PreNormandy Vault.L62
POCNormandy Vault1.dat
        28
        30
END FILES
OPN SEOUENCE
   INGRP
                 INDELT 00:15
            10
    PERLND
             11
    PERLND
    PERLND
             12
    COPY
             501
    DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
  1 Basin 1
                                                 1 2 30
                                MAX
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT NMN ***
   1 1
)1 1
            1
 END TIMESERIES
END COPY
GENER
 OPCODE
  # # OPCD ***
 END OPCODE
 PARM
             K ***
 END PARM
END GENER
PERLND
 GEN-INFO
  <PLS ><-----Name---->NBLKS Unit-systems Printer ***
                       User t-series Engl Metr ***
                                 in out
       C, Forest, Flat
C, Forest, Mod
                                    1
1
                          1
  10
                                  1
                                              0
                             1
                          1
                                  1
                                         27
                                              0
       C, Forest, Steep
  12
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
  10
  11
              0 1
                    0
                        0 0 0 0 0
  12
 END ACTIVITY
```

```
# - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********
      END PRINT-INFO
 PWAT-PARM1
  <PLS > PWATER variable monthly parameter value flags ***
  # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
     11
 END PWAT-PARM1
 PWAT-PARM2
  KVARY AGWRC
0.5 0.996
0.5 0.996
0.5 0.996
                                400 0.05
400 0.1
400 0.15
             0
                         0.08
  12
                  4.5
 END PWAT-PARM2
 PWAT-PARM3
  <PLS >
          PWATER input info: Part 3
  # - # ***PETMAX PETMIN INFEXP INFILD DEEPFR
                                             BASETP
                                                    AGWETP
    0
                       2
2
                                      0
                0
                               2
                                              0
  10
                                                         0
  11
             0
                    0
                                   2
                                          0
                                                  0
                                                         0
                    0
                            2
                                   2
                                                 0
  12
             0
                                          0
                                                         0
 END PWAT-PARM3
 PWAT-PARM4
  <PLS >
          PWATER input info: Part 4
          CEPSC UZSN NSUR INTFW IRC LZETP ***
0.2 0.5 0.35 6 0.5 0.7
  10 0.2 0.5 0.35
11 0.2 0.5 0.35
12 0.2 0.3 0.35
                                              0.7
                               6
                                6
6
                                                0.7
                                        0.5
                                        0.3
                                               0.7
 END PWAT-PARM4
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
        ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
  # - # *** CEPS SURS UZS IFWS LZS AGWS
                                                      GWVS
                                        2.5
  10
            0
                  0
                         0
                                 0
                                               1
                                                       0
                           0
                                   0
                    0
                                                 1
  11
             0
                                         2.5
                                                         0
  12
             0
                                   0
                                         2.5
                                                         0
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
  <PLS ><----- Name----> Unit-systems Printer ***
                     User t-series Engl Metr ***
                           in out
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
  <PLS > ******** Active Sections **********************
  # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
 PRINT-INFO
  <ILS > ******* Print-flags ******* PIVL PYR
  # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
 IWAT-PARM1
  <PLS > IWATER variable monthly parameter value flags ***
```

```
# - # CSNO RTOP VRS VNN RTLI ***
  END IWAT-PARM1
  IWAT-PARM2
              IWATER input info: Part 2 ***
   # - # *** LSUR SLSUR NSUR RETSC
  END IWAT-PARM2
  IWAT-PARM3
             IWATER input info: Part 3
   # - # ***PETMAX PETMIN
  END IWAT-PARM3
  IWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
    # - # *** RETS SURS
  END IWAT-STATE1
END IMPLND
SCHEMATIC
                         <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
Basin 1***

    0.73
    COPY
    501
    12

    0.73
    COPY
    501
    13

    2.81
    COPY
    501
    12

    2.81
    COPY
    501
    13

    3.21
    COPY
    501
    12

    3.21
    COPY
    501
    13

PERLND 10
PERLND 10
PERLND 11
PERLND 12
PERLND 12
*****Routing*****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
  GEN-INFO
   RCHRES Name Nexits Unit Systems Printer
                                                                            * * *
   # - #<----><--> User T-series Engl Metr LKFG in out
  END GEN-INFO
  *** Section RCHRES***
  ACTIVITY
    <PLS > ******** Active Sections **********************
    # - # HYFG ADFG CNFG HTFG SDFG GOFG OXFG NUFG PKFG PHFG ***
  END ACTIVITY
  PRINT-INFO
    <PLS > ******* Print-flags ******* PIVL PYR
    # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ********
  END PRINT-INFO
  HYDR-PARM1
    RCHRES Flags for each HYDR Section
    # - # VC Al A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG FG possible exit *** possible exit possible exit ***
  END HYDR-PARM1
```

```
HYDR-PARM2
   # - # FTABNO LEN DELTH STCOR KS DB50 ***
  <----><----><---->
  END HYDR-PARM2
    RCHRES Initial conditions for each HYDR section
    # - # *** VOL Initial value of COLIND Initial value of OUTDGT
  *** ac-ft for each possible exit for each possible exit
  END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***

      <Name>
      # <Name>
      # tem strg<-factor->strg
      <Name>
      # # <Name</td>

      WDM
      2 PREC
      ENGL
      1
      PERLND
      1 999
      EXTNL
      PREC

      WDM
      2 PREC
      ENGL
      1
      IMPLND
      1 999
      EXTNL
      PREC

      WDM
      1 EVAP
      ENGL
      1
      PERLND
      1 999
      EXTNL
      PETIN

      WDM
      1 EVAP
      ENGL
      1
      IMPLND
      1 999
      EXTNL
      PETIN

                                                                     <Name> # # ***
                                            PERLND 1 999 EXTNL PETINP
WDM
                                             IMPLND 1 999 EXTNL PETINP
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
END EXT TARGETS
MASS-LINK
PERLND PWATER SURO 0.083333 COPY
                                                    INPUT MEAN
  END MASS-LINK 12
 MASS-LINK 13
PERLND PWATER IFWO 0.083333 COPY INPUT MEAN
  END MASS-LINK 13
END MASS-LINK
```

END RUN

Mitigated UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
 START 1901 10 01 END 2059 09 30 RUN INTERP OUTPUT LEVEL 3 0
 RESUME 0 RUN 1
                                        UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
             <---->***
<-ID->
WDM
          26
             Normandy Vault.wdm
MESSU
          25
               MitNormandy Vault.MES
          27
               MitNormandy Vault.L61
              MitNormandy Vault.L62
POCNormandy Vault1.dat
          28
          30
END FILES
OPN SEQUENCE
   INGRP
                    INDELT 00:15
              10
     PERLND
               11
     PERLND
               12
     PERLND
     IMPLND
     IMPLND
     IMPLND
     IMPLND
     IMPLND
     RCHRES
     COPY
                 1
              501
     COPY
              601
     COPY
     DISPLY
   END INGRP
END OPN SEQUENCE
DISPLY
 DISPLY-INFO1
   # - #<-----Title----->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 Vault 1 MAX 1 2 30 9
 END DISPLY-INFO1
END DISPLY
COPY
  TIMESERIES
   # - # NPT NMN ***
       1
               1
   1
  501
             1
                 1
 END TIMESERIES
END COPY
GENER
 OPCODE
  # # OPCD ***
 END OPCODE
 PARM
                K ***
  #
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
   # - #
                             User t-series Engl Metr ***
                                        in out
                         1
1
1
         C, Forest, Flat
C, Forest, Mod
                                         1 1
1 1
                                                       0
                                   1
                                                  27
                                                       0
  11
                                            1 27
         C, Forest, Steep
                                        1
  12
  END GEN-INFO
  *** Section PWATER***
```

ACTIVITY													
<pls></pls>	****	****	**** A	ctive	Sect	cions	****	*****	****	****	****	****	
# - #				SED	PST			MSTL					* * *
10	0	0	1	0	0	0	0		0	_	0	0	
11 12	0	0	1 1	0	0	0	0	0	0		0	0	
END ACTI	•	U	Τ.	U	U	U	U	U	U	U	U	U	
PRINT-IN	FO.												
<pls></pls>		****	*****	** Pr	int-1	flags	****	*****	****	****	****	****	PIVL PYR
	ATMP			SED	PST			MSTL					
10	0	0	4	0	0	0	~ 0		0		0	0	
11	0	0	4	0	0	0	0	0	0	0	0	0	1 9
12	0	0	4	0	0	0	0	0	0	0	0	0	1 9
END PRIN	ITNF.C)											
PWAT-PARI					<u>-1-1 </u>			1	. E1-		+ +		
<pls> # - #</pls>					VUZ.			Value VIRC				***	
# - # 10	CSNO 0	0	0246	vcs 0	VUZ 0	0 0	0 V T F W	VIRC 0	V LE	_	nwı		
11	0	0	0	0	0	0	0	0	0	_	0		
12	0	0	0	0	0	0	0	0	0		0		
END PWAT	•	•	Ü	J	J	J	O	Ü	J	Ü	J		
PWAT-PARI	w2												
<pls></pls>		PWATI	ER inp	ut in	fo: I	Part 2	2	4	***				
# - #				LZSN		WFILT		LSUR		SLSUR	1	KVARY	AGWRC
10		0		4.5		0.08		400		0.05		0.5	0.996
11		0		4.5		0.08		400		0.1		0.5	0.996
12		0		4.5		0.08		400		0.15		0.5	0.996
END PWAT-PARI		2											
<pls></pls>			ER inp	ut in	fo: I	Part 3	3	4	***				
# - #	***PE	ETMAX	PE	TMIN	1I	IFEXP	II	NFILD	D	EEPFR	B.	ASETP	AGWETP
10		0		0		2		2		0		0	0
11		0		0		2		2		0		0	0
12		0		0		2		2		0		0	0
END PWAT		3											
PWAT-PARI		71.7 A ETT.			- D-	1							* * *
<pls> # - #</pls>		CEPSC	R inpu	UZSN	O . Pa	NSUR		INTFW		IRC		LZETP	
10	(0.2		0.5		0.35		6 1111111		0.5		0.7	
11		0.2		0.5		0.35		6		0.5		0.7	
12		0.2		0.3		0.35		6		0.3		0.7	
END PWAT	-PARM4			0.3		0.33		ŭ		0.5		0.7	
PWAT-STA	רבי1												
<pls></pls>		[nitia	al con	ditio	ns at	t star	rt of	simul	latio:	n			
		an fro	om 199	0 to	end o	of 199	92 (pa	at 1-1	L1-95) RUN	21 *	* *	
# - #	***	CEPS		SURS		UZS		IFWS		LZS		AGWS	GWVS
10		0		0		0		0		2.5		1	0
11		0		0		0		0		2.5		1	0
12 END PWAT	- פיים	0 15		0		0		0		2.5		1	0
ND PERLND	011111												
MPLND GEN-INFO													
<pls></pls>		Nar	ma	>	IIn-	i + _ axz	rt ama	Dri	intar	***			
# - #		Ivai	iie		User	t-se	eries	Engl	Metr	***			
	D0	. / -			4	in	out			***			
1	ROADS		T.		1	1	1	27	0				
2	ROADS		/ Er T 7 m		1		1	27	0				
4 8			/FLAT		1 1	_	1 1	27 27	0				
8 9	SIDEV		/FLAT /MOD		1	1	1	27 27	0				
END GEN-		יטאורטי	עטייי,			_	_	41	U				
H. [V] [] [] []													

```
*** Section IWATER***
 ACTIVITY
   <PLS > ******** Active Sections **********************
   # - # ATMP SNOW IWAT SLD IWG IQAL
           0 0 1 0
                            0 0
                        0
                                0
                            0
            0
                0
   2
                    1
                        0
                            0
               0
                  1
                                0
   4
            0
                  1
               0
                        0
   8
            0
                             0
                                 0
   9
            0
                     1
                        0
                             0
                                  0
 END ACTIVITY
 PRINT-INFO
  <ILS > ****** Print-flags ****** PIVL PYR
                                    ******
   # - # ATMP SNOW IWAT SLD IWG IQAL
                                         9
        0 0 4
                       0 0 4
   1
                        0
                  4
                               0 1
            Ω
                Ω
                             0
                                          9
   2
               0 4
0 4
                        0
                           0 0
0 0
   4
            0
                                     1
                                           9
   8
            0
                         0
                                      1
                                           9
   9
            0
                0
                    4
                         0
                             0
                                 0
                                      1
                                           9
 END PRINT-INFO
 IWAT-PARM1
   <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI
                       0 0
          0 0
                  0
   1
                        Ő
                   0
               0
   2
            0
                             0
                   0
                        0
                            0
            0
                0
   8
            0
                0
                  0
                            0
   9
            0
                0
                        0
 END IWAT-PARM1
 IWAT-PARM2
   <PLS >
             IWATER input info: Part 2
            LSUR SLSUR NSUR RETSC
                     0.01
                              0.1
                                      0.1
   1
              400
                               0.1
              400
                      0.05
                                        0.08
   2
                                       0.1
   4
              400
                      0.01
                               0.1
                     0.01
   8
              400
                                0.1
                     0.05
                              0.1
                                        0.08
   9
               400
 END IWAT-PARM2
 IWAT-PARM3
            IWATER input info: Part 3
                                           * * *
   <PLS >
   # - # ***PETMAX PETMIN
   1
               0
                         0
   2
                0
                         0
   4
                0
                         0
                         0
   8
                0
   9
                0
                         0
 END IWAT-PARM3
 IWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS
                      SURS
                0
   1
                         0
   2
                0
                         0
                         0
   4
                0
   8
                0
                         0
                         0
                0
 END IWAT-STATE1
END IMPLND
SCHEMATIC
                        <--Area-->
                                     <-Target-> MBLK <Name> # Thl#
<-Source->
                                                       * * *
                                                       * * *
<Name> #
                        <-factor->
                                     <Name> #
                                                 Tbl#
Basin 1***
PERLND 10
                             1.39
                                     RCHRES
                                             1
                                                    2
```

1.39

RCHRES 1

PERLND 10

```
0.41 RCHRES 1 2
0.41 RCHRES 1 3
0.98 RCHRES 1 2
0.98 RCHRES 1 3
0.37 RCHRES 1 5
0.48 RCHRES 1 5
1.72 RCHRES 1 5
0.06 RCHRES 1 5
0.12 RCHRES 1 5
PERLND 11
PERLND 11
PERLND 12
PERLND 12
IMPLND 2
IMPLND 4
IMPLND 8
IMPLND
Basin 2***
PERLND 10
                                        0.33 COPY 501 12
0.33 COPY 601 12
0.33 COPY 501 13
0.33 COPY 501 13
0.37 COPY 501 12
0.37 COPY 601 12
0.37 COPY 601 12
0.37 COPY 501 13
0.36 COPY 501 12
0.36 COPY 501 12
0.36 COPY 501 12
0.36 COPY 601 12
0.36 COPY 601 12
0.36 COPY 501 13
0.36 COPY 601 15
0.36 COPY 501 15
0.14 COPY 501 15
0.14 COPY 501 15
0.02 COPY 501 15
0.02 COPY 601 15
PERLND 10
PERLND 10
PERLND 10
PERLND 11
PERLND 11
PERLND 11
PERLND 11
PERLND
         12
PERLND
         12
PERLND 12
PERLND 12
IMPLND 1
IMPLND 1
IMPLND 2
IMPLND 2
*****Routing*****
                                        1.39 COPY 1 12
0.41 COPY 1 12
0.98 COPY 1 12
0.37 COPY 1 15
0.48 COPY 1 15
1.72 COPY 1 15
0.06 COPY 1 15
0.12 COPY 1 15
1.39 COPY 1 13
0.41 COPY 1 13
0.98 COPY 1 13
PERLND 10
PERLND
         11
PERLND 12
IMPLND 1
IMPLND 2
IMPLND 4
IMPLND 8
         9
IMPLND
PERLND
         10
         11
PERLND
PERLND 12
RCHRES 1
END SCHEMATIC
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
  GEN-INFO
    RCHRES Name Nexits Unit Systems Printer
                                                                                             * * *
    # - #<----> User T-series Engl Metr LKFG
                                                                                             * * *
                                                                                             * * *
                                                    in out
                                   1 1 1 1 28 0 1
    1 Vault 1
  END GEN-INFO
  *** Section RCHRES***
  ACTIVITY
    \mbox{\# - }\mbox{\# HYFG} ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** \mbox{1} \mbox{0} 0 0 0 0 0 0 0
  END ACTIVITY
  PRINT-INFO
     <PLS > ******** Print-flags ******** PIVL PYR
```

```
# - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ********
1 4 0 0 0 0 0 0 0 0 1 9
   END PRINT-INFO
  HYDR-PARM1
     RCHRES Flags for each HYDR Section
     # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG FG possible exit *** possible exit possible exit ***

1 0 1 0 0 4 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2
   END HYDR-PARM1
  HYDR-PARM2
   # - # FTABNO LEN DELTH STCOR KS DB50
                                                                                                                  * * *
   <----><----><---->
   1 1 0.05 0.0 0.0 0.5 0.0
  END HYDR-PARM2
  HYDR-INIT
     RCHRES Initial conditions for each HYDR section
      # - # *** VOL Initial value of COLIND Initial value of OUTDGT

*** ac-ft for each possible exit for each possible exit
                                  <---><---> *** <---><--->
   <---->
                                    4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
  FTABLE
    92 4
                      Area Volume Outflowl Velocity Travel Time***
     Depth
        (ft) (acres) (acre-ft) (cfs) (ft/sec) (Minutes)***
   0.000000 \quad 0.096419 \quad 0.000000 \quad 0.000000
   0.166667 \quad 0.096419 \quad 0.016070 \quad 0.013405

    0.166667
    0.096419
    0.016070
    0.013405

    0.333333
    0.096419
    0.032140
    0.018958

    0.500000
    0.096419
    0.048209
    0.023218

    0.666667
    0.096419
    0.064279
    0.026810

    0.833333
    0.096419
    0.080349
    0.029975

    1.000000
    0.096419
    0.096419
    0.032836

    1.166667
    0.096419
    0.112489
    0.035466

  1.666667 0.096419 0.160698 0.042390
  1.833333 0.096419 0.176768 0.044460
  2.000000 0.096419 0.192837 0.046436
2.166667 0.096419 0.208907 0.048963
2.333333 0.096419 0.224977 0.051337
2.500000 0.096419 0.241047 0.053462
   2.666667 0.096419 0.257117 0.055459
   2.833333 0.096419 0.273186 0.057362
   3.000000 0.096419 0.289256 0.059190
   3.166667 0.096419 0.305326 0.060954
   3.33333  0.096419  0.321396  0.062662
  3.500000 0.096419 0.337466 0.064319
3.666667 0.096419 0.353535 0.065932
3.833333 0.096419 0.369605 0.067504
4.000000 0.096419 0.385675 0.069038
4.166667 0.096419 0.401745 0.070536

      4.333333
      0.096419
      0.417815
      0.072002

      4.500000
      0.096419
      0.433884
      0.073438

   4.666667 0.096419 0.449954 0.074846
   4.833333 0.096419 0.466024 0.076226
   5.000000 0.096419 0.482094 0.077582

      5.166667
      0.096419
      0.498163
      0.078913

      5.333333
      0.096419
      0.514233
      0.080222

      5.500000
      0.096419
      0.530303
      0.081510

      5.666667
      0.096419
      0.546373
      0.082777

   5.833333 0.096419 0.562443 0.084024
   6.000000 0.096419 0.578512 0.085253
```

```
6.166667
            0.096419
                       0.594582
                                  0.086465
            0.096419
                                  0.087659
  6.333333
                       0.610652
  6.500000
            0.096419
                       0.626722
                                  0.088838
            0.096419
                       0.642792
                                  0.090000
  6.666667
            0.096419
                       0.658861
  6.833333
                                  0.091148
  7.000000
            0.096419
                       0.674931
                                  0.092281
            0.096419
  7.166667
                       0.691001
                                  0.093400
                       0.707071
            0.096419
  7.333333
                                  0.094506
  7.500000
            0.096419
                       0.723140
                                  0.095599
  7.666667
            0.096419
                       0.739210
                                  0.096680
  7.833333
            0.096419
                       0.755280
                                  0.097748
                       0.771350
  8,000000
            0.096419
                                  0.098805
            0.096419
                       0.787420
                                  0.099851
  8.166667
  8.333333
            0.096419
                       0.803489
                                  0.100886
  8.500000
            0.096419
                       0.819559
                                  0.101910
            0.096419
  8.666667
                       0.835629
                                  0.102924
  8.833333
            0.096419
                       0.851699
                                  0.103928
                                  0.104922
  9.000000
            0.096419
                       0.867769
  9.166667
            0.096419
                       0.883838
                                  0.105907
  9.333333
            0.096419
                       0.899908
                                  0.106883
  9.500000
            0.096419
                       0.915978
                                  0.107850
                       0.932048
  9.666667
            0.096419
                                  0.108808
  9.833333
            0.096419
                       0.948118
                                  0.109758
  10.00000
            0.096419
                       0.964187
                                  0.110700
  10.16667
            0.096419
                       0.980257
                                  0.191204
            0.096419
  10.33333
                       0.996327
                                  0.225089
  10.50000
            0.096419
                       1.012397
                                  0.251298
  10.66667
            0.096419
                       1.028466
                                  0.273530
  10.83333
            0.096419
                       1.044536
                                  0.293218
  11.00000
            0.096419
                       1.060606
                                  0.311097
  11.16667
            0.096419
                       1.076676
                                  0.327603
  11.33333
                       1.092746
            0.096419
                                  0.343022
  11.50000
            0.096419
                       1.108815
                                  0.357551
  11.66667
            0.096419
                       1.124885
                                  0.371333
  11.83333
            0.096419
                       1.140955
                                  0.384478
  12.00000
            0.096419
                       1.157025
                                  0.397071
  12.16667
            0.096419
                       1.173095
                                  0.409178
  12.33333
                       1.189164
            0.096419
                                  0.420853
  12.50000
            0.096419
                       1.205234
                                  0.432143
  12.66667
            0.096419
                       1.221304
                                  0.443084
  12.83333
            0.096419
                       1.237374
                                  0.453708
  13.00000
            0.096419
                       1.253444
                                  0.464043
  13.16667
            0.096419
                       1.269513
                                  0.474112
  13.33333
            0.096419
                       1.285583
                                 0.483935
            0.096419
  13.50000
                       1.301653
                                  0.493530
  13.66667
            0.096419
                       1.317723
                                  0.502913
  13.83333
            0.096419
                       1.333792
                                  0.512099
  14.00000
            0.096419
                       1.349862
                                  0.521099
                                  0.529925
  14.16667
            0.096419
                       1.365932
  14.33333
            0.096419
                       1.382002
                                  0.538588
  14.50000
            0.096419
                       1.398072
                                  0.547095
            0.096419
                       1.414141
  14.66667
                                  1.629726
  14.83333
            0.096419
                       1.430211
                                  3.446198
  15.00000
            0.096419
                       1.446281
                                  5.210862
            0.096419
  15.16667
                       1.462351
                                  6.334229
  END FTABLE 1
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member->
<Name>
         # <Name> # tem strg<-factor->strg <Name>
                                                                     <Name> # #
MDM
         2 PREC
                     ENGL
                             1
                                              PERLND
                                                       1 999 EXTNL
                                                                     PREC
                                                       1 999 EXTNL
WDM
         2 PREC
                     ENGL
                             1
                                              IMPLND
                                                                     PREC
                                                       1 999 EXTNL
         1 EVAP
                     ENGL
                             1
                                                                     PETINP
WDM
                                             PERLND
WDM
         1 EVAP
                     ENGL
                             1
                                              IMPLND
                                                       1 999 EXTNL
                                                                     PETINP
END EXT SOURCES
EXT TARGETS
```

Normandy Vault 9/8/2025 11:51:21 AM Page 31

<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***

<pre><name> # COPY 1 OUTPUT COPY 501 OUTPUT COPY 601 OUTPUT RCHRES 1 HYDR RCHRES 1 HYDR END EXT TARGETS</name></pre>	MEAN 1 1 MEAN 1 1 MEAN 1 1	48.4 48.4 48.4	WDM 701 FL WDM 801 FL WDM 901 FL WDM 1000 FL	OW E	NGL REPL NGL REPL NGL REPL NGL REPL
MASS-LINK <volume> <-Grp> <name> MASS-LINK PERLND PWATER END MASS-LINK</name></volume>	<name> # # 2 SURO</name>	<-factor->	<target> <name> RCHRES</name></target>		<-Member->*** <name> # #*** IVOL</name>
MASS-LINK PERLND PWATER END MASS-LINK		0.083333	RCHRES	INFLOW	IVOL
MASS-LINK IMPLND IWATER END MASS-LINK		0.083333	RCHRES	INFLOW	IVOL
MASS-LINK PERLND PWATER END MASS-LINK	SURO	0.083333	COPY	INPUT	MEAN
MASS-LINK PERLND PWATER END MASS-LINK	13 IFWO 13	0.083333	COPY	INPUT	MEAN
MASS-LINK IMPLND IWATER END MASS-LINK	15 SURO 15	0.083333	COPY	INPUT	MEAN
MASS-LINK RCHRES ROFLOW END MASS-LINK	16 16		СОРУ	INPUT	MEAN

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2025; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

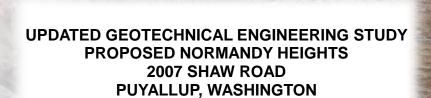
Tab 6.0

6.0 CONSTRUCTION STORMWATER POLLUTION PREVENTION PLAN

The required SWPPP will be prepared in advance of construction plan approval. As the total disturbed area is greater than one acre, a NPDES permit is required for this project.

Tab 7.0

7.0 SPECIAL REPORTS AND STUDIES

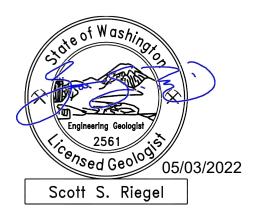

The following special reports and studies are included:

- 7.1 "Geotechnical Engineering Study Proposed Normandy Heights" prepared by Earth Solutions NW LLC, dated May 03, 2022
- 7.2 "Wetland and Fish and Wildlife Habitat Assessment Report" prepared by Soundview Consultants LLC, dated February 24, 2022
- 7.3 "Normandy Retention Tree Assessment" Prepared by Sound Urban Forestry LLC, dated May 16, 2022
- 7.4 "Groundwater Monitoring Program Results" prepared by Earth Solutions NW LLC, dated August 9, 2022

7.1 Geotechnical Engineering Study prepared by Earth Solutions Northwest, LLC May 16, 2022.

Geotechnical Engineering Construction Observation/Testing Environmental Services

ES-0593


15365 N.E. 90th Street, Suite 100 Redmond, WA 98052 (425) 449-4704 Fax (425) 449-4711 www.earthsolutionsnw.com

PREPARED FOR

RM HOMES, LLC

November 9, 2006 Updated May 3, 2022

Chase G. Halsen, L.G. Senior Project Geologist

Scott S. Riegel, L.G., L.E.G. Associate Principal Geologist

UPDATED GEOTECHNICAL ENGINEERING STUDY
PROPOSED NORMANDY HEIGHTS
2007 SHAW ROAD
PUYALLUP, WASHINGTON

ES-0593

Earth Solutions NW, LLC 15365 Northeast 90th Street, Suite 100 Redmond, Washington 98052 Phone: 425-449-4704 | Fax: 425-449-4711 www.earthsolutionsnw.com

Important Information about This

Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will not be adequate to develop geotechnical design recommendations for the project.

Do <u>not</u> rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it;
 e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnical-engineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.*

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- · the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- · the composition of the design team; or
- · project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept*

responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- · confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction-phase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note*

conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures*. If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are not building-envelope or mold specialists.

Telephone: 301/565-2733

e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent or intentional (fraudulent) misrepresentation.

Earth Solutions NW LLC

Geotechnical Engineering, Construction
Observation/Testing and Environmental Services

November 9, 2006 Updated May 3, 2022 ES-0593

RM Homes, LLC 2913 – 5th Avenue Northeast, Suite 201 Puyallup, Washington 98372

Attention: Mr. James Kerby

Greetings, Mr. Kerby:

Earth Solutions NW, LLC (ESNW) is pleased to present this updated geotechnical engineering report in support of the proposed residential development. We understand the project is pursuing construction of a residential plat and associated infrastructure improvements. This updated report provides additional subsurface exploration and an updated site layout plan. From a geotechnical standpoint, development as currently proposed is feasible. Based on the conditions encountered during our subsurface exploration, the site is underlain medium dense to dense sand and silt deposits with variable fines contents.

In our opinion, the proposed residential structures can be constructed on conventional continuous and spread foundations bearing on competent native soil, recompacted native soil, or new structural fill placed directly on competent native soils. Native soils considered capable for support of the proposed residences are anticipated to be encountered beginning at depths of about two to four feet below existing grades. Where loose or otherwise unsuitable soil conditions are encountered at foundation subgrades, additional compaction efforts or overexcavation and restoration with structural fill will likely be necessary.

We understand the site is will pursue conventional detention designs as means of stormwater management. From a geotechnical standpoint, the use of infiltration on this site is not recommended given the variable soil conditions and existing slope features across the site.

We appreciate the opportunity to be of service to you on this project. If you have any questions regarding the content of this geotechnical engineering study, please call.

Sincerely,

EARTH SOLUTIONS NW. LLC

Chase G. Halsen, L.G. Senior Project Geologist

Table of Contents

ES-0593

	<u>PAGE</u>
INTRODUCTION	1
<u>General</u>	1
Project Description	2
1 TOJCOL BOSOLIPHOLI	_
SITE CONDITIONS	2
Surface	2
Subsurface	2
Topsoil and Fill	2 2 3 3 3 3
Native Soil	3
Geologic Setting	3
Groundwater	3
Critical Areas Review	4
DISCUSSION AND RECOMMENDATIONS	4
General	4
Site Preparation and Earthwork	4
Temporary Erosion Control	4
Excavations and Slopes	5
In-situ and Imported Soil	5
Structural Fill	6
Slope Fill	6
Subgrade Preparation	6
Wet Season Grading	7
Foundations	7
Seismic Design	8
Slab-on-Grade Floors	9
Retaining Walls	9
Drainage	10
Preliminary Stormwater Management	
Considerations	10
Preliminary Pavement Sections	11
Utility Support and Trench Backfill	11
LIMITATIONS	12
<u>LIMITATIONS</u> Additional Services	12
Auditional Jervices	12

Table of Contents

Cont'd

ES-0593

GRAPHICS

Plate 1 Vicinity Map

Plate 2 Subsurface Exploration Plan

Plate 3 Slope Fill Detail

Plate 4 Retaining Wall Drainage Detail

Plate 5 Footing Drain Detail

APPENDICES

Appendix A Subsurface Exploration

Boring and Test Pit Logs

Appendix B Laboratory Test Results

UPDATED GEOTECHNICAL ENGINEERING STUDY PROPOSED NORMANDY HEIGHTS 2007 SHAW ROAD PUYALLUP, WASHINGTON

ES-0593

INTRODUCTION

<u>General</u>

This geotechnical engineering study was updated for the proposed residential short plat to be constructed at 2007 Shaw Road East, in Puyallup, Washington. The purpose of this study was to provide geotechnical recommendations for the proposed development and included the following geotechnical services:

- Test pits to characterize site soil and groundwater conditions.
- Laboratory testing of representative soil samples collected at the test pit locations.
- Engineering analyses.
- Preparation of this geotechnical engineering study.

The following documents and resources were reviewed as part of our report preparation:

- Concept Site Plan II, undated.
- Puyallup Municipal Code, Chapter 21.06.
- PublicGIS application, maintained by Pierce County, Washington.
- Hazard Map GIS application, maintained by the City of Puyallup, Washington.
- Geologic Information Portal, maintained by Washington State Department of Natural Resources.
- Geologic Map of the Tacoma Quadrangle, prepared by J. Eric Schuster et al., November 2015.
- Surficial Geologic Map and Section of the Lake Tapps Quadrangle (Tapps), Washington, Crandell, 1963.
- Online Web Soil Survey (WSS) resource, maintained by the Natural Resources Conservation Service under the United States Department of Agriculture (USDA).

Project Description

We understand the project is pursuing construction of a residential plat consisting of 20 home building sites and associated infrastructure improvements. At the time of report submission, specific grading plans and building load plans were not available for review. Based on our experience with similar developments, the proposed residential structures will likely be two to three stories each and constructed using relatively lightly loaded wood framing supported on conventional foundations. Perimeter footing loads will likely be about 2 to 3 kips per lineal foot. Slab-on-grade loading is anticipated to be approximately 150 pounds per square foot (psf). We anticipate a combination of grade modifications (cuts or fills) of about 5 to 10 feet will likely be required to establish building pad and roadway elevations. Deeper excavations will likely be necessary to install utilities and construct the stormwater pond.

If the above design assumptions either change or are incorrect, ESNW should be contacted to review the recommendations provided in this report. ESNW should review final designs to confirm that appropriate geotechnical recommendations have been incorporated into the plans.

SITE CONDITIONS

Surface

The subject site is located at the northeast corner of the intersection between Shaw Road East and Crystal Ridge Drive, in Puyallup, Washington. The approximate site location is depicted on Plate 1 (Vicinity Map). The site area consists of Pierce County parcel number 042035-4039 totaling about 8.20 acres. Topography descends to the northwest with about 90 feet of elevation change occurring within the confines of the property. In general, site topography descends from the roadways and includes a vague bench area before descending to the east toward a natural drainage ravine and stream. The site is developed with a single-family residence and associated improvements within the northwestern site area and a gravel pad in the southwestern site area. Remaining portions of the site are surfaced with forested growth and/or brush and brambles.

