Sanitary Sewer Pump and Force Main Calculations

Freeman Logistics $22^{\text {nd }}$ Ave NW and $82^{\text {nd }}$ Ave E Puyallup, WA

Prepared for:
Vector Development Company 11411 NE $124^{\text {th }}$ Street, Suite 190

Kirkland, WA 98034

October $14^{\text {th }}, 2022$

Our Job No. 21585

Table of Contents

1.0 INTRODUCTION/GENERAL INFORMATION

FIGURE 1 VICINITY MAP

APPENDICES

APPENDIX A Pump Designs for Apex
APPENDIX B Force Main Sizing
APPENDIX C Buoyancy Calculations
APPENDIXD Pump Details
APPENDIX E Operations and Maintenance Manual

1.0 INTRODUCTION/GENERAL INFORMATION

The following pages of this report delineate the criteria followed and the methodology used for sizing the sewer grinder pump and force main servicing the Freeman Logistics project.

The project includes 2 warehouse buildings. The expected, maximum daily population is expected to be approximately 1,136 people. Water use of 15 gallons per person per day is anticipated.

The onsite system is designed with a private gravity main which collects and conveys flows from each building to a single pump station designed at the southwest corner of the site. Approximately 2,855 linear feet of new force main will be constructed between the pump station and the connection to the gravity system along Industrial Parkway.

Emergency standby power is proposed using a generator (natural gas or approved alternative). 24-hour storage volume will not be provided.

This report also includes buoyancy calculations for the pump manhole due to the shallow seasonal high groundwater elevation on the site.

Figure 1
Vicinity Map

Appendix A Pump Design

SANITARY SEWER PUMP DESIGN

Pump Criteria:

- Design for peak sewer flow
- Onsite flow: (DOE Orange book table G2-2 has "factories" at 15-35 gpd per person per 8-hr shift)
- Offsite flow: For commercial zoning, use contribution factor of 1,000 gallons per day per acre of tributary area. Offsite contributions: Approximately 1.86 acres of commercial buildings on adjacent Schenk's properties.
- Potential development on parcel 042020-1114, limited due to critical areas. Assumed 2.5 acres of tributary area.

The proposed project proposes 491,323 sf or 11.28 acres of building area. Offsite contributions total approximately 4.36 acres of tributary building area.

Onsite Flow = 17,040 gallons per day (15 gpd $X 1,136$ people) $=710$ gallons per hour (17,040 gpd/24 hr)

Assume peaking factor of 4 (from DOE "Orange Book")
Peak flow $=\mathbf{2 , 8 4 0}$ gallons per hour $(710 \times 4)=47.33$ gallons per minute $\mathbf{(2 , 8 4 0 ~ g p h / 6 0 ~}$ min/hr)

Offsite Flow $=4,360$ gallons per day (1,000 gallons per day per acre $\times 4.36$ acres) $=$ 182 gallons per hour

Assume peaking factor of 4 (from DOE "Orange Book")
Peak flow = $\mathbf{7 2 8}$ gallons per hour $(182 \times 4)=12.13$ gallons per minute $\mathbf{(7 2 8} \mathbf{g p h} / 60$ min/hr)

Total peak flow $\mathbf{=} \mathbf{5 9}$ gallons per minute (onsite $\boldsymbol{+}$ offsite peak flows)

- Provide a submersible duplex pump system capable of pumping sewage without plugging
- Minimum Pump size $\mathbf{=} \mathbf{6 0} \mathbf{~ g p m}$ at $\mathbf{5 0}$-feet TDH

Pump Cycles

- Wet well storage = Pump On - Pump Off x 118.96 gallons per linear feet of $\mathrm{MH}=13.0$ $10.5 \times 118.96=297.4$ gallons
- Cycle time $=297.4 \mathrm{gal} / 60 \mathrm{gpm}=4.96$ minutes
- Cycles per hour $=12.1$

Appendix B Force Main Sizing

SANITARY SEWER FORCE MAIN DESIGN

Pump System

Force main design for proposed force main:

- Design flow in the force main $=60$ gpm (based on suggested pump size)
- Use 3 inch force main
- Velocity $=0.1337 \mathrm{cfs} / 0.049 \mathrm{sf}=2.73 \mathrm{fps}$
- $2 \mathrm{fps}<2.73 \mathrm{fps}<8 \mathrm{fps}$

Static Head = Invert at downstream end of force main - Pump Off Elevation
Invert elevation (Ex. manhole Industrial Parkway) = 34.00 (est)
Pump off elevation $=10.00$
Static Head $=34.00-10.00=24.00$ feet
Total Dynamic Head = based on pump configuration and force main (to be verified by pump manufacturer)

