5th Street Conditional Use Permit

Stormwater Site Plan Report

October 21, 2022

Prepared for

Samantha Keimig and Jackson Castaneda 1113 27th St. Pl. NW Puyallup, WA 98371

10/28/2022

Submitted by

ESM Consulting Engineers, LLC 33400 8th Avenue S, Suite 205 Federal Way, WA 98003

Clark Kunitsugu, P.E. (253) 838-6113 clark.kunitsugu @esmcivil.com

www.esmcivil.com

TABLE OF CONTENTS

1.	PROJECT OVERVIEW	. 2
2.	EXISTING CONDTIONS SUMMARY	. 3
3.	INFILTRATION RATES / SOILS REPORTS	3
4.	WELLS AND SEPTIC TANKS	. 5
5.	FUEL TANKS	5
6.	FLOOD PLAIN ANALYSIS	. 5
7.	OFFSITE ANALYSIS	. 5
8.	CRITICAL AREAS	9
9.	PERFORMANCE GOALS AND STANDARDS	9
10.	PERMANENT STORMWATER CONROL PLAN	10
11.	DISCUSSION OF MINIMUM REQUIREMENTS	14
12.	SPECIAL REPORTS AND STUDIES	19
13.	BOND QUANTITIES, DEDICATIONS, EASEMENTS	19

FIGURES

Figure 1.1:	Vicinity Map
Figure 3.1:	Boring and Sample Locations
Figure 7.1:	Puyallup-White Water Resource Inventory Area (WRIA #10)
Figure 11.1:	Flow Chart for Determining Requirements for New Development
Figure 11.2:	Flow Chart for Determining LID MR #5 Requirements
	APPENDICES
Appendix A:	Existing Conditions Map
	Developed Conditions Map
	Pre-Developed Basin Map
	Developed Basin Map
Appendix B:	Stormwater Design Calculations
Appendix C:	NRCS Soil Map and Soil Unit Data
Appendix D:	Federal Emergency Management Agency Flood Insurance Rate Panel
Appendix E:	Bond Quantities, Declaration of Covenant for Privately Maintained Facilities

Appendix F: Downstream Drainage Path.

\\esm8\ENGR\ESM-JOBS\1977\004\020\document\Rprt-001.docx

1. PROJECT OVERVIEW

The proposed 5th Street Conditional Use Permit project is located on the south side of the alley between East Main and the railroad tracks (east-west direction) and between 5th Street SE and 7th Street SE, which flow in the north-south direction within Section 20, Township 20 North, Range 04 East, W.M., City of Puyallup, WA. The site is located on Parcel 7282000112, addressed 115 5th Street SE, Puyallup, WA 98372, zoned CG (General Commercial) with an area of 10,000 square feet (0.23 acre). The City of Puyallup Comprehensive Plan classifies the site as Auto Oriented Commercial. The proposed use includes a combination of light industrial uses and ancillary storage associated with the primary use within the units. The CG zone does allow for the operation of light industrial uses as a conditional use, per Puyallup Municipal code 20.30.010.

The approximately 3,150 square foot building is proposed to be divided into (4) four units and used for partial workspace and associated materials. Other proposed site improvements include but may not be limited to: 24-foot one-way driveway, (4) four parking stalls, 6-foot walkway, 12-foot pedestrian plaza, and landscape buffers. The main drive access to the site will be upgraded to meet current city standards for commercial access, and a Right-of-Way dedication along the north property line will be implemented to provide a City standard 20-foot wide alley. Utility work will include the replacement of the existing 4-inch water line within 7th Street SE to an 8-inch line to ensure adequate water supply for the required on-site fire hydrant. Additionally, the sewer main from East Main will be extended to the intersection of the alley, then west along the sites frontage. An existing storm main may need to be extended to provide a connection for any stormwater runoff not infiltrated on-site.

The project site contains no existing improvements. Proposed improvements will encompass the entire property. As such, the entire site will be cleared and grubbed. The proposed stormwater conveyance system will collect and convey runoff from the driveway and parking to CB D4-06593. Building runoff will be collected and conveyed to CB D4-06625. Both catch basins are located in the alley to the north of the project, both discharge into the Puyallup River, but take different flow paths to reach their respective discharge point into the River. See Section 7 of this report for detailed discussion of the downstream flow path. See Figure 1.1 for a Vicinity Map and see Appendix 'A' for a Developed Conditions Map.

Figure 1.1: Vicinity Map

VICINITY MAP

Update the Storm Report and design per the 2019 Ecology Manual (adopted in July 2022). Report is subject to more comments following update. [Storm Report, Pg 3]

Stormwater design for the project is in accordance with the 2012 Washington State Department of Ecology Stormwater Management Manual for Western Washington (SWMMWW) as amended in December 2014 (the "Manual"), and the City of Puyallup Public Works Engineering & Construction Standards, which set the methodology and design criteria for the project. A Geotechnical Engineering Report and City of Puyallup Traffic Scoping Worksheet have been prepared and Critical Area Report have been prepared for this project and are included with this submittal under separate cover.

2. EXISTING CONDTIONS SUMMARY

The project site is located on parcel 7282000112, which encompasses 10,000 square feet (0.23 acre). The site is trapezoidal in shape, measuring approximately 113.5-feet in the east-west direction and approximately 47- and 90.5-feet in the north-south direction. In general, this site is relatively flat, with elevations of approximately 49.5 along the north property line and between approximately 49.6 and 51.2 in the southwest and southeast property corners, respectively. There is a single low area near the center of the site with elevations of approximately 48.9 feet. Site slopes are generally between approximately 2- to 7-percent.

The subject property is currently undeveloped and vacant. Land cover is primarily scrub grass and dirt. The project site is bordered to the west, north and east by parking lots, alleyways and urban commercial development (single-story retail and warehouse structures). The property is bordered to the south by a double-track main rail line elevated about 2- to 3-feet above the property on an embankment of railroad ballast (clean 2- to 4-inch rock).

See Appendix 'A' for an Existing Conditions Map.

3. INFILTRATION RATES / SOILS REPORTS

The Natural Resources Conservation Service (NRCS) describes on-site soils as Puyallup Fine Sandy Loam (Map Unit 31A). See Appendix 'C' for NRCS Data Soil Map and Soil Map Unit Data.

A Geotechnical Engineering Report was created by Icicle Creek Engineers (dated May 26, 2022, with the purpose of exploring and evaluating subsurface soil and groundwater conditions as a basis for evaluating foundation support and stormwater infiltration feasibility.

Subsurface conditions at the Keimig/Castaneda Property were explored by drilling two test borings (Borings B-1 and B-2) to depths of 20 and 31.5 feet (respectively) on March 2, 2022. The soil types encountered in east boring is described in the following paragraphs.

Boring B-1: Boring B-1 encountered about 1½ feet of Fill, consisting of loose gravel with silt and sand. Coarse-grained Alluvium was encountered from about 1½ to 6 feet, consisting of loose fine to medium sand with silt. Fine-grained Alluvium was encountered from about 6 to 7½ feet, consisting of soft silt. Coarse-grained Alluvium was encountered from about 7½ to 17 feet, consisting of very loose to loose silty sand. Fine-grained Alluvium was encountered from about 17 to 20 feet at the completion depth of Boring B-1, consisting of medium stiff silt with sand.

Boring B-2: Boring B-2 encountered about ½ foot of Fill, consisting of 5/8-inch-minus crushed rock. Coarse-grained Alluvium was encountered from about ½ to 3½ feet, consisting of very loose silty sand with gravel. Fine-grained Alluvium was encountered from about 3½ to 6 feet, consisting of soft silt with sand. Coarse-grained Alluvium was encountered from about 6 to 15½ feet, consisting of very loose to medium dense sand with occasional fine gravel. Fine-

grained Alluvium was encountered from about $15\frac{1}{2}$ to $22\frac{1}{2}$ feet, consisting of stiff silt with sand. Coarse-grained Alluvium was encountered from about $22\frac{1}{2}$ to $31\frac{1}{2}$ feet at the completion depth of Boring B-2, consisting of medium dense sand with silt grading to silty sand at about $27\frac{1}{2}$ feet.

At the time of drilling, groundwater was encountered in Borings B-1 and B-2 at depths of about 4.4 feet and 4.8 feet, respectively.

A preliminary evaluation of infiltration rates in accordance with the Manual (Volume III, Section 3.3.6, Option 3: Soil Grain Size Analysis Method. Figure 3.1 provides the locations of the borings and samples and Table 3.1 provides the Short- and Long-term infiltration rates.

The Geotechnical Report also states, "Due to the relatively shallow groundwater table and the relatively shallow depth to low-permeability soil, we expect that disposal of stormwater by infiltration may be infeasible..."

Figure 3.1: Boring and Sample Locations

 Table 3.1: Short and Long-Term Infiltration Rates

Test Boring / Sample Number	Short-Term Infiltration Rate (in./hr.)	Long-Term Infiltration Rate (in./hr.)
B-1 / S-1	31	8.4
B-2 / S-2 & S-3	0.6	0.16

The Geotechnical Engineering Report is included with this submittal under separate cover.

4. WELLS AND SEPTIC TANKS

There does not appear to be any groundwater wells, or septic systems within or 100 feet from the site. In the developed condition, domestic water and sewer will be provided by Covington Water District and Soos Creek Sewer District, respectively

5. FUEL TANKS

There are no fuel tanks present to the best of our knowledge.

6. FLOOD PLAIN ANALYSIS

According to Federal Emergency Management Program Flood Insurance Rate Map 53053C10333E, effective 2017-03-07, the project lies within Zone X and is not screened, "Area of Minimal Zone Hazard". A FirmETTE has been created for this project and is presented as Appendix 'D'.

7. OFFSITE ANALYSIS

Study Area

The 5th Street CUP project is located within the Puyallup-White Watershed - Water Resource Inventory Area (WRIA) 10. See Figure 7.1 for a map of the Puyallup-White WRIA.

Figure 7.1: Puyallup-White Water Resource Inventory Area (WRIA #10)

Adopted Basin Plans

The following item was located regarding the Puyallup-White Watershed:

• Watershed Restoration and Enhancement Plan: WRIA 10 - Puyallup White Watershed

Tributary Runon

There are no upstream areas that produce stormwater runoff tributary to the project site.

Downstream Analysis

The project site contains two Drainage Basins, herein delineated as the "West Basin" and the "East Basin". See Appendix 'F' for the downstream flow path for each Basin. Stormwater runoff from the project site that doesn't infiltrate into the underlying soils will exit the property to the north and enter the alley, where the West Basin drains into CB D-4-06593, enters Pipe D1-08661 and flows approximately 130 feet west within a 12-inch PVC pipe to CB D4-06591. The East Basin drains into CB D4-06625, flows approximately 158 feet east within a -inch pipe to D4-06626.

Tables 7.1 and 7.2 provide the downstream flow paths for the West and East Basins, respectively.