Subsurface

An ESNW representative observed, logged, and sampled the excavation of eight test pits on October 23, 2006 and three borings near the proposed stormwater facility on February 8, 2022. Both explorations were completed with machinery and operators retained by our firm. The borings were installed to monitor groundwater conditions near the proposed stormwater facility under a separate project phase (ES-593.03). The approximate locations of the explorations are depicted on Plate 2 (Subsurface Exploration Plan). Representative soil samples collected at the test pit and boring locations were analyzed in general accordance with Unified Soil Classification System (USCS) and USDA methods and procedures.

The following sections provide a generalized characterization of the encountered subsurface conditions. Please refer to the test pit logs provided in Appendix A for a more detailed description of subsurface conditions.

Topsoil and Fill

Topsoil was encountered in the upper approximate 7 to 12 inches of existing grades at the test pit locations. The topsoil was characterized by a dark brown color, trace organic matter, and root inclusions. Fill was not encountered at the test pit locations but may be present in proximity existing site structures.

Native Soil

Underlying topsoil, native soils were characterized primarily as poorly graded sand with variable gravel and fines contents and poorly graded gravel with variable fines contents (USCS: SP, SP-SM, GP, and GP-GM) throughout out the majority of the site. At the boring locations completed near the proposed stormwater facility, silty sand (USCS: SM) and silt dominated soils (USCS: ML) were encountered. Native soils were encountered in a loose to medium dense and moist condition, extending to the terminus of each test pit location, and conditions ranged from loose to dense at the boring locations, which were advanced to a maximum depth of 21.5 feet below the ground surface (bgs).

Geologic Setting

The referenced geologic map identifies ice-contact deposits (Qgo_i) as underlying the site and surrounding areas. The outwash deposits described in the referenced geologic map are characterized as sand, gravel, silt and clay in a loose and well sorted condition. The referenced Tapps geologic map resource further refines this geologic setting as Lacustrine sand (Qil) and describes the Lacustrine sand as a somewhat chaotic or random assemblage of lacustrine sand and silt with abundant large boulders that do not correlate well with present topography. The referenced WSS resource identifies Indianola loamy sand (Map Unit Symbol: 18C) as underlying the site and surrounding areas. This soil series is associated with terrace, kames, and esker landforms and formed in sandy glacial outwash. Based on our field exploration, encountered native soils correlate with local geologic mapping designations of ice-contact deposits.

Groundwater

Groundwater was not encountered at the test pit locations during the October 2006 exploration. Groundwater seepage rates and elevations fluctuate depending on many factors, including precipitation duration and intensity, the time of year, and soil conditions. In general, groundwater elevations and flow rates are higher during the winter, spring, and early summer months.

To assist with stormwater management designs, targeted groundwater monitoring was performed from February 2022 through the end of April 2022. The monitoring was focused in the proposed stormwater tract and targeted to the proposed design elevation of the facility. Groundwater was not observed at any of the well locations over the course of the monitoring period. While there is a seasonal stream located at the base of the adjacent natural ravine slope, it does not appear that to be fed by a local groundwater regime associated with the site.

Critical Areas Review

Based on review of readily available topographic data, most of the site contains slopes with gradients less than 40 percent. However, isolated and discontinuous slopes of 40 percent or greater may be present. Further topographic evaluation and delineation of slopes is currently underway. Once the final topographic data is made available to ESNW, further discussion and evaluations of potential critical areas and mitigation recommendations will be provided.

DISCUSSION AND RECOMMENDATIONS

General

Based on the results of our investigation, construction of the proposed residential plat is feasible from a geotechnical standpoint. The primary geotechnical considerations for the proposal are in reference to structural fill placement and compaction, foundation design, and stormwater management.

Site Preparation and Earthwork

Initial site preparation activities will consist of installing temporary erosion control measures, establishing grading limits, and site demolition and clearing activities. Subsequent earthwork activities will involve mass excavation, foundation subgrade preparation activities, and related infrastructure installations.

Temporary Erosion Control

The following temporary erosion and sediment control (TESC) Best Management Practices (BMPs) should be considered:

- Silt fencing should be placed around the site perimeter, where appropriate.
- Temporary construction entrances and drive lanes should be constructed with at least six inches of quarry spalls to minimize off-site soil tracking and provide a stable access entrance surface. A woven geotextile fabric may be placed underneath the quarry spalls to provide greater stability, if needed.
- When not in use, soil stockpiles should be covered or otherwise protected. Soil stockpiles should never be placed near the top of a slope.
- Temporary measures for controlling surface water runoff, such as interceptor trenches, sumps, or interceptor swales, should be installed prior to beginning earthwork activities.
- Dry soils disturbed during construction should be wetted to minimize dust.

Additional TESC BMPs, as specified by the project design team and indicated on the plans, should be incorporated into construction activities. TESC measures must be actively monitored and modified during construction as site conditions require, as approved by the site erosion control Lead to ensure proper performance is maintained.

Excavations and Slopes

Based on the soil conditions observed at the test locations, the following allowable temporary slope inclinations, as a function of horizontal to vertical (H:V) inclination, may be used. The applicable Federal Occupation Safety and Health Administration (OSHA) and Washington Industrial Safety and Health Act (WISHA) soil classifications are also provided:

• Loose to medium dense soil 1.5H:1V (Type C)

Areas exposing groundwater
 1.5H:1V (Type C)

Dense native soil
 1H:1V (Type B)

Steeper temporary slope inclinations within undisturbed, very dense native soil may be feasible based on the soil and groundwater conditions exposed within the excavations. If pursued, ESNW can evaluate the feasibility of utilizing steeper temporary slopes on a case-by-case basis at the time of construction. In any case, an ESNW representative should observe temporary slopes to confirm inclinations are suitable for the exposed soil conditions and to provide additional excavation and slope stability recommendations, as necessary. If the recommended temporary slope inclinations cannot be achieved, temporary shoring may be necessary to support excavations. Permanent slopes should be graded to 2H:1V (or flatter) and planted with vegetation to enhance stability and minimize erosion potential. Permanent slopes should be observed by ESNW prior to vegetating and landscaping.

In-situ and Imported Soil

Based on the conditions observed during our subsurface exploration, site soils will exhibit a high sensitivity to moisture and are not suitable for use as structural fill unless the moisture content is at or slightly above optimum (determined using modified Proctor ASTM D-1557) prior to placement and compaction. Successful use of on-site soil as structural fill will largely be dictated by the moisture content at the time of placement and compaction. Depending on the time of year construction occurs, remedial measures (such as soil aeration) may be necessary as part of site grading and earthwork activities. If the on-site soil cannot be successfully compacted, the use of an imported soil may be necessary.

In our opinion, a contingency should be provided in the project budget for export of soil that cannot be successfully compacted as structural fill, particularly if grading activities take place during periods of extended rainfall activity. In general, soils with fines contents greater than 5 percent typically degrade rapidly when exposed to periods of rainfall.

Imported structural fill soil should consist of a well-graded, granular soil that can achieve a suitable working moisture content. During wet weather conditions, imported soil intended for use as structural fill should consist of a well-graded, granular soil with a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction).

Structural Fill

Structural fill is defined as compacted soil placed in slab-on-grade, roadway, permanent slope, retaining wall, and utility trench backfill areas. The following recommendations are provided for soils intended for use as structural fill:

Moisture content
 At or slightly above optimum

Relative compaction (minimum)
 95 percent (Modified Proctor)

Loose lift thickness (maximum)
 12 inches

The on-site soil may not be suitable for use as structural fill unless a suitable moisture content is achieved at the time of placement and compaction. If the on-site soil cannot achieve the above specifications, use of an imported structural fill material will likely be necessary. With respect to underground utility installations and backfill, local jurisdictions will likely dictate soil type(s) and compaction requirements.

Slope Fill

Structural fill within unregulated sloping areas on this site should be placed on a level bench as depicted on Plate 3 (Slope Fill Detail). Benches must be "keyed" into the slope, and subsequently filled and compacted with suitable structural fill before continuing to the next bench. Sloping finish grades should be "overbuilt" using a bench-style fill and cut to the design gradient to ensure a compacted slope face is maintained. ESNW should review the final grading plans to confirm the recommendations in this report have been incorporated. ESNW should observe structural fill placement to confirm subgrade conditions and provide additional drainage recommendations, as necessary.

Subgrade Preparation

Foundation and slab subgrade surfaces should consist of competent, undisturbed native soil or structural fill placed and compacted directly on a competent native soil subgrade. ESNW should observe subgrade areas prior to placing formwork. Supplementary recommendations for subgrade improvement may be provided at the time of construction; such recommendations would likely include further mechanical compaction effort or overexcavation and replacement with suitable structural fill. It is imperative that all foundation elements associated within previous site structures be removed and any resulting voids be filled in accordance with the *Structural Fill* section of this report.

Wet Season Grading

Earthwork activities that occur during wet weather conditions may require additional measures to protect structural subgrades and soils intended for use as structural fill. Site-specific recommendations can be provided at the time of construction and may include leaving cut areas several inches above design elevations, covering working surfaces with crushed rock, protecting structural fill soils from adverse moisture conditions, and additional TESC recommendations. ESNW can also assist in obtaining a wet season grading permit or extension, where appropriate, if required by the presiding jurisdiction.

Foundations

Based on the conditions encountered during our fieldwork, in our opinion, the proposed residences can be constructed on conventional continuous and spread foundations bearing on competent native soil, recompacted native soil, or new structural fill placed directly on competent native soils. Native soils considered capable for support of the proposed residences are anticipated to be first encountered at depths of about two to four feet bgs. Where loose or otherwise unsuitable soil conditions are encountered at foundation subgrades, additional compaction efforts or overexcavation and restoration with structural fill will likely be necessary.

Provided the foundations will be supported as recommended, the following parameters may be used for foundation design:

 Allowable soil bearing capacity 2,500 p
--

Passive earth pressure*
 300 pcf (equivalent fluid)

• Coefficient of friction 0.40

A one-third increase in the allowable soil bearing capacity may be assumed for short-term wind and seismic loading conditions. The above passive pressure and friction values include a factor-of-safety of 1.5. With structural loading as expected, total settlement in the range of one inch and differential settlement of about one-half inch is anticipated. Most settlement should occur during construction when dead loads are applied.

^{*} Assumes sides of the foundation will be backfilled with compacted structural fill.

Seismic Design

The 2018 International Building Code (2018 IBC) recognizes the most recent edition of the Minimum Design Loads for Buildings and Other Structures manual (ASCE 7-16) for seismic design, specifically with respect to earthquake loads. Based on the soil conditions encountered at the test pit locations, the parameters and values provided below are recommended for seismic design per the 2018 IBC.

Parameter	Value
Site Class	D*
Mapped short period spectral response acceleration, S _S (<i>g</i>)	1.249
Mapped 1-second period spectral response acceleration, $S_1(g)$	0.430
Short period site coefficient, Fa	1.001
Long period site coefficient, F _v	1.870 [†]
Adjusted short period spectral response acceleration, $S_{MS}\left(g\right)$	1.249
Adjusted 1-second period spectral response acceleration, $S_{M1}\left(g\right)$	0.804 [†]
Design short period spectral response acceleration, $S_{DS}\left(g\right)$	0.833
Design 1-second period spectral response acceleration, $S_{D1}\left(g\right)$	0.539 [†]

^{*} Assumes dense native soil conditions, encountered to a maximum depth of 21.5 feet bgs during the February 2022 field exploration, remain at least medium dense to at least 100 feet bgs.

As indicated in the table footnote, several of the seismic design values provided above are dependent on the assumption that site-specific ground motion analysis (per Section 11.4.8 of ASCE 7-16) will not be required for the subject project. ESNW recommends the validity of this assumption be confirmed at the earliest available opportunity during the planning and early design stages of the project. Further discussion between the project structural engineer, the project owner, and ESNW may be prudent to determine the possible impacts to the structural design due to increased earthquake load requirements under the 2018 IBC. ESNW can provide additional consulting services to aid with design efforts, including supplementary geotechnical and geophysical investigation, upon request.

Liquefaction is a phenomenon where saturated or loose soil suddenly loses internal strength and behaves as a fluid. This behavior is in response to increased pore water pressures resulting from an earthquake or another intense ground shaking. In our opinion, site susceptibility to liquefaction may be considered low. The depth of the regional groundwater table and the relatively medium dense characteristics of the native soil were the primary bases for this opinion.

[†] Values assume F_V may be determined using linear interpolation per Table 11.4-2 in ASCE 7-16.

Slab-on-Grade Floors

Slab-on-grade floors for the proposed structures should be supported on competent, well-compacted, firm, and unyielding subgrades. Unstable or yielding subgrade areas should be recompacted or overexcavated and replaced with suitable structural fill prior to slab construction.

A capillary break consisting of at least four inches of free-draining crushed rock or gravel should be placed below each slab. The free-draining material should have a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction). In areas where slab moisture is undesirable, installation of a vapor barrier below the slab should be considered. The vapor barrier should be a material specifically designed for use as a vapor barrier and should be installed in accordance with the specifications of the manufacturer.

Retaining Walls

Retaining walls must be designed to resist earth pressures and applicable surcharge loads. The following parameters may be used for design:

•	Active earth	pressure (unrestrained con	ndition) 35	pcf (equivalent fluid))
---	--------------	------------	------------------	-------------	-------	-------------------	---

At-rest earth pressure (restrained condition)
 55 pcf

• Traffic surcharge* (passenger vehicles) 70 psf (rectangular distribution)

Passive earth pressure
 300 pcf (equivalent fluid)

• Allowable soil bearing capacity 2,500 psf

• Coefficient of friction 0.40

• Seismic surcharge 8H psf**

Additional surcharge loading from foundations, sloped backfill, or other loading should be included in the retaining wall design, as appropriate. Drainage should be provided behind retaining walls such that hydrostatic pressures do not develop. If drainage is not provided, hydrostatic pressures should be included in the wall design, as appropriate. ESNW should review retaining wall designs to verify that appropriate earth pressure values have been incorporated into the design and to provide additional recommendations, as necessary.

^{*} Where applicable.

^{**} Where H equals the retained height (in feet).

Retaining walls should be backfilled with free-draining material that extends along the height of the wall and a distance of at least 12 inches behind the wall. The upper one foot of the wall backfill may consist of a less permeable (surface seal) soil, if desired. In lieu of free-draining backfill, use of an approved sheet drain material may also be considered, based on the observed subsurface and groundwater conditions. ESNW should review conditions at the time of construction and provide recommendations for sheet drain material, as appropriate. A perforated drainpipe should be placed along the base of the wall and connected to an appropriate discharge location. A typical retaining wall drainage detail is illustrated on Plate 4.

Drainage

Surface grades must be designed to direct water away from the buildings to the extent practical. The grade adjacent to the buildings should be sloped away at a gradient of at least 2 percent for a horizontal distance of at least 10 feet (or as building and property setbacks allow). In no instance should water be allowed to collect, pond, or flow uncontrolled above and over sloping areas.

Groundwater seepage zones may be encountered during construction, depending on the time of year grading operations take place. Temporary measures to control surface water runoff and groundwater seepage during construction would likely involve interceptor trenches and sumps. ESNW should be consulted during preliminary grading and excavation activities to identify areas of seepage and to provide recommendations to reduce the potential for seepage-related instability. In our opinion, foundation drains should be installed along building perimeter footings. A typical foundation drain detail is provided on Plate 5.

Preliminary Stormwater Management Considerations

We understand the project will utilize detention (stormwater pond or stormwater vault) within the north central site area. Preliminary designs suggest a bottom of facility elevation at about 290 feet. As such, minimal to no excavations would be required within the easternmost area of the facility footprint while excavations up to about 20 feet may be required within the central and western half of the facility footprint. From a geotechnical standpoint, construction of a pond or vault in the area is feasible. ESNW should have the opportunity to review grading plans and the site topographic survey once they become available to provide additional recommendations relating to stormwater facility designs.

Given the exposed in-situ conditions, the project must be prepared to install a liner if a stormwater pond will be constructed. The pond liner should consist of a placed and compacted till or clay liner, or geomembrane, in accordance with the governing jurisdictional requirements. ESNW can assist in further evaluating appropriate liner material and construction methods, as requested. Pond berm walls must be placed and compacted to the specifications provided in the *Structural Fill* section of this report. It is possible that onsite soils will not meet the gradation and permeability requirements to use as berm fill. As such, a contingency should be added to the project budge in the case imported material is required for such use. Given the current positioning of the proposed stormwater facility in relation to existing site slope, global slope stability analysis should be considered once grading plans and the site topographic survey has been completed.

Preliminary Pavement Sections

The performance of site pavements is largely related to the condition of the underlying subgrade. To ensure adequate pavement performance, the subgrade should be in a firm and unyielding condition when subjected to proofrolling with a loaded dump truck. Structural fill in pavement areas should be compacted to the specifications previously detailed in this report. Soft, wet, or otherwise unsuitable subgrade areas may still exist after base grading activities. Areas containing unsuitable or yielding subgrade conditions will require remedial measures, such as overexcavation and replacement with crushed rock or structural fill, prior to pavement. If roadway areas will be designed with an inverted crown, additional drainage measures may be recommended at the time of construction to help maintain subgrade stability and pavement performance.

For lightly loaded pavement areas subjected primarily to passenger vehicles, the following preliminary pavement sections may be considered:

- A minimum of two inches of hot-mix asphalt (HMA) placed over four inches of crushed rock base (CRB).
- A minimum of two inches of HMA placed over three inches of asphalt-treated base (ATB).

Heavier traffic areas generally require thicker pavement sections depending on site usage, pavement life expectancy, and site traffic. For preliminary design purposes, the following pavement sections for occasional truck traffic and access roadways areas may be considered:

- Three inches of HMA placed over six inches of CRB.
- Three inches of HMA placed over four-and-one-half inches of ATB.

The HMA, ATB, and CRB materials should conform to the specifications of the governing jurisdiction. All soil base material should be compacted to at least 95 percent of the maximum dry density. Final pavement design recommendations can be provided once final traffic loading has been determined. Governing jurisdictional standards may supersede the recommendations provided in this report.

Utility Support and Trench Backfill

In our opinion, native soils will generally be competent for support of utilities. In general, native soils may be suitable for use as structural backfill throughout utility trench excavations, provided the soils are at (or slightly above) the optimum moisture content at the time of placement and compaction. Structural trench backfill should not be placed dry of the optimum moisture content. Each section of the site utility lines must be adequately supported in appropriate bedding material. Utility trench backfill should be placed and compacted to the specifications of structural fill (as previously detailed in this report) or to the applicable specifications of the presiding jurisdiction.

LIMITATIONS

This study has been prepared for the exclusive use of RM Homes, LLC and its representatives. No warranty, express or implied, is made. The recommendations and conclusions provided in this geotechnical engineering study are professional opinions consistent with the level of care and skill that is typical of other members in the profession currently practicing under similar conditions in this area. Variations in the soil and groundwater conditions observed at the test pit locations may exist and may not become evident until construction. ESNW should reevaluate the conclusions provided in this geotechnical engineering study if variations are encountered.

Additional Services

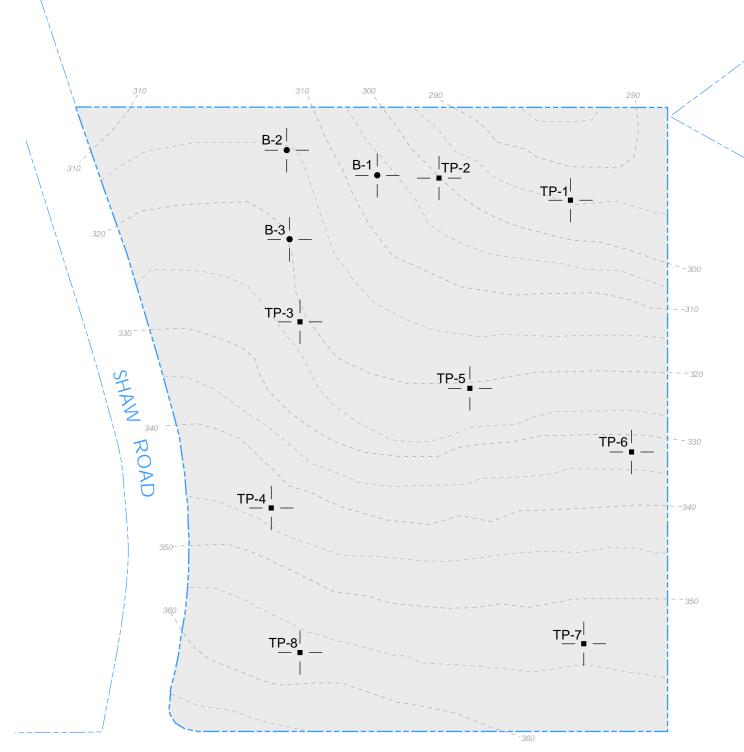
ESNW should have an opportunity to review the final design with respect to the geotechnical recommendations provided in this report. ESNW should also be retained to provide testing and consultation services during construction.

Reference: Pierce County, Washington OpenStreetMap.org

NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

Vicinity Map Normandy Heights Puyallup, Washington

Drwn. MRS	Date 05/02/2022	Proj. No.	0593
Checked CGH	Date May 2022	Plate	1


Checked By CGH

Date

05/02/2022

Proj. No. 0593

Plate 2

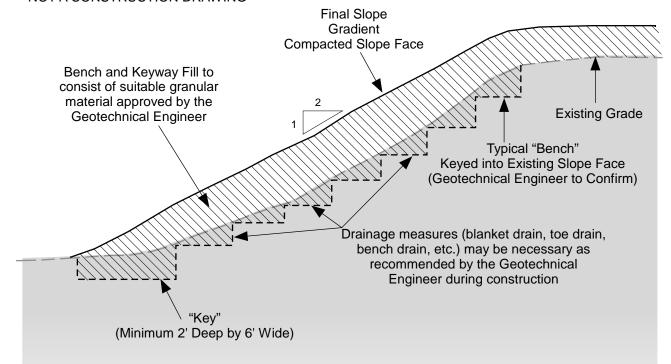
CRYSTAL RIDGE DRIVE S.E.

LEGEND

B-1 | Approximate Location of ESNW Boring, Proj. No. ES-0593.03, Feb. 2022

Approximate Location of ESNW Test Pit, Proj. No. ES-0593, Oct. 2006

Subject Site

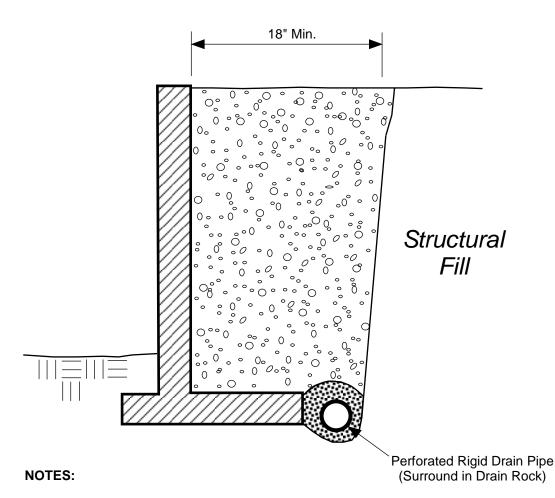


NOTE: The graphics shown on this plate are not intended for design purposes or precise scale measurements, but only to illustrate the approximate test locations relative to the approximate locations of existing and / or proposed site features. The information illustrated is largely based on data provided by the client at the time of our study. ESNW cannot be responsible for subsequent design changes or interpretation of the data by others.

NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

SCHEMATIC ONLY - NOT TO SCALE NOT A CONSTRUCTION DRAWING

NOTES:


- Slope should be stripped of topsoil and unsuitable materials prior to excavating Keyway or benches.
- Benches will typically be equal to a bulldozer blade width of approximately 8 feet but shall be at least 4 feet.
- Final slope gradient should be 2H: 1V.
- Final slope face should be densified by over-building with compacted fill and trimming back to shape or by compaction with a bulldozer or vibratory drum roller.
- Planting or hydroseeding slope face with a rapid growth deep-rooted vegetative mat will reduce erosion potential of slope area.
- Use of pegged-in-place jute matting or geotechnical fabric will help maintain the seed and mulch in place until the root system has an opportunity to germinate.

Structural fill should be placed in thin loose lifts not exceeding 12 inches in thickness. Each lift should be compacted to no less than the degree specified in the "Site Preparation and Earthwork" section of this report. No additional lift should be placed until compaction is achieved.

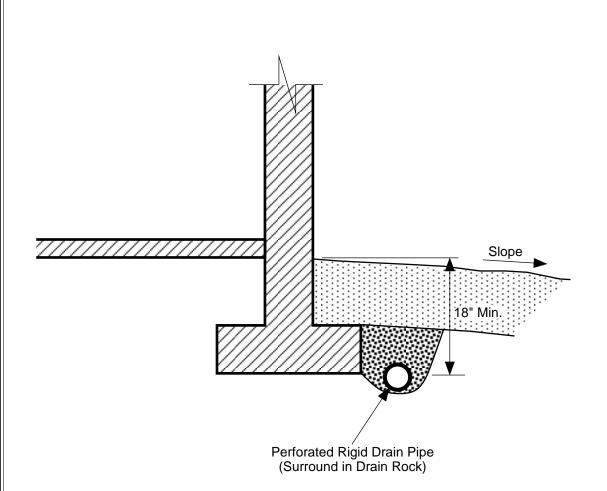
Slope Fill Detail Normandy Heights Puyallup, Washington

Drwn. MRS	Date 05/02/2022	Proj. No.	0593
Checked SSR	Date May 2022	Plate	3

- Free-draining Backfill should consist of soil having less than 5 percent fines.
 Percent passing No. 4 sieve should be 25 to 75 percent.
- Sheet Drain may be feasible in lieu of Free-draining Backfill, per ESNW recommendations.
- Drain Pipe should consist of perforated, rigid PVC Pipe surrounded with 1-inch Drain Rock.

LEGEND:

Free-draining Structural Backfill


1-inch Drain Rock

SCHEMATIC ONLY - NOT TO SCALE NOT A CONSTRUCTION DRAWING

Retaining Wall Drainage Detail Normandy Heights Puyallup, Washington

Drwn. MRS	Date 05/02/2022	Proj. No.	0593
Checked SSR	Date May 2022	Plate	4

NOTES:

- Do NOT tie roof downspouts to Footing Drain.
- Surface Seal to consist of 12" of less permeable, suitable soil. Slope away from building.

LEGEND:

Surface Seal: native soil or other low-permeability material.

1-inch Drain Rock

SCHEMATIC ONLY - NOT TO SCALE NOT A CONSTRUCTION DRAWING

Footing Drain Detail Normandy Heights Puyallup, Washington

Drwn. MRS	Date 05/02/2022	Proj. No.	0593
Checked SSR	Date May 2022	Plate	5

Appendix A

Subsurface Exploration Boring and Test Pit Logs

ES-0593

An ESNW representative observed, logged, and sampled eight test pits on October 23, 2006 and three borings on February 8, 2022. The explorations were completed in accessible site areas using exploratory equipment and operators retained by our firm. The test pits were excavated to a maximum exploration depth of about 17 feet bgs and the borings were advanced to a maximum depth of about 21.5 feet bgs. The approximate locations of the test pits and borings are depicted on Plate 2 (Subsurface Exploration Plan). The test pit and boring logs are provided in this Appendix.

The final logs represent the interpretations of the field logs and the results of laboratory analyses. The stratification lines on the logs represent the approximate boundaries between soil types. In actuality, the transitions may be more gradual.

Earth Solutions NW LLC SOIL CLASSIFICATION CHART

M	AJOR DIVISI	ONS	SYMI GRAPH	BOLS	TYPICAL DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HI	GHLY ORGANIC S	SOILS	77 77 77 77 77 7 77 77 77 77 77	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

DUAL SYMBOLS are used to indicate borderline soil classifications.

Earth Solutions NWLLC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

BORING NUMBER B-1

PAGE 1 OF 2

1	PROJECT NUMBER _ES-0593.03											
DATE STARTED 2/8/22 COMPLETED 2/8/22 DRILLING CONTRACTOR Boretec1, Inc.												
DRILLING METHOD HSA										LONGITUBL122.23172		
LOGGED BY CGH CHECKED BY SSR										i		
NOTE	S_	Surfa	ce Co	nditions: dri	ll-pad							
	ŕ	г П	% /	(a (ii)			0					
DEPTH (ft)	Ĺ	SAMPLE IYPE NUMBER	RECOVERY	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC		MATERIAL	DESCRIPTION		
0.0	0	NAN Z	REC	gos.			2					
								Brown silty SAN	ND, loose, moist (Drill	Pad Fill)		
						SM						
2.5												
Ĺ .	M											
<u> </u>]	SS	67	1-3-5 (8)	MC = 30.5%							
	$/\!\!/$							Brown SILT, loo	ose, moist			
5.0	L,											
	M							-trace iron oxide	_			
	<u>ا</u> ا∖ٰ	SS	67	2-4-5 (9)	MC = 30.7% Fines = 85.5%			[USDA Classific	cation: LOAM]			
	\square											
	1					ML						
7.5								basamaa madi	um danaa wat			
	\mathbb{N}			5-6-7				-becomes medi -~3" sand lens	um dense, wet			
	$ \lambda $	SS	100	(13)	MC = 30.0%			-~3 Sand lens				
	μ											
	-											
10.0								0 Gray poorly gra	ded SAND with silt, m	edium dense, moist		
	╢	SS	67	6-8-11	MC = 12.0%							
	╢╢			(19)								
	/ N					-						
 12.5	1					SP-						
12.5	1					SP-						
 	1											
	1											
	1											
 15.0	1							0				

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

BORING NUMBER B-1

PAGE 2 OF 2

PROJECT NUMBER _ES-0593.03							PROJECT NAME Normandy Heights
DATE STARTED 2/8/22 COMPLETED 2/8/22					D _2/8	3/22	GROUND ELEVATION
DRILL	ING CON	ITRAC	TOR Bore	etec1, Inc.			LATITUDE 47.17139 LONGITUDE -122.25172
DRILL	ING MET	HOD	HSA				GROUND WATER LEVEL:
LOGG	LOGGED BY CGH CHECKED BY SSR				3Y _S	SR	$oxed{oxed}$ at time of drilling
NOTES Surface Conditions: drill-pad							
0.5 DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
	ss	67	8-8-12 (20)	MC = 21.8% Fines = 51.7%	ML		Gray sandy SILT, medium dense, moist [USDA Classification: LOAM]
ı							Boring terminated at 16.5 feet below existing grade. No groundwater

Boring terminated at 16.5 feet below existing grade. No groundwater encountered during drilling. 2" PVC standpipe installed to bottom of boring. Lower 10.0 feet slotted. Well ID: B95510. Boring backfilled with sand/bentonite.

Earth Solutions NWLLC

GENERAL BH / TP / WELL - 0593-3.GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG.GDT - 5/3/22

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

BORING NUMBER B-2

PAGE 1 OF 2

PROJECT NUMBER ES-0593.03								PROJECT NAME Normandy Heights					
								GROUND ELEVATION					
								LATITUDE 47.17148					
								GROUND WATER LEVEL:					
LOGGED BY CGH CHECKED BY SSR									3				
								-					
O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC		MATERIAL DESCRIPTION					
							Bro	own SILT, loose, moist					
2.5													
 	ss	100	1-3-4 (7)	MC = 28.5%			-be	ecomes moist to wet					
7.5					ML								
10.0	ss	100	1-3-4 (7)	MC = 33.4% Fines = 90.6%			-zc	ry minor perched groundwater see nes of heavy iron oxide staining SDA Classification: slightly gravelly					
12.5													

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

BORING NUMBER B-2

PAGE 2 OF 2

PROJ	ECT NUM	IBER	ES-0593.0	03			PROJECT NAME Normandy Heights		
DATE	STARTE	D _2/8	8/22	COMPLETE	ED _2/	8/22	GROUND ELEVATION		
DRILL	ING CON	ITRAC	CTOR Bore	etec1, Inc.			LATITUDE 47.17148 LONGITUDE -122.25214		
DRILL	ING MET	HOD	HSA				GROUND WATER LEVEL:		
LOGG	ED BY	CGH		CHECKED	BY S	SR	$ar{oldsymbol{ol}oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}}$		
NOTE	S Surfa	ce Co	nditions: cle	eared brush					
SAMPLE TYPE NUMBER NUMBER RECOVERY % COUNTS (N VALUE) SAMPLE TYPE NUMBER SAMPLE TYPE NUMBER SAMPLE TYPE NUMBER					U.S.C.S. GRAPHIC LOG		MATERIAL DESCRIPTION		
	SS	100	3-5-7 (12)	MC = 29.5%			Brown SILT, loose, moist (continued) -becomes medium dense, wet -minor perched groundwater seepage		
17.5					ML		20.0		
	SS	67	8-12-15 (27)	MC = 3.7% Fines = 5.4%	SP- SM		Gray poorly graded SAND, medium dense, moist [USDA Classification: slightly gravelly SAND] 21.5		
							Boring terminated at 21.5 feet below existing grade. Groundwater seepage		

Boring terminated at 21.5 feet below existing grade. Groundwater seepage encountered at 10.0 and 15.0 feet during drilling. 2" PVC standpipe installed to bottom of boring. Lower 10.0 feet slotted. Well ID: BM5511. Boring backfilled with sand/bentonite.