Force Main is HDPE (Sch. 40 Pipe)
New 3" Force Main Pipe Length $=2,855$ feet
Friction loss in $3^{\prime \prime}$ main at $60 \mathrm{gpm}=2,855 / 100 \times 0.9=25.7$ feet
Fitting losses in equivalent length of 3" straight pipe (From Friction Loss chart)

$$
\begin{array}{cl}
\text { Elbows and valves: } & \begin{array}{l}
90 \mathrm{deg}=7.7 \\
45 \mathrm{deg}=4.1 \\
\text { Gate valve }=2.0
\end{array} \\
& =((6)(7.7)+(7)(4.1)+(2)(2.0)) / 100 \times 0.9=0.71 \text { feet }
\end{array}
$$

Total Head $=$ Static Head + Friction Loss $=24+26+1=51$ feet

Minimum pump size $=\mathbf{6 0}$ GPM @ 50 feet TDH
Suggested pump (Weil 2516-1hp Grinder) = 60 GPM @ ± 60 feet

Pump System

Pump Station Control Panel Specification

Primary power shall be from the proposed building. Contractor is to verify available power source and sizing prior to ordering the pump station. Each pump system shall have its own control panel.

The control panel for each sanitary pump station shall include:

- Control for a duplex pump system (controls to be hard wired)
- Enclosure for installation outside (installation to be near the pump station)
- Visual alarm - flashing light
- Display at control panel to monitor station performance
- 12-hour battery backup for control panel
- Manual and remote reset for alarms
- Alarms for:
- Pump failure
- Seal failure
- High temperature
- Low water
- High water
- Low battery
- Power failure
- Duplex cycle counter
- Duplex elapsed run time meter
- Surge protection
- Dial up to 8 phone numbers during an alarm condition
- Minimum 1 year warranty

Appendix C Buoyancy Calculations

FREEMAN SEWER BUOYANCY CALCULATIONS

- SSMH No. 5, Type 2-54 inches

Rim: 32.33
Inside Bottom = 10.50
Outside Bottom $=9.83$

- Weight of Manhole

Top Slab $=\sim 2,600 \mathrm{lbs}$
Barrell $=1,100 \mathrm{lb} / \mathrm{If} \times(32.33-0.67-15.50)=17,776 \mathrm{lbs}$
Bottom 5' base $=7,600 \mathrm{lbs}$
Total $($ manhole $)=27,976 \mathrm{lbs}$
$P_{\text {Manhole }}=28.0 \mathrm{Kip} \downarrow$

- Water Weight

Max groundwater height $\left(\sim 5^{\prime}\right.$ bge $)=27.00$ feet
Manhole displacement $=(27.00-9.83) \times \pi r^{2}=17.17 \pi(2.625)^{2}=371.5 \mathrm{CF}$
Water unit weight $=62.4 \mathrm{lb} / \mathrm{ft}^{3}$
$P_{\text {Water }}=372.5 \times 62.4=23,200 \mathrm{lb}=23.2 \mathrm{Kip} \uparrow$

- Buoyancy
$\sum_{\mathrm{F}}=\mathrm{P}_{\text {Manhole }}-\mathrm{P}_{\text {Buoyancy }}=28.0 \mathrm{~K} \downarrow-23.2 \mathrm{~K} \uparrow=4.8 \mathrm{~K} \downarrow$
$F S=\frac{28.0}{23.2}=1.21$

Appendix D Pump Specifications

Pump

Case - Cast Iron
Impeller - Cast Iron
Rotating Cutter - 440C Stainless Steel Rockwell 58C
Shredder Ring - 440C Stainless Steel Rockwell 58C
Stainless Steel Hardware

Motor

Double Seal - Tandem

- Upper - Carbon against Ceramic
- Lower - Silicon Carbide against Silicon Carbide
Air-Filled Hermetically Sealed
Shaft - Stainless Steel Series 300
Motor Shell - Cast Iron
Insulation - Class F
Ball Bearings - 2 - Double Sealed
Power Cable Length - 25 ft
Three-phase motor
- 1750 RPM and 3450 RPM
- $60 \mathrm{~Hz}, 208-230$ or 460 volts

Single-phase capacitor start motor

- 1750 RPM
- $60 \mathrm{~Hz}, 115$ or 208-230 volts
- Automatic reset thermal and overload protection

Options

Bronze Impeller 316 SS Impeller CUL/UL Explosion Proof Motor 575 Volt 60 Hz 3 Phase Motor Moisture Sensor and Temperature Limiter Additional Power Cable Lengths Stainless Steel Lifting Cable

Flow - To prevent solids from settling out	
Discharge	Minimum
Pipe Size	Flow
Dia Inches	GPM
$11 / 2$	15
2	25
3	50

Pump Type
Disch. Size
Disch. Type
Mounting Style 2613 Removal

Capacities - Wet Wells		
Dia or Side Inches	Gallons per Foot of Depth	
	Round	Square
24	24	30
30	37	47
36	53	67
48	94	120
60	147	187
72	212	269

Good wet well design
Maximum 10 starts per hour. Minimum run time - $11 / 2$ minutes.