Upstream St	ructure		Downstream Structure				
ID	Туре	ID	Material	Dia. (in)	Length (ft)	Flow Direction	ID
D4-06593	CB1	D1-08661	PVC	12	130	West	D4-06591
D4-06591	CB1	D1-08662	PVC	12	102	North	D4-06588
D4-06588	CB2	D1-08665	PVC	12	53	Northwest	D5-00300
D5-00300	MH2	D1-08666	Conc.	15	43	North	D5-00301
D5-00301	MH2	D1-08674	Conc.	15	267	North	D5-00292
D5-00292	MH2	D1-08604	Conc.	18	141	North	D4-06543
D4-06543	CB2	D1-08605	Conc.	18	155	North	D5-00293
D5-00293	MH2	D1-08609	Conc.	24	200	North	D5-00294
D5-00294	MH2	D1-08610	Conc.	24	103	North	D5-00295
D5-00295	MH2	D1-08614	Conc.	24	47	East	Tee w/ 12"
Tee w/ 12".	Tee	D1-08616	Conc.	24	193	East	D4-06550
D4-06550	CB2	D1-08621	Conc.	24	227	East	D5-00297
D5-00297	MH2	D1-08630	Conc.	24	48	North	Unknown
Unknown		D1-08631	CMP	21	144	East / Northeast	Puyallup River

Table 7.1:	Downstream	Flow Path	- West Dr	ainage Basin

Upstream	Structure		Downstream Structure				
ID	Туре	ID	Material	Dia. (in)	Length (ft)	Flow Direction	ID
D4-06625	CB1	D1-08702	Conc.	8	158	East	D4-06626
D4-06626	CB1	D1-08704	Conc.	12	113	North	Pipe
Pipe		D1-08705	PVC	12	23	Northeast	D4-06621
D4-06621	CB1	D1-08698	PVC	12	34	North	D4-06620
D4-06620	CB1	D1-08707	Conc.	24	164	East	D4-06629
D4-06629	CB2	D1-08718	Conc.	24	139	East	D5-00305
D5-00305	MH2	D1-08735	Conc.	24	94	East	D4-06652
D4-06652	CB2	D1-08736	Conc.	24	132	East	D4-06653
D4-06653	CB2	D1-08739	Conc.	24	111	East	D5-00306
D5-00306	MH2	D1-08741	Conc.	24	30	East	D5-00303
D5-00303	MH2	D1-08744	Steel	18	260	North	Tee w/ 8"
Tee w/ 8"	Tee	D1-08748	Conc.	36	195	North	Puyallup River

Table 7.2: Downstream Flow Path - East Drainage Basin

Water Quality Assessment

The Department of Ecology Water Quality Atlas was reviewed to see if there are any known downstream water quality concerns. Waters whose beneficial uses are impaired by pollutants that require a water improvement project are placed in the polluted water category (Category 5) and put on the 303(d) list. The 305(b) list all waters and all categories. Pollutants of concerns could be Bacteria, Dissolved oxygen, temperature, metals, phosphorus, turbidity, or high pH.

The Puyallup River Creek has (3) three Category 5 listings, as follows:

• Bacteria - Fecal Coliform:

			B	asis Table				
Assessment Y	ear							
2018								
Sampling Year	Excursion Count	Sample Count	Criterion/Threshold	Aggregate	Calculated Value	Criterion 2	Aggregate 2	Calculated Value 2
2015	1	14	200 #col/100ml	Highest daily average	210	100 #col/100ml	Three-month geometric mean	102
			Basi	is Statemen	t			
fu/100mL). ocation ID: [10, te % criterion fo fu/100mL).	A070], [10-PU or this waterbo	Y-8.5], [10- ody (200 cfi	PU <mark>Y-</mark> 5.7], [10A050] In J/100mL). The geometr <mark>i</mark>	water year 20 c <mark>mean of 21.8</mark>	04, 1 of 12 sar does not exce	nple values (8 eed the geome	%) showed an e stric mean criteri	xcursion of on (100
				Remarks				
Ecology placed sufficient inform n their final app	this listing in on the second	Category 4, ude the imp	A when the candidate 20 pairment is addressed by	018 WQA was y an existing Ti	submitted to E MDL and did n	PA for review. ot approve mo	EPA determined oving this listing t	there was no o Category 4
SWRO TMDL I	ead confirmed	this impair	ment is addressed by th	e Puyallup Riv	er Bacteria TM	IDL, EPA appr	oved 9/19/2011.	2
Assessment Cy See Historic Ba	cle 2018 - A h sis Statement	istoric Cate for previou	gory 4A determination v s assessment informatio	vas carried forv	ward from a pro	evious assess	ment or adminis	trative decisio
Combined Listin	ng: Listing IDs	46241, 463	240, 46060, 16712 were	rolled into this	listing			

• Temperature:

			B	asis Table				
Assessment Y	ear							
2018								
Sampling Year	Excursion	Sample	Criterion/Threshold	Aggregate	Calculated Value	Criterion 2	Aggregate 2	Calculated Value 2
2015	1	14	200 #col/100ml	Highest daily average	2 <mark>1</mark> 0	100 #col/100ml	Three-month geometric mean	<mark>1</mark> 02
			Basi	is Statemen	ıt			
ie % criterion f fu/100mL). ocation ID: [10, ie % criterion f fu/100mL).	or this waterbo A070], [10-PU or this waterbo	ody (200 cfi Y-8.5], [10- ody (200 cfi	u/100mL). The geometri PUY-5.7], [10A050] In u/100mL). The geometri	c mean of 19.3 water year 20 c mean of 21.8	04, 1 of 12 sar does not exce	eed the geome nple values (8 eed the geome	etric mean criterio %) showed an e ttric mean criterio	on (100 xcursion of on (100
				Remarks				
Ecology placed sufficient inform n their final app	this listing in (nation to concle proval.	Category 4/ ude the imp	A when the candidate 20 pairment is addressed by	018 WQA was y an existing T	submitted to E MDL and did n	PA for review. ot approve mo	EPA determined oving this listing t	there was no co Category 4
SWRO TMDL I	ead confirmed	this impain	ment is addressed by th	e Puyallup Riv	er Bacteria TM	IDL, EPA appr	oved 9/19/2011.	
Assessment Cy	cle 2018 - A h	istoric Cate	gory 4A determination v	vas carried for	ward from a pro	evious assess	ment or administ	trative decisi-

Assessment Cycle 2018 - A historic Category 4A determination was carried forward from a previous assessment or administrative decision See Historic Basis Statement for previous assessment information. Combined Listing: Listing IDs 46241, 46240, 46060, 16712 were rolled into this listing

• Mercury:

			Basis Table		
Assessment Year					
2018					
Sampling Year	Excursion Count	Sample Count	Criterion/Threshold	Aggregate	Calculated Value
2015	1	6	0.012 ug/L	Toxic aquatic 4-day average	
2017	1	6	0.012 ug/L	Toxic aquatic 4-day average	
			Basis Statement		
Location ID(s) [10A0 Location ID(s) [10A0 Location ID(s) [10A0 Puyallup Tribe of Ind from 3 samples colle	170] In 2005, 2 of 2 150] In 2003, 1 of 4 150] In 2002, 2 of 2 lians unpublished da ected in 2002 at RM s	e sample event(s) sample event(s) sample event(s) ta (submitted by 0 5.8 and no excur	did not exceed Washington exceeded Washington did not exceed Washin Char Naylor on 3 Marct sions beyond the chror	gton's Aquatic Life Chronic crit 's Aquatic Life Chronic criterior gton's Aquatic Life Chronic crit 1 2003) show 1 excursion beyo ic criterion from 2 samples col	erion. I. erion. Ind the chronic criterion lected in 2002 at RM
			Remarks		
Assessment Cycle 2 criterion.	2018 - During 2015 to	o 2017, two or mo	ore sample values colle	cted in a three-year period exc	eeded the aquatic life
Combined Listing: L	icting IDc 45275 25	101 25220 10000	colled into this listing		

8. CRITICAL AREAS

The site and properties in the immediate vicinity were researched to determine the presence of any critical areas on-site such that any potential problems that may be created or aggravated by the proposed project can be identified and evaluated. The following items were investigated and determined to be present or suspected to be present:

- Aquifer Recharge Area
- Volcanic / Lahar Hazard
- Seismic Hazard

9. PERFORMANCE GOALS AND STANDARDS

Hydrology Model

The approved hydrology model used for this project is the 2021 Western Washington Hydrology Model (WWHM) software, which incorporates all the methods required for determining compliance with the flow control and water quality standards specified below.

Flow Control

The project site is required to release stormwater to the performance standards provided in the 2012 (amended in 2014) Manual. To meet the prescriptive performance standards, stormwater discharges shall match developed discharges to pre-developed durations for the range of pre-developed discharge rates from 50% of the 2-year peak flow up to the full 50-year peak flow. The pre-developed condition to be matched shall be a forested land cover unless:

- Reasonable, historic information is provided that indicates the site was prairie prior to settlement (modeled as pasture in the approved continuous simulation model); or
- The drainage area of the immediate stream and all subsequent downstream basins have had at least 40% total impervious area (TIA) since 1985. In this case, the predeveloped condition to be matched shall be the existing land cover condition.

This standard requirement is waived for sites that will reliably infiltrate all the runoff from hard surfaces and converted vegetation areas.

Runoff Treatment

Treatment facilities shall be sized for the entire area that drains to them, even if some of those areas are not pollution-generating, or were not included in the project site threshold decisions or the treatment threshold decisions of this minimum requirement.

Water Quality Design Storm Volume:

• The volume of runoff predicted from a 24-hour storm with a 6-month return frequency (a.k.a., 6-month, 24-hour storm). Wetpool facilities are sized based upon the volume of runoff predicted through use of the Natural Resource Conservation Service curve number equations for the 6-month, 24-hour storm. Alternatively, when using an approved continuous runoff model, the water quality design storm volume shall be equal to the simulated daily volume that represents the upper limit of the range of daily volumes that accounts for 91% of the entire runoff volume over a multi-decade period of record.

Water Quality Design Flow Rate:

• Preceding Detention Facilities or when Detention Facilities are not required:

The flow rate at or below which 91% of the runoff volume, as estimated by an approved continuous runoff model, will be treated. Design criteria for treatment facilities are assigned to achieve the applicable performance goal (e.g., 80% TSS removal) at the water quality design flow rate . At a minimum, 91% of the total runoff volume, as estimated by an approved continuous runoff model, must pass through the treatment facility(ies) at or below the approved hydraulic loading rate for the facility(ies).