GENERAL BH / TP / WELL - 0593-3.GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG.GDT - 5/3/22

Earth Solutions NWLLC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

BORING NUMBER B-3 PAGE 1 OF 2

			_ES-0593.0 3/22				PROJECT NAME Normandy Heights GROUND ELEVATION
							LATITUDE 47.17121 LONGITUDE -122.25216
DRILL	ING MET	THOD	HSA				GROUND WATER LEVEL:
	· -			CHECKED	BY S	SR	$ar{igspace}$ At time of drilling $ar{igspace}$
NOTE	S Surfa	ice Co	nditions: bru	ush			
O DEPTH (ff)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC	MATERIAL DESCRIPTION
2.5 2.5 5.0	ss	100	4-5-6 (11)	MC = 5.0%	SM		Brown silty SAND, loose, moist Gray poorly graded SAND, medium dense, moist
	ss	100	4-6-8 (14)	MC = 11.1% Fines = 15.4%	_		Gray silty SAND, medium dense, moist [USDA Classification: loamy fine SAND]
					SM		

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

BORING NUMBER B-3

PAGE 2 OF 2

PROJECT NUM	MBER .	ES-0593.0)3			PROJECT NAME Normandy Heights		
DATE STARTE	D _2/8	3/22	COMPLETE	ED _2/8	8/22	GROUND ELEVATION		
DRILLING CON	NTRAC	TOR Bore	etec1, Inc.			LATITUDE 47.17121 LONGITUDE -122.25216		
DRILLING MET	THOD .	HSA				GROUND WATER LEVEL:		
LOGGED BY	CGH		CHECKED	BY _S	SR	$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$		
NOTES Surfa	ce Cor	nditions: bru	ısh					
SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		
ss	67	6-9-10 (19)	MC = 12.0%			Gray poorly graded SAND with silt and gravel, medium dense, moist		
17.5				SP- SM				
ss	67	18-30-11 (41)	MC = 4.1%		21.5	-becomes dense		
						Boring terminated at 21.5 feet below existing grade. No groundwater		

Boring terminated at 21.5 feet below existing grade. No groundwater encountered during drilling. 2" PVC standpipe installed to bottom of boring. Lower 10.0 feet slotted. Well ID: BM5512. Boring backfilled with sand/bentonite.

GENERAL BH / TP / WELL - 0593-3.GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG.GDT - 5/3/22

Earth 153 Solutions Re NWLLC Tel

GENERAL BH / TP / WELL - 0593.GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG.GDT - 5/3/22

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-1

PAGE 1 OF 2

PROJI	ECT NUM	MBER <u>0593</u>			PROJECT NAME Normandy Heights	
					ETED _10/23/06	
					ng LATITUDE LONGI	rude
					GROUND WATER LEVEL:	
					ED BY WLR $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
NOTE	S Depth	of Topsoil & Sod	12": fo	rest du	<u>f</u>	
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
0.0			+		Light brown to brown poorly graded GRAVEL with sand, loose to m	edium dense, moist
 2.5		MC = 2.5%				
_		MC = 2.0%		K OF		
5.0			GP- GM			
7.5						286.0
-				01111	Brown poorly graded SAND with gravel;, medium dense, moist	200.0
10.0		MC = 3.9% Fines = 1.5%	SP	0	4.0 Brown poorly graded GRAVEL with sand, medium dense, moist	281.0
 15.0			GP	000	, , , , , , , , , , , , , , , , , , , ,	

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-1

PAGE 2 OF 2

PROJ	ECT NUN	MBER 0593				PROJECT NAME Normandy Heights				
DATE	STARTE	D 10/23/06	(COMPL	ETED 10/23/06	GROUND ELEVATION 295 ft	ELEVATION 295 ft			
EXCA	VATION	CONTRACTOR Ai	kins E	xcavat	ing	LATITUDE	LONGITUDE			
EXCA	VATION	METHOD				GROUND WATER LEVEL:				
LOGG	ED BY	WLR	(CHECK	KED BY WLR	abla at time of excavation				
NOTE	S Depth	n of Topsoil & Sod 1	12": fo	rest du	ff					
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION				
		MC = 2.6% MC = 2.9%	GP		Brown poorly grade	ed GRAVEL with sand, medium dense, r	noist <i>(continued)</i>	278.0		
		\ Fines = 1.3%			Test pit terminated excavation.	l at 17.0 feet below existing grade. No gr	oundwater encountered during			

GENERAL BH / TP / WELL - 0593.GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG.GDT - 5/3/22

Earth Solutions NWuc

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-2 PAGE 1 OF 1

		MBER 0593		COMP: FTF			PROJECT NAME Normandy Heights GROUND ELEVATION 300 ft			
						LATITUDE	_ LONGITUDE			
						GROUND WATER LEVEL:				
		WLR			Y <u>WLR</u>	\(\frac{1}{\sum}\) AT TIME OF EXCAVATION	JN			
NOTE	S Deptr	of Topsoil & Sod	8": for	est duff		<u> </u>				
O DEPTH O (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTIO	DN			
					Light brown sil	ty SAND, medium dense, moist				
		MC = 6.9%	SM							
├ -				3.0		L LOANE WE WANTED		297.0		
 5.0		MC = 4.8%			BIOWIT POORTY (graded SAND with silt, medium dense, mo	isi			
 7.5			SP- SM							
		MC = 4.8% Fines = 6.1%								
		MC = 2.8%		11.0				289.0		
 12.5		Fines = 2.2%	GP		Gray poorly gr	aded GRAVEL with sand, medium dense,	moist			
				13.0	Gray silty SAN	ID, medium dense, moist		287.0		
 		MO 2.22	SM							
15.0		MC = 9.3% Fines = 34.8%		15.0				285.0		

TEST PIT NUMBER TP-3 PAGE 1 OF 1

TRACTOR Aikin HOD R Topsoil & Sod 7"	ns Excavating CHECKED E	Y WLR	GROUND WATER LEVEL	L: EXCAVATION ESCRIPTION	LONGITUDE	
TESTS MC = 2.7%	_ CHECKED E	Y WLR	GROUND WATER LEVEL	L: EXCAVATION ESCRIPTION		
TESTS MC = 2.7%	_ CHECKED E	Y WLR		ESCRIPTION		
TESTS MC = 2.7%					oist	
MC = 2.7%	U.S.C.S. GRAPHIC LOG	Light brown to			oist	
MC = 2.7%	U.S.C.S. GRAPHIC LOG	Light brown to			oist	
MC = 2.7%	U.S.C. GRAPI LOG	Light brown to			oist	
MC = 2.7%	J 72	Light brown to	o gray poorly graded SAND, med	dium dense, m	oist	
		Light brown to	o gray poorly graded SAND, med	dium dense, m	oist	
		Light brown to	o gray poorly graded SAND, med	alum dense, m	oist	
	SP					
MC = 4.8%						
1.070						
MC = 6.3%	10.0	Test pit termin	nated at 10.0 feet below existing	g grade. No gro		310
<u> </u>	IC = 6.3%	IC = 6.3%		Test pit terminated at 10.0 feet below existing	Test pit terminated at 10.0 feet below existing grade. No gro	Test pit terminated at 10.0 feet below existing grade. No groundwater encountered during

TEST PIT NUMBER TP-4 PAGE 1 OF 1

DATE S	STARTE /ATION	D 10/23/06	(Nikins E	COMPLETE Excavating	ED 10/23/06	PROJECT NAME Normandy Heights GROUND ELEVATION 345 ft LATITUDE				
		WLR				GROUND WATER LEVEL: $\ igsim \ \Delta$ at time of excavation	N			
1		n of Topsoil & Sod								
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	ı			
					Gray poorly g	graded SAND with gravel, medium dense, mo	ist			
		MC = 2.4%								
2.5										
		MC = 2.9% Fines = 1.6%								
5.0			SP							
7.5		MC = 2.5%								
10.0		MC = 2.70/		10.0			3	335.0		
N		MC = 3.7%				nated at 10.0 feet below existing grade. No g				
2007.20 - 0393.670 - 678771105 IEMITATE WITH LAT MAN LONG, 50 J. 2007.20 J. 2										

TEST PIT NUMBER TP-5 PAGE 1 OF 1

EXCAN EXCAN	STARTE VATION VATION ED BY	CONTRACTOR _A	ikins E	Excavating CHECKED BY	10/23/06 Y _WLR	GROUND ELEVATION LATITUDE GROUND WATER LEV	320 ft EL:	LONGITUDE	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL	DESCRIPTION		
 2.5		MC = 4.6%	SP		Light brown poo	orly graded SAND with silt, le	oose to medium	n dense, moist	
5.0		MC = 4.7%		6.0	Gray poorly gra	ded GRAVEL with sand, me	edium dense. m	oist	314.0
7.5 - 7.5 -		MC = 3.0%	GP				ŕ		
HICS TEMPLATE V		MC = 6.0%		0 10.0	Test pit termina excavation.	ted at 10.0 feet below existi	ng grade. No gr	roundwater encountered during	310.0
GENERAL BH / TP / WELL - 0593. GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG. GDT - 5/3/22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									

Earth Solutions NWuc

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-6 PAGE 1 OF 1

PROJI	OJECT NUMBER 0593						PROJECT NAME Normandy Heights			
							GROUND ELEVATION 335 ft			
							LATITUDE LONGITUDE			
							GROUND WATER LEVEL:			
		WLR					$oxed{oxed}$ At time of excavation $oxed{oxed}$			
NOTE	S Depth	n of Topsoil & Sod	12"							
o DEPTH o (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION			
0.0				000		Gray poorly g	raded GRAVEL with sand, medium dense, moist			
 		MC = 1.7%			2.0	Brown poorly	graded SAND with gravel, medium dense, moist	333.0		
2.5 		MC = 3.1% Fines = 0.8%					, , , , , , , , , , , , , , , , , , , ,			
5.0			SP							
WITH LAT AND LONG.GDT - 5/3/22		MC = 2.4%								
10.0		MC = 2.3%			10.0	Test nit termi	: nated at 10.0 feet below existing grade. No groundwater encountered during	325.0		
GENERAL BH / TP / WELL - 0593.GPJ - GRAPHICS TEMPLATE WITH LAT AND 1						excavation.				

TEST PIT NUMBER TP-7

PAGE 1 OF 1

DATE EXCA	STARTE VATION (CONTRACTOR A	(ikins E	Excavating	10/23/06	PROJECT NAME Normandy Heights GROUND ELEVATION 350 ft LATITUDE LONGITUDE GROUND WATER LEVEL: Y AT TIME OF EXCAVATION	
		of Topsoil & Sod				-	
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
 2.5		MC = 2.0%	GP		Light brown to gr	ay poorly graded GRAVEL with sand, loose to medium dense, moist	
5.0		MC = 3.6% Fines = 1.0%	SP	5.0	Gray poorly grad	ed SAND, medium dense, moist	347.
		MC = 2.9%	GP	0000	Gray poorly grad	ed GRAVEL with sand, medium dense, moist	343.
7.5			SP		Gray poorly grad	ed SAND with gravel, medium dense, moist	010.
5 2 2		MC = 6.2%		8.0	Toot nit terminet	ed at 8.0 feet below existing grade. No groundwater encountered during	342.
GENERAL BH / LP / WELL - 0593/GPJ - GRAPHICS TEMPLATE WITH LATAND I					excavation.		

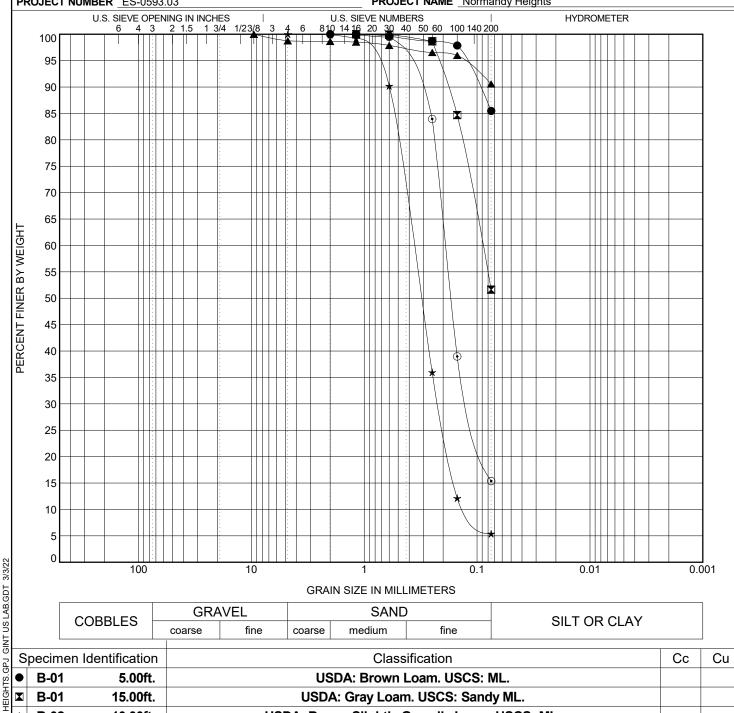
Earth Solutions NWuc

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-8 PAGE 1 OF 1

	STARTE	MBER <u>0593</u>		COMP	I FTFD	10/23/06	PROJECT NAME Normand GROUND ELEVATION 358		
								LONGITUDE	
							GROUND WATER LEVEL:	LONGITUDE	
		WLR						CAVATION	
						·			
O DEPTH O (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DES	CRIPTION	
						Light brown to	gray poorly graded SAND with sil	, medium dense, moist	
2.5		MC = 8.1%	SP- SM						
 		MC = 6.1%			4.0	Gray poorly gra	aded SAND, medium dense, mois	t	351.
5.0									
 		MC = 5.1% Fines = 1.6%	SP						
10.0									
- -									
		MC = 4.7%			12.0	Test pit termin	ated at 12.0 feet below existing g	ade. No groundwater encountered during	343.

Appendix B Laboratory Test Results ES-0593


Earth Solutions NW_{LLC}

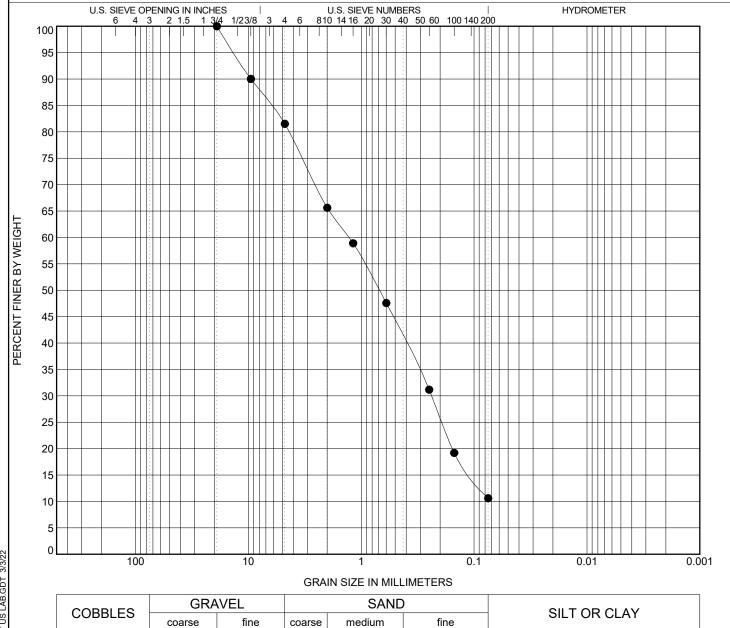
Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

PROJECT NUMBER ES-0593.03

CORRIES	GRA	VEL		SAND)	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

5 -													
	Specime	n Identification			C	Classification	1				Сс	Cu	
<u>0</u>	B-01	5.00ft.		USDA: Brown Loam. USCS: ML.									
	■ B-01	15.00ft.		USDA: Gray Loam. USCS: Sandy ML.									
ES-0593.03 NORIMANDY HEIGHTS.GPJ	B-02	10.00ft.		USDA: Brown Slightly Gravelly Loam. USCS: ML.									
7	★ B-02	20.00ft.		USDA: Gray Slightly Gravelly Sand. USCS: SP-SM.								3.06	
	B-03	10.00ft.		USDA: Gray Loamy Fine Sand. USCS: SM.									
93.03	Specime	en Identification	D100	D60	D30	D10	LL	PL	PI	%Silt	%(Clay	
3	■ B-01	5.0ft.	2							:	85.5		
5 0	■ B-01	15.0ft.	1.18	0.089							51.7		
	■ B-02	10.0ft.	9.5							90.6			
ZIO N	★ B-02	20.0ft.	4.75	0.368	0.22	0.12					5.4		
GRAIN SIZE USDA	B-03	10.0ft.	2	0.19	0.115								


Earth Solutions NWuc

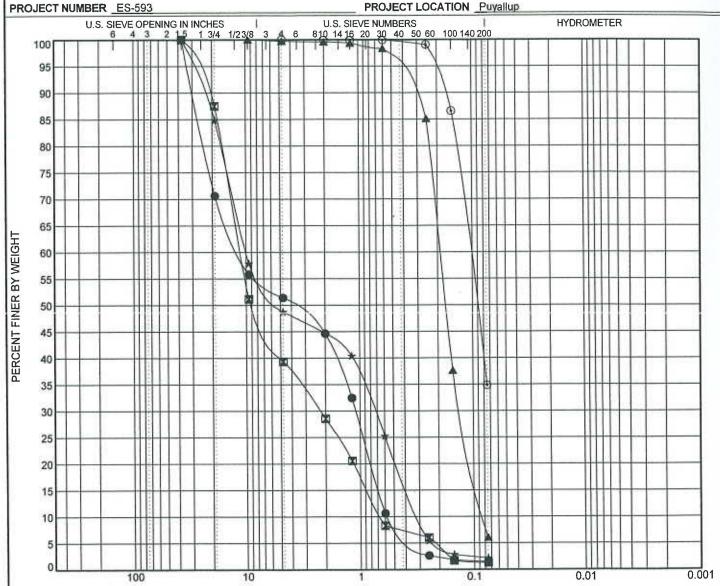
Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

	Specimen Id	entification		Classification								Cu
	B-03	20.00ft.	USDA	A: Gray Grav	elly Loamy	Coarse Sand	I. USCS:	SP-SM	with Gra	vel.	0.62	18.02
-												
5	Specimen Id	entification	D100	D60	D30	D10	LL	PL	PI	%Silt	%	 Clay
	B-03	20.0ft.	19	1.286	0.238					ı	10.6	
<u> </u>												

ES-0593.03 NORMANDY HEIGHTS.GPJ GINT US L/

Earth Solutions NW LLC


Earth Solutions NW, LLC 2881 152nd Avenue N.E. Redmond, WA 98052 Telephone: (425) 284-3300 Fax: (425) 284-2855

GRAIN SIZE DISTRIBUTION

CLIENT Trinity Land Development

PROJECT NAME Normandy Heights

PROJECT LOCATION Puyallup

ODAIN	0175		1.15.45	renc
GRAIN	SIZE	IN MII	IIME	LERS

CORRIEC	GRA	VEL	0	SAND		SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT ON CLAT

S	pecimen lo	lentification	Classification			LL	PL	PI	Cc	Cu		
•	TP-01	10.0ft.	USDA:	USDA: Brown very gravelly coarse sand, USCS: SP							0.18	20.63
•	TP-01	17.0ft.	JSDA: Light brown extremely gravelly coarse sand, USCS: GP					SP			0.68	17.06
	TP-02	8.0ft.	US	USDA: Light brown fine sand, USCS: SP-SM							1.03	2.33
*	TP-02	11.0ft.	USDA	: Gray very	gravelly coa	rse sand, L	ISCS: GP				0.18	32.81
0	TP-02	15.0ft,	Ţ	JSDA: Gray	fine sandy l	oam, USCS	: SM					
S	pecimen lo	dentification	D100	D60	D30	D10	%Gravel	%Sand	1	%Silt	%	Clay
•	TP-01	10.0ft.	37.5	11.554	1.093	0.56	48.6	49.9			1.5	
X	TP-01	17.0ft.	37.5	11.246	2.248	0.659	60.7	38.1			1.3	
A	TP-02	8.0ft.	9.5	0.191	0.127	0.082	0.3	93.7			6.1	
*	TP-02	11.0ft.	37.5	10.02	0.741	0.305	51.2	46.6			2.2	
0	TP-02	15.0ft.	4.75	0.105			0.0	65.2			34.8	

0

TP-08

8.0ft.

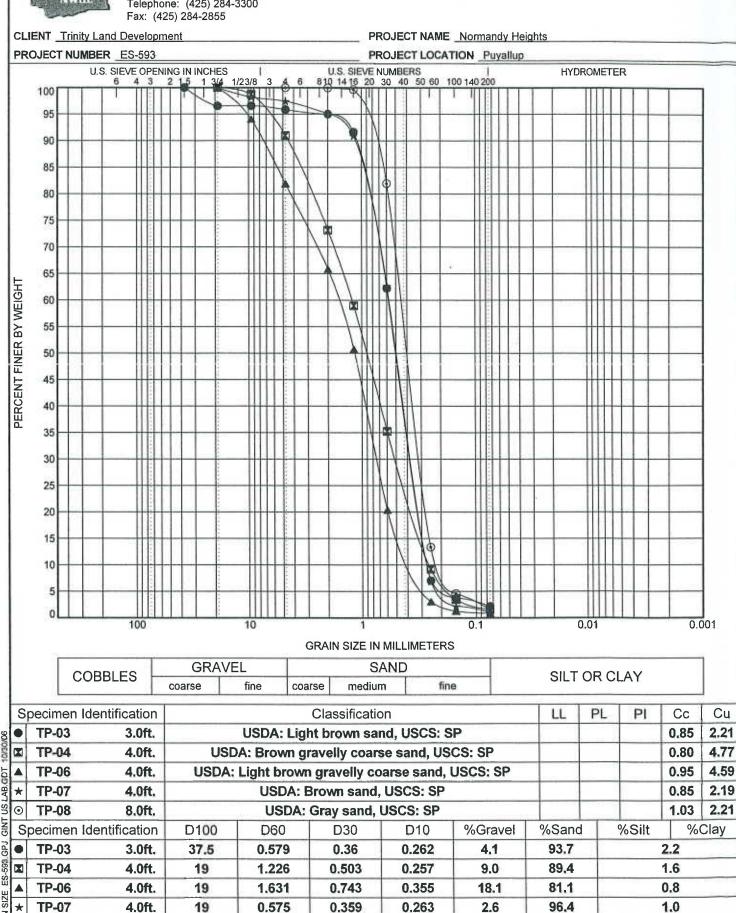
4.75

0.453

0.309

0.205

0.0


98.4

1.6

Earth Solutions NW, LLC 2881 152nd Avenue N.E. Telephone: (425) 284-3300

GRAIN SIZE DISTRIBUTION

Redmond, WA 98052

Report Distribution

ES-0593

EMAIL ONLY

RM Homes, LLC 2913 – 5th Avenue Northeast, Suite 201 Puyallup, Washington 98372

Attention: Mr. James Kerby 7.2 Wetland and Fish and Wildlife Assessment prepared by Soundview Consultants er

WETLAND AND FISH AND WILDLIFE HABITAT ASSESSMENT REPORT

DEER CREEK

REVISED MARCH 2025

FEBRUARY 2024

WETLAND AND FISH AND WILDLIFE HABITAT ASSESSMENT REPORT

DEER CREEK

REVISED MARCH 6, 2025

FEBRUARY 21, 2024

PROJECT LOCATION

2007 SHAW ROAD PUYALLUP, WASHINGTON 98372

PREPARED FOR

RM Homes

2913 5th Avenue Northeast, Suite 201 Puyallup, Washington 98092

PREPARED BY

SOUNDVIEW CONSULTANTS LLC 2907 HARBORVIEW DRIVE GIG HARBOR, WASHINGTON 98335 (253) 514-8952

Executive Summary

Soundview Consultants LLC (SVC) has been supporting RM Homes (Applicant) with a wetland and fish and wildlife habitat assessment for proposed residential plat development of an approximately 28.2-acre property located at 2007 Shaw Road in the City of Puyallup, Washington. The subject property consists of one parcel situated in the Southeast ½ of Section 35, Township 20 North, Range 04 East, W.M. (Pierce County Tax Parcel Number 0420354039).

SVC investigated the subject property for the presence of potentially regulated wetlands, waterbodies, or other fish and wildlife habitat in November of 2021, January of 2022 and February of 2025. Using current methodology, the site investigations identified one potentially regulated wetland (Wetland A) and one stream (Stream Z, locally known as Upper Deer Creek) on the northeastern portion of the subject property. Additionally, one potential offsite wetland (Wetland 1) was identified offsite to the west of the subject property across Shaw Road East. Wetland A is classified as a Category III wetland with a low habitat score of 5 points, which is subject to a standard 80-foot buffer based on the proposed high intensity land use per Puyallup Municipal Code (PMC) 21.06.930(2)(d). Offsite Wetland 1 is classified as a Category IV wetland with a low habitat score of 4 points, which is subject to a standard 50-foot buffer that does not project onto the subject property. Stream Z is considered a perennial, non-fish bearing (Type III) stream and is subject to a 50-foot buffer per PMC 21.06.1050(2)(c). An additional 10-foot building setback is required from the outer edge of all critical area buffers per PMC 21.06.840(1). No other potentially regulated wetlands, waterbodies, or other fish and wildlife habitat were observed on or within 300 feet of the subject property.

The summary table below identifies the potential regulatory status of the identified critical areas by local, state, and federal agencies.

Feature Name	Size (Onsite)	Category/ Type ¹	Regulated Under PMC 21.06	Regulated Under RCW 90.48	Regulated Under Section 404 of the Clean Water Act
Wetland A	~2,560 SF	III	Yes	Yes	Likely
Wetland 1	N/A - offsite	IV	Yes	Yes	Not Likely
Stream Z	~200 LF	Type III	Yes	Yes	Likely

Notes:

^{1.} Current Washington State Department of Ecology (WSDOE) wetland rating system (Hruby, 2014) per PMC 21.06.910(3) and DNR Water Typing system per PMC 21.06.1010(3)(a).

Table of Contents

1	
1 /	2
2.1 Project Location	2
1	
1	
1 0	
	(
	(
1	
1	
\ 11	11
	12
	12
	12
Chapter 8. References	10
Figure 1. Vicinity Map	
Tal	bles
Table 1. Precipitation Summary ¹	7
Table 2. Wetland Summary Table	
Table 3. Wetland A Summary	
Table 4. Stream Z Summary	
Table 4. Stream 2. Summary	11
Appe	ndices
Appendix A — Methods and Tools	
Appendix B — Background Information	
Appendix C — Existing Conditions Exhibit	
Appendix D — Site Photographs	
Appendix E — Data Forms	
Appendix F — Wetland Rating Forms	
Appendix G — Wetland Rating Maps	
Appendix H — Qualifications	

Chapter 1. Introduction

Soundview Consultants LLC (SVC) has been supporting RM Homes (Applicant) with a wetland and fish and wildlife habitat assessment for proposed residential development of an approximately 28.2-acre property located at 2007 Shaw Road in the City of Puyallup, Washington. The subject property consists of one parcel situated in the Southeast ½ of Section 35, Township 20 North, Range 04 East, W.M. (Pierce County Tax Parcel Number 0420354039).

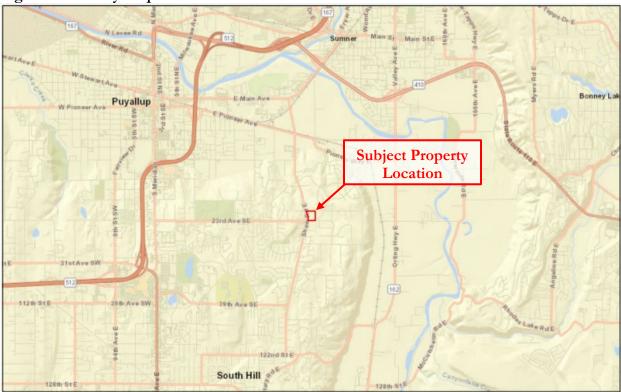
The purpose of this assessment is to identify the presence of potentially regulated wetlands, waterbodies, or other fish and wildlife habitat located on or near the subject property.

This report provides conclusions and recommendations regarding:

- Site description and area of assessment;
- Background research and identification of potentially-regulated critical areas within the vicinity of the proposed project;
- Identification and assessment of potentially-regulated wetlands and other aquatic features;
- Identification and assessment of potentially-regulated fish and wildlife habitat;
- Existing conditions site map detailing identified critical areas, standard buffers, and setbacks; and

1

• Supplemental information necessary for local regulatory review.


Chapter 2. Proposed Project Location

2.1 Project Location

The subject property consists of an approximately 28.2-acre site located at 2007 Shaw Road in the City of Puyallup, Washington. The subject property consists of one parcel situated in the Southeast 1/4 of Section 35, Township 20 North, Range 04 East, W.M. (Pierce County Tax Parcel Number 0420354039).

To access the subject site from Interstate-5 South in the Tacoma area, take exit 127 for Washington-512 East toward Portland and turn left onto Washington-512 East (signs for Puyallup). After 8.5 miles, take the Washington-161 South Exit toward Eatonville and continue onto Washington-161 South/31st Avenue Southwest South for 0.1 mile. Use the left two lanes to turn left onto South Meridian and after 0.7 mile turn right onto 23rd Avenue Southeast. After 1.9 miles, turn left onto Shaw Road East, where the subject property will be located on the right.

Chapter 3. Methods

SVC investigated wetlands, waterbodies, and other potentially-regulated fish and wildlife habitat on and within 300 feet of the subject property in November of 2021 and January of 2022. All determinations were made using observable vegetation, hydrology, and soils in conjunction with data from the U.S. Geological Survey (USGS) topographic map, the Natural Resource Conservation Service (NRCS) Soil Survey, City of Puyallup and Pierce County Geographic Information Systems (GIS) data, U.S. Fish and Wildlife (USFWS) National Wetland Inventory (NWI), Washington Department of Fish and Wildlife (WDFW) Priority Habitats and Species (PHS) and SalmonScape mapping tools, Washington Department of Natural Resources (DNR) Water Typing Map, and various orthophotographic resources. Appendix A contains further details for the methods and tools used to prepare this report.

Wetlands, waterbodies, and select fish and wildlife habitat and species are regulated features per Puyallup Municipal Code (PMC) Title 21.06— Critical Areas, and subject to restricted uses/activities under the same title. Wetland boundaries were determined using the routine approach outlined in the U.S. Army Corps of Engineers' Wetlands Delineation Manual (Environmental Laboratory, 1987) and modified according to the guidelines established in the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region, Version 2.0 (USACE, 2010) and Field Indicators of Hydric Soils in the United States (NRCS, 2018). Qualified wetland scientists marked the boundary of the wetland onsite with orange surveyor's flagging labeled alpha-numerically and tied to 3-foot lath or vegetation at formal sampling locations to mark the points where detailed data was collected (DP-1 to DP-4). Additional tests pits were excavated at regular intervals inside and outside of the wetland boundary to further confirm the delineation. Offsite critical areas were not flagged but rather estimated based on visual observations, aerial imagery, and topography, and features are labeled numerically beginning with 1. Please refer to Appendix D for site photographs.

Wetlands were classified using both the hydrogeomorphic (Brinson, 1993) and Cowardin (Cowardin, 1979) classification systems. Following classification and assessment, wetlands were rated and categorized using the *Washington State Wetlands Rating System for Western Washington—Washington Department of Ecology, 2014, Publication No. 04-06-029* (Hruby, 2014) and guidelines established in PMC 21.06.910(3).

The ordinary high water (OHW) mark determination were made using the WSDOE's method detailed in *Determining the Ordinary High Water Mark for Shoreline Management Act Compliance in Washington State* (Anderson et al, 2016) and the definitions established in the Shoreline Management Act under the Revised Code of Washington (RCW) 90.58.030(2)(b) and Washington Administrative Code (WAC) 173-22-030(11). Streams were classified using the Washington Department of Natural Resources Water Typing System as outlined in WAC 222-16-030 per PMC 21.06.1010(3)(a).

OHW was originally marked at centerline. On February 11, 2025, a qualified SVC scientist returned to the site to flag the OHWM along either bank of Stream Z. Flags Z-1b through Z-10b mark the right bank, and flags Z-1a through Z10a mark the left bank. Please refer to Appendix D for site photographs.

3

The fish and wildlife habitat assessment was conducted during the same site visits by qualified fish and wildlife biologists. The experienced biologists made visual observations using stationary and walking survey methods for both aquatic and upland habitats noting any special habitat features or signs of fish and wildlife activity.

Chapter 4. Existing Conditions

4.1 Landscape Setting

The subject property is located in a residential setting within the City of Puyallup's urban growth area (Figure 2). The subject property is currently developed with a single-family residence and associated infrastructure in the northwest portion of the subject property and a gravel parking area on the southwest corner; the remainder of the site is otherwise undeveloped forest with an unmaintained field located in the central portion of the subject property. The subject property abuts undeveloped forest to the north and east, Shaw Road East to the west, and Crystal Ridge Drive Southeast to the south. Topography onsite slopes moderately downward from the southwest to the to the northeast, with elevations ranging from approximately 280 feet above mean sea level (amsl) to approximately 360 asml. A Pierce County contours map is provided in Appendix B1. The subject property is located within Water Resource Inventory Area (WRIA) 10 – Puyallup-White.

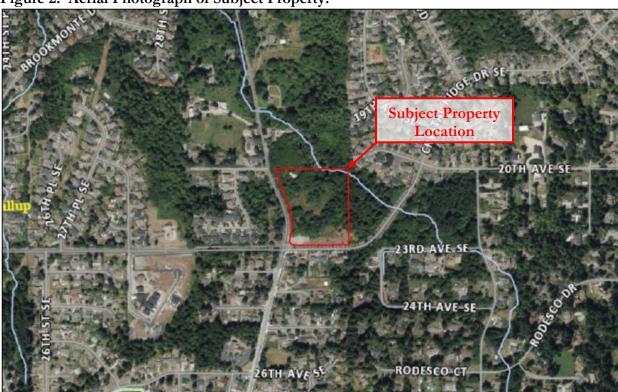


Figure 2. Aerial Photograph of Subject Property.

4.2 Soils

The NRCS Soil Survey of Pierce County, Washington, identifies two soil series present on the subject property: Indianola loamy sand, 5 to 15 percent slopes and Kitsap silt loam, 8 to 15 percent slopes. A soil survey map is provided in Appendix B2.

Indianola loamy sand, 5 to 15 percent slopes (18C)

According to the survey, Indianola loamy sand, 6 to 15 percent slopes, is a somewhat excessively drained soil formed in sandy glacial outwash on broad uplands. In a typical profile, the surface layer is dark brown loamy sand to a depth of 7 inches. The underlying material to a depth of 60 inches is dark yellowish brown, brown, or olive brown sand. Some areas of this soil series are known to rest on unstable lake sediments, and be adjacent to areas of a soil that is deep, loose, and gravelly. Roots extend to a depth of more than 60 inches. Indianola loamy sand, 6 to 15 percent slopes, is listed as non-hydric, but as much as 2 percent of the mapped soil unit may contain hydric inclusions of Norma soils associated with depressions (NRCS, n.d).

Kitsap silt loam, 8 to 15 percent slopes (20C)

According to the survey, Kitsap silt loam, 8 to 15 percent slopes, is moderately well drained soil derived from glaciolacustrine deposits on remnant terraces along Puget Sound and major drainageways. In a typical profile, the surface layer is very dark grayish brown and dark brown ashy silt loam to a depth of 10 inches. The upper layer of the subsoil is brown silty clay loam to a depth of 7 inches. The lower layer is mottled, grayish brown silty clay loam to approximately 15 inches thick. The substratum to a depth of 60 inches is stratified, mottled, light olive brown silt loam and silty clay loam. Kitsap silt loam, 8 to 15 percent slopes is listed as non-hydric, but as much as 2 percent of the mapped soil unit may contain hydric inclusions Bellingham soils associated with depressions (NRCS, n.d.).

4.3 Vegetation

General upland forested vegetation in the southern portion of the subject property consists of a canopy dominated by Douglas fir (*Pseudotsuga menziesii*) and western red cedar (*Thuja plicata*) with an understory of vine maple (*Acer circinatum*), salmonberry (*Rubus spectabilis*), hazelnut (*Corylus cornuta*), non-native invasive Himalayan blackberry (*Rubus armeniacus*), and swordfern (*Polystichum munitum*). The upland forest canopy transitions into a more mixed evergreen/deciduous canopy on the northern portion of the subject property and is dominated by western red cedar, western hemlock (*Tsuga heterophylla*), black cottonwood (*Populus balsamifera*), and bigleaf maple (*Acer macrophyllum*). The unmaintained field on the central portion of the subject property is dominated by non-native invasive scotch broom (*Cytisus scoparius*), bracken fern (*Pteridium aquilinum*), orchards grass (*Dactylus glomerata*), colonial bentgrass (*Agrostis capillaris*), and trailing blackberry (*Rubus ursinus*).

4.4 Critical Area Inventories

The City of Puyallup Stream and Wetland Inventory (Appendix B3), Pierce County Stream and Wetland Inventory (Appendix B4), USFWS NWI map (Appendix B5), and WDFW PHS map (Appendix B6) do not identify any potential wetlands on the subject property but do identify a potential stream feature (Upper Deer Creek) on the northeast portion of the subject property. Additionally, the Puyallup Stream and Wetland Inventory identifies a potential offsite wetland feature to the west across Shaw Road East within 300 feet of the site. The WDFW SalmonScape map (Appendix B7) does not identify any salmonids or fish presence on or near the subject property. The DNR stream typing map (Appendix B8) classifies Upper Deer Creek as a non-fish bearing (Type N) stream. No other potential wetlands, waterbodies, or fish and wildlife habitat areas are documented on or within 300 feet of the subject property.

4.5 Precipitation

Precipitation data was obtained from the National Oceanic and Atmospheric Administration (NOAA) station at Seattle-Tacoma (SeaTac) International Airport in order to obtain percent of normal precipitation for the general Puget Sound region during and preceding the investigations. A summary of data collected is provided in Table 1.

Table 1. Precipitation Summary¹

Date	Day of	Day Before	1 Week Prior	2 Weeks Prior	30 Days Prior (Observed/Normal)	Year to Date (Observed/Normal) ²	Percent of Normal ³
11/16/2021	0.00	0.20	4.67	6.95	11.68/5.60	12.85/7.22	209/178
1/5/2022	0.33	0.22	1.96	3.30	5.33/5.73	21.93/16.90	93/130

Notes:

Precipitation levels during the November 2021 site investigation were elevated above the statistical normal range for both the prior 30 days (209 percent of normal) and the 2021/2022 water year (178 percent of normal). While heavy rainfall is common during the wet season, the abnormally high rainfall for both the 30 days prior and the water year suggest hydrologic conditions onsite may have been exaggerated and areas that are not typically wet may have been saturated or inundated during the November 2021 site investigation. Precipitation levels during the January 2022 site investigation were within the statistical normal range for both the prior 30 days (93 percent of normal) and the 2021/2022 water year (130 percent of normal). This precipitation data suggests that hydrological conditions were relatively normal during the January 2022 site investigation. Such conditions were considered in making professional wetland determinations.

^{1.} Precipitation levels provided in inches. Data obtained from NOAA (http://w2.weather.gov/climate/xmacis.php?wfo=sew) for SeaTac International Airport. Precipitation data is missing for the following dates and may skew calculations for percent of normal: 12/18, 12/28, and 12/30.

^{2.} Year-to-date precipitation is for the 2021/2022 water year from October 1 to the onsite date(s).

^{3.} Percent of normal is shown for the last 30 days and water year to date.

Chapter 5. Results

SVC's site investigations in November of 2021 and January of 2022 identified one potentially regulated wetland (Wetland A) and one stream (Stream Z, locally known as Upper Deer Creek) on the northeastern portion of the subject property. Additionally, one potential offsite wetland (Wetland 1) was identified offsite to the west of the subject property across Shaw Road East. No other potentially regulated wetlands, waterbodies, or other fish and wildlife habitat were observed on or within 300 feet of the subject property.

5.1 Wetlands

5.1.1 Overview

The identified wetlands contained a predominance of hydrophytic vegetation, indicators of hydric soils (assumed for offsite wetland), and wetland hydrology according to current wetland delineation methodology. Data forms are provided in Appendix E; wetland rating forms are provided in Appendix F; and wetland rating maps are provided in Appendix G. Table 2 summarizes the wetlands identified during the site investigations.

Table 2. Wetland Summary Table

Ī		Predor	ninant Wetland Clas	Size	Buffer			
	Wetland	Cowardin ¹	HGM ²	WSDOE ³	City of	Onsite	Width ⁵	
		Cowardin	HGM-	WSDOE	Puyallup4	(SF)	(feet)	
	A	PSSB	Depressional	III	III	2,020	80	
	1	PFOB	Slope	IV	IV	N/A	50	

Notes:

- 1. Cowardin et al. (1979); Federal Geographic Data Committee (2013); class based on vegetation: PFO = Palustrine Forested, PSS = Palustrine Scrub-Shrub. Modifiers for Water Regime or Special Situations: B = Seasonally Saturated.
- 2. Brinson, M. M. (1993).
- 3. Current WSDOE rating (Hruby, 2014).
- 4. PMC 21.06.910(3) wetland rating designation.
- 5. PMC 21.06.930(2) wetland buffer standards based on high intensity land use.

Wetland A

Wetland A is approximately 2,560 square feet (0.06 acre) in size onsite and is located on the northeastern portion of the subject property, extending further offsite to the north. Stream Z flows through the wetland; however, no evidence of overbank flooding was observed. Hydrology for Wetland A is provided primarily by a seasonally high groundwater table, direct precipitation, and surface sheet flow from adjacent uplands. Wetland vegetation is dominated by salmonberry (*Rubus spectabilis*), vine maple, youth on age (*Tolmiea menziesii*) and creeping buttercup (*Ranunculus repens*). Wetland A is a Palustrine Scrub-Shrub, Seasonally Saturated (PSSB) wetland. Per PMC 21.06.930(2)(c)(d), Wetland A is classified as a Category III depressional wetland with a habitat score of 5 points. Table 3 provides a detailed summary of Wetland A.

8

Wetland 1

Wetland 1 is located approximately 90 feet offsite to the west across Shaw Road East. Hydrology for Wetland 1 is provided primarily by a seasonally high groundwater table, direct precipitation, and surface sheet flow from adjacent uplands. Wetland vegetation is dominated by a canopy of Western red cedar, black cottonwood, and red alder (*Alnus rubra*) with an understory dominated by salmonberry and non-native invasive Himalayan blackberry. Wetland 1 is a Palustrine Forested, Seasonally Saturated (PFOB) wetland. Per PMC 21.06.930(2)(e), Wetland 1 is classified as a Category IV slope wetland with a habitat score of 4 points. As Wetland 1 is located entirely offsite, no detailed summary table is provided.

Table 3. Wetland A Summary

WETLAND A – INFORMATION SUMMARY						
Location: Located in the northern portion of the subject property.						
		Local Jurisdiction	City of Puyallup			
		WRIA	10 – Puyallup - White			
		WSDOE 2014 Rating	III			
		City of Puyallup	TIT			
1 / / / / / / / / / / / / / / / / / / /		rating	III			
		Standard Buffer	90 ft			
V V		Width	80 feet			
		Wetland Size	2,560 square feet			
		Cowardin	PSSAB			
a the		Classification	PSSAD			
		HGM Classification	Depressional			
7. 7.		Wetland Data Sheet	DP-2W			
		Upland Data Sheet	DP-3U			
		Boundary Flag color	Orange			
Dominant	Wetland vegetation is dominated sal	monberry vine maple vou	ith on age and buttercup			
Vegetation						
Soils	Hydric soil indicator A11 (Depleted					
		r Wetland A is provided primarily by a seasonally high groundwater table,				
Hydrology	direct precipitation, and surface sheet flow from surrounding uplands. No evidence of					
D 1 1 1	overbank flooding from Stream Z w					
Rationale for	Wetland boundaries were determine		nd the combined presence			
Delineation	of hydric soils and hydrophytic vege		C W/			
Rationale for	Wetland rating based on the curr		ing system for Western			
Local Rating	Washington (Hruby, 2014) per PMC					
	Wetland Function Wetland A has moderate potential	<u> </u>	y due to the presence of			
	_		_			
	persistent, ungrazed plants in 95 percent of the unit., the presence of septic systems within 250 feet of the wetland, and the presence of a TMDL in the watershed. However,					
Water Quality	water quality functions are limited due to the permanently flowing outlet, lack of seasonal					
	ponding, and the wetland does not discharge into impaired waters. Wetland A's score					
	for Water Quality Functions is mod	~				
	Wetland A has low potential to		ctions due to its small			
	contribution of storage capacity within the contributing basin, lack of storage during wet					
Hardwala ad -	periods, and lack of stormwater discharges or sources of runoff. However, the wetland					
Hydrologic	provides some functions due to at least 25 percent intensive land uses within the					
	contributing basin and presence o	_				
	Hydrologic Functions is moderate (_				
	Wetland A provides limited habitat	*				
Habitat	and hydroperiod, lack of habitat int					
Habitat	due to surrounding high intensity la	and use. Wetland A's score	e for Habitat Functions is			
	low (5).					
Buffer	The onsite buffer is relatively intact with native vegetation but contains small amounts					
Condition	of non-native invasive Himalayan blackberry and English holly.					

5.2 Stream Z (Upper Deer Creek)

Stream Z was identified on the northeastern corner of the subject property, flowing southwest for approximately 200 linear feet onsite and through Wetland A. The onsite channel of Stream Z was approximately under 2 feet wide on average with areas of pooling approximately 5 feet wide on average. Substrate within the stream consists of an unconsolidated silt bottom with patches of some sand and gravel. Stream Z meets the WAC 222-16-031 definition of fish bearing: streams with an OHWM of 2 feet or greater and a gradient of 16% or less. Due to SCC 21.06.1010(3)(a)(ii) designation of Deer Creek as a Type II stream, all reaches of the creek are required to meet a 100-foot buffer. Therefore, Stream Z is classified as a Type II stream per PMC 21.06.1010(2). Table 4 provides a detailed summary of Stream Z.

Table 4. Stream Z Summary

STREAM Z – INFORMATION SUMMARY					
		Feature Name	Stream Z		
		WRIA	10 – Puyallup - White		
10000000000000000000000000000000000000		Local Jurisdiction	City of Puyallup		
		DNR Stream Type	Type N		
and the same of		City of Puyallup Stream Rating	Type II		
		Standard Buffer Width	50 feet		
		Documented Fish Use	None		
Location of Feature	Stream Z is locate	ed on the northeast corn	er of the subject property.		
Connectivity (where water flows from/to)	Yetland A The stream				
Riparian/Buffer	The onsite buffer is relatively intact with native vegetation but contains small				
Condition	ondition amounts of non-native invasive Himalayan blackberry and English holly				

Chapter 6. Regulatory Considerations

SVC's site investigations in November of 2021 and January of 2022 identified one potentially regulated wetland (Wetland A) and one stream (Stream Z, locally known as Upper Deer Creek) on the northeastern portion of the subject property. Additionally, one potential offsite wetland (Wetland 1) was identified offsite to the west of the subject property across Shaw Road East. No other potentially regulated wetlands, waterbodies, or other fish and wildlife habitat were observed on or within 300 feet of the subject property.

6.1 Local Considerations

6.1.1 Standard Buffer Requirements

PMC 19.37.090.C has adopted the current wetland rating system used by WSDOE (Hruby, 2014). Category III wetlands generally provide a moderate level of function, have usually been disturbed in some way, and are often less diverse and/or more isolated in the landscape than Category II wetlands. Category III wetlands score between 16 and 19 points on the *Revised Washington State Wetland Rating System for Western Washington* (Hruby, 2014). Category IV wetlands generally provide low levels of function; they are often heavily disturbed, smaller, and/or more isolated in the landscape than Category I, II, or III wetlands. Category IV wetlands provide low levels of functions and score less than 16 points.

Wetland A is classified as a Category III wetland with a low habitat score of 5 points, which is subject to a standard 80-foot buffer based on the proposed high intensity land use per PMC 21.06.930(2)(d). Offsite Wetland 1 is classified as a Category IV wetland with a low habitat score of 4 points, which is subject to a standard 50-foot buffer that does not project onsite, especially given the functional interruption from Shaw Road East. Stream Z is considered a perennial, non-fish bearing (Type III) stream and is subject to a 50-foot buffer per PMC 21.06.1050(2)(c). An additional 10-foot building setback is required from the outer edge of all critical area buffers per PMC 21.06.840(1).

6.2 State and Federal Considerations

On January 18, 2023, USACE and EPA published a revised definition of "Waters of the United States" (USACE and EPA, 2023a). The revised rule became effective on March 20, 2023. On May 25, 2023, the U.S. Supreme Court issued a decision affecting the definition of Waters of the United States, or "WOTUS", in *Sackett Et Ux. V Environmental Protection Agency Et Al.* On August 29, 2023, the US EPA and USACE issued a final rule to amend the final "Revised Definition of "Waters of the United States" rule. The amendment conforms the definition of "Waters of the United States" to the U.S. Supreme Court's decision in the Sackett Et Ux. V Environmental Protection Agency Et Al case. The revised and amended definition of "Waters of the United States" is as follows:

(a) Waters of the United States means:

(1) Waters which are: (i) Currently used, or were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide; (ii) The territorial seas; or (iii) Interstate waters;

- (2) Impoundments of waters otherwise defined as waters of the United States under this definition, other than impoundments of waters identified under paragraph (a)(5) of this section;
- (3) Tributaries of waters identified in paragraph (a)(1) or (2) of this section: that are relatively permanent, standing or continuously flowing bodies of water;
- (4) Wetlands adjacent to the following waters: (i) Waters identified in paragraph (a)(1) of this section; or (ii) Relatively permanent, standing or continuously flowing bodies of water identified in paragraph (a)(2) or (a)(3) of this section and with a continuous surface connection to those waters;
- (5) Intrastate lakes and ponds not identified in paragraphs (a)(1) through (4) of this section that are relatively permanent, standing or continuously flowing bodies of water with a continuous surface connection to the waters identified in paragraph (a)(1) or (a)(3) of this section;
- (b) The following are not "waters of the United States" even where they otherwise meet the terms of paragraphs (a)(2) through (5) of this section:
- (1) Waste treatment systems, including treatment ponds or lagoons, designed to meet the requirements of the Clean Water Act;
- (2) Prior converted cropland designated by the Secretary of Agriculture. The exclusion would cease upon a change of use, which means that the area is no longer available for the production of agricultural commodities. Notwithstanding the determination of an area's status as prior converted cropland by any other Federal agency, for the purposes of the Clean Water Act, the final authority regarding Clean Water Act jurisdiction remains with EPA;
- (3) Ditches (including roadside ditches) excavated wholly in and draining only dry land and that do not carry a relatively permanent flow of water;
- (4) Artificially irrigated areas that would revert to dry land if the irrigation ceased;
- (5) Artificial lakes or ponds created by excavating or diking dry land to collect and retain water and which are used exclusively for such purposes as stock watering, irrigation, settling basins, or rice growing;
- (6) Artificial reflecting or swimming pools or other small ornamental bodies of water created by excavating or diking dry land to retain water for primarily aesthetic reasons;
- (7) Waterfilled depressions created in dry land incidental to construction activity and pits excavated in dry land for the purpose of obtaining fill, sand, or gravel unless and until the construction or excavation operation is abandoned and the resulting body of water meets the definition of waters of the United States; and
- (8) Swales and erosional features (e.g., gullies, small washes) characterized by low volume, infrequent, or short duration flow.

The 2023 revised and amended definition of Waters of the United States defines "adjacent" as "having a continuous surface connection."

Stream Z is likely a tributary to the Puyallup River, a traditionally navigable water; as such, Stream Z is likely regulated by USACE under Section 404 of the CWA. Wetland A is likely a jurisdictional water due to its direct hydrological connection to Stream Z. Offsite Wetland 1 appears isolated in upland areas with no surface water connections and/or potential connection to jurisdictional waters; as such, Wetland 1 is likely not regulated by the USACE. However, the identified wetlands and stream are considered natural waters that are regulated by the WSDOE through the Revised Code of Washington (RCW) 90.48.

Chapter 7. Closure

The findings and conclusions documented in this report have been prepared for specific application to this project. They have been developed in a manner consistent with that level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area. Our work was also performed in accordance with the terms and conditions set forth in our proposal. The conclusions and recommendations presented in this report are professional opinions based on an interpretation of information currently available to us and are made within the operation scope, budget, and schedule of this project. No warranty, expressed or implied, is made. In addition, changes in government codes, regulations, or laws may occur. Due to such changes, our observations and conclusions applicable to this project may need to be revised wholly or in part.

Wetland and OHW status and boundaries identified by SVC are based on conditions present at the time of the site visit and considered preliminary until the flagged wetland and OHW boundaries are validated by the jurisdictional agencies. Validation of the wetland and OHW boundaries and jurisdictional status of such features by the regulatory agencies provides a certification, usually written, that the wetland determination and boundaries verified are the units that will be regulated by the agencies until a specific date or until the regulations are modified. Only the regulatory agencies can provide this certification.

As wetlands and waterbodies are dynamic communities affected by both natural and human activities, changes in boundaries may be expected; therefore, delineations cannot remain valid for an indefinite period of time. Regulatory agencies typically recognize the validity of wetland and OHW delineations for a period of 5 years after completion of an assessment report. Development activities on a site five years after the completion of this assessment report may require reassessment of the wetland and OHW boundaries. In addition, changes in government codes, regulations, or laws may occur. Due to such changes, our observations and conclusions applicable to this site may need to be revised wholly or in part.

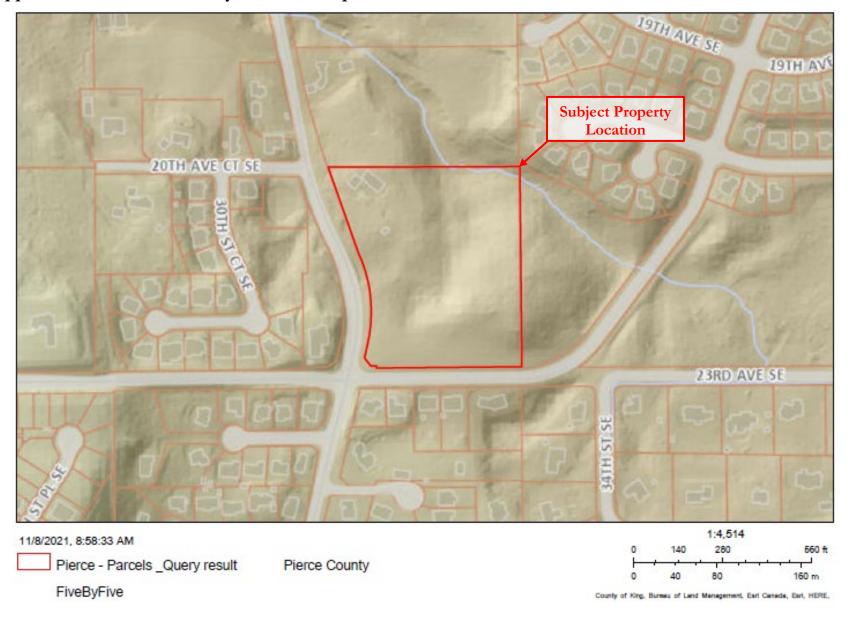
Chapter 8. References

- Anderson, P.S., S. Meyer, P. Olson, and E. Stockdale. 2016. Determining the Ordinary High Water Mark for Shoreline Management Act Compliance in Washington State. Publication No. 16-06-029. Final Review Draft. Shorelands and Environmental Assistance Program, Washington State Department of Ecology. Olympia, Washington.
- Brinson, M. M. 1993. A hydrogeomorphic classification for wetlands, Technical Report WRP-DE-4. U.S. Army Engineer Waterways Experiment Station. Vicksburg, Mississippi.
- Cowardin, L.M. V. Carter, F. Golet, and E.T. LaRoe. 1979. *Classification of Wetlands and Deepwater Habitats of the United States*. U.S. Fish and Wildlife Service. Washington D.C.
- Environmental Laboratory. 1987. *Corps of Engineers Wetlands Delineation Manual*. Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- Federal Geographic Data Committee. 2013. Classification of wetlands and deepwater habitats of the United States. FGDC-STD-004-2013. Second Edition. Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service, Washington, DC.
- Hitchcock, C.L. & A. Cronquist, Ed. by D. Giblin, B. Ledger, P. Zika, and R. Olmstead. 2018. Flora of the Pacific Northwest, 2nd Edition. U.W. Press and Burke Museum. Seattle, Washington.
- Hruby, T. 2014. Washington State Wetland Rating System for Western Washington: 2014 Update. (Publication #14-06-029). Olympia, WA: Washington Department of Ecology.
- Munsell® Color, 2000. Munsell® Soil Color Charts. New Windsor, New York.
- Natural Resources Conservation Services (NRCS). N.d. Soil Data Access Hydric Soils List (Soil Data Access Live). Website: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1316620.html
- NRCS. 2018. Field Indicators of Hydric Soils in the United States, Version 8.2. L.M. Vasilas, G.W. Hurt, and J.F. Berkowitz (eds.). USDA, NRCS, in cooperation with the National Technical Committee for Hydric Soils.
- Puyallup Municipal Code (PMC). 2021 *Chapter 21.06 Critical Areas.* Current through December 7, 2021.
- Sheldon, D., T. Hruby, P. Johnson, K. Harper, A. McMillan, T. Granger, S. Stanley, and E. Stockdale. 2005. *Wetlands in Washington State Volume 1: A Synthesis of the Science.* Washington State Department of Ecology. Publication #05-06-006. Olympia, Washington. March 2005.
- U. S. Army Corps of Engineers (USACE). 2008. Clean Water Act Jurisdiction Following the U.S. Supreme Court's Decision in Rapanos v. United States & Carabell v. United States. EPA/USACE. December 2, 2008.

- USACE. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-3. Vicksburg, MS: U.S. Army Engineer Research and Development Center. Vicksburg, Mississippi.
- USACE and Environmental Protection Agency (EPA). 2012. Guidance on Identifying Waters Protected by the Clean Water Act. EPA/USACE. February 17, 2012
- USACE. 2018. National Wetland Plant List, version 3.4. http://wetland-plants.usace.army.mil/.
- Zulauf, A.S. 1979. Soil Survey of Pierce County Area, Washington. Natural Resource Conservation Service. Washington D.C.

Appendix A — Methods and Tools

Table A1. Methods and tools used to prepare the report.


Parameter	Method or Tool	Website	Reference
Wetland Delineation	USACE 1987 Wetland Delineation Manual	http://el.erdc.usace.army.mil/e lpubs/pdf/wlman87.pdf	Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
	Western Mountains, Valleys, and Coast Region Regional Supplement	http://www.usace.army.mil/P ortals/2/docs/civilworks/regul atory/reg_supp/west_mt_final supp.pdf	U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-3. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
Wetland Classification	USFWS / Cowardin Classification System	http://www.fws.gov/wetlands /Documents/Classification-of- Wetlands-and-Deepwater- Habitats-of-the-United- States.pdf	Cowardin, L. M., V. Carter, F. C. Golet, E. T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. Government Printing Office, Washington, D.C.
		https://www.fgdc.gov/standar ds/projects/wetlands/nvcs- 2013	Federal Geographic Data Committee. 2013. Classification of Wetlands and Deepwater Habitats of the United States. FGDC-STD-004-2013. Second Edition. Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service, Washington, DC.
	Hydrogeomorphic Classification (HGM) System	http://el.erdc.usace.army.mil/ wetlands/pdfs/wrpde4.pdf	Brinson , M. M. (1993). "A hydrogeomorphic classification for wetlands," Technical Report WRP-DE-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
Wetland Rating	Washington State Wetland Rating System	http://www.ecy.wa.gov/biblio /0406025.html	Hruby, T . 2014. Washington State wetland rating system for western Washington –Revised. Publication # 04-06-025.
Wetland Indicator Status	2016 National Wetland Plant List	https://www.fws.gov/wetlands /documents/National- Wetland-Plant-List-2016- Wetland-Ratings.pdf	U.S. Army Corps of Engineers. 2018. National Wetland Plant List, version 3.4.
Stream Classification	Department of Natural Resources (DNR) Water Typing System	http://www.stage.dnr.wa.gov/f orestpractices/watertyping/	Washington Administrative Code (WAC) 222-16-030. DNR Water typing system.
Stream Delineation	Determining the OHW	https://fortress.wa.gov/ecy/p ublications/documents/160602 9.pdf	Anderson, P.S., S. Meyer, P. Olson, and E. Stockdale. 2016. Determining the Ordinary High Water Mark for Shoreline Management Act Compliance in Washington State. Publication No. 16-06-029. Final Review Draft. Shorelands and Environmental Assistance Program, Washington State Department of Ecology. Olympia, Washington.
Plant Names and	USDA Plant Database	http://plants.usda.gov/	Website.
Identification	Flora of the Pacific Northwest	http://www.pnwherbaria.or g/florapnw.php	Hitchcock, C.L. & A. Cronquist, Ed. by D. Giblin, B. Ledger, P. Zika, and R. Olmstead. 2018. Flora of the Pacific Northwest, 2nd Edition. U.W. Press and Burke Museum. Seattle, Washington.

Parameter	Method or Tool	Website	Reference
Soils Data	NRCS Soil Survey	http://websoilsurvey.nrcs.usda. gov/app/	Website GIS data based upon:
			Debose A., and Klungland, M.W. 1983. Soil Survey of Snohomish County Area, Washington. United States Department of Agriculture, Soil Conservation Service in cooperation with Washington State Department of Natural Resources, and Washington State University, Agriculture Research Center. Washington, D.C.
	Soil Data Access Hydric Soils List	https://www.nrcs.usda.gov/ Internet/FSE_DOCUMEN TS/nrcseprd1316620.html	Natural Resources Conservation Service. N.d. Soil Data Access Hydric Soils List (Soil Data Access Live).
	Soil Color Charts		Munsell® Color. 2000. Munsell® Soil Color Charts. New Windsor, New York.
	Field Indicators of Hydric Soils	https://www.nrcs.usda.gov /Internet/FSE_DOCUME NTS/nrcs142p2_053171.pd f	NRCS. 2018. Field Indictors of Hydric Soils in the United States, Version 8.2. L.M. Vasialas, G.W. Hurt, and C.V. Noble (eds.). USDA, NRCS, in cooperation with the National Technical Committee for Hydric Soils.
Threatened and Endangered Species	Washington Natural Heritage Program	http://data- wadnr.opendata.arcgis.com/dat asets/wnhp-current-element- occurrences	Washington Natural Heritage Program. Endangered, threatened, and sensitive plants of Washington. Washington State Department of Natural Resources, Washington Natural Heritage Program, Olympia, WA
	Washington Priority Habitats and Species	http://wdfw.wa.gov/hab/phsp age.htm	Priority Habitats and Species (PHS) Program Map of priority habitats and species in project vicinity. Washington Department of Fish and Wildlife.
Species of Local Importance	WDFW GIS Data	http://wdfw.wa.gov/mapping/salmonscape/	Website
Report Preparation	Puyallup Municipal Code	http://www.codepublishing.com/ WA/Puyallup/	PMC Chapter 21.06 – Critical Areas

Appendix B — Background Information

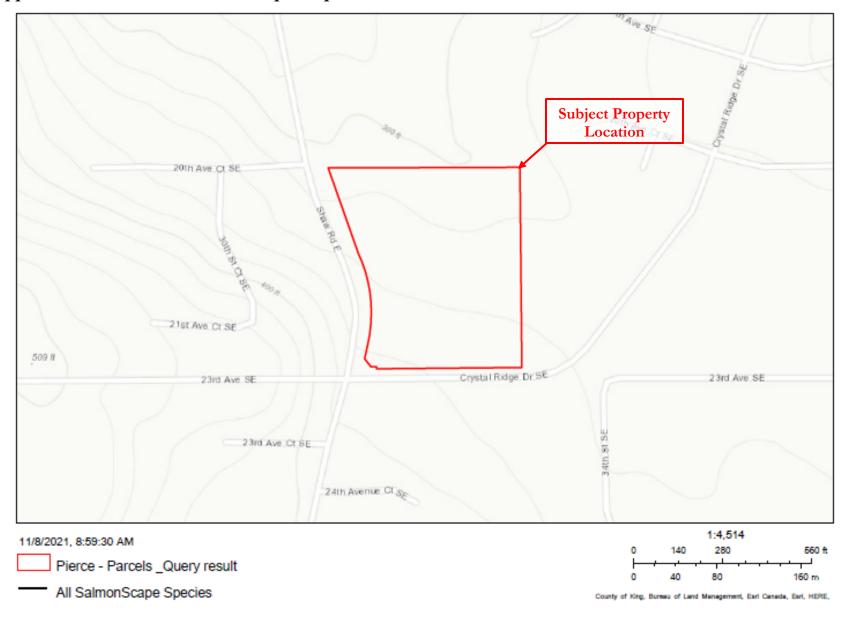
This appendix includes a Pierce County Contours Map (B1); NRCS Soil Survey Map (B2); City of Puyallup Stream and Wetland Inventory (B3); Pierce County Stream and Wetland Inventory (B4); USFWS NWI Map (B5); WDFW PHS Map (B6); WDFW SalmonScape Map (B7); and DNR Stream Typing Map (B8).

Appendix B1 — Pierce County Contours Map

Appendix B2 — NRCS Soil Survey Map

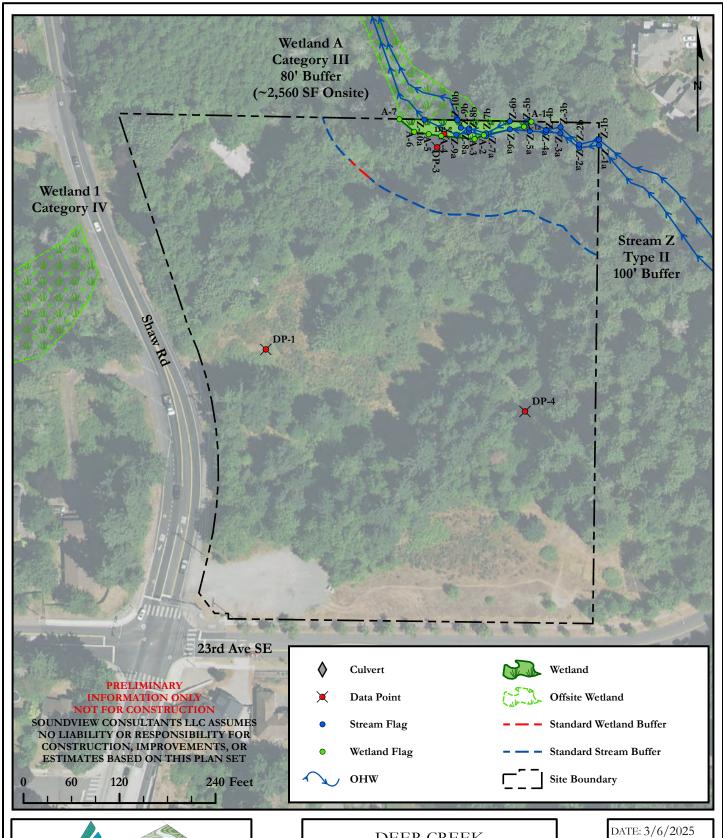
Appendix B3 — City of Puyallup Stream and Wetland Inventory

Appendix B4 — Pierce County Stream and Wetland Inventory


Appendix B5 — USFWS NWI Map

Appendix B6 — WDFW PHS Map

Appendix B7 — WDFW SalmonScape Map



Appendix B8 — DNR Stream Typing Map

Appendix C — Existing Conditions Exhibit

EXISTING CONDITIONS

2907 Harborview Dr., Suite D, Gig Harbor, WA 98335 Phone: (253) 514-8952 Fax: (253) 514-8954 www.soundview consultants.com

DEER CREEK

2007 SHAW RD PUYALLUP, WA 98372

PIERCE COUNTY PARCEL NUMBER: 0420354039

JOB: 1273.0009

BY: DDS

SCALE: 1" = 120'

FIGURE NO. 1

Appendix D — Site Photographs

Photo 1: General upland conditions on the central portion of the subject property, facing north.

Photo 2: General upland conditions on the northern portion of the subject property, facing east.