<u>Conveyance</u>

The 2012 (amended in 2014) Stormwater Management Manual for Western Washington does not provide specific guidance on conveyance analysis. Sections 204.2(1), 204.2(3) and 204.2(4) of the City of Puyallup Standards for Public Works Engineering and Construction Manual (Revised 08/22) state the following:

- 204.2(1): All new pipe systems, both onsite and offsite, shall be designed with sufficient capacity to convey and contain (at minimum) the 25-year storm flow event, assuming developed conditions for onsite tributary areas, and existing conditions for any offsite tributary areas.
- 204.2(4): Pipe system structures may overtop for runoff events that exceed the 25year design capacity provided the overflow from a 100-year runoff event does not create or aggravate an existing flooding problem or erosion problem. Any overflow occurring onsite for runoff events up to and including the 100-year event must discharge at the natural location for the project site. In residential subdivisions, this overflow must be contained within an onsite drainage easement, tract, covenant, or public right-of-way.
- **204.3(3):** Pipe systems shall be designed to accommodate the developed condition 25-year storm flow event with a minimum 0-feet of freeboard without overtopping catch basins and manholes.

10. PERMANENT STORMWATER CONROL PLAN

In the existing condition, stormwater generally sheet flows from south to north, with elevations of approximately 49.5 along the north property line and 51.2 along the south property line. A slight high point exists on the property line and alley to the north (approximate elevation 49.8) that creates two distinct downstream flow paths that do not combine within 1/4 mile downstream. As such, the two contributing drainage basins (East Basin and West Basin) are analyzed separately. There are no properties that contribute tributary stormwater run-on to the project site.

Pre-Developed Site Hydrology

The project will disturb the entire site area of 0.23 acres. The West Basin and East Basin are connected to Point of Compliance #1 and #2, respectively, such that they can be analyzed independently.

Table 10.1 presents the Pre-Developed land use and associated areas for both drainage basins. The Pre-Developed condition is modeled as "A/B. Forest, Flat" in accordance with the Manual.

Basin ID	C, Forest, Flat sf (ac)	C, Lawn, Flat** sf (ac)	Rooftops, Flat sf (ac)	Roads, Flat sf (ac)	Total sf (ac)
West Basin: Pre-Developed (P.O.C. #1)	1,676 (0.039)	-	-	-	1,676 (0.039)
East Basin: Pre-Developed (P.O.C. #2)	8,324 (0.191)	-	-	-	8,324 (0.191)
TOTAL:	10,000 (0.230)	-	-	-	10,000 (0.230)

Table 10.1: Pre-Developed Land Use & Area

Pre-Developed flows are presented in Table 10.3 and a Pre-Developed Basin Map is presented in Appendix 'A'

Developed Site Hydrology

In the Post-Construction scenario, existing basin areas are maintained to the maximum extent practicable. However, due to land cover and site constraints, the West Basin area increased from 1,676 square feet to 3,008 square feet, an increase of 1,332 square feet (0.031 acre). The East Basin decreased by the same amount to 6,992 square feet (0.161 acre.)

It is proposed that the building roof runoff (East Basin) be collected and piped to CB D4-06625 within the alley north of the project site. The Pedestrian Plaza will sheet flow into the alley and into the same catch basin. Runoff from the parking lot and driveway (West Basin) will sheet flow into the alley and into CB D4-06593.

Table 10.2 is comprehensive summary of land use and areas for the Post-Developed Condition. See Appendix 'A' for the Developed Basin Map.

Basin ID	C, Pasture, Flat* sf (ac)	Parking, Flat sf (ac)	Rooftops, Flat sf (ac)	Roads, Flat sf (ac)	Sidewalks, Flat sf (ac)	Total sf (ac)
West Basin	1,052	1,956				3,008
(P.O.C. #1)	(0.024)	(0.045)	-	-	-	(0.069)
East Basin	2,268		3,150	1,358	216	6,992
(P.O.C. #2)	(0.052)	-	(0.073)	(0.031)	(0.005)	(0.161)
TOTAL	3,320	1,956	3,150	1,358	216	10,000
TOTAL.	(0.076)	(0.045)	(0.073)	(0.031)	(0.005)	(0.230)

Table 10.2: Post-Developed Land Use and Areas

*NOTE: All disturbed surfacing that will not receive hard surfacing in the final postconstructed condition shall utilize amended soil in accordance with BMP T5.13. As such, these lawn areas may be modeled as "Pasture" rather than "Lawn".

Table 10.3 presents the pre-developed and developed peak flows (2-, 5-, 10-, 25-, 50- and 100-Year storm recurrence events) for both the West Basin and East Basin.

STORM RECURRENCE EVENT	PRE-DEVELOPED PEAK FLOWS - WEST BASIN (P.O.C. #1) (CFS)	DEVELOPED PEAK FLOWS - WEST BASIN (P.O.C.#1) (CFS)	PRE-DEVELOPED PEAK FLOWS - EAST BASIN (P.O.C. #2) (CFS)	DEVELOPED PEAK FLOWS - EAST BASIN (POC #2) (CFS)
2-Year	0.0008	0.0160	0.0040	0.0388
5-Year	0.0013	0.0215	0.0063	0.0521
10-Year	0.0015	0.0255	0.0075	0.0617
25-Year	0.0018	0.0310	0.0087	0.0749
50-Year	0.0019	0.0354	0.0094	0.0855
100-Year	0.0021	0.0400	0.0101	0.0968

Table 10.3: Pre- and Post-Developed Flows

The increase in peak flow during the 100-Year Storm Recurrence Event is 0.0379 cfs and 0.0867 cfs for the West and East Basins, respectively. Document how the project meets COP Des

Flow Control System

Flow control is not required for this project as:

Document how the project meets COP Design Standard requirements that permits direct discharge to the Puyallup River found in Section 204.2 (2). Contact me if you have trouble finding the 2012 Storm Comp Plan Direct Discharge Basin Map. [Storm Report, Pg 12]

- The project indirectly discharges to the Puyallup River (a Flow-Control Exempt Surface Water from 1/2 mile downstream of confluence with Kellog Creek) through a conveyance system comprised entirely of manmade conveyance elements.
- The project does not propose 10,000 square feet or more in a single Threshold Discharge Area.

- The project does not convert 3/4 acres or more of vegetation to lawn or landscape or convert 2.5 acres or more of native vegetation to pasture in a Threshold Discharge Area, and from which there is a surface discharge in a natural or manmade conveyance system from the site.
- The project does not, through a combination of effective hard surfaces and converted vegetation areas, cause a 0.10 cubic feet per second increase in the 100-year flow frequency from a threshold discharge area as estimated using the Western Washington Hydrology Model or other approved model and one hour time steps (or a 0.15 cfs increase using 15-minute time steps).

Water Quality System

Water Quality is not required for this project as:

- The project does not create 5,000 square feet or more of Pollution-Generating Hard Surface (PGHS) in a single Threshold Discharge Area.
- The project does not create (not including permeable pavements) a total of 3/4 or more of Pollution-Generating Pervious Surface (PGPS) in a single Threshold Discharge Area, and from which there will be a surface discharge in a natural or man-made conveyance system from the site.

Conveyance System Analysis and Design

Sections 204.2(1), 204.2(3) and 204.2(4) of the City of Puyallup Standards for Public Works Engineering and Construction Manual (Revised 08/22) state the following:

- 204.2(1): All new pipe systems, both onsite and offsite, shall be designed with sufficient capacity to convey and contain (at minimum) the 25-year storm flow event, assuming developed conditions for onsite tributary areas, and existing conditions for any offsite tributary areas.
- **204.2(3):** Pipe systems shall be designed to accommodate the developed condition 25-year storm flow event with a minimum 0-feet of freeboard without overtopping catch basins and manholes.
- 204.2(4): Pipe system structures may overtop for runoff events that exceed the 25year design capacity provided the overflow from a 100-year runoff event does not create or aggravate an existing flooding problem or erosion problem. Any overflow occurring onsite for runoff events up to and including the 100-year event must discharge at the natural location for the project site. In residential subdivisions, this overflow must be contained within an onsite drainage easement, tract, covenant, or public right-of-way.

The design of the stormwater conveyance system ensures that the peak stormwater runoff from the 100-Year Storm Recurrence event can be contained without any overtopping of structures. Calculations indicate that the peak runoff for the aforementioned event are 0.0400 cfs (West Basin) and 0.0968 cfs (East Basin). These peak flows are for the entire basin to be conservative in the conveyance capacity calculations. The smallest diameter/slopes pipe is a 6-inch pipe laid at 0.50%. Calculations indicate that this pipe can convey 0.462 cfs at a depth of 0.47-feet (5.64-inches).

Flow Control and Water Quality calculations were performed using WWHM, a hydrological modeling program approved by the Washinton State Department of Ecology. The pipe capacity was analyzed using Hydraflow Express contained within Autocad Civil 3D. All stormwater calculations are presented in Appendix 'B'.

Flow Control BMPs / Low Impact Development BMPs

Due to site constraints (space limitations), the only BMP from List #2 that will be implemented on each lot to satisfy Minimum Requirement #5 is BMP T5.13: Post-Construction Soil Quality and Depth. See Minimum Requirement #5 in Section 11 for detailed discussion.

11. DISCUSSION OF MINIMUM REQUIREMENTS

Referencing Figure 11.1 (Flow Chart for Determining Requirements for New Development) of the Manual, the site does not have 35% or more of existing hard surface coverage and results in 5,000 square feet or greater of new plus replaced hard surface area. As such, all Minimum Requirements apply to the new and replaced hard surfaces and converted vegetation areas. Below are Minimum Requirements #1 though #9 with a discussion as to how each are applicable to this project.

Figure 11.1: Flow Chart for Determining Requirements for New Development

Minimum Requirement #1 - Preparation of Stormwater Site Plans

This Preliminary Storm Water Site Plan Report and the accompanying plans satisfy this requirement.

Minimum Requirement #2 - Construction Stormwater Pollution Prevention Plan (SWPPP)

A Construction Stormwater Pollution Prevention Plan (SWPPP) will be included as a separate report further in the design/approval/permitting process.

The SWPPP will address each of the 13 required elements, unless site conditions render the element unnecessary and the exemption from that element is clearly justified in the narrative of the SWPPP.

Minimum Requirement #3 - Source Control of Pollution

All known, available and reasonable source control BMPs will be applied to the project. Applicable operational and structural source control BMPs, as described in Volume IV of the Manual will be implemented. Applicable construction BMPs, as described in Volume II of the Manual, will be applied and discussed in the Construction SWPPP. Operational and structural controls include, but are not limited to:

- Formation of a Pollution Prevention Team
- Good Housekeeping
- Spill Prevention and Cleanup
- Employee Training
- Inspections
- Record Keeping
- BMPs for Dust Control at Disturbed Land Areas and Unpaved Roadways and Parking Lots (S407)
- BMPs for Illicit Discharges to Storm Drains (S410)
- BMPs for Landscaping and Lawn/Vegetation Management [Irrigation] (S411)
- BMPs for Maintenance and Repair of Vehicles and Equipment (S414)
- BMPs for Maintenance of Stormwater Drainage and Treatment Systems (S417)
- BMPs for Painting / Finishing / Coating of Vehicles / Boats / Buildings / Equipment (S420)
- BMPs for Parking and Storage of Vehicles and Equipment (S421)
- BMPs for Roof / Building Drains at Manufacturing and Commercial Buildings (S424)
- BMPs for Spills of Oil and Hazardous Substances (S426)
- BMPs for Storage of Liquid, Food Waste, or Dangerous Waste Containers (S427)
- BMPs for Washing and Steam Cleaning Vehicles / Equipment / Building Structures (S431)

Minimum Requirement #4 - Preservation of Natural Drainage Systems and Outfalls

The project site maintains the natural drainage pattern of the existing site to the maximum extent practicable.

As previously stated, there are two drainage basins on the subject property. It is proposed that the discharge points to existing storm conveyance infrastructure be maintained in the asconstructed condition. the building roof runoff (East Basin) be collected and piped to CB D4-06625 within the alley north of the project site. The Pedestrian Plaza will sheet flow into the alley and into the same catch basin. Runoff from the parking lot and driveway (West Basin) will sheet flow into the alley and into CB D4-06593.

Minimum Requirement #5 - On-site Stormwater Management

Projects qualifying as flow control exempt in accordance with Minimum Requirement #7 do not have to achieve the LID performance standard, nor consider bioretention, rain gardens, permeable pavement, and full dispersion if using List #1 or List #2. However, those projects must implement BMP T5.13: Post-Construction Soil Quality and Depth; BMP T5.10A: Downspout Full Infiltration or BMP T5.10B: Downspout Dispersion Systems or BMP T5.10C: Perforated Stub-out Connections; and BMP T5.11: Concentrated Flow Dispersion or BMP T5.12: Sheet Flow Dispersion, if feasible. See Figure 11.2 (Flow Chart for Determining LID MR #5 Requirements)

Figure 11.2: Flow Chart for Determining LID MR #5 Requirements

As stated in Section 10, flow control is not required for this project as the project indirectly discharges to the Puyallup River (a Flow-Control Exempt Surface Water from 1/2 mile downstream of confluence with Kellog Creek) through a conveyance system comprised entirely of manmade conveyance elements.

Projects that trigger Minimum Requirements #1 though #9 must meet the requirements in Table 11.1.

Project Type and Location	Requirement
New development on any parcel inside the UGA, or new development outside the UGA on a parcel less than 5 acres	Low Impact Development Performance Standard (Exempt - See Above) and BMP T5.13: Post-Construction Soil Quality and Depth; or List #2 (applicant option)
New development outside the UGA on a parcel of 5 acres or larger.	Low Impact Development Performance Standard (Exempt - See Above) and BMP T5.13: Post-Construction Soil Quality and Depth
Redevelopment on any parcel inside the UGA, or redevelopment outside the UGA on a parcel less than 5 acres	Low Impact Development Performance Standard (Exempt - See Above) and BMP T5.13: Post-Construction Soil Quality and Depth; or List #2 (applicant option).
Redevelopment outside the UGA on a parcel of 5 acres or larger	Low Impact Development Performance Standard (Exempt) and BMP T5.13: Post-Construction Soil Quality and Depth

Table 11.1: On-Site Stormwater Management Requirements for Projects Triggering
Minimum Requirements #1 - #9

As previously stated, this project is Flow Control exempt. As such, the Low Impact Performance Standard is not applicable and the BMPs in List #2 will be considered. The first BMP that is considered feasible for each category must be implemented.

- Lawn and Landscaped Areas
 - BMP T5.13: Post-Construction Soil Quality and Depth.
 - Feasible and implemented on the project for all disturbed areas that will not receive hard surfacing in the Post-Developed condition.
- Roofs
 - BMP T5.30: Full Dispersion
 - Not considered as the project is exempt from Flow Control
 - BMP T5.10A: Downspout Full Infiltration.
 - Not feasible as it is noted within Section 7.3.3 of the Geotech Report that "we expect that disposal of stormwater by infiltration...infeasible".
 - BMP T7.30: Bioretention
 - Not considered as the project is exempt from Flow Control

In-feasibility is not fully developed. Cite in-feasibility criteria found in 2019 manual for each BMP considered. [Storm Report, Pg 17]

- BMP T5.10B: Downspout Dispersion Systems
 - There is insufficient space for Downspout Dispersion and the associated flowpath. Thus, Downspout Dispersion is not feasible.
- BMP T5.10C: Perforated Stub-Out Connection
 - A Perforated Stub-Out Connection is deemed infeasible it would be placed under impervious / heavily compacted surfacing, negatively impacting the facilitation of maintenance.
- Other Hard Surfaces
 - BMP T5.30: Full Dispersion
 - Not considered as the project is exempt from Flow Control
 - BMP T5.15: Permeable Pavements
 - Not considered as the project is exempt from Flow Control
 - BMP T7.30: Bioretention
 - Not considered as the project is exempt from Flow Control
 - BMP T5.12: Sheet Flow Dispersion or BMP T5.11: Concentrated Flow Dispersion
 - There is insufficient space for Sheet Flow Dispersion or Concentrated Flow Dispersion with the associated flowpath.

Minimum Requirement #6 - Runoff Treatment

The following Threshold Discharge Areas (TDAs) require construction of Runoff Treatment BMPs. If a TDA meets any of the following thresholds, Runoff Treatment BMPs are required. The project proponent must demonstrate that the TDA does not meet either of the following thresholds for Runoff Treatment BMPs to not be required for that TDA.

- TDAs that have a total of 5,000 square feet or more of pollution-generating hard surface (PGHS). This project creates less than 5,000 square feet of PGHS in a single TDA, thus Runoff Treatment is not Required.
- TDAs that have a total of 3/4 of an acre or more of pollution-generating pervious surfaces (PGPS) - not including permeable pavements, and from which there will be a surface discharge in a natural or man-made conveyance system from the site. Not applicable as the entire project site is 10,000 square feet (0.23 acre).

Minimum Requirement #7 - Flow Control

As stated in Section 10, flow control is not required for this project as the project indirectly discharges to the Puyallup River (a Flow-Control Exempt Surface Water from 1/2 mile downstream of confluence with Kellog Creek) through a conveyance system comprised entirely of manmade conveyance elements.

Minimum Requirement #8 - Wetlands Protection

There are no wetlands on or in the vicinity of the project site.

Minimum Requirement #9 - Operations and Maintenance

An Operations and Maintenance Manual will be included as a separate report further in the design/approval/permitting process.

12. SPECIAL REPORTS AND STUDIES

The following reports were prepared for this project, are incorporated into this Stormwater Site Plan Report by reference, and submitted under separate cover:

- *Geotechnical Engineering Report (Draft)*, Icicle Creek Engineers, Dated May 16, 2022
- City of Puyallup Traffic Scoping Worksheet, Heath & Associates, May 8, 2022

13. BOND QUANTITIES, DEDICATIONS, EASEMENTS

Paperwork and forms for any required Bond, Assignment of Funds, Construction Cost Estimate will be submitted further in the design/approval/permitting process.

The following dedication is proposed for this project:

 Right-of-Way dedication along north property line to provide a City standard 20-foot wide alley

The following buffers are proposed as part of this project:

- North: 12-foot Plaza Space and Type II Landscaping
- South: 6-foot Type II Landscaping
- East: 6-foot Type III Landscaping
- West: 6-foot Type III Landscaping

APPENDIX A

Existing Conditions Map Developed Conditions Map Pre-Developed Basin Map Developed Basin Map

RNGR\ESW-JOBS\2218\001\021\blocks\Developed Conditions Map.dw 1/2023 3:26 PM Plothed Bo: Michnel Norton

ACKSON CASTANEDA & SAMANTHA KEIMIG EEM CONSULTING ENGINEERS LLG Backeral Way, WA 8003 Image Image <th>Image: State of the state</th> <th></th> <th></th> <th></th>	Image: State of the state			
ACKSON CASTANEDA & SAMANTHA KEIMIG EGM 3400 BULTING EN H ST CONDITIONAL USE PERMIT www.semcivil.com UNALLIP DEVELOPED CONDITIONS MAP WASHINGTON	Image: State of the state o	GINEERS LLC	FEDERAL WAY (253) 838-6113 EVERETT (425) 297-9900	Land Planning Landscape Architecture
ACKSON CASTANEDA & SAMANTHA KEIMIG H ST CONDITIONAL USE PERMIT UNALLUP DEVELOPED CONDITIONS MAP WASHINGTON	DEVELOPED CONDITIONAL MEIMIG DACKSON CASTANEDA & SAMANTHA KEIMIG DACKSON CASTANEDA	CONSULTINGEN 33400 8th Ave S, Suite 205 Federal Way, WA 98003	smcivil.com	Land Surveying Project Management
ACKSON CASTANEDA & SAMANTHA KEIMIG H ST CONDITIONAL USE PERMIT	DACKSON CASTANEDA & SAMANTHA KEIMIG JACKSON CASTANEDA & SAMANTHA KEIMIG	WSE	www.es	Civil Engineering Public Works
🗶 🖵 🗦	YC L Signature JOB NO.: 2218-001-021 DWG. NAME: DEV-01 DESIGNED BY: BML DRAWN BY: DCL CHECKED BY: DATE:	CKSON CASTANEDA & SAMANTHA KEIMIG	4 ST CONDITIONAL USE PERMIT	VALUP DEVELOPED CONDITIONS MAP WASHINGTON

APPENDIX B

Stormwater Design Calculations

5th Street Conditional Use Permit Site Storm Calculations

WWHM2012

PROJECT REPORT

General Model Information

Project Name:	10-10-22 5th Street Site Calculations
Site Name:	5th Street CUP
Site Address:	111 5th Street SE
City:	Puyallup
Report Date:	10/21/2022
Gage:	38 IN CENTRAL
Data Start:	10/01/1901
Data End:	09/30/2059
Timestep:	15 Minute
Precip Scale:	1.000
Version Date:	2021/08/18
Version:	4.2.18

POC Thresholds

Low Flow Threshold for POC1:	50 Percent of the 2 Year
High Flow Threshold for POC1:	50 Year
Low Flow Threshold for POC2:	50 Percent of the 2 Year
High Flow Threshold for POC2:	50 Year

Landuse Basin Data Predeveloped Land Use

West Pre-Develope	ed
Bypass:	No
GroundWater:	No
Pervious Land Use C, Forest, Flat	acre 0.039
Pervious Total	0.039
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.039
Element Flows To: Surface	Interflow

East Pre-Developed
Bypass:NoGroundWater:NoPervious Land Use
C, Forest, Flatacre
0.191Pervious Total0.191

Pervious Total	0.191
Impervious Land Use	acre
Impervious Total	0
Basin Total	0.191

Element Flows To: Surface Interflow

Mitigated Land Use

West Developed Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Flat	acre 0.024
Pervious Total	0.024
Impervious Land Use PARKING FLAT	acre 0.045
Impervious Total	0.045
Basin Total	0.069
Element Flows To: Surface	Interflow