Photo 3: Wetland A, facing north.

Photo 4: Stream Z, facing west.

Photo 5: Soil profile at DP-1.

Photo 6: Soil profile at DP-2.

Photo 7: Soil profile at DP-3

Photo 8: Soil profile at DP-4.

Photo 9: New flag A1-a.

Photo 10: New location of Flag A-1

Photo 10: Example of OHWM flag (Z-1a)

Photo 11: OHWM on either side of Stream Z

Photo 12: OHWM Z-4a and Z-4b

Photo 13: OHWM Z-5a and Z-5b

Photo 14: OHWM Z-6a and Z-6b

Photo 15: OHWM Z-7a and Z-7b

Appendix E — Data Forms

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

Project/Site: 1273.0009 - Deer Creek	(City/C	ounty	. Puyallu	ıp/Pierce	Sampling Da	ate: 1/5/22
		-			State: WA		
					ownship, Range: 35, 2		
Landform (hillslope, terrace, etc.): Depression							
Subregion (LRR): A2							
Soil Map Unit Name: Indianola loamy sand, 5 to 15							
Are climatic / hydrologic conditions on the site typical for this					f no, explain in Remarks	·	
Are Vegetation, Soil, or Hydrology sign	-				ormal Circumstances" pi	,	No □
Are Vegetation, Soil, or Hydrology natu				(If need	ed, explain any answers	s in Remarks.)	
SUMMARY OF FINDINGS – Attach site map				,	, ,	,	features, etc.
				<u> </u>	,	<u> </u>	
Hydrophytic Vegetation Present? Yes ☒ No ☐ Hydric Soil Present? Yes ☒ No ☒			Is th	e Sampled	l Area		
Wetland Hydrology Present? Yes ☐ No ☒			with	in a Wetlar	nd? Yes 🗌	No 🗵	
Remarks:	1			. D .	11 . 11 . 1	1 .:	
Not all three wetland criteria met; only hydro property in a low topographic depression.	pnytic vege	tation	pres	ent. Data v	vas collected in the wes	st-central portio	n of the subject
VEGETATION – Use scientific names of plan	 ts.						
	Absolute	Dom	inant	Indicator	Dominance Test wo	rksheet:	
Tree Stratum (Plot size: 30 ft) 1	% Cover				Number of Dominant That Are OBL, FACW		(A)
2					Total Number of Dom	inant	
3					Species Across All St	rata: <u>3</u>	(B)
4					Percent of Dominant	Species	
Sapling/Shrub Stratum (Plot size: 30 ft)	0	= 10	tal C	over	That Are OBL, FACW	, or FAC: <u>679</u>	<u>%</u> (A/B)
1. Cytisus scoparius	10	Yes	S	FAC	Prevalence Index wo	orksheet:	
2. Rubus armeniacus	5	Yes	S	FAC	Total % Cover of:	<u>Mul</u>	ltiply by:
3					OBL species	x 1 = _	
4					FACW species		
5					FAC species		
Herb Stratum (Plot size: 10 ft)	15	= To	tal C	over	FACU species		
1. Agrostis capillaris	70	Ye	S	FAC	UPL species Column Totals:		(B)
2. Rubus ursinus	15	No		FACU	Column Totals.	(^)	(B)
3. Dactylis glomerata	10	No		FACU	Prevalence Inde	ex = B/A =	
4. Cirsium arvense	3	No		FAC	Hydrophytic Vegetat		
5					Rapid Test for Hy		ation
6					➤ Dominance Test i		
7					☐ Prevalence Index		
8		-			☐ Morphological Adadata in Remar	aptations' (Provi ks or on a separ	11 0
9					☐ Wetland Non-Vas		,
10					☐ Problematic Hydro	ophytic Vegetation	on¹ (Explain)
11	00	= To	tal C	over	¹ Indicators of hydric s		
Woody Vine Stratum (Plot size: 30 ft)		= 10	ilai Ci	ovei	be present, unless dis	turbed or proble	matic.
1					Hydrophytic		
2	0		ntal C		Vegetation Present? Y	′es ⊠ No 🗌	
% Bare Ground in Herb Stratum 2							
Remarks: Hydrophytic vegetation criteria met thr	ough the l	Domi	inan	ce Test c	lue to the presence	of FAC spec	cies typical of
upland areas.	J				,	-1	71

Depth (in a bas)	Matrix				x Feature		1 = 62	T	De constant
(inches) 0 - 10	Color (moist) 10YR 3/2	<u>%</u> 100	<u>Colo</u>	r (moist)	%	Type ¹	Loc ²	<u>Texture</u> SaLo	<u>e</u> <u>Remarks</u> Sandy loam
	-		· <u>-</u>					-	
10 - 15+	10YR 3/3	100	· <u>-</u>					SaLo	Sandy loam
	-								
	_								
						-,			· ·
	-				_				
	oncentration, D=D						ed Sand Gr		² Location: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators: (App	licable to a	all LRR	s, unless othe	rwise not	ed.)		In	dicators for Problematic Hydric Soils ³ :
Histosol	, ,			Sandy Redox (S					2 cm Muck (A10)
	pipedon (A2)			Stripped Matrix		4) (Red Parent Material (TF2)
☐ Black Hi				₋oamy Mucky N ₋oamy Gleyed I	•	, · · -	MLRA 1)		, , , , , , , , , , , , , , , , , , , ,
	n Sulfide (A4) d Below Dark Surfa	aca (Δ11)		Depleted Matrix	•	.)			Other (Explain in Remarks)
	ark Surface (A12)	acc (ATT)		Redox Dark Su	. ,			³ ln	ndicators of hydrophytic vegetation and
	lucky Mineral (S1)			Depleted Dark	` ,	7)			wetland hydrology must be present,
	Bleyed Matrix (S4)			Redox Depress					unless disturbed or problematic.
	Layer (if present)	:							
Туре: <u></u> N C									
Depth (in	ches):							Hydri	c Soil Present? Yes ☐ No ⊠
Remarks:									
HYDROLO									
•	drology Indicator								
	cators (minimum c	of one requi	red; che						Secondary Indicators (2 or more required)
	Water (A1)			☐ Water-Stai			xcept MLR	RA	☐ Water-Stained Leaves (B9) (MLRA 1, 2
•	iter Table (A2)				A, and 4B	5)			4A, and 4B)
Saturation	` '			☐ Salt Crust		(5.10)			Drainage Patterns (B10)
	larks (B1)			☐ Aquatic Inv		, ,			☐ Dry-Season Water Table (C2)
	nt Deposits (B2)			Hydrogen		` '			Saturation Visible on Aerial Imagery (CS
	posits (B3)			Oxidized F		_	_		Geomorphic Position (D2)
_	at or Crust (B4)			☐ Presence					Shallow Aquitard (D3)
	oosits (B5) Soil Cracks (B6)			☐ Recent Iro ☐ Stunted or			,	•	☐ FAC-Neutral Test (D5) ☐ Raised Ant Mounds (D6) (LRR A)
Curfoco	JOH CHACKS IDDI			Sturited of	Silesseu	Flants (D	1) (LKK A)	'	Maised Affil Mourius (Do) (LRK A)
	, ,	al Imageny (R7\	Other (Evr	lain in Po	marke\			☐ Frost-Heave Hummocks (D7)
☐ Inundation	on Visible on Aeria			Other (Exp	olain in Re	marks)			☐ Frost-Heave Hummocks (D7)
☐ Inundation	on Visible on Aeria Vegetated Conca			Other (Exp	olain in Re	marks)			Frost-Heave Hummocks (D7)
☐ Inundation ☐ Sparsely Field Obser	on Visible on Aeria Vegetated Concarvations:	ave Surface	(B8)						Frost-Heave Hummocks (D7)
☐ Inundation ☐ Sparsely ☐ Field Obsert ☐ Surface Water	on Visible on Aeria v Vegetated Conca vations: ter Present?	eve Surface	(B8)	Depth (inches	s): None	<u> </u>			☐ Frost-Heave Hummocks (D7)
☐ Inundation ☐ Sparsely Field Obser Surface Water Table	on Visible on Aeria Vegetated Concar vations: ter Present? Present?	Yes Yes	(B8) No 🔀 No 🗷	Depth (inches	s): None))	Wetl	and Hvd	
☐ Inundation ☐ Sparsely Field Obser Surface Wat Water Table Saturation P (includes ca	on Visible on Aeria v Vegetated Concavations: eer Present? Present? pillary fringe)	Yes Yes Yes Yes Yes	No X No X No X	Depth (inches	None None None))			Irology Present? Yes □ No ⊠
☐ Inundation ☐ Sparsely Field Obser Surface Wat Water Table Saturation P (includes ca	on Visible on Aeria Vegetated Concarvations: ter Present? Present?	Yes Yes Yes Yes Yes	No X No X No X	Depth (inches	None None None))			Irology Present? Yes □ No ⊠
☐ Inundation ☐ Sparsely Field Obser Surface Wat Water Table Saturation P (includes ca	on Visible on Aeria v Vegetated Concavations: eer Present? Present? pillary fringe)	Yes Yes Yes Yes Yes	No X No X No X	Depth (inches	None None None))			Irology Present? Yes □ No ⊠
☐ Inundation Sparsely Field Obser Surface Wat Water Table Saturation P (includes ca Describe Re	on Visible on Aeria v Vegetated Conca vations: ter Present? Present? pillary fringe) ecorded Data (strea	Yes	No 🗵 No 🗵 No 🗷 monitor	Depth (inchest Depth (inchest Depth (inchesting well, aerial	None None None None photos, p	revious ins			Irology Present? Yes □ No ⊠
☐ Inundation Sparsely Field Obser Surface Water Table Saturation Properties (includes can Describe Research) Remarks:	on Visible on Aeria v Vegetated Concavations: eer Present? Present? pillary fringe)	Yes	No 🗵 No 🗵 No 🗷 monitor	Depth (inchest Depth (inchest Depth (inchesting well, aerial	None None None None photos, p	revious ins			Irology Present? Yes □ No ⊠
☐ Inundation ☐ Sparsely Field Obser Surface Water Table Saturation P (includes can Describe Reservations)	on Visible on Aeria v Vegetated Conca vations: ter Present? Present? pillary fringe) ecorded Data (strea	Yes	No 🗵 No 🗵 No 🗷 monitor	Depth (inchest Depth (inchest Depth (inchesting well, aerial	None None None None photos, p	revious ins			Irology Present? Yes □ No ⊠

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

Project/Site: 1273.0009 - Deer Creek		City/Count	y: Puyallu	ıp/Pierce	Sampling Date: 1/5/22
Applicant/Owner: RM Homes				State: WA	Sampling Point: DP-2W
				ownship, Range: <u>35, 20 l</u>	
Landform (hillslope, terrace, etc.): Depression		Local reli	ef (concave,	, convex, none): Concav	re Slope (%): 2
Subregion (LRR): A2	_ _{Lat:} 47.	171534		Long: -122.2514973	9 Datum: WGS 84
Soil Map Unit Name: Indianola loamy sand, 5 to 15	percent s	lopes		NWI classification	tion: N/A
Are climatic / hydrologic conditions on the site typical for this	s time of yea	ır? Yes 🗵		f no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrology sign	nificantly dis	turbed?	Are "No	ormal Circumstances" pres	ent? Yes ☒ No ☐
Are Vegetation, Soil, or Hydrology natu	rally probler	matic?	(If need	ed, explain any answers in	Remarks.)
SUMMARY OF FINDINGS - Attach site map	showing	samplir	ng point le	ocations, transects,	important features, etc.
Hydrophytic Vegetation Present? Yes ☒ No ☐					
Hydric Soil Present? Yes ☒ No ☐			he Sampled		
Wetland Hydrology Present? Yes ☒ No ☐		With	nin a Wetlar	nd? Yes ເເ No	0 📙
Remarks:					
All three wetland criteria met. Da	ta was c	ollected	l in Wetl	and A.	
VEGETATION – Use scientific names of plan	ts.				
		Dominan	t Indicator	Dominance Test works	sheet:
Tree Stratum (Plot size: 30 ft) 1	% Cover			Number of Dominant Sp That Are OBL, FACW, o	
2				Total Number of Domina	ınt
3				Species Across All Strate	a: <u>5</u> (B)
4				Percent of Dominant Spe	ecies
Sapling/Shrub Stratum (Plot size: 30 ft)	0	= Total (Cover	That Are OBL, FACW, o	r FAC: 100% (A/B)
1. Acer circinatum	40	Yes	FAC	Prevalence Index work	sheet:
2. Rubus armeniacus	30	Yes	FAC	Total % Cover of:	Multiply by:
3. Rubus spectabilis	10	No	FAC	OBL species	x 1 =
4				FACW species	x 2 =
5					x 3 =
Hart Otratura (District 40 ft)	80	= Total C	Cover		x 4 =
Herb Stratum (Plot size: 10 ft) 1. Ranunculus repens	10	Yes	FAC	UPL species	
2. Tolmiea menziesii	10	Yes	FAC	Column Totals:	(A) (B)
3 Equisetum arvense	5	Yes	FAC	Prevalence Index	= B/A =
4.				Hydrophytic Vegetation	
5				☐ Rapid Test for Hydro	phytic Vegetation
6.				■ Dominance Test is >	-50%
7				☐ Prevalence Index is	≤3.0¹
8					tations ¹ (Provide supporting
9				□ Wetland Non-Vascul	or on a separate sheet)
10					nytic Vegetation¹ (Explain)
11					and wetland hydrology must
Woody Vine Stratum (Plot size: 30 ft)	25	= Total (Cover	be present, unless distu	
1				Hydrophytic	
2	0			Vegetation	.₩ Ma.□
% Bare Ground in Herb Stratum 75	0	= Total (cover	Present? Yes	No □
Remarks:	ough the	Domina	noo Toot	1	
Hydrophytic vegetation criteria met thr	ough the	ominar	ice rest.		

Sampling Point: <u>DP-2W</u>

Profile Desc Depth	Matrix				x Feature	c			·
(inches)	Color (moist)	%	Colo	r (moist)	%	<u>Type</u> 1	Loc ²	Textur	re Remarks
0 - 10	10YR 2/2	100	-		-	-	-	SaLo	Sandy loam
10 - 16+	2.5YR 4/1	97	7.5	YR 4/4	3	С	M/PL	Sand	
	•								
								-	
	oncentration, D=De						ed Sand Gr		² Location: PL=Pore Lining, M=Matrix.
_	Indicators: (Appl	icable to				ed.)			dicators for Problematic Hydric Soils ³ :
Histosol	, ,			Sandy Redox (2 cm Muck (A10)
	pipedon (A2)			Stripped Matrix	` '	\	MIDAA)	L	Red Parent Material (TF2)
☐ Black Hi	n Sulfide (A4)			₋oamy Mucky N ₋oamy Gleyed I			(MLRA 1)	L	_ ,
	d Below Dark Surfa	ce (A11)		Depleted Matrix		,		_	Other (Explain in Remarks)
-	ark Surface (A12)	00 (/ (/ / /		Redox Dark Su				3lr	ndicators of hydrophytic vegetation and
	lucky Mineral (S1)			Depleted Dark	, ,	7)			wetland hydrology must be present,
-	Bleyed Matrix (S4)			Redox Depress	ions (F8)				unless disturbed or problematic.
	Layer (if present):								
Type: No	one			-					
Depth (in	ches):							Hydri	ic Soil Present? Yes ⊠ No 🗌
Remarks:									
Hydric soil	criteria met thr	ouah in	dicator	A11.					
.,		- u.g							
HYDROLO	ocv								
	drology Indicators	·							
_	cators (minimum of		ired: che	eck all that ann	lv)				Secondary Indicators (2 or more required)
	Water (A1)	one requ	nca, cm	☐ Water-Stai		oo (PO) (voont MI B		☐ Water-Stained Leaves (B9) (MLRA 1, 2,
	iter Table (A2)				A, and 4B		xcept with		4A, and 4B)
Saturation				☐ Salt Crust	•	,			☐ Drainage Patterns (B10)
_	arks (B1)			Aquatic Inv	` '	e (B13)			☐ Dry-Season Water Table (C2)
	nt Deposits (B2)			☐ Hydrogen		` ,			☐ Saturation Visible on Aerial Imagery (C9)
	posits (B3)						Living Root	te (C3)	Geomorphic Position (D2)
	at or Crust (B4)			☐ Presence		_	_	13 (00)	☐ Shallow Aquitard (D3)
_	osits (B5)					•	d Soils (C6))	FAC-Neutral Test (D5)
	Soil Cracks (B6)						1) (LRR A)	•	Raised Ant Mounds (D6) (LRR A)
	on Visible on Aerial	Imagery	(B7)	☐ Other (Exp			., (=::::,		Frost-Heave Hummocks (D7)
IIIuIIualii				_ ` .		,			
	Vegetated Concav	ve Surface							
	Vegetated Concavivations:	ve Surface							
☐ Sparsely	vations:		No 🛭	Depth (inches	s): None				
☐ Sparsely Field Obser Surface Wat	rvations: er Present?	Yes 🗌	No ⊠ No □	Depth (inches					
☐ Sparsely Field Obser Surface Wat Water Table	vations: er Present? Present?	Yes □ Yes 🏿	No 🗌	Depth (inches	s): <u>1</u>		Wetla	and Hvo	drology Present? Yes ⊠ No □
Field Obser Surface Wat Water Table Saturation P (includes ca	vations: er Present? Present? resent? pillary fringe)	Yes ☐ Yes ☒ Yes ☒	No 🗌	Depth (inches	s): <u>1</u> s): <u>Surfa</u>	се			drology Present? Yes ⊠ No □
Field Obser Surface Wat Water Table Saturation P (includes ca	vations: er Present? Present? resent?	Yes ☐ Yes ☒ Yes ☒	No 🗌	Depth (inches	s): <u>1</u> s): <u>Surfa</u>	се			
Field Obser Surface Wat Water Table Saturation P (includes ca	vations: er Present? Present? resent? pillary fringe)	Yes ☐ Yes ☒ Yes ☒	No 🗌	Depth (inches	s): <u>1</u> s): <u>Surfa</u>	се			
Field Obser Surface Wat Water Table Saturation P (includes ca	vations: er Present? Present? resent? pillary fringe)	Yes ☐ Yes ☒ Yes ☒	No 🗌	Depth (inches	s): <u>1</u> s): <u>Surfa</u>	се			
Sparsely Field Obser Surface Wat Water Table Saturation P (includes ca Describe Re	vations: er Present? Present? resent? pillary fringe)	Yes ☐ Yes ☒ Yes ☒ m gauge,	No No monitor	Depth (inchest Depth (inchest Depth (inchest Depth (ing well, aerial	s): <u>1</u> Surfa photos, pr	ce evious ins	spections),		
Sparsely Field Obser Surface Wat Water Table Saturation P (includes ca Describe Re	vations: er Present? Present? resent? pillary fringe) corded Data (strea	Yes ☐ Yes ☒ Yes ☒ m gauge,	No No monitor	Depth (inchest Depth (inchest Depth (inchest Depth (ing well, aerial	s): <u>1</u> Surfa photos, pr	ce evious ins	spections),		

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

Project/Site: 1273.0009 - Deer Creek	(City/C	ounty	, Puyallu	ıp/Pierce	Sam	pling Date: 1/	5/22
		-				Sampling Point: DP-3U		
					ownship, Range: <u>35, 2</u>			
Landform (hillslope, terrace, etc.): Hillslope								(%): 5
Subregion (LRR): A2								
Soil Map Unit Name: Indianola loamy sand, 5 to 15								
Are climatic / hydrologic conditions on the site typical for this	s time of yea	ar? Ye	es 🗷	No ☐ (I	f no, explain in Remarks	3.)		
Are Vegetation, Soil, or Hydrology sign	nificantly dist	turbed	1?	Are "No	ormal Circumstances" p	resent?	Yes 🗵 No	
Are Vegetation, Soil, or Hydrology natu	rally probler	matic?)	(If need	ed, explain any answers	in Rem	arks.)	
SUMMARY OF FINDINGS - Attach site map				g point le	ocations, transect	s, imp	ortant feat	ures, etc.
Hydrophytic Vegetation Present? Yes ☐ No 🗵								
Hydric Soil Present? Yes No X				e Sampled				
Wetland Hydrology Present? Yes ☐ No 🗵			with	in a Wetlar	nd? Yes □	No 🔀		
Remarks:							4 0 7777	
No wetland criteria met. Data was	collected	l app	orox	imately 1	15 feet upslope to	the so	outh of We	tland A.
VEGETATION – Use scientific names of plan	ts.							
	Absolute			Indicator	Dominance Test wo	rksheet:		
True Stratum (Plot size: 30 ft)	% Cover 70	Spec Yes			Number of Dominant			
1. Tsuga heterophylla 2. Alnus rubra	10	No		FACU FAC	That Are OBL, FACW	, or FAC	D: <u>1</u>	(A)
3. Thuja plicata	10	No		FAC	Total Number of Dom		4	(-)
	10	110		TAC	Species Across All St	rata:	4	(B)
4	90		tal C		Percent of Dominant	Species	050/	(4 (5)
Sapling/Shrub Stratum (Plot size: 30 ft)		= 10	nai C	ovei	That Are OBL, FACW	, or FAC	D: <u>25%</u>	(A/B)
1. Acer circinatum	20	Yes	S	FAC	Prevalence Index wo	rkshee	t:	
2. Ilex aquifolium	5	No		FACU	Total % Cover of	· ·	Multiply b	<u>y:</u>
3. Rubus spectabilis	5	No		FAC	OBL species		x 1 =	
4					FACW species		x 2 =	
5					FAC species			
Hart Otratura (Distrains 40 ft)	30	= To	otal C	over	FACU species			
Herb Stratum (Plot size: 10 ft) 1. Polystichum munitum	10	Yes	s	FACU			x 5 =	
Dubus maisus		Yes		FACU	Column Totals:		(A)	(B)
2. Rubus ursinus 3					Prevalence Inde	ex = B/A	١ =	
4					Hydrophytic Vegeta			
5					☐ Rapid Test for Hy	drophyti	c Vegetation	
6					☐ Dominance Test i	s >50%		
7					☐ Prevalence Index	is ≤3.0¹		
8					☐ Morphological Ad			
9					data in Remar		•	neet)
10					☐ Wetland Non-Vas			
11					Problematic Hydro		•	' '
Woody Vine Stratum (Plot size: 30 ft)	15	= To	otal C	over	¹ Indicators of hydric s be present, unless dis			
1					Hydrophytic			
2					Vegetation			
% Bare Ground in Herb Stratum 85	0	= To	otal C	over	Present? Y	'es □	No ⊠	
Remarks:	l not most	th.	dos	inones te	oot Drovolonoo indi		worrontod	due te
No hydrophytic vegetation present; did combined lack of hydric soils and wetlet				mance te	ssi. Frevalence indi	JOII X	wananted (iue iO

Sampling Point: DP-3U

Depth	Matrix			Redo	x Feature	s						
(inches)	Color (moist)	%	Colc	r (moist)	%	Type ¹	Loc ²	Textu			Remarks	
0 - 3	10YR 3/1	100				-		SaLo	<u> </u>	Sandy lo	am	
3 - 7	10YR 3/2	100			-	-	-	SaLo)	Sandy lo	am	
7 - 14	10YR 4/3	100	-		-	-	-	SaLo)	Sandy lo	am	
												_
					_	-						
		-										
					-					-		
										-		
	oncentration, D=D						d Sand Gra					, M=Matrix.
_	Indicators: (App	icable to				ed.)					-	dric Soils³:
☐ Histosol	. ,			Sandy Redox (S						Muck (A10		
☐ Histic Ep	pipedon (A2)			Stripped Matrix _oamy Mucky M	. ,) (ovcont	MI DA 1\		_	Parent Mate Shallow Da	` ,	(TE12)
	n Sulfide (A4)			_oamy Gleyed N			WILKA I)		-	r (Explain ir		, ,
	l Below Dark Surfa	ce (A11)		Depleted Matrix		,		L	_ 00	i (Explaiii ii	r (Ciriano)	
	rk Surface (A12)	(,		Redox Dark Sur				3	ndicato	rs of hydror	hytic vege	tation and
	lucky Mineral (S1)			Depleted Dark S	` ,	7)				nd hydrolog		
☐ Sandy G	leyed Matrix (S4)			Redox Depressi	ions (F8)				unles	s disturbed	or problem	atic.
	Layer (if present)											
Type: No				-								
Depth (in	cnes):							Hydr	ic Soil	Present?	Yes 🗌	No ⊠
Remarks:												
No hydric s	soil criteria met											
HYDROLO	GY											
	drology Indicator	s:										1
Primary India	cators (minimum o	f one requ	uired; ch	eck all that appl	y)				Secor	ndary Indica	tors (2 or m	nore required)
☐ Surface	Water (A1)			☐ Water-Stai	ned Leave	es (B9) (ex	cept MLR	Α	□ W	ater-Staine	d Leaves (E	39) (MLRA 1, 2,
☐ High Wa	ter Table (A2)			1, 2, 4	A, and 4B)				4A, and 4	B)	
☐ Saturation	on (A3)			☐ Salt Crust	(B11)				☐ Dr	ainage Pat	erns (B10)	
☐ Water Mater Mat	arks (B1)			☐ Aquatic Inv	ertebrate:	s (B13)			☐ Dr	y-Season V	Vater Table	(C2)
☐ Sedimen	t Deposits (B2)			☐ Hydrogen \$	Sulfide Od	dor (C1)			☐ Sa	aturation Vis	sible on Aer	rial Imagery (C9)
☐ Drift Dep	osits (B3)			☐ Oxidized R	hizosphe	res along L	iving Root	s (C3)	☐ Ge	eomorphic F	Position (D2	2)
☐ Algal Ma	t or Crust (B4)			☐ Presence of	of Reduce	d Iron (C4))		☐ Sh	nallow Aquit	ard (D3)	
☐ Iron Dep	osits (B5)			☐ Recent Iron	n Reduction	on in Tilled	Soils (C6)		\Box FA	C-Neutral	Test (D5)	
☐ Surface	Soil Cracks (B6)			☐ Stunted or	Stressed	Plants (D1) (LRR A)			aised Ant M		
│	on Visible on Aeria	• •	` '	☐ Other (Exp	lain in Re	marks)			☐ Fr	ost-Heave I	Hummocks	(D7)
		VA Surfac	e (B8)									
☐ Sparsely	Vegetated Conca	ve Gunac										
		ve Gunac			N I a a							
☐ Sparsely	vations:	Yes 🗆	No 🗷	Depth (inches								
Sparsely Field Obser	vations: er Present?		No ⊠ No ⊠	Depth (inches	s): None	·						
☐ Sparsely Field Obser Surface Wat Water Table Saturation P	vations: er Present? Present? resent?	Yes 🗌			s): None	·	Wetla	and Hy	drology	/ Present?	Yes □	No ⊠
Field Obser Surface Wat Water Table Saturation P (includes cap	vations: er Present? Present? resent? pillary fringe)	Yes Yes Yes Yes	No ⊠ No ⊠	Depth (inches	None None					/ Present?	Yes □	No 🗵
Field Obser Surface Wat Water Table Saturation P (includes cap	vations: er Present? Present? resent?	Yes Yes Yes Yes	No ⊠ No ⊠	Depth (inches	None None					/ Present?	Yes 🗌	No ⊠
Field Obser Surface Wat Water Table Saturation P (includes cap	vations: er Present? Present? resent? pillary fringe)	Yes Yes Yes Yes	No ⊠ No ⊠	Depth (inches	None None					/ Present?	Yes 🗌	No 🗵
Sparsely Field Obser Surface Wat Water Table Saturation P (includes car Describe Re	vations: er Present? Present? resent? pillary fringe) corded Data (strea	Yes Yes Yes Yes Yes am gauge,	No ⊠ No ⊠ monitor	Depth (inches Depth (inches ing well, aerial p	None None photos, pr	evious ins				/ Present?	Yes 🗆	No ⊠
Sparsely Field Obser Surface Wat Water Table Saturation P (includes car Describe Re	vations: er Present? Present? resent? pillary fringe)	Yes Yes Yes Yes Yes am gauge,	No ⊠ No ⊠ monitor	Depth (inches Depth (inches ing well, aerial p	None None photos, pr	evious ins				/ Present?	Yes 🗌	No ⊠
Sparsely Field Obser Surface Wat Water Table Saturation P (includes car Describe Re	vations: er Present? Present? resent? pillary fringe) corded Data (strea	Yes Yes Yes Yes Yes am gauge,	No ⊠ No ⊠ monitor	Depth (inches Depth (inches ing well, aerial p	None None photos, pr	evious ins				y Present?	Yes 🗆	No ⊠

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

Project/Site: 1273.0009 - Deer Creek	(City/Co	ounty:	Puyallu	p/Pierce	s	Sampling Date:	1/5/22
		-			State: WA			
Investigator(s): Ryan Krapp and Mae Ancheta								
Landform (hillslope, terrace, etc.): Hillslope								
Subregion (LRR): A2								
Soil Map Unit Name: Indianola loamy sand, 5 to 15								
Are climatic / hydrologic conditions on the site typical for this								
Are Vegetation, Soil, or Hydrology sign	nificantly dist	turbed?	?	Are "No	ormal Circumstar	nces" preser	nt? Yes 🗷 🐧	No 🗆
Are Vegetation, Soil, or Hydrology natu	rally probler	natic?		(If neede	ed, explain any a	answers in R	temarks.)	
SUMMARY OF FINDINGS - Attach site map	showing	samp	oling	point lo	ocations, tra	nsects, ir	mportant fe	atures, etc.
Hydrophytic Vegetation Present? Yes ☐ No 🗵								
Hydric Soil Present? Yes ☐ No 🗵				Sampled		/oo□ No F	(C)	
Wetland Hydrology Present? Yes ☐ No 🗵		'	within	n a Wetlar	iu!	′es	<u> </u>	
Remarks: No wetland criteria met. Data wa	s collect	ed in	the	east-co	entral portio	on of the	subject pr	operty.
VEGETATION – Use scientific names of plan	te.							
VEGETATION - Use scientific fiames of plant	Absolute	Domir	nant	Indicator	Dominance To	est workshe	eet·	
Tree Stratum (Plot size: 30 ft)	% Cover	Speci	ies?	Status	Number of Do			
1. Alnus rubra	30	Yes		FAC	That Are OBL,			(A)
2. Pseudotsuga menziesii	10	No		FACU	Total Number	of Dominant	1	
3					Species Acros	s All Strata:	4	(B)
4	40				Percent of Dor			
Sapling/Shrub Stratum (Plot size: 30 ft)	40	= Tot	al Co	ver	That Are OBL,	FACW, or F	FAC: <u>50%</u>	(A/B)
1. Rubus armeniacus	70	Yes	;	FAC	Prevalence In	dex worksh	neet:	
2. Acer macrophyllum	20	Yes		FACU	Total % C	over of:	Multiply	y by:
3. Holodiscus discolor	10	No		FACU	OBL species		x 1 =	
4					FACW species	s	x 2 =	
5					FAC species		x 3 =	
	100	= Tot	al Co	ver	FACU species		x 4 =	
Herb Stratum (Plot size: 10 ft) 1. Rubus ursinus	70	Vac		FACII	-		x 5 =	
2. Polystichum munitum	10	No		FACU	Column Totals	:	(A)	(B)
3					Prevalen	ce Index =	B/A =	
4					Hydrophytic \			
5.						-	hytic Vegetation	n
6.					*	e Test is >50	-	
7					☐ Prevalence	e Index is ≤3	3.0 ¹	
8.							ions¹ (Provide s	
9							r on a separate	sheet)
10					☐ Wetland N			
11.							tic Vegetation ¹	
Woody Vine Stratum (Plot size: 30 ft)	80	= Tot	al Co	ver			nd wetland hydr ed or problema	
1					Hydrophytic			
2	^				Vegetation	. =		
% Bare Ground in Herb Stratum 20	0	= Tot	al Co	ver	Present?	Yes [□ No ⊠	
Remarks:	not mast	the -	1022;	nonoc +-	ot Droveler	o index =	of worrest-	
No hydrophytic vegetation present; did combined lack of hydric soils and wetla			ווזוטג	nance te	si. Fievalenc	e muex n	ot warrante(aue IO

Profile Desc Depth	ription: (Describe Matrix	e to the	uepin n		ox Feature		01 00111111	i tile abs	ciicc oi i	indicators.,	
(inches)	Color (moist)	%	Colo	or (moist)	<u>%</u>	Type ¹	Loc ²	Texture)	Re	marks_
0 - 5	10YR 3/1	100	-		-	-	-	SaLo	Sa	andy loam	w/ gravel
5 - 14+	10YR 4/4	100				-	-	SaLo	Sa	andy loam	w/ gravel
					_			-			
	-										
											_
17				lara al Matrica C			- 1010-		21 1' -	DI D	Data a M. Matela
	oncentration, D=De Indicators: (Appli						ed Sand Gr				Lining, M=Matrix. atic Hydric Soils³:
Histosol (cable to				ieu.)			2 cm Mu		and rigaric dons .
	ipedon (A2)			Sandy Redox (Stripped Matrix						ent Material	(TF2)
☐ Black His				Loamy Mucky	, ,	1) (except	MLRA 1)				urface (TF12)
	n Sulfide (A4)			Loamy Gleyed			,		•	xplain in Rei	` '
☐ Depleted	Below Dark Surfac	ce (A11)		Depleted Matri	x (F3)						
	rk Surface (A12)			Redox Dark Su	, ,			³ Ind	dicators o	f hydrophytic	c vegetation and
	ucky Mineral (S1)			Depleted Dark	,	7)					ust be present,
	leyed Matrix (S4)			Redox Depress	sions (F8)			1	unless di	sturbed or pr	roblematic.
Type: No	Layer (if present):										
Depth (inc				_				Llyadeia	Call Dra	aant? Va	a □ Na ☑
, ,				-				пуагіс	Soil Pre	Sent? re	s □ No ⊠
Remarks:											
No hydric s	soil criteria met.										
HYDROLO(GY										
_	drology Indicators										
Wetland Hyd			uired; ch	eck all that app	oly)				Secondar	y Indicators	(2 or more required)
Wetland Hyd Primary Indic ☐ Surface V	drology Indicators cators (minimum of Water (A1)		uired; ch	☐ Water-Sta	ained Leav		xcept MLR		☐ Water	-Stained Lea	(2 or more required) aves (B9) (MLRA 1, 2,
Wetland Hyd Primary Indic □ Surface V □ High Wat	cators (minimum of Water (A1) ter Table (A2)		uired; ch	☐ Water-Sta	ained Leav A, and 4E		xcept MLR		□ Water	-Stained Lea	aves (B9) (MLRA 1, 2 ,
Wetland Hyd Primary Indic □ Surface V □ High Wat □ Saturatio	cators (minimum of Water (A1) ter Table (A2) on (A3)		uired; ch	☐ Water-Sta 1, 2, 4 ☐ Salt Crust	ained Leav A, and 4E (B11)	3)	xcept MLR	R A [□ Water 4.4 □ Draina	-Stained Lea A, and 4B) age Patterns	aves (B9) (MLRA 1, 2, (B10)
Wetland Hyd Primary India Surface V High Wat Saturatio Water Ma	drology Indicators cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1)		uired; ch	☐ Water-Sta 1, 2, 4 ☐ Salt Crust ☐ Aquatic In	nined Leav A, and 4E (B11) overtebrate	s (B13)	xcept MLR	R A [☐ Water 4.4 ☐ Draina ☐ Dry-S	-Stained Lea A, and 4B) age Patterns eason Water	aves (B9) (MLRA 1, 2, (B10) r Table (C2)
Wetland Hyd Primary Indic Surface V High Wat Saturatio Water Ma Sediment	drology Indicators cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2)		uired; ch	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen	ained Leav A, and 4E (B11) avertebrate Sulfide O	es (B13) dor (C1)		RA [☐ Water 4.6 ☐ Draina ☐ Dry-S ☐ Satura	-Stained Lea a, and 4B) age Patterns eason Water ation Visible	(B10) r Table (C2) on Aerial Imagery (C9)
Wetland Hyd Primary Indic Surface W High Wat Saturatio Water Ma Sediment Drift Depo	cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3)		uired; ch	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized I	nined Leaver A, and 4E (B11) invertebrate Sulfide OR Rhizosphe	es (B13) dor (C1) res along	Living Roo	RA [Water 4.4 Draina Dry-S Satura Geom	-Stained Lea A, and 4B) age Patterns eason Water ation Visible orphic Posit	(B10) (MLRA 1, 2, Table (C2) on Aerial Imagery (C9) ion (D2)
Wetland Hyd Primary India Surface V High Wat Saturatio Water Ma Sediment Drift Depo	cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4)		uired; ch	Water-State 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized I Presence	ained Leav A, and 4E (B11) avertebrate Sulfide O Rhizosphe of Reduce	es (B13) dor (C1) res along ed Iron (C4	Living Roo 1)	RA [Water 4/4 Draina Dry-Si Satura Geom Shallo	-Stained Lea A, and 4B) age Patterns eason Water ation Visible orphic Posit w Aquitard ((B10) (MLRA 1, 2, Table (C2) on Aerial Imagery (C9) ion (D2) (D3)
Wetland Hyd Primary Indic Surface V High Wat Saturatio Water Ma Sediment Drift Depo Algal Mat	cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5)		uired; ch	Water-Star 1, 2, 4 \[\] Salt Crust \[\] Aquatic In \[\] Hydrogen \[\] Oxidized I \[\] Presence \[\] Recent Iro	ained Leav A, and 4E (B11) evertebrate Sulfide O Rhizosphe of Reduce	es (B13) dor (C1) res along ed Iron (C4 on in Tille	Living Roo 4) d Soils (C6	RA [Water 4.4 Draina Dry-Sa Satura Geom Shallo FAC-N	-Stained Lea A, and 4B) age Patterns eason Water ation Visible orphic Posit w Aquitard (aves (B9) (MLRA 1, 2, (B10) r Table (C2) on Aerial Imagery (C9) ion (D2) (D3) (D5)
Wetland Hyd Primary Indice Surface V High Wat Saturatio Water Ma Sediment Drift Dept Algal Mat Iron Dept Surface S	cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6)	one requ		Water-State 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Iro Stunted o	Ained Leave A, and 4E (B11) Invertebrate Sulfide O Rhizosphe of Reduce on Reducti r Stressed	es (B13) dor (C1) res along ed Iron (C4 on in Tille Plants (D	Living Roo 1)	RA [Water 4.4 Draina Dry-S Satura Geom Shallo FAC-N Raise	-Stained Lea A, and 4B) age Patterns eason Water ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mounc	aves (B9) (MLRA 1, 2, (B10) r Table (C2) on Aerial Imagery (C9) ion (D2) (D3) (D5) ds (D6) (LRR A)
Wetland Hyd Primary Indice Surface V High Wat Saturatio Water Ma Sediment Drift Dept Algal Mat Iron Dept Surface S Inundatio	cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial	one requ	(B7)	Water-Star 1, 2, 4 \[\] Salt Crust \[\] Aquatic In \[\] Hydrogen \[\] Oxidized I \[\] Presence \[\] Recent Iro	Ained Leave A, and 4E (B11) Invertebrate Sulfide O Rhizosphe of Reduce on Reducti r Stressed	es (B13) dor (C1) res along ed Iron (C4 on in Tille Plants (D	Living Roo 4) d Soils (C6	RA [Water 4.4 Draina Dry-S Satura Geom Shallo FAC-N Raise	-Stained Lea A, and 4B) age Patterns eason Water ation Visible orphic Posit w Aquitard (aves (B9) (MLRA 1, 2, (B10) r Table (C2) on Aerial Imagery (C9) ion (D2) (D3) (D5) ds (D6) (LRR A)
Wetland Hydelian Primary Indice North High Water Mater Material Materia Material Material Material Material Material Material Material	cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav	one requ	(B7)	Water-State 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Iro Stunted o	Ained Leave A, and 4E (B11) Invertebrate Sulfide O Rhizosphe of Reduce on Reducti r Stressed	es (B13) dor (C1) res along ed Iron (C4 on in Tille Plants (D	Living Roo 4) d Soils (C6	RA [Water 4.4 Draina Dry-S Satura Geom Shallo FAC-N Raise	-Stained Lea A, and 4B) age Patterns eason Water ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mounc	aves (B9) (MLRA 1, 2, (B10) r Table (C2) on Aerial Imagery (C9) ion (D2) (D3) (D5) ds (D6) (LRR A)
Wetland Hyden Primary Indice North Primary Indice N	cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concavivations:	Imagery e Surface	(B7) be (B8)	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o Other (Ex	ained Leave A, and 4E (B11) avertebrate Sulfide O Rhizosphe of Reduce on Reducti r Stressed plain in Re	es (B13) dor (C1) res along ed Iron (C4 on in Tille Plants (D emarks)	Living Roo 4) d Soils (C6	RA [Water 4.4 Draina Dry-S Satura Geom Shallo FAC-N Raise	-Stained Lea A, and 4B) age Patterns eason Water ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mounc	aves (B9) (MLRA 1, 2, (B10) r Table (C2) on Aerial Imagery (C9) ion (D2) (D3) (D5) ds (D6) (LRR A)
Wetland Hyden Primary Indice North Primary Indice N	cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present?	Imagery e Surface	e (B7) ee (B8) No 🗵	Water-Star 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o Other (Ex	Ained Leaver A, and 4E (B11) Avertebrate Sulfide O Rhizosphe of Reduce on Reduction Resulting r Stressed plain in Results: None	es (B13) dor (C1) res along ed Iron (C4 on in Tille Plants (Demarks)	Living Roo 4) d Soils (C6	RA [Water 4.4 Draina Dry-S Satura Geom Shallo FAC-N Raise	-Stained Lea A, and 4B) age Patterns eason Water ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mounc	aves (B9) (MLRA 1, 2, (B10) r Table (C2) on Aerial Imagery (C9) ion (D2) (D3) (D5) ds (D6) (LRR A)
Wetland Hyderimary Indice Primary Indice Surface Note High Wate Saturatio Water Mater Mate	drology Indicators eators (minimum of Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present?	Imagery e Surface Yes Yes	(B7) te (B8) No 🗵	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o Other (Ex	Anned Leaver Anne Alexandra Leaver Le	es (B13) dor (C1) res along ed Iron (C4 on in Tille Plants (Demarks)	Living Roo 4) d Soils (C6 1) (LRR A)	ts (C3) [Water 4A Draina Dry-Si Satura Geom Shallo FAC-N Raise Frost-	-Stained Lea a, and 4B) age Patterns eason Water ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mound Heave Humi	aves (B9) (MLRA 1, 2, (B10) r Table (C2) on Aerial Imagery (C9) ion (D2) (D3) (D5) ds (D6) (LRR A) mocks (D7)
Wetland Hyderimary Indice Primary Indice Surface V High Wat Saturatio Water Ma Sediment Drift Dep Algal Mat Iron Depo Surface S Inundatio Sparsely Field Observ Surface Water Table Saturation Pr	cators (minimum of Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present? Present?	Imagery e Surface	e (B7) ee (B8) No 🗵	Water-Star 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o Other (Ex	Anned Leaver Anne Alexandra Leaver Le	es (B13) dor (C1) res along ed Iron (C4 on in Tille Plants (Demarks)	Living Roo 4) d Soils (C6 1) (LRR A)	ts (C3) [Water 4A Draina Dry-Si Satura Geom Shallo FAC-N Raise Frost-	-Stained Lea A, and 4B) age Patterns eason Water ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mounc	aves (B9) (MLRA 1, 2, (B10) r Table (C2) on Aerial Imagery (C9) ion (D2) (D3) (D5) ds (D6) (LRR A) mocks (D7)
Wetland Hyden Primary Indice North Indice North Primary Indice North Indice Nort	cators (minimum of Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present? Present?	Imagery e Surface Yes Yes Yes Yes Yes	(B7) ee (B8) No 🗵 No 🗵 No 🗵	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o Other (Ex Depth (incher Depth (incher	Anned Leaver Anne Alexandra Leaver Le	es (B13) dor (C1) res along ed Iron (C4 on in Tille Plants (Demarks)	Living Roo 4) d Soils (C6 1) (LRR A)	RA [Water 4A Draina Dry-Si Satura Geom Shallo FAC-N Raise Frost-	-Stained Lea a, and 4B) age Patterns eason Water ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mound Heave Humi	aves (B9) (MLRA 1, 2, (B10) r Table (C2) on Aerial Imagery (C9) ion (D2) (D3) (D5) ds (D6) (LRR A) mocks (D7)
Wetland Hyden Primary Indice North Indice North Primary Indice North Indice Nort	cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present? Present? resent?	Imagery e Surface Yes Yes Yes Yes Yes	(B7) ee (B8) No 🗵 No 🗵 No 🗵	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o Other (Ex Depth (incher Depth (incher	Anned Leaver Anne Alexandra Leaver Le	es (B13) dor (C1) res along ed Iron (C4 on in Tille Plants (Demarks)	Living Roo 4) d Soils (C6 1) (LRR A)	RA [Water 4A Draina Dry-Si Satura Geom Shallo FAC-N Raise Frost-	-Stained Lea a, and 4B) age Patterns eason Water ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mound Heave Humi	aves (B9) (MLRA 1, 2, (B10) r Table (C2) on Aerial Imagery (C9) ion (D2) (D3) (D5) ds (D6) (LRR A) mocks (D7)
Wetland Hyden Primary Indice North Indice North Primary Indice North Indice Nort	cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present? Present? resent?	Imagery e Surface Yes Yes Yes Yes Yes	(B7) ee (B8) No 🗵 No 🗵 No 🗵	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o Other (Ex Depth (incher Depth (incher	Anned Leaver Anne Alexandra Leaver Le	es (B13) dor (C1) res along ed Iron (C4 on in Tille Plants (Demarks)	Living Roo 4) d Soils (C6 1) (LRR A)	RA [Water 4A Draina Dry-Si Satura Geom Shallo FAC-N Raise Frost-	-Stained Lea a, and 4B) age Patterns eason Water ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mound Heave Humi	aves (B9) (MLRA 1, 2, (B10) r Table (C2) on Aerial Imagery (C9) ion (D2) (D3) (D5) ds (D6) (LRR A) mocks (D7)
Wetland Hyderimary Indice Primary Indice Surface V High Water Ma Saturatio Water Ma Sediment Drift Depo Algal Mat Iron Depo Iron Depo Surface S Inundatio Sparsely Field Observ Surface Water Table Saturation Pr (includes cap Describe Rec	cators (minimum of Water (A1) ter Table (A2) on (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concav vations: er Present? Present? resent?	Imagery e Surface Yes Yes Yes Yes The gauge	No 🗵 No 🗵 No 🗵	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o Other (Ex Depth (inched Depth (inch	Anno Leave Anno Alexandra Leave Anno Anno Alexandra Leave Anno Anno Anno Anno Anno Anno Anno Ann	es (B13) dor (C1) res along ed Iron (C4 on in Tille Plants (Demarks)	Living Roo 4) d Soils (C6 1) (LRR A)	RA [Water 4A Draina Dry-Si Satura Geom Shallo FAC-N Raise Frost-	-Stained Lea a, and 4B) age Patterns eason Water ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mound Heave Humi	aves (B9) (MLRA 1, 2, (B10) r Table (C2) on Aerial Imagery (C9) ion (D2) (D3) (D5) ds (D6) (LRR A) mocks (D7)
Wetland Hyderimary Indice Primary Indice Surface V High Water Ma Saturatio Water Ma Sediment Drift Depo Algal Mat Iron Depo Iron Depo Surface S Inundatio Sparsely Field Observ Surface Water Table Saturation Pr (includes cap Describe Rec	cators (minimum of Water (A1) ter Table (A2) in (A3) arks (B1) t Deposits (B2) osits (B3) t or Crust (B4) osits (B5) Soil Cracks (B6) on Visible on Aerial Vegetated Concavivations: er Present? Present? present? present? corded Data (stream	Imagery e Surface Yes Yes Yes Yes The gauge	No 🗵 No 🗵 No 🗵	Water-Sta 1, 2, 4 Salt Crust Aquatic In Hydrogen Oxidized I Presence Recent Irc Stunted o Other (Ex Depth (inched Depth (inch	Anno Leave Anno Alexandra Leave Anno Anno Alexandra Leave Anno Anno Anno Anno Anno Anno Anno Ann	es (B13) dor (C1) res along ed Iron (C4 on in Tille Plants (Demarks)	Living Roo 4) d Soils (C6 1) (LRR A)	RA [Water 4A Draina Dry-Si Satura Geom Shallo FAC-N Raise Frost-	-Stained Lea a, and 4B) age Patterns eason Water ation Visible orphic Posit w Aquitard (Neutral Test d Ant Mound Heave Humi	aves (B9) (MLRA 1, 2, (B10) r Table (C2) on Aerial Imagery (C9) ion (D2) (D3) (D5) ds (D6) (LRR A) mocks (D7)

Appendix F — Wetland Rating Forms

RATING SUMMARY – Western Washington

Name of wetland (or ID #): Offsite 1	Date of site visit: 1/5/22
Rated by Ryan Krapp	_ Trained by Ecology? <u>✓</u> YesNo Date of training 10/18
HGM Class used for rating Slope	Wetland has multiple HGM classes?Y <u>✓</u> N
NOTE: Form is not complete witho Source of base aerial photo/map	p ESRI ArcGIS
OVERALL WETLAND CATEGORY	IV (based on functions <u>v</u> or special characteristics)

1. Category of wetland based on FUNCTIONS

	_Category I – Total score = 23 - 27
	_Category II — Total score = 20 - 22
	_Category III - Total score = 16 - 19
X	_Category IV – Total score = 9 - 15

FUNCTION	Improving Water Quality	Hydrologic	Habitat						
	Circle the appropriate ratings								
Site Potential	L	L	L						
Landscape Potential	М	M	L						
Value	Н	М	М	TOTAL					
Score Based on Ratings	6	5	4	15					

Score for each function based on three ratings (order of ratings is not *important)* 9 = H,H,H8 = H,H,M7 = H,H,L 7 = H,M,M6 = H,M,L6 = M,M,M5 = H,L,L 5 = M,M,L4 = M, L, L3 = L, L, L

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CAT	CATEGORY	
Estuarine	I	II	
Wetland of High Conservation Value		I	
Bog		I	
Mature Forest		I	
Old Growth Forest		I	
Coastal Lagoon	I	II	
Interdunal	I II	III IV	
None of the above	N/A		

Maps and figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including polygons for accessible habitat and undisturbed habitat	H 2.1, H 2.2, H 2.3	
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	
Plant cover of dense, rigid trees, shrubs, and herbaceous plants	S 4.1	
(can be added to figure above)		
Boundary of 150 ft buffer (can be added to another figure)	S 2.1, S 5.1	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	\$ 3.3	

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1.	Are the water levels in the e	ntire unit usually controll	ed by tides except during floods?	
	NO – go to 2		etland class is Tidal Fringe – go to 1.1 low flow below 0.5 ppt (parts per thousand)?	
	NO – Saltwater Tidal Frin If your wetland can be class	nge (Estuarine) sified as a Freshwater Tida is an Estuarine wetland a	☐ YES – Freshwater Tidal Fringe al Fringe use the forms for Riverine wetlands. If and is not scored. This method cannot be used to	
2.	The entire wetland unit is fla and surface water runoff are		only source (>90%) of water to it. Groundwat the unit.	er
X]NO – go to 3 <i>If your wetland can be classi</i> j	fied as a Flats wetland, use	☐ YES – The wetland class is Flats ethe form for Depressional wetlands.	
3.		wetland is on the shores on time of the year) at least	of a body of permanent open water (without an st 20 ac (8 ha) in size;	ıy
X	NO – go to 4	YES – The wetland class	ss is Lake Fringe (Lacustrine Fringe)	
4.	_	e (<i>slope can be very gradue</i> the wetland in one direct rface, as sheetflow, or in a	al), tion (unidirectional) and usually comes from a swale without distinct banks,	
]NO – go to 5		▼ YES - The wetland class is Slope	
			vetlands except occasionally in very small and ns are usually <3 ft diameter and less than 1 ft	
5.	Does the entire wetland uni The unit is in a valley, or stream or river, The overbank flooding o	stream channel, where it	gets inundated by overbank flooding from that	

W	cland name or number <u>Oπ</u>
	NO – go to 6 YES – The wetland class is Riverine NOTE : The Riverine unit can contain depressions that are filled with water when the river is not flooding
6.	Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? This means that any outlet, if present, is higher than the interior of the wetland.
	NO – go to 7
7.	Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.
	NO – go to 8

 \sim

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit	HGM class to
being rated	use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

SLOPE WETLANDS	
Water Quality Functions - Indicators that the site functions to improve water quality	
S 1.0. Does the site have the potential to improve water quality?	
S 1.1. Characteristics of the average slope of the wetland: (a 1% slope has a 1 ft vertical drop in elevation for every	
100 ft of horizontal distance)	
Slope is 1% or less points = 3	0
Slope is > 1%-2% points = 2	0
Slope is > 2%-5% points = 1	
Slope is greater than 5% points = 0	
S 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic (use NRCS definitions): Yes = 3 No = 0	0
S 1.3. Characteristics of the plants in the wetland that trap sediments and pollutants:	
Choose the points appropriate for the description that best fits the plants in the wetland. Dense means you	
have trouble seeing the soil surface (>75% cover), and uncut means not grazed or mowed and plants are higher than 6 in.	

Dense, uncut, herbaceous plants > 90% of the wetland area points = 6	2
Dense, uncut, herbaceous plants > ½ of area points = 3	
Dense, woody, plants > ½ of area points = 2	
Dense, uncut, herbaceous plants > ¼ of area points = 1	
Does not meet any of the criteria above for plants points = 0	
Total for S 1 Add the points in the boxes above	2
Rating of Site Potential If score is: 12 = H 6-11 = M X 0-5 = L Record the rating on the	

S 2.0. Does the landscape have the potential to support the water quality function of the site?	
S 2.1. Is > 10% of the area within 150 ft on the uphill side of the wetland in land uses that generate pollutants? Yes = 1 No = 0	1
S 2.2. Are there other sources of pollutants coming into the wetland that are not listed in question S 2.1? Other sources Yes = 1 No = 0	0
Total for S 2 Add the points in the boxes above	1

Rating of Landscape Potential If score is: \times 1-2 = M 0 = L

Record the rating on the first page

S 3.0. Is the water quality improvement provided by the site valuable to society?	
S 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the 303(d) list? Yes = 1 No = 0	0
S 3.2. Is the wetland in a basin or sub-basin where water quality is an issue? At least one aquatic resource in the basin is on the $303(d)$ list. Yes = 1 No = 0	1
S 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality? <i>Answer YES</i> if there is a TMDL for the basin in which unit is found. Yes = 2 No = 0	2
Total for S 3 Add the points in the boxes above	3

Rating of Value If score is: $\times 2-4 = H$ ___1 = M ___0 = L

Record the rating on the first page

SLOPE WETLANDS		
Hydrologic Functions - Indicators that the site functions to reduce flooding and stream erosion		
S 4.0. Does the site have the potential to reduce flooding and stream erosion?		
S 4.1. Characteristics of plants that reduce the velocity of surface flows during storms: Choose the points appropriate for the description that best fits conditions in the wetland. Stems of plants should be thick enough (usually > 1/8 in), or dense enough, to remain erect during surface flows. Dense, uncut, rigid plants cover > 90% of the area of the wetland All other conditions Dense, uncut, rigid plants cover > 90% of the area of the wetland points = 1		
Rating of Site Potential If score is: $1 = M \times 0 = L$ Record the rating on the first		

S 5.0. Does the landscape have the potential to support the hydrologic functions of the site?		
S 5.1. Is more than 25% of the area within 150 ft upslope of wetland in land uses or cover that generate excess		1
surface runoff?	Yes = 1 No = 0	

Rating of Landscape Potential If score is: $\times 1 = M$ ___0 = L

Record the rating on the first page

S 6.0. Are the hydrologic functions provided by the site valuable to society?		
S 6.1. Distance to the nearest areas downstream that have flooding problems: The sub-basin immediately down-gradient of site has flooding problems that result in damage to human or natural resources (e.g., houses or salmon redds) Surface flooding problems are in a sub-basin farther down-gradient No flooding problems anywhere downstream points	= 2 = 1	
S 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan? Yes = $2 \text{ No} = 0$		
Total for S 6 Add the points in the boxes abo	ove 1	

Rating of Value If score is: ___2-4 = H __X 1 = M ___0 = L

Record the rating on the first page

NOTES and FIELD OBSERVATIONS:

These questions apply to wetlands of all HGM classes. **HABITAT FUNCTIONS** - Indicators that site functions to provide important habitat H 1.0. Does the site have the potential to provide habitat? H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked. Aquatic bed 4 structures or more: points = 4 3 structures: points = 2 ___Emergent 1 ___Scrub-shrub (areas where shrubs have > 30% cover) 2 structures: points = 1 × Forested (areas where trees have > 30% cover) 1 structure: points = 0 If the unit has a Forested class, check if: × The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the Forested polygon H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see text for descriptions of hydroperiods). Permanently flooded or inundated 4 or more types present: points = 3 Seasonally flooded or inundated 3 types present: points = 2 Occasionally flooded or inundated 2 types present: points = 1 0 × Saturated only 1 type present: points = 0 __Permanently flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream in, or adjacent to, the wetland Lake Fringe wetland 2 points Freshwater tidal wetland 2 points H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft². Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle 1 If you counted: > 19 species points = 2 5 - 19 species points = 1 points = 0 < 5 species H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. If you have four or more plant classes or three classes and open water, the rating is always high. 0 None = 0 points Moderate = 2 points Low = 1 point All three diagrams in this row are **HIGH** = 3points

Wetland name or number Offsite 1

H 1.5. Special habitat features:				
Check the habitat features that are present in the wetland. The number of checks is the number of points.				
x_Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long).				
Standing snags (dbh > 4 in) within the wetland				
Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends at least 3.3 ft (1 m)				
over a stream (or ditch) in, or contiguous with the wetland, for at least 33 ft (10 m)	2			
Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree				
slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet weathered				
where wood is exposed)				
At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas that are				
permanently or seasonally inundated (structures for egg-laying by amphibians)				
Invasive plants cover less than 25% of the wetland area in every stratum of plants (see H 1.1 for list of				
strata)				
Total for H 1 Add the points in the boxes above	4			
Rating of Site Potential If score is:15-18 = H7-14 = MX_0-6 = L	the first page			
H 2.0. Does the landscape have the potential to support the habitat functions of the site?				
H 2.1. Accessible habitat (include only habitat that directly abuts wetland unit).				
Calculate: 0.00 % undisturbed habitat + [(% moderate and low intensity land uses) 0.00 /2] = 0 %				
If total accessible habitat is:				
> $\frac{1}{3}$ (33.3%) of 1 km Polygon points = 3				
20-33% of 1 km Polygon points = 2	0			
10-19% of 1 km Polygon points = 1				
· -				
< 10% of 1 km Polygon points = 0				
H 2.2. Undisturbed habitat in 1 km Polygon around the wetland. Calculate: 4.24 % undisturbed habitat + [(% moderate and low intensity land uses) 25.15 /2] = 16.81 %				
Undisturbed habitat > 50% of Polygon points = 3				
Undisturbed habitat 10-50% and in 1-3 patches points = 2	1			
Undisturbed habitat 10-50% and > 3 patches points = 1				
Undisturbed habitat < 10% of 1 km Polygon points = 0				
H 2.3. Land use intensity in 1 km Polygon: If	-2			
> 50% of 1 km Polygon is high intensity land use points = (-2)	_			
≤ 50% of 1 km Polygon is high intensity points = 0	1			
Total for H 2 Add the points in the boxes above	<u>-1</u>			
Rating of Landscape Potential If score is:4-6 = H1-3 = MX < 1 = L	he first page			
H 3.0. Is the habitat provided by the site valuable to society?	-			
H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies? Choose only the highest score				
that applies to the wetland being rated.				
Site meets ANY of the following criteria: points = 2				
 It has 3 or more priority habitats within 100 m (see next page) 				
 It provides habitat for Threatened or Endangered species (any plant or animal on the state or federal lists) 				
It is mapped as a location for an individual WDFW priority species	1			
 It is a Wetland of High Conservation Value as determined by the Department of Natural Resources 				
— It has been categorized as an important habitat site in a local or regional comprehensive plan, in a				
Shoreline Master Plan, or in a watershed plan				
× Site has 1 or 2 priority habitats (listed on next page) within 100 m points = 1				
Site does not meet any of the criteria above points = 0	<u> </u>			
Rating of Value If score is: 2 = H X 1 = M 0 = L Record the rating on	the first page			

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

WDFW Priority Habitats

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. http://wdfw.wa.gov/publications/00165/wdfw00165.pdf or access the list from here: http://wdfw.wa.gov/conservation/phs/list/)

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: *NOTE:* This question is independent of the land use between the wetland unit and the priority habitat.

- **Aspen Stands:** Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- **Herbaceous Balds:** Variable size patches of grass and forbs on shallow soils over bedrock.
- Old-growth/Mature forests: Old-growth west of Cascade crest Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. Mature forests Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- **Oregon White Oak:** Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- **Westside Prairies:** Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- **Instream:** The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- **Nearshore**: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report see web link on previous page*).
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- **Talus:** Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Wetland Type	Category
Check off any criteria that apply to the wetland. Circle the category when the appropriate criteria are met.	
SC 1.0. Estuarine wetlands	
Does the wetland meet the following criteria for Estuarine wetlands?	
☐ The dominant water regime is tidal,	
☐ Vegetated, and	
☐ With a salinity greater than 0.5 ppt ☐ Yes –Go to SC 1.1 ☒ No= Not an estuarine wetland	
SC 1.1. Is the wetland within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area	
Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC 332-30-151?	
\square Yes = Category I \square No - Go to SC 1.2	
SC 1.2. Is the wetland unit at least 1 ac in size and meets at least two of the following three conditions?	
☐ The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less	
than 10% cover of non-native plant species. (If non-native species are Spartina, see page 25)	
At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or unmowed grassland.	
The wetland has at least two of the following features: tidal channels, depressions with open water, or	
contiguous freshwater wetlands. Yes = Category No = Category	
Contiguous irestiwater wettanas.	
SC 2.0. Wetlands of High Conservation Value (WHCV)	
SC 2.1. Has the WA Department of Natural Resources updated their website to include the list of Wetlands of High	
Conservation Value?	
SC 2.2. Is the wetland listed on the WDNR database as a Wetland of High Conservation Value?	
☐Yes = Category I ☑No = Not a WHCV	
SC 2.3. Is the wetland in a Section/Township/Range that contains a Natural Heritage wetland? http://www1.dnr.wa.gov/nhp/refdesk/datasearch/wnhpwetlands.pdf	
Yes − Contact WNHP/WDNR and go to SC 2.4 ⊠No = Not a WHCV	
SC 2.4. Has WDNR identified the wetland within the S/T/R as a Wetland of High Conservation Value and listed it on	
their website?	
SC 3.0. Bogs	
Does the wetland (or any part of the unit) meet both the criteria for soils and vegetation in bogs? <i>Use the key</i>	
below. If you answer YES you will still need to rate the wetland based on its functions.	
SC 3.1. Does an area within the wetland unit have organic soil horizons, either peats or mucks, that compose 16 in or	
more of the first 32 in of the soil profile?	
SC 3.2. Does an area within the wetland unit have organic soils, either peats or mucks, that are less than 16 in deep	
over bedrock, or an impermeable hardpan such as clay or volcanic ash, or that are floating on top of a lake or	
pond?	
SC 3.3. Does an area with peats or mucks have more than 70% cover of mosses at ground level, AND at least a 30%	
cover of plant species listed in Table 4? \square Yes = Is a Category I bog \square No – Go to SC 3.4 NOTE: If you are uncertain about the extent of mosses in the understory, you may substitute that criterion by	
measuring the pH of the water that seeps into a hole dug at least 16 in deep. If the pH is less than 5.0 and the	
plant species in Table 4 are present, the wetland is a bog.	
SC 3.4. Is an area with peats or mucks forested (> 30% cover) with Sitka spruce, subalpine fir, western red cedar,	
western hemlock, lodgepole pine, quaking aspen, Engelmann spruce, or western white pine, AND any of the	
species (or combination of species) listed in Table 4 provide more than 30% of the cover under the canopy?	
☐Yes = Is a Category I bog ☐No = Is not a bog	

SC 4.0. Forested Wetlands	
Does the wetland have at least 1 contiguous acre of forest that meets one of these criteria for the WA Department of Fish and Wildlife's forests as priority habitats? If you answer YES you will still need to rate the wetland based on its functions. — Old-growth forests (west of Cascade crest): Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) that are at least 200 years of	
 age OR have a diameter at breast height (dbh) of 32 in (81 cm) or more. Mature forests (west of the Cascade Crest): Stands where the largest trees are 80- 200 years old OR the species that make up the canopy have an average diameter (dbh) exceeding 21 in (53 cm). 	
☐ Yes = Category I ☑No = Not a forested wetland for this section	
SC 5.0. Wetlands in Coastal Lagoons	
Does the wetland meet all of the following criteria of a wetland in a coastal lagoon? — The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks — The lagoon in which the wetland is located contains ponded water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom) □ Yes − Go to SC 5.1 ⊠No = Not a wetland in a coastal lagoon	
 SC 5.1. Does the wetland meet all of the following three conditions? — The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of aggressive, opportunistic plant species (see list of species on p. 100). — At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or unmowed grassland. — The wetland is larger than ¹/₁₀ ac (4350 ft²) 	
☐Yes = Category I ☐No = Category II	
SC 6.0. Interdunal Wetlands	
Is the wetland west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)? If you answer yes you will still need to rate the wetland based on its habitat functions. In practical terms that means the following geographic areas: — Long Beach Peninsula: Lands west of SR 103 — Grayland-Westport: Lands west of SR 105 — Ocean Shores-Copalis: Lands west of SR 115 and SR 109 — \[\textstyle \text{Yes} - \text{Go to SC 6.1} \] \[\textstyle \text{No} = \text{not an interdunal wetland for rating} \]	
SC 6.1. Is the wetland 1 ac or larger and scores an 8 or 9 for the habitat functions on the form (rates H,H,H or H,H,M for the three aspects of function)? \[\textstyle \text{Yes} = \textstyle \text{Category I} \textstyle \textstyle \textstyle \text{OO} = \text{GO} to \text{SC 6.2} \] SC 6.2. Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger?	
Category of wetland based on Special Characteristics If you answered No for all types, enter "Not Applicable" on Summary Form	

Wetland name or number Off

This page left blank intentionally

RATING SUMMARY – Western Washington

Name of wetland (or ID #): Wetland A	Date of site visit: 11/16/21, 1/5/2:	
Rated by Kyla Caddey/Ryan Krapp	Trained by Ecology? Yes No Date of training 11/16 & 10/18	
HGM Class used for rating Depressional	Wetland has multiple HGM classes? <u>✓</u> YN	
NOTE: Form is not complete without the figures requested (figures can be combined). Source of base aerial photo/map ESRI ArcGIS		
OVERALL WETLAND CATEGORY	(based on functions <u>v</u> or special characteristics)	
1 Catagonia of wetland based on FI	INICTIONIC	

1. Category of wetland based on FUNCTIONS

Category I – Total score = 23 - 27

Category II – Total score = 20 - 22

X Category III – Total score = 16 - 19

Category IV – Total score = 9 - 15

FUNCTION	Improving Water Quality	Hydrologic	Habitat	
		Circle the ap	propriate ratings	
Site Potential	М	L	М	
Landscape Potential	М	М	L	
Value	Н	М	М	TOTAL
Score Based on Ratings	7	5	5	17