East Developed	
Bypass:	No
GroundWater:	No
Pervious Land Use C, Pasture, Flat	acre 0.052
Pervious Total	0.052
Impervious Land Use ROADS FLAT ROOF TOPS FLAT SIDEWALKS FLAT	acre 0.031 0.073 0.005
Impervious Total	0.109
Basin Total	0.161

Element Flows To: Surface Inter

Interflow

Routing Elements Predeveloped Routing Mitigated Routing

Analysis Results

Annual Peaks

Annual Peaks for Predeveloped and Mitigated. POC #1 Year Predeveloped Mitigated

1902	0.001	0.019
1903	0.001	0.021
1904	0.001	0.024
1905	0.000	0.011
1906	0.000	0.012
1907	0.001	0.016
1908	0.001	0.013
1909	0.001	0.016
1910	0.001	0.015
1911	0.001	0.017

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931	0.003 0.001 0.000 0.001 0	$\begin{array}{c} 0.031\\ 0.012\\ 0.052\\ 0.011\\ 0.020\\ 0.007\\ 0.016\\ 0.010\\ 0.013\\ 0.012\\ 0.018\\ 0.013\\ 0.012\\ 0.018\\ 0.013\\ 0.023\\ 0.010\\ 0.019\\ 0.015\\ 0.012\\ 0.023\\ 0.024\\ 0.012\end{array}$
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953	0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0	0.013 0.012 0.021 0.010 0.015 0.022 0.011 0.013 0.024 0.023 0.018 0.025 0.019 0.015 0.012 0.016 0.024 0.014 0.021 0.025 0.023 0.023 0.023
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969	0.001 0.000 0.001 0.002 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001	0.012 0.012 0.013 0.017 0.017 0.013 0.036 0.015 0.011 0.033 0.015 0.013 0.018 0.015 0.014
2230776388		

0 7 7 6 3 8 8		
7 6 3 8 8		
ð Q		
20		
1 8 1		
0 3 9		
8 21 5		
1 5 3		
6 7 5		
2 23 3		
9 86 7		
9 6 2		
5 6 5		
4 4 24		
4 23 5		
2 7 5		
24 80 84		
5 7 9		

2028	0.000	0.007
2029	0.001	0.013
2031	0.001	0.008
2032	0.000	0.013
2033	0.001	0.016
2034	0.000	0.013
2035	0.002	0.017
2030	0.001	0.013
2038	0.001	0.017
2039	0.000	0.033
2040	0.000	0.013
2041	0.001	0.016
2042	0.002	0.019
2043	0.001	0.021
2045	0.001	0.012
2046	0.001	0.013
2047	0.001	0.016
2048	0.001	0.013
2049	0.001	0.019
2050	0.001	0.013
2052	0.001	0.016
2053	0.001	0.013
2054	0.001	0.027
2055	0.000	0.016
2050	0.000	0.021
2058	0.001	0.019
2059	0.001	0.024

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated

Predeveloped	Mitigate
0.0027	0.0518
0.0023	0.0485
0.0023	0.0364
0.0022	0.0359
0.0021	0.0340
0.0021	0.0334
0.0020	0.0328
0.0019	0.0312
0.0018	0.0298
0.0018	0.0281
0.0018	0.0268
0.0018	0.0251
0.0017	0.0251
0.0017	0.0245
0.0017	0.0244
0.0017	0.0244
0.0016	0.0242
0.0016	0.0241
0.0016	0.0239
0.0015	0.0237
0.0015	0.0236
0.0014	0.0234
	Predeveloped 0.0027 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0016 0.0016 0.0015 0.0014

23	0.0014	0.0231
24	0.0014	0.0231
25	0.0014	0.0230
26	0.0014	0.0230
27	0.0014	0.0230
28	0.0013	0.0228
29	0.0013	0.0225
30	0.0013	0.0222
31	0.0013	0.0218
32	0.0013	0.0211
33	0.0012	0.0209
34	0.0012	0.0208
35	0.0011	0.0207
36	0.0011	0.0207
37	0.0011	0.0207
38	0.0011	0.0206
39	0.0011	0.0205
40	0.0011	0.0204
41	0.0011	0.0199
42	0.0011	0.0195
43	0.0011	0.0194
44	0.0011	0.0192
45	0.0010	0.0191
46	0.0010	0.0190
47	0.0010	0.0190
48	0.0010	0.0190
49	0.0010	0.0188
50	0.0010	0.0187
51	0.0009	0.0187
52	0.0009	0.0182
53	0.0009	0.0181
54	0.0009	0.0180
55	0.0009	0.0180
56	0.0009	0.0180
57 58 59 60 61	0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	0.0178 0.0176 0.0176 0.0176 0.0173 0.0173
62	0.0009	0.0172
63	0.0009	0.0172
64	0.0009	0.0171
65	0.0009	0.0170
66	0.0009	0.0170
67	0.0009	0.0170
68	0.0008	0.0170
69	0.0008	0.0169
70	0.0008	0.0169
71	0.0008	0.0167
72	0.0008	0.0165
73	0.0008	0.0165
74	0.0008	0.0163
75	0.0008	0.0163
76	0.0008	0.0163
77	0.0008	0.0162
78	0.0008	0.0160
79 80	0.0008	0.0159 0.0159

81 82 83 84 85 86 87	0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0007	0.0159 0.0158 0.0158 0.0158 0.0157 0.0155 0.0155
88 89 90 91 92 93 94 95 96 97 98	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007	0.0155 0.0155 0.0154 0.0153 0.0153 0.0153 0.0153 0.0153 0.0152 0.0151 0.0151
99 100 101 102 103 104 105 106 107 108 109 110	0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	0.0149 0.0148 0.0147 0.0147 0.0145 0.0144 0.0144 0.0138 0.0137 0.0136 0.0134
111 112 113 114 115 116 117 118 119 120 121	$\begin{array}{c} 0.0006\\ 0.0006\\ 0.0005\\$	$\begin{array}{c} 0.0134\\ 0.0133\\ 0.0132\\ 0.0132\\ 0.0132\\ 0.0132\\ 0.0131\\ 0.0131\\ 0.0130\\ 0.00130\\ 0.0010\\ 0.0010\\ 0.000\\ 0.0$
122 123 124 125 126 127 128 129 130 131 132	0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004	$\begin{array}{c} 0.0129\\ 0.0129\\ 0.0128\\ 0.0128\\ 0.0127\\ 0.0127\\ 0.0126\\ 0.0126\\ 0.0126\\ 0.0126\\ 0.0124\\ 0.0123\\ 0.0123\\ \end{array}$
133 134 135 136 137 138	0.0004 0.0004 0.0004 0.0004 0.0004 0.0004	0.0120 0.0120 0.0119 0.0118 0.0118 0.0117

139	0.0004	0.0117
140	0.0004	0.0117
141	0.0004	0.0116
142	0.0003	0.0115
143	0.0003	0.0114
144	0.0003	0.0112
145	0.0003	0.0109
146	0.0003	0.0108
147	0.0003	0.0108
148	0.0003	0.0106
149	0.0003	0.0105
150	0.0003	0.0105
151	0.0003	0.0102
152	0.0003	0.0100
153	0.0003	0.0099
154	0.0002	0.0098
155	0.0002	0.0096
156	0.0001	0.0079
157	0.0001	0.0075
158	0.0000	0.0074

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail	
0.0004	50226	400301	900	Fail	
0.0004	16607	470003	1006		Duration doe
0.0004	40097	409000	1000	Fall	project is f
0.0005	43301	400000	1003		project is i
0.0005	40304	452457	1122		
0.0005	37556	444590	1183	Fail	
0.0005	34891	436335	1250	Fail	
0.0005	32603	429023	1315	Fail	
0.0005	30409	421931	1387	Fail	
0.0005	28260	414563	1466	Fail	
0.0006	26448	407970	1542	Fail	
0.0006	24842	401599	1616	Fail	
0.0006	23279	395007	1696	Fail	
0.0006	21944	388912	1772	Fail	
0.0006	20681	383206	1852	Fail	
0.0006	19407	377223	1943	Fail	
0.0007	18304	371849	2031	Fail	
0.0007	17263	366531	2123	Fail	
0.0007	16149	361046	2235	Fail	
0.0007	15158	356060	2348	Fail	
0.0007	14304	351129	2454	Fail	
0.0007	13446	346309	2575	Fail	
0.0007	12676	341711	2695	Fail	
0.0008	11967	337057	2816	Fail	
0.0008	11235	332404	2958	Fail	
0.0008	10582	328138	3100	Fail	
0.0008	9994	323983	3241	Fail	
0.0008	9374	319606	3409	Fail	
0.0000	8859	315673	3563	Fail	
0.0000	8349	311739	3733	Fail	
0.0000	7856	307695	3016	Fail	
0.0000	7468	303928	4069	Fail	
0.0000	7047	300327	4261	Fail	
0.0000	6609	206615	1/88	Fail	
0.0000	6277	200010	1660	Fail	
0.0003	5080	280600	4837	Fail	
0.0009	5909	203030	4037 5016	Fail	
0.0010	5701	200970	5010	Fall	
0.0010	5202	202333	5262	Fail	
0.0010	3200	279330	5505	Fall	
0.0010	4943	270901	5502	Fall	
0.0010	4707	212040	5790	Fail	
0.0010	4019	209740	0909		
0.0011	4335	200032	0140	Fall	
0.0011	4159	263596	6337	Fall	
0.0011	3964	260660	6575	Fall	
0.0011	3766	257502	6837	Fail	
0.0011	3586	254732	7103	Fail	
0.0011	3421	251907	7363	Fall	
0.0011	3263	248970	7630	Fail	
0.0012	3135	246256	7855	Fail	
0.0012	3030	243597	8039	Fail	
0.0012	2928	240827	8224	Fail	
0.0012	2815	238167	8460	Fail	
0.0012	2685	235674	8777	Fail	

Duration does need to pass as the project is flow control exempt

0.0012	2556	233015	9116	Fail
0.0013	2454	230577	9395	Fail
0.0013	2364	228140	9650	Fail
0.0013	2256	225591	n/a	Fail
0.0013	2143	223209	10415	Fail
0.0013	2043	220882	10811	Fail
0.0013	1952	218556	11196	Fail
0.0013	1862	216284	11615	Fail
0.0014	1786	214123	11988	Fall
0.0014	1690	211852	12535	Fall
0.0014	1620	209030	12940	Fall
0.0014	1004	207420	13202	Fall
0.0014	1403	200149	13033	Fall
0.0014	1410	203099	14404	Fall
0.0015	1040	108888	14970	r an Fail
0.0015	1210	19689/	16152	Fail
0.0015	1166	194844	16710	Fail
0.0015	1103	192739	17474	Fail
0.0015	1057	190800	18051	Fail
0.0015	1008	188972	18747	Fail
0.0016	964	186977	19395	Fail
0.0016	920	185094	20118	Fail
0.0016	874	183321	20974	Fail
0.0016	815	181382	22255	Fail
0.0016	776	179609	23145	Fail
0.0016	738	177891	24104	Fail
0.0017	695	176063	25332	Fail
0.0017	638	174401	27335	Fail
0.0017	602	172684	28685	Fail
0.0017	555	170911	30794	Fail
0.0017	517	169194	32726	Fail
0.0017	478	167421	35025	Fail
0.0017	434	165703	38180	Fall
0.0018	394	164097	41048	Fall
0.0018	304	162490	44040	Fall
0.0018	339	150333	4/4/4 51020	Fall
0.0018	207	157836	531/3	r an Fail
0.0018	237	15617/	57206	Fail
0.0010	253	154679	61137	Fail
0.0019	237	153183	64634	Fail
0.0019	223	151632	67996	Fail
0.0019	206	150191	72908	Fail
0.0019	195	148751	76282	Fail
0.0019	180	147144	81746	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #1 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