Score for each function based on three ratings (order of ratings is not *important)* 9 = H,H,H8 = H,H,M7 = H,H,L 7 = H,M,M6 = H,M,L6 = M,M,M5 = H,L,L 5 = M,M,L4 = M,L,L3 = L, L, L

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CATEGORY	
Estuarine	I	II
Wetland of High Conservation Value		I
Bog		I
Mature Forest		I
Old Growth Forest		I
Coastal Lagoon	I	II
Interdunal	I II	III IV
None of the above	N/A	

Maps and figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	
Plant cover of dense , rigid trees, shrubs, and herbaceous plants	S 4.1	
(can be added to figure above)		
Boundary of 150 ft buffer (can be added to another figure)	S 2.1, S 5.1	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	\$ 3.3	

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1.	Are the water levels in the entire	unit usually controlled by tides except during floods?	
	∑ NO – go to 2 ☐ YES – the wetland class is Tidal Fringe – go to 1.1		
-	1.1 Is the salinity of the water dur	g periods of annual low flow below 0.5 ppt (parts per thousand)?	
	,	as a Freshwater Tidal Fringe use the forms for Riverine wetlands. If it Estuarine wetland and is not scored. This method cannot be used to	
2.	The entire wetland unit is flat an and surface water runoff are NO	I precipitation is the only source (>90%) of water to it. Groundwater sources of water to the unit.	
×	NO – go to 3 If your wetland can be classified	TYES – The wetland class is Flats is a Flats wetland, use the form for Depressional wetlands.	
3.	•	and is on the shores of a body of permanent open water (without any ne of the year) at least 20 ac (8 ha) in size;	
Σ	NO – go to 4	ES – The wetland class is Lake Fringe (Lacustrine Fringe)	
4.	_	oe can be very gradual), vetland in one direction (unidirectional) and usually comes from as sheetflow, or in a swale without distinct banks,	
]NO – go to 5	▼YES - The wetland class is Slope	
	-	nd in these type of wetlands except occasionally in very small and immocks (depressions are usually <3 ft diameter and less than 1 ft	
5.	Does the entire wetland unit me The unit is in a valley, or stre stream or river, The overbank flooding occur	m channel, where it gets inundated by overbank flooding from that	

X	NO – go to 6 NOTE : The Riverine unit can contain depress flooding	☐ YES – The wetland class is Riverine ions that are filled with water when the river is not
6.		pression in which water ponds, or is saturated to the neans that any outlet, if present, is higher than the interior
	NO – go to 7	▼YES – The wetland class is Depressional
7.	flooding? The unit does not pond surface was	t area with no obvious depression and no overbank ter more than a few inches. The unit seems to be The wetland may be ditched, but has no obvious natural
	NO – go to 8	☐ YES – The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit	HGM class to	
being rated	use in rating	
Slope + Riverine	Riverine	
Slope + Depressional	Depressional	
Slope + Lake Fringe	Lake Fringe	
Depressional + Riverine along stream	Depressional	
within boundary of depression		
Depressional + Lake Fringe	Depressional	
Riverine + Lake Fringe	Riverine	
Salt Water Tidal Fringe and any other	Treat as	
class of freshwater wetland	ESTUARINE	

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

Wetland name or number Wetland A

DEPRESSIONAL AND FLATS WETLANDS				
Water Quality Functions - Indicators that the site functions to improve water quality				
D 1.0. Does the site have the potential to improve water quality?				
D 1.1. Characteristics of surface water outflows from the wetland:				
Wetland is a depression or flat depression (QUESTION 7 on key) with no surface water leaving it (no outlet). points = 3				
Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing outlet. points = 2	1			
Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing points = 1 Wetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch. points = 1				
D 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic (use NRCS definitions). Yes = 4 No = 0	0			
D 1.3. Characteristics and distribution of persistent plants (Emergent, Scrub-shrub, and/or Forested Cowardin classes):				
Wetland has persistent, ungrazed, plants > 95% of area points = 5				
Wetland has persistent, ungrazed, plants > ½ of area points = 3	5			
Wetland has persistent, ungrazed plants $> \frac{1}{10}$ of area points = 1				
Wetland has persistent, ungrazed plants $< \frac{1}{10}$ of area points = 0				
D 1.4. Characteristics of seasonal ponding or inundation:				
This is the area that is ponded for at least 2 months. See description in manual.				
Area seasonally ponded is > ½ total area of wetland points = 4	0			
Area seasonally ponded is > 1/4 total area of wetland points = 2				
Area seasonally ponded is < 1/4 total area of wetland points = 0				
Total for D 1 Add the points in the boxes above	6			
Rating of Site Potential If score is: 12-16 = H X 6-11 = M 0-5 = L Record the rating on the first p	age			
D 2.0. Does the landscape have the potential to support the water quality function of the site?				
D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0	0			
D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No = 0	0			
D 2.3. Are there septic systems within 250 ft of the wetland? Yes = 1 No = 0	1			
D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in questions D 2.1-D 2.3? Source Yes = 1 No = 0	0			
Total for D 2 Add the points in the boxes above	1			
Rating of Landscape Potential If score is:3 or 4 = HX_1 or 2 = M0 = L Record the rating on the f	rst page			
D 3.0. Is the water quality improvement provided by the site valuable to society?				
D 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the 303(d) list? Yes = 1 No = 0	0			
D 3.2. Is the wetland in a basin or sub-basin where an aquatic resource is on the 303(d) list? Yes = 1 No = 0	1			
D 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality (answer YES if there is a TMDL for the basin in which the unit is found)? Yes = 2 No = 0	2			
if there is a timbe joi the basin in which the unit is journal:				
Total for D 3 Add the points in the boxes above	3			

NOTES and FIELD OBSERVATIONS:

DEPRESSIONAL AND FLATS WETLANDS	
Hydrologic Functions - Indicators that the site functions to reduce flooding and stream degradat	ion
D 4.0. Does the site have the potential to reduce flooding and erosion?	
D 4.1. Characteristics of surface water outflows from the wetland: Wetland is a depression or flat depression with no surface water leaving it (no outlet) Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing outletpoints = 2 Wetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing points = 0	1
D 4.2. Depth of storage during wet periods: Estimate the height of ponding above the bottom of the outlet. For wetlands with no outlet, measure from the surface of permanent water or if dry, the deepest part. Marks of ponding are 3 ft or more above the surface or bottom of outlet points = 7 Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet points = 5 Marks are at least 0.5 ft to < 2 ft from surface or bottom of outlet points = 3 The wetland is a "headwater" wetland points = 3 Wetland is flat but has small depressions on the surface that trap water points = 1 Marks of ponding less than 0.5 ft (6 in) points = 0	0
D 4.3. Contribution of the wetland to storage in the watershed: Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself. The area of the basin is less than 10 times the area of the unit points = 5 The area of the basin is 10 to 100 times the area of the unit points = 3 The area of the basin is more than 100 times the area of the unit points = 0 Entire wetland is in the Flats class points = 5	0
Total for D 4 Add the points in the boxes above	1
Rating of Site Potential If score is: 12-16 = H 6-11 = M \times 0-5 = L Record the rating on the	first page
D 5.0. Does the landscape have the potential to support hydrologic functions of the site?	-
D 5.1. Does the wetland receive stormwater discharges? Yes = 1 No = 0	0
D 5.2. Is >10% of the area within 150 ft of the wetland in land uses that generate excess runoff? Yes = 1 No = 0	0
D 5.3. Is more than 25% of the contributing basin of the wetland covered with intensive human land uses (residential at >1 residence/ac, urban, commercial, agriculture, etc.)? Yes = 1 No = 0	1
Total for D 5 Add the points in the boxes above	1
Rating of Landscape Potential If score is: 3 = H X 1 or 2 = M 0 = L Record the rating on the	first page
D 6.0. Are the hydrologic functions provided by the site valuable to society?	-
D 6.1. The unit is in a landscape that has flooding problems. Choose the description that best matches conditions around the wetland unit being rated. Do not add points. Choose the highest score if more than one condition is met. The wetland captures surface water that would otherwise flow down-gradient into areas where flooding has damaged human or natural resources (e.g., houses or salmon redds): • Flooding occurs in a sub-basin that is immediately down-gradient of unit. points = 2 • Surface flooding problems are in a sub-basin farther down-gradient. points = 1 Flooding from groundwater is an issue in the sub-basin. points = 1 The existing or potential outflow from the wetland is so constrained by human or natural conditions that the water stored by the wetland cannot reach areas that flood. Explain why points = 0 There are no problems with flooding downstream of the wetland.	1
D 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan? Yes = 2 No = 0	0
Total for D 6 Add the points in the boxes above	1

Rating of Value If score is: ____2-4 = H ___X_1 = M ____0 = L

Record the rating on the first page

These questions apply to wetlands of all HGM classes. **HABITAT FUNCTIONS** - Indicators that site functions to provide important habitat H 1.0. Does the site have the potential to provide habitat? H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked. Aquatic bed 4 structures or more: points = 4 3 structures: points = 2 ___Emergent 2 Scrub-shrub (areas where shrubs have > 30% cover) 2 structures: points = 1 × Forested (areas where trees have > 30% cover) 1 structure: points = 0 If the unit has a Forested class, check if: × The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the Forested polygon H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see text for descriptions of hydroperiods). Permanently flooded or inundated 4 or more types present: points = 3 Seasonally flooded or inundated 3 types present: points = 2 Occasionally flooded or inundated 2 types present: points = 1 1 × Saturated only 1 type present: points = 0 × Permanently flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream in, or adjacent to, the wetland Lake Fringe wetland 2 points Freshwater tidal wetland 2 points H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft². Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle 1 If you counted: > 19 species points = 2 5 - 19 species points = 1 points = 0 < 5 species H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. If you have four or more plant classes or three classes and open water, the rating is always high. 1 None = 0 points Moderate = 2 points Low = 1 point All three diagrams in this row are **HIGH** = 3points

Wetland name or number $\underline{\text{Wet}}$ land A

H 1.5. Special habitat features: Check the habitat features that are present in the wetland. ** Large, downed, woody debris within the wetland (> 4 in ** Standing snags (dbh > 4 in) within the wetland ** Undercut banks are present for at least 6.6 ft (2 m) and over a stream (or ditch) in, or contiguous with the wetland Stable steep banks of fine material that might be used be slope) OR signs of recent beaver activity are present (con where wood is exposed) At least ¼ ac of thin-stemmed persistent plants or wood permanently or seasonally inundated (structures for exposed) Invasive plants cover less than 25% of the wetland area strata)	/or overhanging plants extends at least 3.3 ft (1 m) and, for at least 33 ft (10 m) by beaver or muskrat for denning (> 30 degree at shrubs or trees that have not yet weathered by branches are present in areas that are agg-laying by amphibians) in every stratum of plants (see H 1.1 for list of	3
Total for H 1	Add the points in the boxes above	8
Rating of Site Potential If score is:15-18 = HX_7-14 = M	_0-6 = L Record the rating on	the first page
H 2.0. Does the landscape have the potential to support the	habitat functions of the site?	
		T.
If total accessible habitat is: > ¹/₃ (33.3%) of 1 km Polygon 20-33% of 1 km Polygon 10-19% of 1 km Polygon < 10% of 1 km Polygon H 2.2. Undisturbed habitat in 1 km Polygon around the wetland.	points = 3 points = 2 points = 1 points = 0	0
Calculate: 4.24 % undisturbed habitat + [(% moderate and Undisturbed habitat > 50% of Polygon Undisturbed habitat 10-50% and in 1-3 patches Undisturbed habitat 10-50% and > 3 patches Undisturbed habitat < 10% of 1 km Polygon H 2.3. Land use intensity in 1 km Polygon: If	points = 3 points = 2 points = 1 points = 0	1
> 50% of 1 km Polygon is high intensity land use	points = (- 2)	-2
≤ 50% of 1 km Polygon is high intensity	points = 0	
Total for H 2	Add the points in the boxes above	-1
Rating of Landscape Potential If score is:4-6 = H1-3 = M	X < 1 = L Record the rating on t	he first page
H 3.0. Is the habitat provided by the site valuable to society?		-
H 3.1. Does the site provide habitat for species valued in laws, regulation that applies to the wetland being rated. Site meets ANY of the following criteria: — It has 3 or more priority habitats within 100 m (see next) — It provides habitat for Threatened or Endangered species — It is mapped as a location for an individual WDFW prioris — It is a Wetland of High Conservation Value as determine — It has been categorized as an important habitat site in a Shoreline Master Plan, or in a watershed plan × Site has 1 or 2 priority habitats (listed on next page) within 1 Site does not meet any of the criteria above	points = 2 page) s (any plant or animal on the state or federal lists) ty species d by the Department of Natural Resources local or regional comprehensive plan, in a	1

Rating of Value If score is: 2 = H $\times 1 = M$ 0 = L

Record the rating on the first page

WDFW Priority Habitats

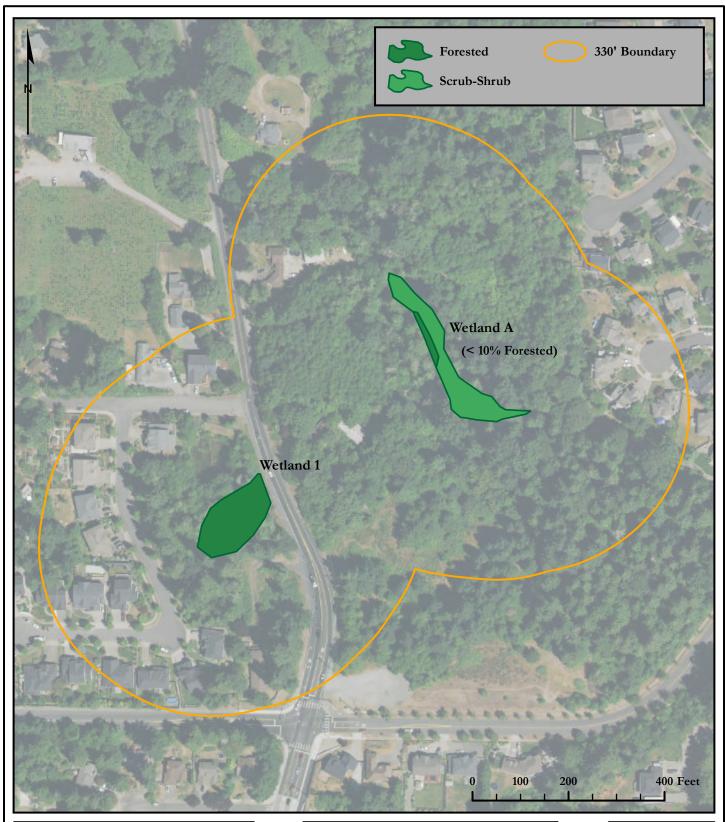
<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. http://wdfw.wa.gov/publications/00165/wdfw00165.pdf or access the list from here: http://wdfw.wa.gov/conservation/phs/list/)

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: *NOTE:* This question is independent of the land use between the wetland unit and the priority habitat.

- **Aspen Stands:** Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- **Herbaceous Balds:** Variable size patches of grass and forbs on shallow soils over bedrock.
- Old-growth/Mature forests: Old-growth west of Cascade crest Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. Mature forests Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- **Oregon White Oak:** Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- **Westside Prairies:** Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- X Instream: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- **Nearshore**: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report see web link on previous page*).
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- **Talus:** Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- **Snags and Logs:** Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS


Wetland Type	Category
Check off any criteria that apply to the wetland. Circle the category when the appropriate criteria are met.	
SC 1.0. Estuarine wetlands	
Does the wetland meet the following criteria for Estuarine wetlands?	
☐ The dominant water regime is tidal,	
Vegetated, and	
☐ With a salinity greater than 0.5 ppt ☐ Yes –Go to SC 1.1 ☑ No= Not an estuarine wetland	
SC 1.1. Is the wetland within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area	
Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC 332-30-151?	
☐Yes = Category I ☐No - Go to SC 1.2	
SC 1.2. Is the wetland unit at least 1 ac in size and meets at least two of the following three conditions?	
\square The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less	
than 10% cover of non-native plant species. (If non-native species are Spartina, see page 25)	
At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-	
mowed grassland.	
The wetland has at least two of the following features: tidal channels, depressions with open water, or	
contiguous freshwater wetlands.	
SC 2.0. Wetlands of High Conservation Value (WHCV)	
SC 2.1. Has the WA Department of Natural Resources updated their website to include the list of Wetlands of High	
Conservation Value?	
SC 2.2. Is the wetland listed on the WDNR database as a Wetland of High Conservation Value?	
☐Yes = Category I ☑No = Not a WHCV	
SC 2.3. Is the wetland in a Section/Township/Range that contains a Natural Heritage wetland?	
http://www1.dnr.wa.gov/nhp/refdesk/datasearch/wnhpwetlands.pdf	
☐ Yes – Contact WNHP/WDNR and go to SC 2.4 図No = Not a WHCV	
SC 2.4. Has WDNR identified the wetland within the S/T/R as a Wetland of High Conservation Value and listed it on	
their website? ☐Yes = Category I ☑No = Not a WHCV	
SC 3.0. Bogs	
Does the wetland (or any part of the unit) meet both the criteria for soils and vegetation in bogs? Use the key	
below. If you answer YES you will still need to rate the wetland based on its functions.	
SC 3.1. Does an area within the wetland unit have organic soil horizons, either peats or mucks, that compose 16 in or	
more of the first 32 in of the soil profile?	
SC 3.2. Does an area within the wetland unit have organic soils, either peats or mucks, that are less than 16 in deep	
over bedrock, or an impermeable hardpan such as clay or volcanic ash, or that are floating on top of a lake or	
pond? ☐ Yes – Go to SC 3.3 ☑ No = Is not a bog	
SC 3.3. Does an area with peats or mucks have more than 70% cover of mosses at ground level, AND at least a 30%	
cover of plant species listed in Table 4?	
NOTE: If you are uncertain about the extent of mosses in the understory, you may substitute that criterion by	
measuring the pH of the water that seeps into a hole dug at least 16 in deep. If the pH is less than 5.0 and the	
plant species in Table 4 are present, the wetland is a bog.	
SC 3.4. Is an area with peats or mucks forested (> 30% cover) with Sitka spruce, subalpine fir, western red cedar,	
western hemlock, lodgepole pine, quaking aspen, Engelmann spruce, or western white pine, AND any of the	
species (or combination of species) listed in Table 4 provide more than 30% of the cover under the canopy?	
☐Yes = Is a Category I bog ☐No = Is not a bog	

SC 4.0. Forested Wetlands	
Does the wetland have at least 1 contiguous acre of forest that meets one of these criteria for the WA Department of Fish and Wildlife's forests as priority habitats? If you answer YES you will still need to rate the wetland based on its functions. — Old-growth forests (west of Cascade crest): Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 in (81 cm) or more. — Mature forests (west of the Cascade Crest): Stands where the largest trees are 80- 200 years old OR the species that make up the canopy have an average diameter (dbh) exceeding 21 in (53 cm).	
☐ Yes = Category I ☑No = Not a forested wetland for this section	
SC 5.0. Wetlands in Coastal Lagoons Does the wetland meet all of the following criteria of a wetland in a coastal lagoon? — The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks — The lagoon in which the wetland is located contains ponded water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom) □ Yes − Go to SC 5.1 ☑No = Not a wetland in a coastal lagoon SC 5.1. Does the wetland meet all of the following three conditions? — The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of aggressive, opportunistic plant species (see list of species on p. 100). — At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or unmowed grassland. — The wetland is larger than ¹/₁₀ ac (4350 ft²) □ Yes = Category I □ No = Category II	
Is the wetland west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)? If you answer yes you will still need to rate the wetland based on its habitat functions. In practical terms that means the following geographic areas: — Long Beach Peninsula: Lands west of SR 103 — Grayland-Westport: Lands west of SR 105 — Ocean Shores-Copalis: Lands west of SR 115 and SR 109 — Yes – Go to SC 6.1 No = not an interdunal wetland for rating SC 6.1. Is the wetland 1 ac or larger and scores an 8 or 9 for the habitat functions on the form (rates H,H,H or H,H,M for the three aspects of function)? SC 6.2. Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger? — Yes = Category II No – Go to SC 6.3 SC 6.3. Is the unit between 0.1 and 1 ac, or is it in a mosaic of wetlands that is between 0.1 and 1 ac?	
Tyes = Category III □No = Category IV Category of wetland based on Special Characteristics If you answered No for all types, enter "Not Applicable" on Summary Form	

Wetland name or number $\underline{\text{Wet}}$ land A

This page left blank intentionally

Appendix G — Wetland Rating Maps

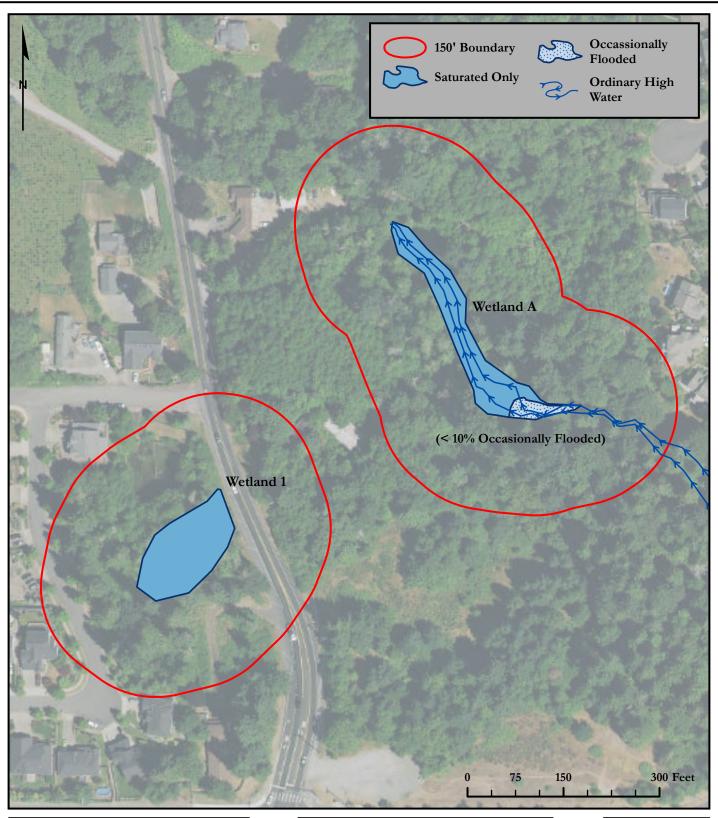
2907 Harborview Dr., Suite D, Gig Harbor, WA 98335 Phone: (253) 514-8952 Fax: (253) 514-8954 www.soundviewconsultants.com

DEER CREEK

2007 SHAW RD PUYALLUP, WA 98372

PIERCE COUNTY PARCEL NUMBER: 0420354039

DATE: 2/20/2025


JOB: 1273.0009

BY: DDS

SCALE: 1"=200'

FIGURE NO. 1 of 6

HYDROPERIOD MAP

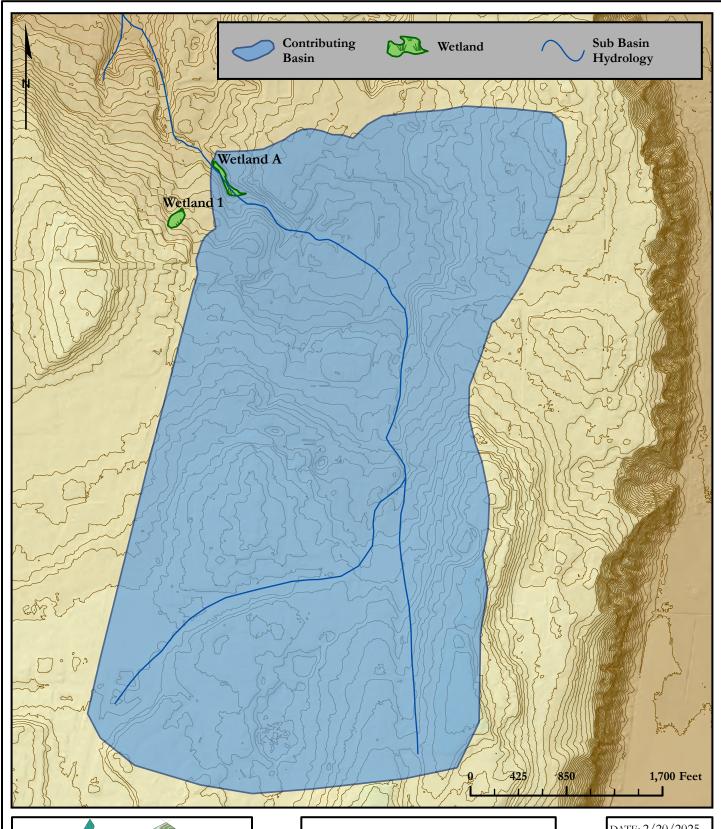
2907 Harborview Dr., Suite D, Gig Harbor, WA 98335 Phone: (253) 514-8952 Fax: (253) 514-8954 www.soundviewconsultants.com

DEER CREEK

2007 SHAW RD PUYALLUP, WA 98372

PIERCE COUNTY PARCEL NUMBER: 0420354039

DATE: 2/20/2025


ЈОВ: 1273.0009

BY: DDS

SCALE: 1"=150'

FIGURE NO. 2 of 6

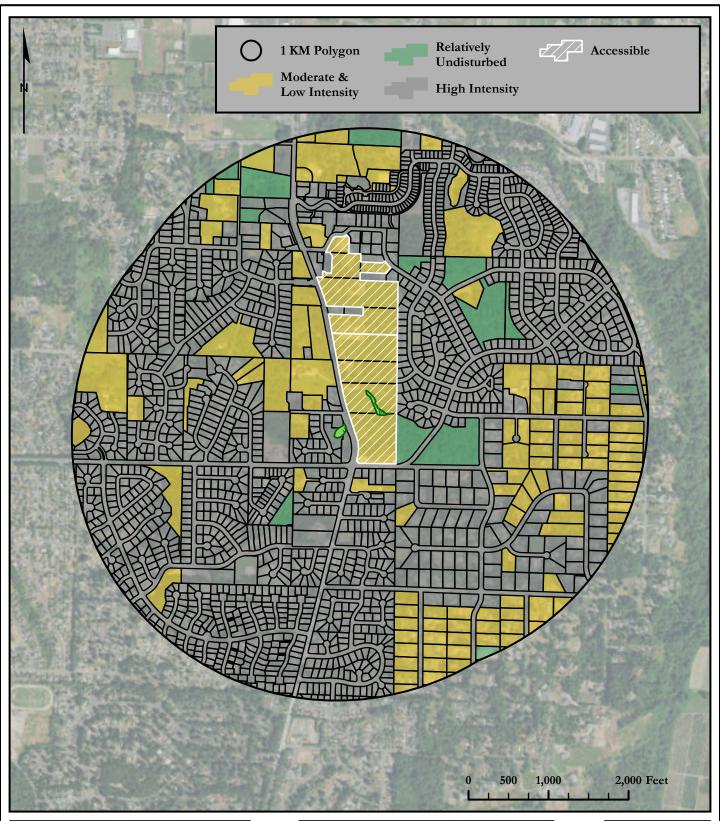
CONTRIBUTING BASIN MAP

2907 Harborview Dr., Suite D, Gig Harbor, WA 98335 Phone: (253) 514-8952 Fax: (253) 514-8954 www.soundviewconsultants.com

DEER CREEK

2007 SHAW RD PUYALLUP, WA 98372

PIERCE COUNTY PARCEL NUMBER: 0420354039


DATE: 2/20/2025

ЈОВ: 1273.0009

BY: DDS

SCALE: 1"=850'

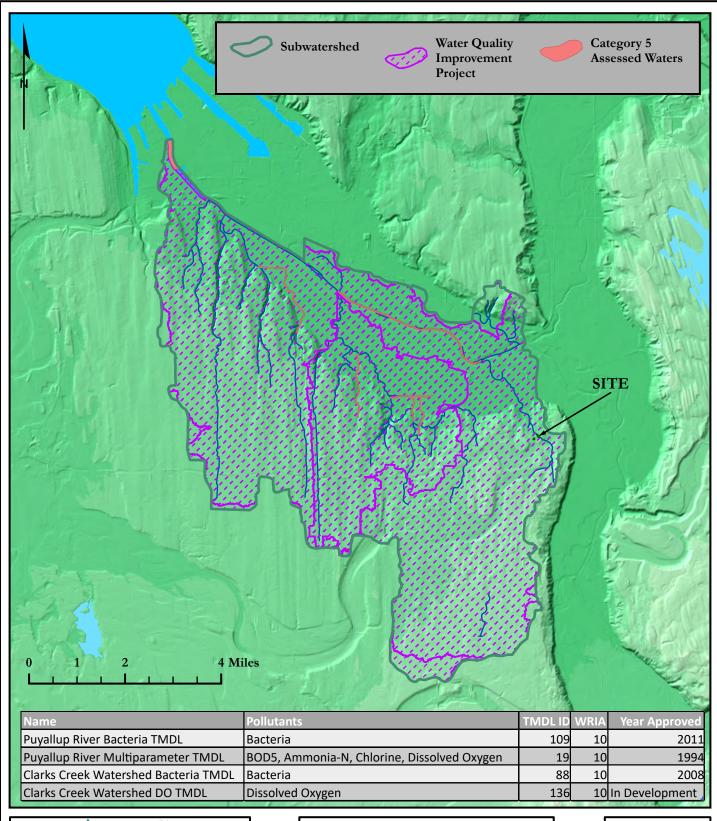
FIGURE NO. 3 of 6

2907 Harborview Dr., Suite D, Gig Harbor, WA 98335 Phone: (253) 514-8952 Fax: (253) 514-8954 www.soundviewconsultants.com

DEER CREEK

2007 SHAW RD PUYALLUP, WA 98372

PIERCE COUNTY PARCEL NUMBER: 0420354039


DATE: 2/20/2025

JOB: 1273.0009

BY: DDS

SCALE: 1"=1,200'

FIGURE NO. 4 of 6

2907 Harborview Dr., Suite D, Gig Harbor, WA 98335 Phone: (253) 514-8952 Fax: (253) 514-8954 www.soundviewconsultants.com

DEER CREEK

2007 SHAW RD PUYALLUP, WA 98372

PIERCE COUNTY PARCEL NUMBER: 0420354039

DATE: 2/20/2025
ЈОВ: 1273.0009
BY: DDS
SCALE: 1"=2 Miles
FIGURE NO. 5 of 6

CONTRIBUTING BASIN & HABITAT DATA MAP

D.4		
D.4.3		
	Area of Contributing Basin (SF)	17,784,895
	Area of Wetland A (SF)	16,328
	Percent of Wetland A within Contributing Basin	0.092%
D.5.0		
D.5.3		
	Is more than 25% of the Contributing Basin covered in Intensive Land Use?	YES

H.2.0 Wetland A		
H.2.1		
	Abutting Undisturbed Habitat	0.00%
	Abutting Moderate & Low Intensity Land Uses	4.55%
	Accessible Habitat	2.27%
H.2.0 Wetland 1		
H.2.1		
	Abutting Undisturbed Habitat	0.00%
	Abutting Moderate & Low Intensity Land Uses	0.00%
	Accessible Habitat	0.00%
H.2.2		
	Undisturbed Habitat	4.24%
	Moderate & Low Intensity Land Uses	25.15%
	Undisturbed Habitat in 1 KM Polygon	16.82%
H.2.3	· · · · · · · · · · · · · · · · · · ·	
	High Intensity Land Use in 1 KM Polygon	70.61%

2907 Harborview Dr., Suite D, Gig Harbor, WA 98335 Phone: (253) 514-8952 Fax: (253) 514-8954 www.soundviewconsultants.com

DEER CREEK

2007 SHAW RD PUYALLUP, WA 98372

PIERCE COUNTY PARCEL NUMBER: 0420354039

DATE: 2/20/2025
ЈОВ: 1273.0009
BY: DDS
SCALE: NONE
FIGURE NO. 6 of 6

Appendix H — Qualifications

All field inspections, habitat assessments, wetland and OHW delineations, and supporting documentation, including this <u>Wetland and Fish and Wildlife Habitat Assessment Report</u> prepared for the <u>Deer Creek</u> property were prepared by, or under the direction of Jon Pickett of SVC. In addition, the field investigations were performed primarily by Ryan Krapp, Kyla Caddey and Mae Ancheta, report preparation was completed by Mae Ancheta, and additional project oversight and final quality assurance/quality control was completed by Kyla Caddey.

Jon Pickett

Principal

Professional Experience: 10+ years

Jon Pickett is an Associate Principal and Senior Scientist with a diverse background in environmental and shoreline compliance and permitting, wetland and stream ecology, fish and wildlife biology, mitigation compliance and design, and environmental planning and land use due diligence. Jon oversees a wide range of large-scale industrial, commercial, and multi-family residential projects throughout Western Washington, providing environmental permitting and regulatory compliance assistance for land use entitlement projects from feasibility through mitigation compliance. Jon performs wetland, stream, and shoreline delineations and fish & wildlife habitat assessments; conducts code and regulation analysis and review; prepares reports and permit applications and documents; provides environmental compliance recommendation; and provides restoration and mitigation design.

Jon earned a Bachelor of Science degree in Natural Resource Sciences from Washington State University and Bachelor of Science and Minor in Forestry from Washington State University. Jon has received 40-hour wetland delineation training (Western Mountains, Valleys, & Coast and Arid West Regional Supplements) and regularly performs wetland, stream, and shoreline delineations. Jon is a Whatcom County Qualified Wetland Specialist and Wildlife Biologist and is a Pierce County Qualified Wetland Specialist. He has been formally trained by WSDOE in the use of the Washington State Wetland Rating System 2014, How to Determine the Ordinary High-Water Mark (Freshwater and Marine), Using Field Indicators for Hydric Soils, and the Using the Credit-Debit Method for Estimating Mitigation Needs.

Ryan Krapp

Environmental Scientist / Field Lead Professional Experience: 10+ years

Ryan Krapp is an Environmental Scientist and Field Lead with a background in conducting wetland delineations, habitat assessments, botanical surveys, avian surveys, threatened & endangered species surveys, and fisheries studies. He has considerable experience in production of Environmental Assessments and Biological Assessments and Evaluations under NEPA guidelines for projects regulated by the U.S. Forest Service, U.S. Army Corps of Engineers, and Bureau of Indian Affairs as well as leading Section 7 ESA consultation with the U.S. Fish and Wildlife Service. Project planning, permitting, and compliance are all part of his professional experiences and practices at SVC.

Ryan has managed environmental investigation projects including wetlands, streams, and critical habitats data collection on large pipeline corridors, overhead electrical transmission corridors, and oil/natural gas drilling development. He has extensive experience in utilizing GIS to collect, manage, and analyze large volumes of spatial and temporal field data to aide in project management,

monitoring, analysis, and mapping. In addition, he is a FAA trained recreational pilot and a PADI certified SCUBA diver with fresh and saltwater diving experience. Ryan is a USFWS-approved Mazama pocket gopher survey biologist.

Kyla Caddey, PWS, Certified Ecologist

Senior Environmental Scientist Professional Experience: 7 years

Kyla Caddey is a Senior Environmental Scientist with a diverse background in stream and wetland ecology, wildlife ecology and conservation, wildlife and natural resource assessments and monitoring, and riparian habitat restoration at various public and private entities. Kyla has field experience performing in-depth studies in both the Pacific Northwest and Central American ecosystems which included various environmental science research and statistical analysis. Kyla has advanced expertise in federal- and state-listed endangered, threatened, and sensitive species surveys and assessment of aquatic and terrestrial systems throughout the Puget Sound region. She has completed hundreds of wetland delineations and has extensive knowledge and interest in hydric soil identification. As the senior writer, she provides informed project oversight and performs final quality assurance / quality control on various types of scientific reports for agency submittal, including: Biological Assessments/Evaluations; Wetland, Shoreline, and Fish and Wildlife Habitat Assessments; Mitigation Plans, and Mitigation Monitoring Reports. She currently performs wetland, stream, and shoreline delineations and fish and wildlife habitat assessments; prepares scientific reports; and provides environmental permitting and regulatory compliance assistance to support a wide range of commercial, industrial, and multi-family residential land use projects.

Kyla earned a Bachelor of Science degree in Environmental Science and Resource Management from the University of Washington, Seattle with a focus in Wildlife Conservation and a minor in Quantitative Science. She has also completed additional coursework in Comprehensive Bird Biology from Cornell University. Ms. Caddey is a Certified Professional Wetland Scientist (PWS #3479) through the Society of Wetland Scientists and Certified Ecologist through the Ecological Society of America. She has received 40-hour wetland delineation training (Western Mtns, Valleys, & Coast and Arid West Regional Supplement), is a Pierce County Qualified Wetland Specialist and Wildlife Biologist, and is a USFWS-approved Mazama pocket gopher survey biologist. Kyla has been formally trained through the Washington State Department of Ecology, Coastal Training Program, and the Washington Native Plant Society in winter twig and grass, sedge, and rush identification for Western WA; Using the Credit-Debit Method in Estimating Wetland Mitigation Needs; How to Determine the Ordinary High Water Mark; Using Field Indicators for Hydric Soils; How to Administer Development Permits in Washington Shorelines; Puget Sound Coastal Processes; and Forage Fish Survey Techniques. Additionally, she has received formal training in preparing WSDOT Biological Assessments.

Megan Mae Ancheta

Staff Scientist

Professional Experience: 2 years

Megan (Mae) Ancheta is a Staff Scientist with a background in wildlife and conservation biology in Washington state. Mae earned her Bachelor of Science degree in Environmental Science with a focus in Conservation Biology and Ecology and a certificate in Restoration Ecology from University of Washington, Tacoma. There she gained extensive, hands-on experience working in lab and field

settings, and studying socio-ecological restoration and wildlife conservation in old growth forests, historic Puget lowland prairies, and wetland and riparian areas. Mae has applied her studies working in the local government at the city and county level as well as within federal entities conducting wetland mitigation planning, stream habitat monitoring, habitat restoration for federally listed species, and thorough site analyses for natural resource management utilizing ArcGIS and model analyses.

Mae currently assists in wetland, stream, and shoreline delineations and fish and wildlife habitat assessments; conducts environmental code analysis; and prepares environmental assessment and mitigation reports, biological evaluations, and permit applications to support clients through the regulatory and planning process for various land use projects.

7.3 Tree Retention
Assessment prepared by
Sound Urban Forestry dated
May 16, 2022.

SUF

SOUND URBAN FORESTRY, LLC

Appraisals ~ Site Planning ~ Urban Landscape Design and Management Environmental Education ~ Environmental Restoration

5/16/2022

RM Homes C/o: James Kerby 2913 5th Ave NE, Ste. 201 Puyallup, WA 98372

Re: Normandy Retention Tree Assessment

Mr. Kerby:

Upon your request and as a requirement of the City of Puyallup, I have conducted an assessment of the trees marked for retention within and adjacent to the site of the proposed Normandy residential project at 2007 Shaw Road. I visited the site on April 26, 2022. The following presents my findings and recommendations.

Retain Trees

A total of 31 trees were assessed as identified on the boundary and topographic survey provided by Cara Visintainer with Barghausen Consulting Engineers, Inc. Please reference the attached diagram for the numbered locations marked in green.

Table 1. Trees Identified for Retention

	Table 1. Trees identified for Retention						
ID#	Species	DBH	Height	Live Canopy Ratio	Condition/ Risk Rating	Comments	
1	Douglas Fir	36"	130'	25%	Good/Low		
2	Western Hemlock	12"	40'	20%	Fair/Low		
3	Western Hemlock	16"	45'	20%	Good/Low		
4	Western Red Cedar	38"	100'	25%	Good/Low		
5	Western Hemlock	24"	110'	25%	Good/Low		
6	Western Red Cedar	36"	105'	30%	Good/Low		
7	Western Red Cedar	34"	100'	30%	Good/Low		
8	Western Red Cedar	41"	110'	35%	Good/Low		
9	Western Red Cedar	34"	105'	37%	Good/Low		
10	Western Red Cedar	12"	30'	10%	Fair/Low		
11	Douglas Fir	22"	105'	20%	Good/Low		
12	Douglas Fir	37"	125'	25%	Good/Low		
13	Douglas Fir	24"	105'	15%	Fair/Low		
14	Cottonwood	55"	160'	30%	Fair/High	Dead & damaged limbs overhanging wetland edge. Risk will reduce to moderate if pruned.	
15	Western Hemlock	30"	105'	25"	Fair/Low		
16	Douglas Fir	40"	155'	30%	Good/Low		
17	Red Alder	10"	50'	0	Dead/Moderate		
18	Western Hemlock	30"	110'	20%	Fair/Low		
19	Western Hemlock	21"	100'	25%	Good/Low		
20	Douglas Fir	29"	115'	20%	Good/Low		

ID#	Species	DBH	Height	Live	Condition/	Comments
				Canopy	Risk Rating	
				Ratio		
21	Western	21"	80'	35%	Fair/Low	
	Hemlock					
22	Western	16"	35'	40%	Fair/Low	
	Hemlock					
23	Cottonwood	45"	175'	30%	Good/Low	Remove ivy.
24	Cottonwood	45"	170'	30%	Fair/Low	
25	Purple Plum	24"	27'	40%	Poor/Moderate	Previously topped.
26	Red Alder	12"	40'	25%	Fair/Low	
27	Red Alder	10"	30'	20"	Fair/Low	
28	Japanese	10"	18'	20%	Fair/Low	
	Umbrella Pine					
29	Red Alder	11"	30'	20%	Poor/Moderate	Previously topped for
						line clearance.
30	Red Alder	9"	25'	10%	Poor/Moderate	Previously topped for
						line clearance.
31	Giant Sequoia	55"	160'	50%	Good/Low	

Adjacent Trees

There are many off-site trees along the eastern perimeter that may potentially be impacted by the project. Based on my assessments, I have concluded that these trees are windfirm and the removal of the nearby trees within the project site will not result in sudden exposure or associated instability.

Please contact me should you have any questions.

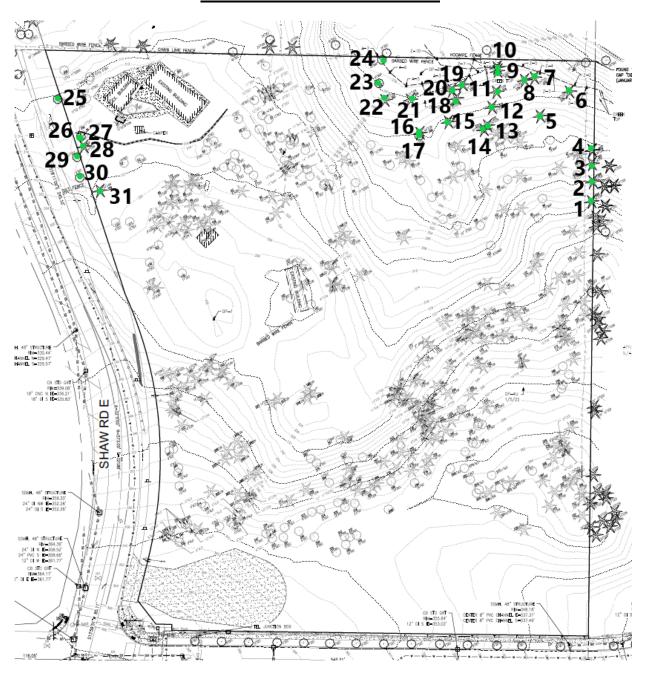
Professionally Submitted,

Kevin M. McFarland, Principal

Keni M. M. Earland

Consulting Urban Forester

ISA Certified Arborist PN-0373 & ISA Tree Risk Assessment Qualified


Sound Urban Forestry, LLC

P.O. Box 489

Tahuya, WA 98588

360-870-2511

Locations of Assessed Retain Trees

7.4 Groundwater Monitoring
Program Results prepared
by Earth Solutions NW, LLC
August 9, 2022.

August 9, 2022 ES-0593.03

Earth Solutions NW LLC

Geotechnical Engineering, Construction
Observation/Testing and Environmental Services

RM Homes, LLC 2913 – 5th Avenue Northeast, Suite 201 Puyallup, Washington 98372

Attention: Mr. James Kerby

Subject: Groundwater Monitoring Program Results

Proposed Normandy Heights Residential Development

2007 Shaw Road Puyallup, Washington

Reference: Earth Solutions NW, LLC

Geotechnical Engineering Study

Project No. ES-0593, updated May 3, 2022

Dear Mr. Kerby:

As requested, Earth Solutions NW, LLC (ESNW) has prepared this summary letter to provide the results of the groundwater monitoring program completed for the subject site

Project Description

We understand the project is pursuing the construction of a residential development and associated infrastructure improvements. Stormwater management is currently proposed via a detention facility located within the north-central portion of the site. Current designs suggest that grade cuts up to about 20 feet will be required to achieve design elevations along the west facility edge and will decrease to the east and daylight along the easternmost edge of the system. The proposed stormwater management system will not utilize infiltration; as such, the monitoring was performed to evaluate potential groundwater exfiltration into the system.

Subsurface

Subsequent to initial site subsurface exploration completed on October 23, 2006, associated with preparation of the referenced geotechnical report, three supplementary borings were advanced on February 8, 2022, targeted to the proposed stormwater management Tract F within the north-central site area. The purpose of the borings was to facilitate the installation of observation wells in the area, which would allow us to perform groundwater monitoring for the site. The wells were installed to depths of between 16.5 feet to 21.5 feet below the existing ground surface. The approximate locations of the monitoring wells are illustrated in the attached Exploration Location Plan (Plate 1). Logs of each exploration are also provided as an attachment and can be reviewed for a more detailed description of the subsurface soil conditions.

Groundwater

Groundwater was not exposed within the test pit locations during the October 2006 field exploration; however, discrete perched groundwater seepage was exposed at depths of about 10 feet to 15 feet below the ground surface at B-2 during the February 2022 fieldwork. The seepage was characterized as very minor to minor.

Groundwater Monitoring

Groundwater monitoring was performed at each well location (B-1 to B-3). The observation wells were installed on February 8, 2022, and the monitoring program began immediately thereafter. Groundwater depths and fluctuations were recorded via weekly measurements through April 30, 2022. Groundwater was not observed at any of the observation locations during the monitoring period. Concerning the perched seepage encountered at B-2, it is our opinion that the groundwater represents discrete and discontinuous lenses that produced very little groundwater flows. It should be noted the rainfall received during the winter/spring 2021/2022 season (monitoring period) was higher than average. Based on the results of the groundwater monitoring program, we do not expect groundwater to exfiltrate or otherwise adversely affect the performance of the stormwater facility.

We trust this addendum letter meets your current needs. Should you have questions regarding the content herein, or require additional information, please call.

Sincerely,

EARTH SOLUTIONS NW, LLC

Chase G. Halsen, L.G. Senior Project Geologist Scott S. Riegel, L.G., L.E.G. Associate Principal Geologist

08/09/2022

de of Washing,

Engineering Geologist
2561
Censed Geologist

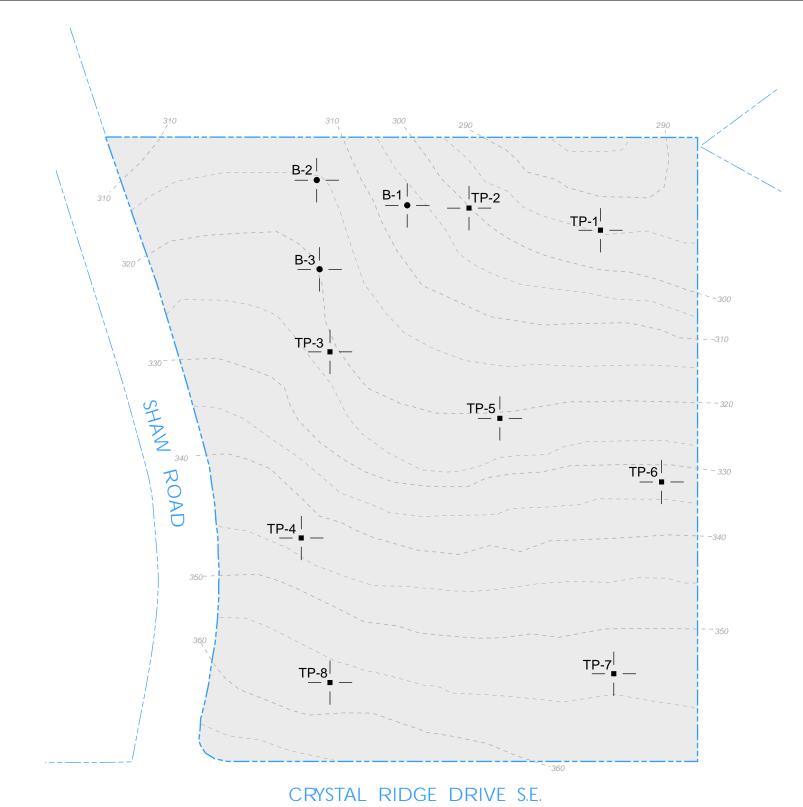
Scott S. Riegel

Attachments: Plate 1 – Subsurface Exploration Plan

Boring and Test Pit Logs

cc: Barghausen Consulting Engineers, Inc.

Attention: Ms. Cara Visintainer, P.E. (Email only)

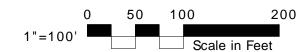

Checked By CGH

Date

08/09/2022

Proj. No. 0593.03

Plate


LEGEND

Approximate Location of ESNW Boring, Proj. No. ES-0593.03, Feb. 2022

Approximate Location of ESNW Test Pit, Proj. No. ES-0593, Oct. 2006

Subject Site

NOTE: The graphics shown on this plate are not intended for design purposes or precise scale measurements, but only to illustrate the approximate test locations relative to the approximate locations of existing and / or proposed site features. The information illustrated is largely based on data provided by the client at the time of our study. ESNW cannot be responsible for subsequent design changes or interpretation of the data by others.

NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

Earth Solutions NW LLC SOIL CLASSIFICATION CHART

	A 10D DIV(10)	ONO	SYME	BOLS	TYPICAL
IVI	AJOR DIVISI	UNS .	GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		G	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
COILO				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HI	GHLY ORGANIC S	SOILS	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

DUAL SYMBOLS are used to indicate borderline soil classifications.

Earth Solutions NWuc

GENERAL BH / TP / WELL - 0593-3.GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG.GDT - 5/3/22

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

BORING NUMBER B-1 PAGE 1 OF 2

DATE START DRILLING CO DRILLING ME	ED 2/8 NTRAC THOD CGH	3/22 TOR Bore	CHECKED I	D 2/8	8/22		GROUND ELEVATION LONGITUDE122.25172 GROUND WATER LEVEL:
DEPTH (ft) SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC	20	MATERIAL DESCRIPTION
0.0 SS SS SS SS SS SS SS	67	1-3-5 (8) 2-4-5 (9)	MC = 30.5% MC = 30.7% Fines = 85.5% MC = 30.0%	SM		3.5	Brown silty SAND, loose, moist (Drill Pad Fill) Brown SILT, loose, moist -trace iron oxide staining [USDA Classification: LOAM] -becomes medium dense, wet -~3" sand lens
10.0 ss	67	6-8-11 (19)	MC = 12.0%	SP- SM		10.0	Gray poorly graded SAND with silt, medium dense, moist

BORING NUMBER B-1

PAGE 2 OF 2

PROJ	ECT NUN	IBER	ES-0593.0	03			PROJECT NAME Normandy Heights
DATE	STARTE	D _2/8	3/22	COMPLETE	D _2/8	3/22	GROUND ELEVATION
DRILL	ING CON	ITRAC	TOR Bore	etec1, Inc.			LATITUDE 47.17139 LONGITUDE -122.25172
DRILL	ING MET	HOD	HSA				GROUND WATER LEVEL:
LOGG	ED BY _	CGH		CHECKED I	3Y _S	SR	$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$
NOTE	S Surfa	ce Co	nditions: dri	ll-pad			
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
	ss	67	8-8-12 (20)	MC = 21.8% Fines = 51.7%	ML		Gray sandy SILT, medium dense, moist [USDA Classification: LOAM] 16.5
1							Paring terminated at 16 F fact below existing grade. No groundwater

Boring terminated at 16.5 feet below existing grade. No groundwater encountered during drilling. 2" PVC standpipe installed to bottom of boring. Lower 10.0 feet slotted. Well ID: B95510. Boring backfilled with sand/bentonite.

GENERAL BH / TP / WELL - 0593-3.GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG.GDT - 5/3/22

Earth Solutions NWLLC

GENERAL BH / TP / WELL - 0593-3.GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG.GDT - 5/3/22

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

BORING NUMBER B-2

PROJ	ECT NUN	/IBER	ES-0593.0	03				PROJECT NAME Normandy Heig	ghts	
								GROUND ELEVATION		
								LATITUDE 47.17148		
								GROUND WATER LEVEL:		
								abla at time of drilling	3	
								-		
O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC			DESCRIPTION	
							Bro	own SILT, loose, moist		
2.5										
 	ss	100	1-3-4 (7)	MC = 28.5%			-be	ecomes moist to wet		
7.5					ML					
10.0	ss	100	1-3-4 (7)	MC = 33.4% Fines = 90.6%			-zc	ry minor perched groundwater see nes of heavy iron oxide staining SDA Classification: slightly gravelly		
12.5										

BORING NUMBER B-2

PAGE 2 OF 2

PROJ	ECT NUM	IBER	ES-0593.0	03			PROJECT NAME Normandy Heights
DATE	STARTE	D _2/8	8/22	COMPLETE	ED _2/	8/22	GROUND ELEVATION
DRILL	ING CON	ITRAC	CTOR Bore	etec1, Inc.			LATITUDE 47.17148 LONGITUDE -122.25214
DRILL	ING MET	HOD	HSA				GROUND WATER LEVEL:
LOGG	ED BY	CGH		CHECKED	BY S	SR	$oxed{oxed}$ at time of drilling $oxed{oxed}$
NOTE	S Surfa	ce Co	nditions: cle	eared brush			
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC	MATERIAL DESCRIPTION
	SS	100	3-5-7 (12)	MC = 29.5%			Brown SILT, loose, moist (continued) -becomes medium dense, wet -minor perched groundwater seepage
17.5					ML		0
	ss	67	8-12-15 (27)	MC = 3.7% Fines = 5.4%	SP- SM		Gray poorly graded SAND, medium dense, moist [USDA Classification: slightly gravelly SAND]
							Boring terminated at 21.5 feet below existing grade. Groundwater seepage

Boring terminated at 21.5 feet below existing grade. Groundwater seepage encountered at 10.0 and 15.0 feet during drilling. 2" PVC standpipe installed to bottom of boring. Lower 10.0 feet slotted. Well ID: BM5511. Boring backfilled with sand/bentonite.

GENERAL BH / TP / WELL - 0593-3.GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG.GDT - 5/3/22

Earth Solutions NWLLC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

BORING NUMBER B-3 PAGE 1 OF 2

PROJECT N						PROJECT NAME Normandy Heights GROUND ELEVATION
						LATITUDE _47.17121 LONGITUDE122.25216
						GROUND WATER LEVEL:
OGGED B	Y CGH		CHECKED	BY S	SR	$ar{igstyle igstyle igytzel igstyle igytyle igstyle igstyle igstyle igstyle igstyle igstyle igytyle igstyle igytyle $
NOTES Su	rface Co	nditions: bru	ush			
O DEPTH O (ft) SAMPLE TYPE	RECOVERY %	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
2.5	S 100	4-5-6 (11)	MC = 5.0%	SM		Brown silty SAND, loose, moist Gray poorly graded SAND, medium dense, moist
10.0 S	S 100	4-6-8 (14)	MC = 11.1% Fines = 15.4%	SM		Gray silty SAND, medium dense, moist [USDA Classification: loamy fine SAND]

BORING NUMBER B-3

PAGE 2 OF 2

PROJECT NUM	MBER	ES-0593.0)3			PROJECT NAME Normandy Heights
DATE STARTE	D _2/8	3/22	COMPLETE	ED _2/8	8/22	GROUND ELEVATION
DRILLING CON	NTRAC	TOR Bore	etec1, Inc.			LATITUDE 47.17121 LONGITUDE -122.25216
DRILLING MET	THOD	HSA				GROUND WATER LEVEL:
LOGGED BY	CGH		CHECKED	BY _S	SR	$oxed{oxed}$ at time of drilling $oxed{oxed}$
NOTES Surfa	ce Cor	nditions: bru	ush			<u> </u>
SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
ss	67	6-9-10 (19)	MC = 12.0%			Gray poorly graded SAND with silt and gravel, medium dense, moist
17.5				SP- SM		
ss	67	18-30-11 (41)	MC = 4.1%		21.5	-becomes dense
						Boring terminated at 21.5 feet below existing grade. No groundwater

Boring terminated at 21.5 feet below existing grade. No groundwater encountered during drilling. 2" PVC standpipe installed to bottom of boring. Lower 10.0 feet slotted. Well ID: BM5512. Boring backfilled with sand/bentonite.

GENERAL BH / TP / WELL - 0593-3.GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG.GDT - 5/3/22

Earth 153 Solutions Re NWLLC Tel

GENERAL BH / TP / WELL - 0593.GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG.GDT - 5/3/22

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-1

PROJI	ECT NUM	MBER <u>0593</u>			PROJECT NAME Normandy Heights	
					ETED _10/23/06	
					ng LATITUDE LONGITUDE LONGITUDE	
					GROUND WATER LEVEL:	
					ED BY WLR \(\sum \text{VLR} \) AT TIME OF EXCAVATION	
NOTE	S Depth	of Topsoil & Sod	12": fo	rest du	f	
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
0.0			+	TIK!	Light brown to brown poorly graded GRAVEL with sand, loose to medium dense,	moist
 2.5		MC = 2.5%				
_		MC = 2.0%		647		
5.0			GP- GM			
					9.0 Brown poorly graded SAND with gravel;, medium dense, moist	286.0
10.0		MC = 3.9% Fines = 1.5%	SP	LO L	Brown poorly graded SAND with gravel;, medium dense, moist 14.0 Brown poorly graded GRAVEL with sand, medium dense, moist	281.0
 15 0			GP	000	Brown poorly graded GRAVEL with sand, medium dense, moist	

TEST PIT NUMBER TP-1 PAGE 2 OF 2

PROJ	ECT NUN	MBER <u>0593</u>				PROJECT NAME Normandy Heights	
DATE	STARTE	D 10/23/06	c	OMPL	ETED 10/23/06	GROUND ELEVATION 295 ft	
EXCA	VATION	CONTRACTOR Ai	kins E	xcavati	ng	LATITUDE LONGITUDE	
EXCA	VATION	METHOD				GROUND WATER LEVEL:	
LOGG	ED BY _	WLR	(CHECK	ED BY WLR	$ oxtime ext{T} $ AT TIME OF EXCAVATION	
NOTE	S Depth	n of Topsoil & Sod 1	12": for	est dut	ff		
0.5 DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
		MC = 2.6% MC = 2.9%			Brown poorly grade	ed GRAVEL with sand, medium dense, moist (continued)	278.0
		Fines = 1.3%			Test pit terminated excavation.	at 17.0 feet below existing grade. No groundwater encountered during	

GENERAL BH / TP / WELL - 0593.GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG.GDT - 5/3/22

Earth Solutions NWLLC

GENERAL BH / TP / WELL - 0593.GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG.GDT - 5/3/22

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-2

DDO II	-OT NILIN	IDED 0500					DDO IFCT MARKE Manuscan du la inde		
		IBER <u>0593</u>					PROJECT NAME Normandy Heigh GROUND ELEVATION 300 ft		
					_		LATITUDE		
							GROUND WATER LEVEL:		
		WLR						ON	
		of Topsoil & Sod 8					- · · · · · · · · · · · · · · · · · · ·		
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION	NO	
0.0				dela		Light brown silty S	AND, medium dense, moist		
		MC = 6.9%	SM			· ,			
		-			3.0	Brown poorly grad	ed SAND with silt, medium dense, mo		297.0
 5.0		MC = 4.8%				, ,,			
			SP-						
7.5			SM						
 		MC = 4.8% Fines = 6.1%							
10.0									
_									
_		MC = 2.8%			11.0				289.0
		Fines = 2.2%		600		Gray poorly grade	d GRAVEL with sand, medium dense,	moist	
12.5			GP		13.0				287.0
- 1						Gray silty SAND, r	medium dense, moist		0
 		MC = 9.3%	SM						
15.0		Fines = 34.8%			15.0			:	285.0

TEST PIT NUMBER TP-3 PAGE 1 OF 1

DATE					PROJECT NAME Normandy Heights 2. 10/23/06 GROUND ELEVATION 320 ft	
					D _10/23/06 GROUND ELEVATION _320 ft	
					GROUND WATER LEVEL:	
					Y WLR — — — — — — — — — — — — — — — — — — —	
		n of Topsoil & Sod				
	111					
프	SAMPLE TYPE NUMBER		ν <u>i</u>	<u>⊆</u>		
DEPTH (ft)	PLE UMB	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
	NAS N			9		
0.0				A. S. S. S.	Light brown to gray poorly graded SAND, medium dense, moist	
					<u> </u>	
2.5						
		MC = 2.7%				
		Fines = 2.2%				
_						
_						
5.0			SP			
-						
-		MC = 4.8%				
-						
7.5						
.						
_						
10.0		MC = 6.3%		10.0		310
10.0			_		Test pit terminated at 10.0 feet below existing grade. No groundwater encountered during	

TEST PIT NUMBER TP-4 PAGE 1 OF 1

EXCA\ EXCA\	/ATION /ATION ED BY _ S _Depti	CONTRACTOR A	ikins E	Excavating CHECKED B		GROUND WATER LEVEL	<u>.</u>	LONGITUDE	
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DE	ESCRIPTION		
2.5		MC = 2.4% MC = 2.9% Fines = 1.6%	SP		Gray poorly grad	ded SAND with gravel, mediur	m dense, moi	st	
III LAI AND LONG.		MC = 2.5%							
10.0		MC = 3.7%		10.0		1 1 1 2 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1			335.0
GENERAL BH / TP / WELL - 0593.GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG.GDT - 5/3/22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			_		Test pit terminat excavation.	eu at 10.0 feet below existing	grade. No gr	oundwater encountered during	

TEST PIT NUMBER TP-5 PAGE 1 OF 1

EXCAN EXCAN	STARTE VATION VATION ED BY	CONTRACTOR _A	ikins E	COMPLETED Excavating CHECKED B	10/23/06 Y WLR	PROJECT NAME _Normandy Heights GROUND ELEVATION _320 ft LATITUDE LONGITUDE GROUND WATER LEVEL: ✓ AT TIME OF EXCAVATION			
o. DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL I	DESCRIPTION		
 2.5		MC = 4.6%	SP		Light brown poo	orly graded SAND with silt, lo	ose to medium	n dense, moist	
5.0		MC = 4.7%		6.0	Gray poorly gra	ded GRAVEL with sand, me	dium dense. m	oist	314.0
7.5 - 7.5 -		MC = 3.0%	GP		,, ,,		,		
PHICS TEMPLATE V		MC = 6.0%	<u></u>	10.0	Test pit termina excavation.	ted at 10.0 feet below existing	ng grade. No gr	roundwater encountered during	310.0
GENERAL BH / TP / WELL - 0593. GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG. GDT - 5/3/22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									

TEST PIT NUMBER TP-6

PROJE							PROJECT NAME Normandy Heights			
1							GROUND ELEVATION 335 ft			
1									LONGITUDE	
							GROUND WATER		ON	
		WLR of Topsoil & Sod					<u>¥</u> AI IIW	IE OF EXCAVATI	ON	
1.0.2		Гот гороскі се сос	<u> </u>				_			
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATER	IAL DESCRIPTIO	ON	
0.0	0,			٥٥		Grav poorly gra	ded GRAVEL with sand	I. medium dense.	. moist	
-						oral poorly gra		,,,	,	
-			GP							
-										
-		MC = 1.7%		000	2.0	Brown poorly ar	aded SAND with gravel	medium dense	moist	333.0
2.5						Brown poorly gr	adda o/ ((12) Willing avoi	, modium dende,	most	
		MC = 3.1% Fines = 0.8%								
		1 11100 0.070								
5.0										
-										
-			SP							
/3/22										
7.5										
0.00		MC = 2.4%								
9 9										
ATA -										
_ - - -										
10.0		MC = 2.3%			10.0	Tank wik kawasina	4- d -4 40 0 f4 h-l	vistina anada Na		325.0
TEMP			_			excavation.	ieu al 10.0 feet below e	xisung grade. No	groundwater encountered during	
HCS.										
SRAPI										
3PJ - 0										
GENERAL BH / TP / WELL - 0593.GPJ - GRAPHICS TEMPLATE WITH LAT AND LONG.GDT - 5/3/22 O										
- - -										
Д Ж										
BH/T										
ERAL										
DE CENT										

TEST PIT NUMBER TP-7

DATE STARTED 10/23/06 COMPLETED 10/23/06						PROJECT NAME Normandy Heights GROUND ELEVATION 350 ft				
						LATITUDE LONGITUDE				
EXCA	/ATION I	METHOD				GROUND WATER LEVEL:				
						$\overline{igspace}$ At time of excavation				
NOTES	B Depth	of Topsoil & Sod (6"							
O DEPTH O (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION				
0.0				600	Light brown to	gray poorly graded GRAVEL with sand, loose to medium dense, moist				
2.5		MC = 2.0%	GP	000000000000000000000000000000000000000						
+				3.0	Grav poorly gra	aded SAND, medium dense, moist	347.			
- - -		MC = 3.6% Fines = 1.0%	SP		o.u, poo., g.s					
5.0		MC = 2.9%		5.0		aded GRAVEL with sand, medium dense, moist	345.			
-			GP	7.0			343.			
7.5					Gray poorly gra	aded SAND with gravel, medium dense, moist				
			SP	8.0			342			
		MC = 6.2%		' ' '	Test pit termina excavation.	ated at 8.0 feet below existing grade. No groundwater encountered during	342			

Earth Solutions NWuc

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-8

1		MBER <u>0593</u>				PROJECT NAME Normandy Heights		
1					ETED 10/23/06			
1						LATITUDE LONGITUDE		
					ED BY WLR	GROUND WATER LEVEL: $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
1		VVLIX		SHECK	ED BI WER			
INO.E						-		
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
0.0					Light brown to gra	ay poorly graded SAND with silt, medium dense, moist		
 2.5		MC = 8.1%	SP- SM					
		MC = 6.1%			4.0		351.	
5.0		INIC - 0.170			Gray poorly grade	ed SAND, medium dense, moist		
7.5		MC = 5.1% Fines = 1.6%	SP					
; 		MC = 4.7%			12.0	d at 12.0 feet below existing grade. No groundwater encountered during	343.	
					excavation.	givening givening givening givening and adming		

Tab 8.0

8.0 OTHER PERMITS

The following are a list of permits that will need to be obtained prior or concurrent with construction:

NPDES Permit (Department of Ecology)

Right-of-Way Use Permit (City of Puyallup)

Mailbox Location Approval (USPS)

Fire Hydrant Location Approval

Forestry Practices Application (Department of Natural Resources)

Tab 9.0

9.0 OPERATIONS AND MAINTENANCE MANUAL

An Operations and Maintenance Manual of stormwater facilities will be provided during final engineering.

Tab 10.0

10.0 CONSTRUCTION COST ESTIMATE

A City of Puyallup cost estimate worksheet will be completed and submitted during final engineering.