1907 1908

1909

1910

1911

1912

0.006

0.005

0.005

0.006

0.004

0.013

0.040

0.032

0.037

0.042 0.075

19370.0050.05319380.0030.02619390.0000.03319400.0040.05719410.0020.057	19370.0050.05319380.0030.02619390.0000.03319400.0040.05719410.0020.05719420.0060.04419430.0030.04319440.0050.06119450.0050.04619460.0020.036	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1937 0.005 0.053 1938 0.003 0.026 1939 0.000 0.033 1940 0.004 0.057 1941 0.002 0.057 1942 0.006 0.044 1943 0.003 0.043 1944 0.005 0.061 1945 0.005 0.046 1946 0.002 0.036 1947 0.002 0.028 1948 0.009 0.038 1949 0.007 0.059 1950 0.002 0.033 1951 0.003 0.051 1952 0.011 0.060 1953 0.010 0.022 1954 0.004 0.032 1955 0.003 0.029	1937 0.005 0.053 1938 0.003 0.026 1939 0.000 0.033 1940 0.004 0.057 1941 0.002 0.057 1942 0.006 0.044 1943 0.003 0.043 1944 0.005 0.061 1945 0.005 0.046 1946 0.002 0.036 1947 0.002 0.038 1948 0.009 0.038 1949 0.007 0.059 1950 0.002 0.033 1951 0.003 0.051 1952 0.011 0.060 1953 0.010 0.029 1956 0.001 0.029 1956 0.001 0.029 1957 0.005 0.031 1958 0.011 0.040 1959 0.007 0.040 1960 0.002 0.030	1937 0.005 0.053 1938 0.003 0.026 1939 0.000 0.033 1940 0.004 0.057 1941 0.002 0.057 1942 0.006 0.044 1943 0.003 0.043 1944 0.005 0.061 1945 0.005 0.046 1946 0.002 0.036 1947 0.002 0.028 1948 0.009 0.038 1949 0.007 0.059 1950 0.002 0.033 1951 0.003 0.051 1952 0.011 0.060 1953 0.010 0.055 1954 0.004 0.032 1955 0.003 0.029 1956 0.001 0.029 1957 0.005 0.031 1958 0.011 0.040 1959 0.007 0.040 1960 0.002 0.030 1961 0.002 0.037 1963 0.002 0.081 1964 0.002 0.081
	1942 0.006 0.044 1943 0.003 0.043 1944 0.005 0.061 1945 0.005 0.046 1946 0.002 0.036	19420.0060.04419430.0030.04319440.0050.06119450.0050.04619460.0020.03619470.0020.02819480.0090.03819490.0070.05919500.0020.03319510.0030.051	1942 0.006 0.044 1943 0.003 0.043 1944 0.005 0.061 1945 0.005 0.046 1946 0.002 0.036 1947 0.002 0.028 1948 0.009 0.038 1949 0.007 0.059 1950 0.002 0.033 1951 0.003 0.051 1952 0.011 0.060 1953 0.010 0.055 1954 0.004 0.032 1955 0.003 0.029	1942 0.006 0.044 1943 0.003 0.043 1944 0.005 0.061 1945 0.005 0.046 1946 0.002 0.036 1947 0.002 0.028 1948 0.009 0.038 1949 0.007 0.059 1950 0.002 0.033 1951 0.003 0.051 1952 0.011 0.060 1953 0.010 0.055 1954 0.004 0.032 1955 0.003 0.029 1956 0.001 0.029 1957 0.005 0.031 1958 0.011 0.040 1959 0.007 0.040 1960 0.002 0.030	1942 0.006 0.044 1943 0.003 0.043 1944 0.005 0.061 1945 0.005 0.046 1946 0.002 0.036 1947 0.002 0.028 1948 0.009 0.038 1949 0.007 0.059 1950 0.002 0.033 1951 0.003 0.051 1952 0.011 0.060 1953 0.010 0.055 1954 0.004 0.032 1955 0.003 0.029 1956 0.001 0.029 1957 0.005 0.031 1958 0.011 0.040 1959 0.007 0.040 1961 0.007 0.087 1963 0.002 0.028 1964 0.002 0.081 1965 0.008 0.037

1971	0.008	0.037
1972	0.005	0.117
1973	0.007	0.068
1974	0.004	0.050
1975	0.009	0.054
1970	0.003	0.030
1977	0.002	0.023
1978	0.008	0.041
1979	0.002	0.041
1980	0.004	0.041
1981 1982 1983 1984 1985	0.004 0.002 0.007 0.003	0.038 0.031 0.043 0.043
1985	0.004	0.049
1986	0.004	0.025
1987	0.008	0.043
1988	0.005	0.026
1989	0.004	0.024
1990	0.005	0.032
1991	0.004	0.046
1992	0.006	0.044
1993	0.005	0.050
1994	0.008	0.035
1995	0.002	0.027
1996	0.009	0.037
1997	0.003	0.032
1998	0.004	0.039
1999 2000 2001 2002	0.000 0.003 0.002 0.006	0.033 0.041 0.037 0.029 0.055
2003	0.005	0.032
2004	0.004	0.046
2005	0.008	0.088
2006	0.003	0.041
2007	0.003	0.047
2008	0.004	0.038
2009	0.003	0.029
2010	0.002	0.037
2011	0.002	0.039
2012	0.003	0.037
2013	0.002	0.035
2014	0.002	0.033
2015	0.003	0.058
2016	0.001	0.035
2017	0.006	0.056
2018	0.011	0.037
2019	0.011	0.054
2020	0.003	0.042
2021	0.006	0.036
2022	0.002	0.058
2023	0.005	0.072
2024	0.009	0.082
2025	0.004	0.038
2026	0.007	0.041
2027	0.002	0.046
2028	0.002	0.018

2029	0.005	0.031
2030	0.009	0.059
2031	0.003	0.019
2032	0.002	0.032
2033	0.002	0.040
2034	0.002	0.031
2035	0.010	0.041
2036	0.005	0.031
2037	0.001	0.042
2038	0.004	0.041
2039	0.000	0.079
2040	0.002	0.032
2041	0.003	0.040
2042	0.009	0.045
2043	0.005	0.050
2044	0.006	0.035
2045	0.004	0.029
2046	0.005	0.031
2047	0.004	0.038
2048	0.005	0.032
2049	0.004	0.047
2050	0.003	0.036
2051	0.004	0.051
2052	0.002	0.038
2053	0.004	0.032
2054	0.006	0.065
2055	0.002	0.039
2056	0.002	0.050
2057	0.003	0.025
2058	0.004	0.047
2059	0.007	0.059

Ranked Annual Peaks

Ranked Annual Peaks for Predeveloped and Mitigated. POC #2 Rank Predeveloped Mitigated

0.0134	0.1254
0.0113	0.1174
0.0113	0.0882
0.0109	0.0869
0.0105	0.0817
0.0102	0.0807
0.0096	0.0794
0.0093	0.0748
0.0088	0.0721
0.0088	0.0680
0.0087	0.0647
0.0086	0.0609
0.0085	0.0603
0.0084	0.0592
0.0083	0.0592
0.0082	0.0590
0.0081	0.0587
0.0077	0.0583
0.0076	0.0578
0.0076	0.0574
0.0074	0.0572
0.0068	0.0567
0.0068	0.0561
	0.0134 0.0113 0.0109 0.0105 0.0096 0.0093 0.0088 0.0088 0.0087 0.0086 0.0085 0.0085 0.0084 0.0083 0.0082 0.0081 0.0077 0.0076 0.0076 0.0074 0.0068 0.0068

24	0.0068	0.0558
25	0.0068	0.0556
26	0.0068	0.0554
27 28 20	0.0067 0.0064	0.0553 0.0547
29 30 31	0.0062 0.0062	0.0535 0.0529
32	0.0062	0.0509
33	0.0061	0.0506
34	0.0056	0.0503
35	0.0056	0.0501
36	0.0056	0.0500
37	0.0056	0.0499
38	0.0055	0.0499
39	0.0054	0.0497
40	0.0054	0.0492
41	0.0053	0.0481
42	0.0052	0.0471
43	0.0052	0.0469
44	0.0052	0.0465
45	0.0050	0.0462
46	0.0050	0.0460
47	0.0049	0.0460
48	0.0049	0.0459
49	0.0049	0.0455
50	0.0047	0.0453
51	0.0046	0.0452
52	0.0046	0.0439
53	0.0046	0.0437
54	0.0046	0.0437
55	0.0046	0.0434
56	0.0046	0.0434
57	0.0045	0.0429
58	0.0045	0.0426
59	0.0045	0.0426
60	0.0045	0.0419
61	0.0045	0.0418
62	0.0044	0.0416
63	0.0044	0.0414
64	0.0043	0.0413
65	0.0043	0.0413
66	0.0043	0.0412
67	0.0043	0.0412
68	0.0041	0.0411
69	0.0041	0.0409
70	0.0041	0.0407
71	0.0041	0.0402
72	0.0041	0.0398
73	0.0041	0.0398
74	0.0041	0.0396
75	0.0040	0.0395
76 77	0.0040 0.0040 0.0040	0.0393 0.0393
78	0.0040	0.0388
79	0.0040	0.0386
81	0.0039	0.0385

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	0.0039 0.0038 0.0037 0.0037 0.0037 0.0037 0.0036 0.0036 0.0036 0.0034 0.0034 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 0.0031 0.0031 0.0031 0.0030 0.0029 0.0029 0.0029	0.0383 0.0383 0.0379 0.0376 0.0375 0.0375 0.0375 0.0371 0.0371 0.0370 0.0370 0.0369 0.0369 0.0365 0.0365 0.0365 0.0365 0.0365 0.0356 0.0356 0.0356 0.0356 0.0356 0.0356 0.0356 0.0356 0.0350 0.0348 0.0335 0.0333 0.0329
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138	0.0029 0.0028 0.0028 0.0026 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0024 0.0024 0.0023 0.0023 0.0022 0.0021 0.0020 0.0020 0.0020 0.0020 0.0020 0.0019 0.0018	0.0325 0.0325 0.0321 0.0319 0.0319 0.0319 0.0316 0.0316 0.0316 0.0316 0.0316 0.0312 0.0312 0.0312 0.0301 0.0309 0.0305 0.0299 0.0291 0.0289 0.0285 0.0284

140	0.0017	0.0282
141	0.0017	0.0280
142	0.0017	0.0279
143	0.0017	0.0277
144	0.0017	0.0270
145	0.0016	0.0263
146	0.0016	0.0261
147	0.0016	0.0260
148	0.0015	0.0255
149	0.0015	0.0255
150	0.0015	0.0254
151	0.0015	0.0246
152	0.0013	0.0242
153	0.0013	0.0239
154	0.0012	0.0238
155	0.0009	0.0233
156	0.0004	0.0190
157	0.0003	0.0182
158	0.0002	0.0180

Duration Flows

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0020	54309	315396	580	Fail
0.0021	50182	307474	612	Fail
0.0022	46603	299939	643	Fail
0.0022	43345	292682	675	Fail
0.0023	40293	285590	708	Fail
0.0024	37451	278776	744	Fail
0.0025	34913	272183	779	Fail
0.0025	32564	266034	816	Fail
0.0026	30326	259884	856	Fail
0.0027	28271	253957	898	Fail
0.0028	26432	248361	939	Fail
0.0028	24797	242766	979	Fail
0.0029	23296	237336	1018	Fail
0.0030	21922	232239	1059	Fail
0.0031	20631	227253	1101	Fail
0.0031	19418	222267	1144	Fail
0.0032	18282	217669	1190	Fail
0.0033	17219	213126	1237	Fail
0.0034	16160	208639	1291	Fail
0.0034	15147	204262	1348	Fail
0.0035	14277	200052	1401	Fail
0.0036	13451	195841	1455	Fail
0.0037	12659	191742	1514	Fail
0.0037	11933	187808	1573	Fail
0.0038	11235	184041	1638	Fail
0.0039	10559	180274	1707	Fail
0.0040	9972	176728	1772	Fail
0.0040	9374	173293	1848	Fail
0.0041	8847	169692	1918	Fail
0.0042	8332	166257	1995	Fail
0.0043	7861	162933	2072	Fail
0.0043	7457	159720	2141	Fail
0.0044	7030	156562	2227	Fail
0.0045	6609	153404	2321	Fail
0.0046	6271	150357	2397	Fail
0.0046	5978	147366	2465	Fail
0.0047	5701	144429	2533	Fail
0.0048	5438	141604	2603	Fail
0.0049	5198	138834	2670	Fail
0.0049	4940	136119	2755	Fail
0.0050	4703	133460	2837	Fail
0.0051	4511	130912	2902	Fail
0.0052	4335	128308	2959	Fail
0.0052	4157	125815	3026	Fall
0.0053	3958	123322	3115	Fall
0.0054	3700	120995	3212	Fall
0.0055	3081	110013	3312	Fall
0.0055	3414	110280	3400	Fall
0.0050	3239 2124	114101	3303	Fall
0.0057	3134	100740	3070	Fall
0.0000	2020	109/49	3622	rall Foil
0.0000	2920 2911	107704	3756	r∶all Foil
0.0009	∠014 2682	103704	3863	r∶all Foil
0.0000	2002	102233	3002	i all

Duration does need to pass as the project is flow control exempt

0.0061	2555	101660	3978	Fail
0.0061	2451	99777	4070	Fail
0.0062	2358	97782	4146	Fail
0.0063	2255	95899	4252	Fail
0.0064	2140	94070	4395	Fail
0.0064	2038	92297	4528	Fail
0.0065	1952	90580	4640	Fail
0.0066	1860	88918	4780	Fail
0.0067	1778	87311	4910	Fail
0.0067	1690	85594	5064	Fail
0.0068	1619	83987	5187	Fail
0.0069	1561	82381	5277	Fail
0.0070	1482	80774	5450	Fail
0.0070	1407	79223	5630	Fail
0.0071	1338	77727	5809	Fail
0.0072	1270	76231	6002	Fail
0.0073	1217	74846	6150	Fail
0.0073	1163	73461	6316	Fail
0.0074	1103	72076	6534	Fail
0.0075	1055	70802	6711	Fail
0.0076	1005	69472	6912	Fail
0.0076	963	68143	7076	Fail
0.0077	919	66924	7282	Fail
0.0078	872	65705	7534	Fail
0.0079	814	64431	7915	Fail
0.0079	774	63212	8166	Fail
0.0080	738	62049	8407	Fail
0.0081	694	60996	8789	Fail
0.0082	636	59833	9407	Fail
0.0082	601	58835	9789	Fail
0.0083	553	57727	10438	Fail
0.0084	517	56675	10962	Fail
0.0085	478	55622	11636	Fail
0.0085	434	54597	12579	Fail
0.0086	394	53644	13615	Fail
0.0087	363	52636	14500	Fail
0.0088	339	51639	15232	Fail
0.0088	310	50692	16352	Fail
0.0089	295	49789	16877	Fail
0.0090	273	48830	17886	Fail
0.0091	252	47938	19023	Fail
0.0091	237	47052	19853	Fail
0.0092	223	46165	20701	Fail
0.0093	206	45262	21971	Fail
0.0094	194	44393	22882	Fail
0.0094	179	43578	24345	Fail

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #2 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for Treatment ?	Total Volume Needs Treatment (ac-ft)	Volume Through Facility (ac-ft)	Infiltration Volume (ac-ft)	Cumulative Volume Infiltration Credit	Percent Volume Infiltrated	Water Quality	Percent Water Quality Treated	Comment
Total Volume Infiltrated		0.00	0.00	0.00		0.00	0.00	0%	No Treat. Credit
Compliance with LID Standard 8% of 2-yr to 50% of 2-yr									Duration Analysis Result = Failed

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.

IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

7	West Pre-De	2	East Pre-De	evelope		
	0.04ac		0.19ac			

Mitigated Schematic

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation END 2059 09 30 END 3 0 START 1901 10 01 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 10-10-22 5th Street Site Calculations.wdm MESSU 25 Pre10-10-22 5th Street Site Calculations.MES Pre10-10-22 5th Street Site Calculations.L61 27 Pre10-10-22 5th Street Site Calculations.L62 28 POC10-10-22 5th Street Site Calculations1.dat 30 POC10-10-22 5th Street Site Calculations2.dat 31 END FILES OPN SEQUENCE INDELT 00:15 INGRP 10 PERLND COPY 501 COPY 502 1 DISPLY DISPLY 2 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND West Pre-Developed MAX 1 1 2 30 9 2 9 2 East Pre-Developed MAX 1 31 END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 501 502 1 1 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM # K *** # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name----->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # * * * in out 10 C, Forest, Flat 1 1 1 1 27 0 END GEN-INFO *** Section PWATER*** ACTIVITY # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *** 10 0 0 1 0 0 0 0 0 0 0 0 0 END ACTIVITY

 # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC

 10
 0
 0
 0
 0
 0
 0
 1
 9

 END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***
 # # CSNO RTOP UZFG
 VCS
 VUZ
 VNN VIFW
 VIRC
 VLE
 INFC
 HWT

 10
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 10 END PWAT-PARM1 PWAT-PARM2 END PWAT-PARM2 PWAT-PARM3 WAT-PARM3 <PLS > PWATER input info: Part 3 *** # - # ***PETMAX PETMIN INFEXP INFILD 10 0 0 2 2 NUMBER DADA(2) INFILD DEEPFR BASETP AGWETP 2 0 0 0 END PWAT-PARM3 PWAT-PARM4
 <PLS >
 PWATER input info: Part 4

 # - #
 CEPSC
 UZSN
 NSUR
 INTFW
 IRC
 LZETP ***

 10
 0.2
 0.5
 0.35
 6
 0.5
 0.7
 END PWAT-PARM4 PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
 # # *** CEPS
 SURS
 UZS
 IFWS
 LZS
 AGWS

 10
 0
 0
 0
 0
 2.5
 1
 GWVS 1 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** # - # User t-series Engl Metr *** * * * in out END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** END IWAT-PARM1 IWAT-PARM2 <PLS > IWATER input info: Part 2 ***
- # *** LSUR SLSUR NSUR RETSC END IWAT-PARM2 IWAT-PARM3 <PLS > IWATER input info: Part 3 * * * # - # ***PETMAX PETMIN END IWAT-PARM3

IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # West Pre-Developed*** 0.039 COPY 501 12 0.039 COPY 501 13 PERLND 10 PERLND 10 East Pre-Developed*** 0.191 COPY 502 12 0.191 COPY 502 13 PERLND 10 PERLND 10 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> #<Name> # #<-factor->strg<Name> # #<Name> #COPY501OUTPUTMEAN148.4DISPLY1INPUTCOPY502OUTPUTMEAN1148.4DISPLY2INPUTTIMSER <Name> # # *** <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer * * * # - #<----- User T-series Engl Metr LKFG * * * *** in out END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR ******* END PRINT-INFO HYDR-PARM1 RCHRES Flags for each HYDR Section * * * END HYDR-PARM1 HYDR-PARM2 # - # FTABNO LEN DELTH STCOR * * * ks db50 <----><----><----><----> * * * END HYDR-PARM2 HYDR-INIT * * * RCHRES Initial conditions for each HYDR section END HYDR-INIT END RCHRES

SPEC-ACTIONS

END SPEC-ACTIONS FTABLES END FTABLES

EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # # *** <Name> # <Name> # tem strg<-factor->strg <Name> # # WDM2PRECENGL1PERLND1999EXTNLPRECWDM2PRECENGL1IMPLND1999EXTNLPRECWDM1EVAPENGL1PERLND1999EXTNLPETINWDM1EVAPENGL1IMPLND1999EXTNLPETINWDM1EVAPENGL1IMPLND1999EXTNLPETIN IMPLND 1 999 EXTNL PREC PERLND 1 999 EXTNL PETINP IMPLND 1 999 EXTNL PETINP END EXT SOURCES EXT TARGETS <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd *** <Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg*** 501 OUTPUT MEAN 1 1 48.4 WDM COPY 501 OUTPUT MEAN COPY 502 OUTPUT MEAN 501 FLOW ENGL REPL 1 1 48.4 WDM 502 FLOW ENGL REPL END EXT TARGETS MASS-LINK <Volume> <-Grp> <-Member-><--Mult--> <-Grp> <-Member->*** <Target> <Name> <Name> # #<-factor-> <Name> <Name> # #*** 12 MASS-LINK PERLND PWATER SURO INPUT MEAN 0.083333 COPY END MASS-LINK 12 MASS-LINK 13 PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13

END MASS-LINK

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation END START 1901 10 01 2059 09 30 RUN INTERP OUTPUT LEVEL 3 0 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 10-10-22 5th Street Site Calculations.wdm MESSU 25 Mit10-10-22 5th Street Site Calculations.MES Mit10-10-22 5th Street Site Calculations.L61 27 28 Mit10-10-22 5th Street Site Calculations.L62 POC10-10-22 5th Street Site Calculations1.dat 30 POC10-10-22 5th Street Site Calculations2.dat 31 END FILES OPN SEQUENCE INDELT 00:15 INGRP 13 PERLND IMPLND 11 1 IMPLND IMPLND 4 8 IMPLND 501 COPY COPY 502 DISPLY 1 DISPLY 2 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 2 30 West Developed MAX 1 2 9 East Developed MAX 1 2 31 9 END DISPLY-INF01 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 501 1 1 502 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # in out * * * 13 C, Pasture, Flat 1 1 1 1 27 0 END GEN-INFO *** Section PWATER*** ACTIVITY # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***

13 END	ACTIV	0 VITY	0	1	0	0	0	0	0	0	0	0	0		
PRI < # 13 END	NT-INF PLS > - # PRINT	FO **** ATMP 0 F-INF(***** SNOW 0 O	***** PWAT 4	s** Pr SED 0	int-1 PST 0	Elags PWG 0	**** PQAL 0	***** MSTL 0	***** PEST 0	***** NITR 0	***** PHOS 0	**** TRAC 0	PIVL PYF ******* 1 9	<u>२</u> * * Э
PWA < 13 END	T-PARN PLS > - # PWAT-	M1 PWA CSNO 0 -PARM	TER va RTOP 0 1	riabl UZFG 0	e mon VCS 0	thly VUZ O	paran VNN 0	neter VIFW O	value VIRC 0	e flag VLE 0	gs ** INFC 0	* * HWT 0	* * *		
PWA < 13 END	T-PARN PLS > - # PWAT-	M2 ***F(-PARM2	PWATE OREST 0 2	R inp	out in LZSN 4.5	fo: I Il	Part 2 NFILT 0.06	2	* LSUR 400	:** 5	SLSUR 0.05	F	(VARY 0.5	AGWR(0.996	710
PWA < 13 END	T-PARN PLS > - # PWAT-	M3 ***Pi -PARM3	PWATE ETMAX 0 3	R inp PE	out in TMIN 0	fo: I Il	Part 3 NFEXP 2	3 Il	* IFILD 2	*** DE	CEPFR 0	BA	ASETP 0	AGWETI (<u>5</u>)
PWA < # 13 END	PLS > PLS > - # PWAT-	94] (-PARM	PWATER CEPSC 0.15 4	inpu	ut inf UZSN 0.4	o: Pa	art 4 NSUR 0.3	:	INTFW 6		IRC 0.5	I	LZETP 0.4	* * *	
PWA < # 13 END	T-STA PLS > - # PWAT-	FE1 *** : *** -STATI	Initia an fro CEPS 0 El	ul con om 199	ditio 0 to SURS 0	ns at end o	t star of 199 UZS 0	rt of 92 (pa	simul at 1-1 IFWS 0	atior 1-95)	RUN LZS 2.5	21 **	** AGWS 1	GWVS (5)
END P	ERLND														
IMPLN GEN 11 1 4 8 END ***	GEN-I Sect	PARK ROAD ROOF SIDEU INFO ion IU	Nam ING/FL S/FLAT TOPS/ WALKS/ WATER*	AT FLAT FLAT FLAT	>	Un: User 1 1 1	it-sys t-se in 1 1 1	stems out 1 1 1	Pri Engl 27 27 27 27 27	nter Metr 0 0 0 0	* * * * * * * * *				
ACT 4 11 4 8 END	PLS > - #	**** ATMP 0 0 0 0 VITY	****** SNOW 0 0 0 0	*** A IWAT 1 1 1 1	SLD 0 0 0 0	Sect IWG 0 0 0	ions IQAL 0 0 0 0	* * * * *	* * * * *	****	* * * * *	* * * * * :	* * * *		
PRI < # 11 4 8 END	NT-INI ILS > - # PRINT	FO **** 0 0 0 0 1-INF(**** F SNOW 0 0 0 0	Print- IWAT 4 4 4 4	flags SLD 0 0 0 0	**** IWG 0 0 0	***** IQAL 0 0 0 0	PIVL * 1 1 1	PYR ***** 9 9 9 9	* *					

10-10-22 5th Street Site Calculations

10/21/2022 9:22:29 AM

IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** * * * # - # CSNO RTOP VRS VNN RTLI 11 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4 0 0 8 0 0 0 END IWAT-PARM1 IWAT-PARM2 <PLS > IWATER input info: Part 2 * # - # *** LSUR SLSUR NSUR RETSC * * * <PLS > 0.1 0.01 0.1 11 400 1 400 0.01 0.1 0.1 400 0.01 4 0.1 0.1 0.1 8 400 0.01 0.1 END IWAT-PARM2 IWAT-PARM3 * * * IWATER input info: Part 3 <PLS > # - # ***PETMAX PETMIN 0 11 0 1 0 0 4 0 0 8 0 0 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 0 0 11 1 0 0 4 0 0 0 8 0 END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK <-factor-> <Name> # Tbl# * * * <-Source-> <Name> # <Name> # Tbl# * * * West Developed***
 COPY
 501
 12

 COPY
 501
 13

 COPY
 501
 15
 0.024 perlnd 13 PERLND 13 IMPLND 11 0.024 0.045 COPY 501 15 East Developed*** PERLND 13 0.052 COPY 502 12 12 13 15 PERLND 13 0.052 502 COPY IMPLND 1 0.031 COPY 502 IMPLND 4 0.073 COPY 502 15 IMPLND 8 0.005 COPY 502 15 *****Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** * * * <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # 1 INPUT 2 Tree COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY TIMSER 1 COPY 502 OUTPUT MEAN 1 1 48.4 DISPLY INPUT TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> * * * <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO

RCHRES Name Nexits Unit Systems Printer * * * # - #<----> User T-series Engl Metr LKFG * * * in out * * * END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GOL OXRX NUTR PLNK PHCB PIVL PYR ******* END PRINT-INFO HYDR-PARM1 RCHRES Flags for each HYDR Section * * * # - # END HYDR-PARM1 HYDR-PARM2 # – # FTABNO LEN DELTH STCOR KS DB50 * * * * * * <----><----><----><----> END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section * * * END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # tem strg<-factor->strg <Name> # # <Name> # # *** 2 PRECENGL1PERLND1999EXTNLPREC2 PRECENGL1IMPLND1999EXTNLPREC1 EVAPENGL1PERLND1999EXTNLPETIN1 EVAPENGL1IMPLND1999EXTNLPETIN WDM IMPLND 1 999 EXTNL PREC PERLND 1 999 EXTNL PETINP IMPLND 1 999 EXTNL PETINP WDM WDM WDM END EXT SOURCES EXT TARGETS <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd *** <Name> # ______<Name> # #<-factor->strg <Name> # <Name> tem strg strg*** 1OUTPUT MEAN1148.4WDM701FLOWENGLREPL501OUTPUT MEAN1148.4WDM801FLOWENGLREPL2OUTPUT MEAN1148.4WDM702FLOWENGLREPL502OUTPUT MEAN1148.4WDM802FLOWENGLREPL COPY COPY501OUTPUTMEAN1COPY2OUTPUTMEAN1COPY502OUTPUTMEAN1 END EXT TARGETS MASS-LINK <Volume> <-Grp> <-Member-><--Mult--> <Target> <Name> <Name> # #<-factor-> <Name> MASS-LINK 12 <-Grp> <-Member->*** <Name> # #*** PERLND PWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 12 MASS-LINK 13 PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13

MASS-LINK 15 IMPLND IWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 15

END MASS-LINK

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2022; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

<Name>

Circular		Highlighted	
Diameter (ft)	= 0.50	Depth (ft) =	= 0.47
		Q (cfs) =	0.462
		Area (sqft) =	= 0.19
Invert Elev (ft)	= 100.00	Velocity (ft/s) =	= 2.41
Slope (%)	= 0.50	Wetted Perim (ft) =	= 1.33
N-Value	= 0.012	Crit Depth, Yc (ft) =	= 0.35
		Top Width (ft) =	= 0.24
Calculations		EGL (ft) =	= 0.56
Compute by:	Q vs Depth		
No. Increments	= 50		

APPENDIX C

NRCS Soil Map and Soil Unit Data

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

	MAP LI	EGEND		MAP INFORMATION
Area of Intere	e st (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.
Area of Intere Soils Soils Special Po Special Po	est (AOI) Area of Interest (AOI) Soil Map Unit Polygons Soil Map Unit Points Soil Map Unit Points Soil Map Unit Points Soil Map Unit Points Solowout Sorrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot Closed Depression Gravel Pit Gravelly Spot Closed Depression Gravel Pit Gravel Pit Gra	Constraints of the second seco	Spoil Area Stony Spot Very Stony Spot Wet Spot Other Special Line Features Streams and Canals ation Rails Interstate Highways US Routes Major Roads Local Roads Aerial Photography	 Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 18, Sep 8, 2022 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
+ s ∷ s ⊕ s ≬ s ø s	Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
31A	Puyallup fine sandy loam	0.2	100.0%
Totals for Area of Interest		0.2	100.0%

Pierce County Area, Washington

31A—Puyallup fine sandy loam

Map Unit Setting

National map unit symbol: 2hq9 Elevation: 0 to 390 feet Mean annual precipitation: 35 to 60 inches Mean annual air temperature: 50 degrees F Frost-free period: 170 to 200 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Puyallup and similar soils: 85 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Puyallup

Setting

Landform: Terraces, flood plains Parent material: Alluvium

Typical profile

H1 - 0 to 13 inches: ashy fine sandy loam *H2 - 13 to 29 inches:* loamy fine sand *H3 - 29 to 60 inches:* fine sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95 in/hr)
Depth to water table: About 48 to 79 inches
Frequency of flooding: OccasionalNone
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 6.6 inches)

Interpretive groups

Land capability classification (irrigated): 3w Land capability classification (nonirrigated): 3w Hydrologic Soil Group: A Ecological site: F002XA008WA - Puget Lowlands Riparian Forest Forage suitability group: Droughty Soils (G002XN402WA) Other vegetative classification: Droughty Soils (G002XN402WA) Hydric soil rating: No

USDA

Minor Components

Briscot, undrained

Percent of map unit: 2 percent Landform: Depressions Other vegetative classification: Seasonally Wet Soils (G002XN202WA) Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Pierce County Area, Washington Survey Area Data: Version 18, Sep 8, 2022

APPENDIX D

Federal Emergency Management Agency Flod Insurance Rate Panel

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

APPENDIX E

Bond Quantities, Declaration of Covenant for Privately Maintained Facilities

(To be provided further in the design / approval / permitting process)

APPENDIX F

Downstream Drainage Path

